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For eacn channel, extract a cepstrum coefticient for each
frame of the first audio clip in a frequency domain

Determine an intra-channe! SDC feature for each channel

based on difference between the cepstrum coefficients for
the channel over a predetermined number of frames

$502

Determine an inter-channel SDC feature for each two of the |
muitiple channels based on difference between the | S503
cepstrum coefficients for the two channels '

Ac(t,0)11 Ac(t, 1 )11
t-d t t+d t+P-d  t+P t+P+d
Channel 1
Ac(t,0)12 Acft 1)12
l Ac(t,0)21 [ Ac(t )21
t-d t t+d t+P-d t+P t+P+d
Channel 2 ' '

F I G. 6 Ac{t,0)22 Ac(t,1)22



U.S. Patent Apr. 18, 2017 Sheet 5 of 11 US 9,626,970 B2

700
Y

Determine a GLDS kernel function for each first |
model based on the spatial acoustic features | \-S701

Construct a GLDS model based on the location

information and the GLDS kernel function




US 9,626,970 B2

Sheet 6 of 11

Apr. 18, 2017

U.S. Patent

A

g

)

N

NS

[oLLIDY]
SA1o fenedg

QUL
SS9 jeneds

ugisuedxs
[EHUOUAIO

uoisuedxa
[BHUIOUAIO

 ££005=9X

£200S=5X |

OS5 =r¥ ﬁ

 2100S=2X

_ LOAS=1LX ﬂ




U.S. Patent Apr. 18, 2017 Sheet 7 of 11 US 9,626,970 B2

403 \

Spatial SDC Location
features information

Spatial SDC feature classifier

Speaker 2

4031

Speaker 4

Speaker 5

Target class of SDC Impostor class of
feature SDC feature

GLDS kernel function
determination moduie 4032

GLDS model trainer

-4033

GLDS Model for
Speaker 1

FIG. 9



U.S. Patent Apr. 18, 2017 Sheet 8 of 11 US 9,626,970 B2

1000\‘

Exiract a plurality of spatial acoustic features across the
muitiple channelis from the audio content | \S7001

Determine a closeness score between the spatial acoustic
features of the audio content and the first model | ~S1002

ldentify whether the audio content contains voices from L
the speaker based on the closeness score | ~S1003
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SPEAKER IDENTIFICATION USING
SPATIAL INFORMATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to International Patent
Application No. PCT/CN2014/094409 filed on 19 Dec.

2014, and U.S. Provisional Patent Application No. 62/128,
264 filed on 4 Mar. 2013, all hereby incorporated in their

entirety by reference.

TECHNOLOGY

Embodiments of the present invention generally relate to
audio content processing, and more specifically, to a method
and system for speaker 1dentification using spatial informa-
tion.

BACKGROUND

It 1s desirable 1n some scenarios, such as 1 a multiparty
teleconference scenario, to automatically identity who 1s
participating in the conference and which participant(s)
1s/are currently talking, which can facilitate the communi-
cation among the multiple participants, especially when the
visual information of the talkers 1s unavailable. Speaker
identification can provide valuable information for the sys-
tem to provide operations for better user experience, such as
speaker dependent quality enhancement. Speaker i1dentifi-
cation has also been an important tool 1n meeting transcrip-
tion.

Generally, 1t 1s not a problem to automatically identify
which participant(s) 1s/are currently talking, 11 each speaker
has his or her own telephone endpoint, 1.e., where no two
participants share the same telephone endpoint. In such a
scenario, the telephony system can use respective identifiers
of the various endpoints connected to a coniference as
identifiers of the participants and voice activity detection
(VAD) can be used for identitying who 1s currently talking.
For example, it “Adam” 1s using Endpoint A to participate
in a conierence, the telephony system can detect voice
activity 1n the uplink stream received from Endpoint A and
then recognize that “Adam” 1s currently talking.

However, 1t 1s not straightforward to identily who 1s
participating in the conference and which participant(s)
is/are currently talking, 1 multiple participants join the
conference via the same endpoint, for example, 11 they join
the conference via a conference phone 1n a meeting room. In
such a scenario, 1 order to automatically identify the
speakers, one approach 1s to use speech audio processing to
identily the respective voices of diflerent participants.

Traditional speaker identification methods, also referred
to as monaural speaker modeling methods, generally relate
to monaural telephony systems. By using such methods, all
the input audio signals, even signals from the endpoint with
multiple channels, may be pre-converted into a monaural
audio signal for the subsequent 1dentification process. In this
sense, the mono channel based methods do not perform well
in a scenario where multiple participants join a conference
via the same endpoint with multiple channels. For example,
the 1dentification of the respective speakers tends to be less
accurate than desirable, or the associated computational
burden tends to be too high. Those methods also sufler from
various robustness 1ssues, especially when an overlapped
speech mvolves two or more speakers or a speech coming
from a moving speaker.
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2
SUMMARY

In order to address the foregoing and other potential
problems, the present invention proposes a method and
system for speaker identification.

In one aspect, embodiments of the present invention
provide a method of speaker 1dentification for audio content
being of a format based on multiple channels. The method
comprises extracting, from a first audio clip 1n the format, a
plurality of spatial acoustic features across the multiple
channels and location information, the first audio clip con-
taining voices from a speaker, and constructing a first model
tor the speaker based on the spatial acoustic features and the
location information, the first model indicating a character-
istic of the voices from the speaker. The method further
comprises identifying whether the audio content contains
voices from the speaker based on the first model. Embodi-
ments 1n this regard further comprise a corresponding com-
puter program product.

In another aspect, embodiments of the present invention
provide a system of speaker 1dentification for audio content
being of a format based on multiple channels. The system
comprises a first feature extraction unit configured to extract,
from a first audio clip 1in the format, a plurality of spatial
acoustic features across the multiple channels and location
information, the first audio clip containing voices from a
speaker, and a {irst model construction unit configured to
construct a first model for the speaker based on the spatial
acoustic features and the location information, the first
model indicating a characteristic of the voices from the
speaker. The system further comprises a first speaker 1den-
tification unit configured to identify whether the audio
content contains voices from the speaker based on the first
model.

Through the following description, 1t would be appreci-
ated that 1n accordance with embodiments of the present
invention, spatial acoustic features are extracted across
multiple channels from sample audio clip to better represent
speakers and location information which 1s used to facilitate
speaker model building, so that the speaker 1dentification 1s
applied to audio content of a format based on multiple
channels and accuracy of the speaker identification 1is
improved. Other advantages achieved by embodiments of
the present mmvention will become apparent through the
following descriptions.

DESCRIPTION OF DRAWINGS

Through the following detailed description with reference
to the accompanying drawings, the above and other objec-
tives, features and advantages of embodiments of the present
invention will become more comprehensible. In the draw-
ings, several embodiments of the present invention will be
illustrated 1n an example and non-limiting manner, wherein:

FIG. 1 illustrates a schematic diagram of an example
environment 1n which embodiments of the present invention
may be implemented;

FIG. 2 illustrates a flowchart of a method of speaker
identification for audio content 1n accordance with an
example embodiment of the present invention;

FIG. 3 illustrates a schematic diagram of distribution of
location information 1 a polar system in accordance with
some example embodiments of the present invention;

FIG. 4 shows a block diagram of a system 400 for speaker
modeling and identification 1 accordance with some
example embodiments of the present invention;
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FIG. 5 illustrates a flowchart of a method for spatial
shifted delta cepstrum (SDC) feature extraction in accor-

dance with an example embodiment of the present mnven-
tion;

FIG. 6 1llustrates a schematic diagram of intra-channel
SDC feature and inter-channel SDC feature computation for
two channels 1n accordance with some embodiments of the
present invention;

FI1G. 7 illustrates a flowchart of a method for generalized
linear discriminant sequence (GLDS) modeling 1 accor-
dance with an example embodiment of the present inven-
tion;

FIG. 8 1llustrates a schematic diagram for processes of
GLDS kernel function determination 1n accordance with an
example embodiment of the present invention;

FI1G. 9 illustrates a block diagram of a GLDS modeling
module in the system for speaker modeling and 1dentifica-
tion 1 FIG. 4 1n accordance with some example embodi-
ments of the present invention;

FIG. 10 illustrates a flow chart of a method for speaker
identification on the basis of the construct model 1n accor-
dance with some example embodiments of the present
invention;

FIG. 11 1llustrates a graphical user interface (GUI) dis-
playing a result of the speaker 1dentification in accordance
with some example embodiments of the present invention;

FI1G. 12 1llustrates a block diagram of a system for speaker
modeling and identification in accordance with another
example embodiment of the present invention;

FI1G. 13 1llustrates a block diagram of a system of speaker
identification for audio content in accordance with an
example embodiment of the present invention; and

FIG. 14 illustrates a block diagram of an example com-
puter system suitable for implementing embodiments of the
present mvention.

Throughout the drawings, the same or corresponding
reference symbols refer to the same or corresponding parts.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Principles of the present mnvention will now be described
with reference to various example embodiments 1llustrated
in the drawings. It should be appreciated that depiction of
these embodiments 1s only to enable those skilled in the art
to better understand and further implement the present
invention, not intended for limiting the scope of the present
invention 1n any mannetr.

FIG. 1 illustrates a schematic diagram ol an example
environment in which embodiments of the present invention
may be implemented.

In the environment as shown in FIG. 1, two parties are
holding a conference. Multiple participants (for example,
“Adam™, “Tom”, “John”, “Bill”, and “David” as shown)
from the first conference party join the conference via the
same endpoint device 101, while one or more participants
(for example, “Luke” as shown) from the second conference
party join the conference via another endpoint device 102.
The endpoint devices 101 and 102 may record speech from
the speakers and transmit the recorded speech to each other
via the network 103. The endpoint devices 101 and 102 may
also be able to play the received speech.

The endpoint device 101 may have multiple channels, and
the endpoint device 102 may have a mono channel or
multiple channels for example. The endpoint devices 101
and 102 may be any other types of devices having the
capacity of audio recording, such as a conference phone, a
headphone device, an earphone device, a mobile phone, a

10

15

20

25

30

35

40

45

50

55

60

65

4

portable digital assistant (PDA), a mobile computer, a lap-
top, a tablet computer, a camera, a video camera, and other
types of voice communication system.

In embodiments of the present invention, 1t 1s expected to
be performed the speaker identification at the first conter-
ence party side. For example, at the same time of audio
recording, the endpoint device 101 may identify who 1s
participating 1n the conference and which participant(s)
1s/are currently talking. The identification results may be
transmitted to the endpoint device 102 via the network 103
and may be displayed on the endpoint device 102 (or other
display device at the second conference party side), so that
the user (Luke) can recognize which participant from the
first conference party 1s currently talking. It should be
understood that the speaker i1dentification may also be per-
formed by other processing devices at the first conference
party side or in the network 103, or even by the endpoint
device 102 (or other devices) at the second conference party
side.

It should be understood that the implementation environ-
ment in FIG. 1 1s shown only for illustration purpose,
without suggesting any limitation on the scope of the subject
matter described herein. In some cases, more than two
parties may join the conference. In some other cases, par-
ticipants from one or more of the parties may have respec-
tive endpoint devices to talk to.

As mentioned in the foregoing description, the speaker
identification i the existing solutions generally relate to
monaural telephony systems and sufler less accurate results,
a high computational burden, and robustness 1ssues 1n a
scenar1o where the audio to be 1dentified 1s of a format based
on multiple channels. In order to address these and other
potential problems, embodiments of the present ivention
proposes a method and system for speaker identification for
audio of a format based on multiple channels using spatial
information in the audio. Embodiments of the present inven-
tion tend to provide unsupervised speaker identity (SPID)
model building and real-time recognition based on the
spatial information.

Reference 1s now made to FIG. 2 which shows a tlowchart
of a method 200 of speaker identification for audio content
in accordance with example embodiments of the present
invention.

At step S201, a plurality of spatial acoustic features across
multiple channels and location information are extracted
from a first audio clip. The first audio clip has a format based
on multiple channels and may contain voices from a speaker.
The number of channels may be dependent on a device
recording the audio clip.

In embodiments of the present invention, 1t 1s intended to
perform the speaker identification on input audio content
captured by the audio recording device with multiple chan-
nels 1n real time or previously. In order to perform speaker
identification, speaker models should be built firstly based
on some sample audios. To this end, an audio clip 1s selected
from the iput audio content and may be considered as
sample audio used for building speaker models. In some
embodiments, the first audio clip may be an audio signal

captured by the endpoint device over a period of time from
the start of an audio call. In some other embodiments, the

first audio clip may include an audio signal captured by the
endpoint device 1n a different audio call. The length of the
first audio clip may be predetermined. Furthermore, the first
audio clip or the input audio content may be filtered by voice
activity detection (VOA) and the filtered frames associated
with voices may be selected for processing.
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Belfore extraction of acoustic features and location infor-
mation, signal preprocessing may be applied to the first
audio clip or the mput audio content 1 order to facilitate
subsequent speaker modeling and identification. Such
example but not limiting signal preprocessing may include
channel de-correlation, noise cancellation, automatic gain
control (AGC), enhancement, and/or the like.

As mentioned above, embodiments of the present inven-
tion tend to provide speaker model building based on the
spatial information. The spatial acoustic features and loca-
tion information extracted from the first audio clip at this
step can be considered as the spatial information.

The spatial acoustics feature used herein represents acous-
tics characteristics of the voice from a speaker. Spatial
shifted delta cepstrum (SDC) features in the frequency
domain may be utilized to represent the acoustics feature.
Since the first audio clip has a format based on multiple
channels, in order to better characterize the speaker, an
acoustic feature across multiple channels (referred to herein
as a spatial acoustic feature) can be extracted from the audio
content. The spatial acoustic features may include an 1intra-
channel SDC feature and an inter-channel SDC feature and
may be extracted 1n a frequency domain 1 some embodi-
ments. The detailed extraction process will be set forth
below.

The location information indicates the spatial position of
a speaker 1n the space, for example, 1n a meeting room. The
location information of the speaker may include sound field
analysis results which may include at least one of a direction
of arrtval (DOA) or a distance of the speaker with respect to
the audio recording device. The sound field analysis may be
referred to U.S. patent application publication US2014/
0241528, entitled “Sound Field Analysis System”, the dis-
closure of which 1s hereby imncorporated herein by reference
in 1ts entirety. There may be many other ways to obtain the
location information and the scope of the present invention
1s not limited in this regard. In one example, for each
channel, each frame in the audio clip has the associated
location 1mnformation to indicate the spatial position from
which the signal in the frame 1s captured.

In some example embodiments, 1f assuming that speakers
in the audio content have their own positions that are
substantially fixed within a certain range of space and
separated from each other by certain distances, by observing
the location information from an enough amount of frames
of audios, several clusters may be detected. FIG. 3 depicts
a schematic diagram of distribution of location information
in a polar system in accordance with some example embodi-
ments ol the present invention. As can be seen from FIG. 3,
about five clusters, 301-305, are detected from the distribu-
tion, and each cluster may 1ndicate presence of one speaker.
For example, the cluster centroid may indicate a spatial
position of a speaker and may be determined as (p,.,0,),
where p, 1s a distance of the centroid of a cluster 1 (one of
301-305 shown 1n FIG. 3) and 0, 1s an azimuth angle of the
centroid. It should be noted that the location information
may also be represented in any of other coordinate systems,
for example, a 3 Cartesian coordinate, a cylindrical and
spherical coordinate, and the like.

Note that with the DOA information or the distance
information only, 1t 1s also possible to detect the presence of
speakers. For example, the DOA information itsellf may
indicate presence ol a speaker in a certain direction. The
distance information may indicate presence of a speaker
away Irom the audio recording device by a certain distance.

The method 200 then proceeds to step S202, where a first
model for the speaker 1s constructed based on the spatial
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acoustic features and the location information. The first
model indicates a characteristic of the voices from the
speaker.

This step relates to a model building process. The spatial
acoustic features, which may represent a characteristic of a
speaker, are used for building a model for the speaker. In
example embodiments of the present invention, a support
vector machine (SVM) algorithm may be used 1n the mod-
cling process. The key of SVM 1s to determine 1ts kernel
function. Since the spatial acoustic features are extracted
across multiple channels, which may result 1n a large num-
ber of dimensions 1n the features, 1t 1s desirable to provide
the ability to handle large sequence data in the model
building process as well as subsequent model based speaker
identification. To this end, 1n some embodiments, a gener-
alized linear discriminant sequence (GLDS) kernel function
may be utilized due to the benefit of the linearization of the
GLDS, which results 1n low memory consumption and low
computational complexity. The GLDS kernel function may
also be advantageous 1n parallel model building and com-
position, subsequent model refinement, etc. The first model
determined based on the GLDS kernel function sometimes
refers to a GLDS model.

As described above, clusters detected from the location
information may indicate the positions of speakers roughly.
Since 1t 1s expected to build one model for each speaker, the
number of models built may be determined by considering
how many clusters are detected from the location informa-
tion. For example, since there are five clusters detected from
the distribution of location information depicted in FIG. 3,
i assuming that each cluster represents presence of a
speaker, five models may be bwlt for respective speakers.
Furthermore, in order to better train the GLDS model
corresponding a speaker, the spatial acoustic features asso-
ciated with the speaker as well as the spatial acoustic
features associated with other speakers may be used for
model tramning. The location information may be used for
determining which speaker the spatial acoustic features of an
audio clip are associated with, for example, by comparing
the location information associated with the audio clip and
the spatial position of the speakers.

The method 200 further proceeds to step S203, where
whether the audio content contains voices from the speaker
1s 1dentified based on the first model.

It would be appreciated that after the models for the
speaker 1s determined, speaker identification may be per-
formed on the input audio content captured by the endpoint
device used 1n the audio call. In embodiments where GLDS
kernel 1s utilized 1n the modeling process, the speaker
identification may be performed by an inner product
between each first model and the spatial acoustic features
extracted from the audio content. The result of the inner
product may indicate which model the frame 1s closed to,
and then the speaker corresponding to the model may be
identified.

FIG. 4 shows a block diagram of a system 400 for speaker
modeling and 1identification 1n accordance with some
example embodiments of the present invention. The system
400 may be considered as a specific system implementation
corresponding to the method 200 as describe above with
reference to FIG. 2.

In the system 400, a spatial SDC feature extractor 401 and
a sound field analyzer (SFA) 402 are responsible for the
spatial information extraction from an audio clip that 1s of a
format based on multiple channels. The audio clip may be a
portion or all of the VAD filtered mput audio content
captured by an endpoint device. Specifically, the spatial
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SDC feature extractor 401 1s configured to extract spatial
SDC features across the multiple channels from the audio
clip. The SFA 200 1s configured to extract location infor-
mation from the audio clip. The spatial SDC features and the
location mformation are input to a GLDS modeling module
403 included in the system 400. The GLDS modeling
module 403 i1s configured to construct a GDLS model for
cach speaker based on the spatial SDC features and the
location information. The system 400 further includes a
speaker i1dentification module 404 configured to identily
whether the audio content contains voices from the speaker
based on the GLDS model constructed by the GLDS mod-
cling module 403.

Reference 1s now made to FIG. 5, which illustrates a
flowchart of a method for spatial SDC feature extraction 1n
accordance with an example embodiment of the present
invention. The method 500 may be considered as a specific
implementation of the method 200 as describe above with
reference to FIG. 2.

At step S501, for each of the multiple channels, a ceps-
trum coeilicient for each frame of the first audio clip in a
frequency domain 1s extracted.

As mentioned above, the first audio clip 1s of a format
based on multiple channels. When the first audio clip 1s of
a time domain representation, the audio clip may be con-
sisting of audio signals of the multiple channels. An audio
signal for each channel may contain a plurality of samples.
The audio signal may be preprocessed in time domain and
then, 1 order to obtain the cepstrum coeflicient, each frame
may be converted into a frequency spectral representation.

In some embodiments where there are N samples of a
channel 1 in the first audio clip, the preprocessing 1n the time

domain comprises dividing the N samples of the channel ;
into M Irames, each frame containing L samples, the pro-
cessed audio signal of the channel 1 may be represented as
below:

X1, X1 X1 Lo oxXmper (1)
X2,; . X2; Xea2; L xmia2,;
= i=
M M M I M
XN, j Xp; Xy Lo oXgaene

After the preprocessing, cepstrum coeflicients for each
frame 1n a channel may be extracted. In some embodiments,
Mel-Frequency Cepstral Coetlicients (MFCC) for each sub-
frame of the frame across K nonlinear mel scale factor bands
may be extracted as below:

11 C1a; Loepm o
C; =dci(cep(ffi(S;))) = c21,; €22, L cam
M M L M
ck1; k2 L ockm

where dct represents operation of Discrete Cosine Transform
(DCT), cep represents cepstrum transform, and It represents
Fast Fourier Transform (FFT).

It should be noted that other cepstrum coelflicients may
also be extracted. For example, in some example embodi-
ments, linear prediction cepstral coeflicients (LPCC) for
cach subirame of a frame across multiple linear bands may
be extracted.
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A SDC feature, which 1s an extension of delta-cepstral
coellicients, 1s then derived from the cepstrum coeflicients
extracted above. The SDC features of the first audio clip are
calculated based on parameters K, d, P, and g. The parameter
K represents the number of cepstrum coeflicients 1 each
frame. The parameter d represents a time span over which
delta of the cepstrum coeflicients can be calculated. The
parameter P represents a gap between successive delta
computations. The parameter q corresponds with the number
of sampling points in a feature space, wherein the number of
sampling points 1s q+1.

In the spatial SDC {feature extraction, an intra-channel
SDC {feature and an inter-channel SDC feature for each
frame ol each channel should be determined from the
extracted cepstrum coellicient. All intra-channel SDC {fea-
tures and inter-channel SDC features extracted from the first
audio clip may be considered as a feature vector correspond-
ing to the first audio clip.

At step S502 of the method 500, an intra-channel SDC
feature for each channel 1s determined according to the
difference between the cepstrum coeflicients for the channel
over a predetermined number of frames.

For example, for a given frame t of a channel 3, difference
between cepstrum coetlicients for the channel 1 over a time
interval 2d may be determined as:

(3)

wherein the total count of 1 1s q+1, wherein ¢, ;»_, ; repre-
sents the cepstrum coellicient for a frame at time t+1P-d 1n
the channel j, and likewise ¢, ;p, ; ; represents the cepstrum
coellicient for a frame at time t+1P+d in the channel ;.

On the basis of the calculation of Ac(t,1), based on stacked
version of /2 folds with a step P in directions of both
backward and forward to a time 1nstant t, the intra-channel
SDC feature for a frame at time t in a channel ] may be by
the following equation:

AC(t,D)=Crip_a~CroiPrdy

span,=fpfe-3) ade-gor) s P

For each channel, a corresponding SDC feature may be
obtained by the above equation (4).

At step S503 of the method 500, an inter-channel SDC
feature for each two of the multiple channels 1s determined
according to difference between the cepstrum coethicients
for the two channels.

Since the first audio clip 1s of a format based on multiple
channels, difference between cepstrum coeflicients for dii-
ferent channels may be determined so as to better represent-
ing the characteristics of the speaker. For example, for a
given Irame t, difference between cepstrum coeflicients for
cach two of the multiple channels, channel 1 and j, may be
determined as:

(3)

Then the inter-channel SDC feature for two channels 1 and
1 may be determined as:

Ac(t,]) ij - CorlP—di—CoriPvdy

SDC(); ; = |Adlr, —g)m_, A, —g ¥ 1)5,5 A, % )EJ]T

l<i<n,l<j=<n andi=+j

For each two of the multiple channels, a corresponding,
inter-channel SDC, ; teature may be obtained by averaging
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SDC(t); ; across the time variable t, and dividing by the
square root of that feature for normalization. For example,
for an audio clip with three channels, there may be six
obtaimned 1inter-channel SDC fteatures, SDC,,, SDC, |,
SDC, 5, SDC, |, SDC, 5, and SDC, ,. Since inter-channel
SDC features SDC, ; and SDC, ; may be substantially the
same to each other, 1n some embodiments, one of SDC, y and
SDC,; may be used for subsequent processing.

FIG. 6 1llustrates a schematic diagram of intra-channel
SDC feature and inter-channel SDC feature computation for
two channels 1n accordance with some embodiments of the
present invention. Computations of the intra-channel SDC
teatures and inter-channel SDC features for two channels are
shown 1n FIG. 6 for an example. It should be understood that
intra-channel SDC features and inter-channel SDC {features
for more channels may also be determined 1n a similar way
shown 1n FIG. 6.

With the method 500, the spatial SDC features across the
multiple channels of the first audio clip may be extracted.
The spatial SDC features may be utilized with the location
information for building models corresponding to speakers.

As discussed above, when the GLDS kernel 1s utilized,
the GLDS modeling may be based on a SVM process. A
SVM model may be constructed with a kernel function K(.,.)
as below:

N (7)
Flx) = Z ot K(x, x;) + d
=1

where X, represents a spatial acoustic feature, o, represents a
welghting factor, N represents the number of spatial acoustic
teatures used for training the model and obtained from a
training set by an optimization process d represents a shift
value and t, represents a target value depending on whether
the spatial acoustic feature X, 1s 1n a target class or not. If the
spatial acoustic feature X, 1s 1n the target class, t, 1s +1. If the
spatial acoustic feature x. 1s not 1n the target class, t, 1s —1.
The equation (7) 1s constrained to

and o.>0.

The kernel function K(.,.) may be constrained to satisiy
the Mercer condition, so that the kernel function may be
represented as:

K(x,y)=b(x)"b(y) (8)

where b(x) or b(y) 1s a mapping function used for mapping,
the vector x or y from 1ts dimensional space to a higher
dimensional space respectively. Usually the mapping relates
to polynomial expansion.

With the knowledge about the SVM modeling, since there
are a large sequence of spatial acoustic features to be
modeled, embodiments of the present invention intends to
provide a GLDS based SVM model in order to take an
advantage of the linearization as other advantages of the
GLDS kernel function.

FI1G. 7 1llustrates a flowchart of a method 700 for GLDS
modeling 1n accordance with an example embodiment of the
present mvention. The method 700 may be considered as a
specific 1implementation of the method 200 as describe
above with reference to FIG. 2.
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At step S701, a GLDS kemel function for the first model
1s determined based on the spatial acoustic features. A GLDS
kernel function is a sequence kernel K, ,<({X,}.{y,}) that
can compare two sequences of spatial acoustic features, {x,}
and {y,}.

As described above, a kernel function 1s based on map-
ping a spatial acoustic feature vector from 1ts dimensional
space to another dimensional space, for example, to a higher
dimensional space. To this end, a mapping function may be
used for mapping the spatial acoustic feature vector 1n some
embodiments. The mapping may be polynomial expansion,
such as Cholesky expansion in an example. It should be
noted that many other methods of mapping may also be
applied, such as mapping based on a radial basis function
(RBF), a S1igmoid function, or the like.

In some embodiments, a combination method 1s provided
to determine the GLDS kerel function. In the combination
method, the plurality of spatial acoustic features 1s first
combined and then the dimensional mapping 1s performed
on the combined spatial acoustic feature. The GLDS kernel
function 1s determined based on the mapped spatial acoustic
feature.

A process for the combination method of GLDS kernel
function determination 1s given in FIG. 8 (a), where N sets
ol spatial acoustic features are first combined as one spatial
acoustic feature vector and then the vector 1s expanded. The
GLDS kernel function, as well as subsequent SVM model-
ing, 1s then based on the expanded vector. The polynomial
expansion of these spatial acoustic features may be repre-
sented as:

b(X)=b(X,X>5, . .., Xx) (9)

The number of dimensions of X 1s dependent on the
number of dimensions of the combined spatial acoustic
feature vector. For a vector with d dimensions, after taking
a q order polynomial expansion (Cholesky expansion for
example), usuvally the number of dimensions of the
expanded vector N may be C,, 9. By simply combining the
supports vectors to perform the dimensional mapping, it
may produce, 1n an 1creased order, the resulting expanded
vector with large dimensions, which may be time consuming
in the model building process. In order to solve this problem,
in some other embodiments, a cascade method 1s provided
to determine the GLDS kernel function. In the cascade
method, the dimensional mapping 1s performed on each
spatial acoustic feature first. That 1s, the computations of
mapping (for example, polynomial expansion) may be per-
formed 1n parallel, which may save up the time cost. All of
the mapped spatial acoustic features may then be combined
as one mapped spatial acoustic feature and the GLDS kernel
function may be determined based on the combined spatial
acoustic feature.

A process for a combination method of GLDS kernel
function determination 1s given 1 FIG. 8 (b), where each
spatial acoustic feature vector X, 1s first expanded as b(X,).
The expanded spatial acoustic feature vectors are combined
to obtain one expanded spatial acoustic feature, based on
which the corresponding GLDS kernel function i1s deter-
mined. The SVM 1is then performed based on the GLDS
kernel function. The combination of expanded spatial acous-
tic feature vectors may therefore be written as below:

bX)=[0(X)bX5) . . . b(XN)]

With both the combination and cascade methods, the
resulting GLDS kernel function may be determined as:

(10)

Kros(1%: 1, {yi}):bxrR_lby (11)
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where R™" is a correlation matrix derived from large back-
ground population and may be a diagonal matrix depending
on the manner of polynomial expansion.

The value K., o (X}, {y,}) may be interpreted as
scoring using a generalized linear discriminant on the
sequence {y,}, with a model trained from vector sequence
Ix.}. The mapping between {x,} and b_ is defined as:

1 Ny (12)
W%E;WJ

where N_ 1s the number of spatial acoustic features in the
sequence {X,}.

At step S703, a GLDS model corresponding to the
speaker 1s constructed based on the GLDS kernel function.

The first model determined based on the GLDS kernel
function may then be represented as:

v (13)

(N,
2 El:'fﬁR_lb(Xf) + d
=1 /

J(x) = b(x)

with

N, (14)
W = Z EHjIjR_lb(Xj) + d
i=1

where d =[d 0 ... C']T

w 1s the target model for a speaker. This model may be
obtained by tramning across the spatial acoustic features.
During training of a model, spatial acoustic features (for
example, the spatial SDC {eatures) associated with the
speaker corresponding to the model to be trained (which 1s
sometimes called a target class of features) may be used as
well as spatial acoustic features associated with other speak-
ers (which 1s sometimes called an impostor class of fea-
tures). The spatial acoustic features 1n the impostor class
may be obtained from the audio containing voices from
various speakers and recorded by the endpoint device for
other audio calls 1n some examples. The spatial acoustic
features 1n the impostor class may also be obtained from an
audio call currently taking place, for example, from audio
within a certain period of time from the start of the audio call
and containing voices from various speakers.

In the training process, w may be obtained under the
mimmum square error (MSE) rule and may be generated by:

-

(15)

(N pos N neg

> Wb =117+ ) T by + 1

w* = argmin

where X, represents a spatial acoustic feature in the target
class of spatial acoustic features corresponding to the target
speaker, and N, . represents the number of supports vectors
in the target class. y, represents a spatial acoustic feature in
the impostor class of spatial acoustic features corresponding,
to speaker(s) other than the target speaker, and N, __ repre-

neg

sents the number of supports vectors 1n the impostor class.

FIG. 9 illustrates a block diagram of a GLDS modeling
module 403 1n the system for speaker modeling and iden-
tification in FIG. 4 1n accordance with some example
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embodiments of the present invention. The GLDS modeling
module 403 may be considered as a specific implementation
of the system 400 as describe above with reference to FIG.
4.

The GLDS modeling module 403 includes a spatial SDC
teature classifier 4031 that has input of spatial SDC features
and location information. The spatial SDC feature classifier
4031 may be configured to classily, based on the location
information, the mput spatial SDC features into two classes,
one being a target class corresponding to a target speaker,
and the other being an impostor class corresponding to
speakers other than the target one.

For example, in the example shown 1n FIG. 9, assuming,
that a model corresponding to Speaker 1 1s now building and
training by the GLDS modeling module 403. Based on the
location 1information, the classifier 4031 1n the GLDS mod-
cling module 403 may decide to classity some of the mput
spatial SDC features corresponding to Speaker 1 into a target
class of features and some other spatial SDC {features
corresponding to speakers other than Speaker 1, 1.¢., Speaker
2 to Speaker 5, into an 1mpostor class of features.

The GLDS modeling module 403 also comprises a GLDS
kernel function determination module 4032 configured to
determine a GLDS kernel function for the target speaker
based on spatial SDC features in the target class and the
impostor class. A GLDS model trainer included 1n the GLDS
modeling module 403 may then perform model training for
a respective model corresponding to the target speaker based
on the GLDS kernel function. Then a GLDS model for the
target speaker may be determined. In example shown 1n FIG.
9, a GLDS model for Speaker 1 1s output from the GLDS
modeling module 403.

In the GLDS modeling module 403 shown 1n FIG. 9, a
signaling direction in determining a model for Speaker 1 1s
shown as an example. It should be noted that the GLDS
modeling module may also be used for determining models
for other speakers with some changes in the signaling
direction. The GLDS modeling may be processed 1n parallel
in some embodiments. That 1s, there may be multiple GLDS
modeling modules 403 1n the system 400, each responsible
for building a model for a respective speaker.

As can be seen from the process of GLDS modeling, the
closeness between a model W and an 1input audio signal may
be measured by an inner product between the model and the
mapping function b (y,) based on the spatial acoustic fea-
tures v, extracted from the mput audio signal, which may be
represented as:

Score(y,)=w'b(y,) (16)

With the description above, the process of model building,
1s described. It should be noted that, in some cases, the first
audio clip used for modeling may include a plurality seg-
ments ol audio and may contain voices from various speak-
ers. In these cases, more than one model may be built for
cach of the speakers. That 1s, 1n addition to the first model
bwlt for a speaker described above, a second model may
also be constructed from the first audio clip for a second
speaker. In order to determine the number of speaker models
to be built, in some embodiments, the location information
(for example, the DOA information and the distance of the
speakers) extracted from the audio clip may be used. As
mentioned above, clusters detected from the location infor-
mation may roughly indicate the presence of the speakers
involved in the audio content. Based on the location infor-
mation, the number of speaker models to be built for the
potential speakers may be determined. For example, based
on the location information shown 1n FI1G. 3, five clusters are
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detected. IT assuming that each cluster represents presence of
a speaker, five models may be built for respective speakers.
In case that two speakers are detected in one clusters or one
speaker 1s detected into two clusters based on the location
information, some existing and potentially simple speaker
modeling methods (for example, existing monaural speaker
modeling methods) may be used to provide more accurate
classification 1n some embodiments. The process of model
building for each of the speakers may be similar to what 1s
described above.

FIG. 10 illustrates a tflow chart of a method 1000 for
speaker 1dentification on the basis of the construct model 1n
accordance with some example embodiments of the present
invention. The method 1000 may be considered as a specific
implementation of the method 200 as describe above with
reference to FIG. 2.

At step S1001, a plurality of spatial acoustic features
across the multiple channels 1s extracted from the audio
content. The description of spatial acoustic feature extrac-
tion has been described with reference to FIG. 5, which 1s
omitted here for the sake of clarity.

At step S1002, a closeness score between the spatial
acoustic features of the audio content and the constructed
model 1s determined. After the modeling process, there may
be one or more models (GLDS models 1n case of GLDS
kernel functions) corresponding to respective speakers
determined. The closeness between the audio content and a
certain model may be measured by scoring the certain
model. The equation (16) may be utilized.

The method then proceeds to step S1003, identity whether
the audio content contains voices from a speaker based on
the closeness score. In some embodiments, the model with
the highest closeness score may be determined, and then the
speaker corresponding to this model may be 1dentified. In
some other embodiments, the model with a score higher than
a predefined threshold may be determined. The scope of the
present mvention 1s not limited in this regard.

Note that since only an inner product 1s needed to deter-
mine the score of the model, speaker identification has low
computational complexity.

After the speaker whose voices contain in the audio
content 1s 1dentified, an identifier of the speaker may be
provided for users that expect the 1dentification results, for
example, for participants of the other conference party who
expect to know who 1s currently talking 1n the audio content.
For example, 1n the scenario shown 1n FIG. 1, after identi-
tying which of the five participants from the first conference
party 1s currently talking from the audio content captured by
the endpoint device 101, the result may be transmitted to the
device 102 at the second conference party side. The result
may be displayed on the device 102. In some embodiments,
ne location information of the speakers may also be sent to
he device 102. In accordance with the location information,
ne device 102 may picture distribution of participants from
ne first conference party in a space, for example, 1 a
meeting room. The identifiers of participants may be dis-
played with respect to the distribution 1n a display region,
and an 1dentifier of the speaker who 1s currently talking may
be highlighted, which can improve the user experience. It 1s
noted that the speaker 1dentification result can be displayed
in many other ways, for example, in a way of list with the
identifier of the currently i1dentified speaker highlighted by
color, font, an icon, or the like.

FIG. 11 depicts a graphical user intertace (GUI) 1100
displaying a result of the speaker identification in accor-
dance with some example embodiments of the present
invention. The GUI 1100 may be a display interface of the
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device 102 1n the scenario shown in FIG. 1. By receiving
location information from the device 101, the device 102
may detect that participants from the first conference party
are sitting as a circle and may also determine their positions
relative to each other, as shown 1n FIG. 11. The identification
result sent from the device 101 indicates that “Adam™ from

the first conference party i1s currently talking and then the
device 102 may highlight the name of “Adam™ in the GUI

1100.

The 1dentifiers of speakers may be obtained by various
methods. For example, speech analysis may be performed
on the audio content to retrieve identifiers (e.g., names) of
the speakers. In another example, a mapping list of the
identifiers and the speaker models may be configured, for
example, by user mput. In yet another example, difierent
identifiers may be automatically assigned for respective
models so as to distinguish speakers corresponding to the
models from one another.

In speaker modeling described above, a sample audio clip
(generally audio within a period of time captured by the
audio recording device) 1s used to build and train the speaker
models. Due to the limit of amount of the sample audio, the
built models may not be accurate enough. Moreover, since
the conditions of participating speakers may changes, for
example, the number of speakers may change (e.g., one or
more speakers may leave and one or more new speaker may
enter into the conference) or positions of the speakers may
change, the speaker models may be refined and updated. In
some embodiments, the determined first model may be
updated according to a second audio clip of the format based
on the multiple channels. In embodiments where GLDS
speaker models are built, the refinement may be updated by
linear combination of spatial acoustic features of the second
audio clip with an existing model. The second audio clip
may be a new portion of audio recording that 1s diflerent
from the first audio clip (the sample audio clip) in some
examples. The refinement of the speaker models may be
periodically performed. For example, every other one min-
ute, the refinement 1s performed. The time period for refine-
ment of each speaker model may be the same in some
embodiments. In some other embodiments, diflerent speaker
models may be configured with respective time periods for
refinement. There may be other events that trigger the
refinement, such as a user input event or an error criterion
event.

In some embodiments, the second audio clip may be used
to just update a certain speaker model corresponding to a
speaker who produces the speech 1n the second audio clip.
This method may be called a hard refinement method. In the
hard refinement method, a plurality of spatial acoustic
features across the multiple channels may be extracted from
the second audio clip, and determination may be made
regarding which speaker 1s associated with the second audio
clip. The extraction of spatial acoustic features may be
similar to what 1s described with reference to FIG. 5, which
1s omitted here for the sake of clarity. The determination of
association between the second audio clip and a speaker may
be based on location information. For example, location
information may be extracted from the second audio clip and
may be compared with a position of a speaker corresponding
to a certain speaker model. The spatial acoustic features of
the second audio clip may then be added to a first model
corresponding to the determined speaker according to a
predetermined weight.

In one example, assuming that the second audio clip 1s
determined to be used for updating a speaker model of a
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speaker 1 1 a 1" round, the closeness scoring equation (16)
may be updated corresponding and may be represented as:

lfh

Score’(y,) = [um'w; + pb(y N1b(y,), (17)

with

1 (18)

where pmjzwf +ub(y,) represents the updated model of the

speaker j in the 17

round, y; 1s a spatial acoustic feature
sequence of the speaker 1, and u 1s a weight of the spatial
acoustic features of the speaker j in the 17 round and may be

determined by the equation (18). The value of mj may be

predetermined.

As can be seen from the above description, an existing
speaker model may be iteratively updated until suflicient
rounds of refinement have been performed, and then the
model may tend to be converged and stable. In this case, the
weight of the second audio clip may be decreased based on
the number of rounds that has been performed, and the
model may substantially remain unchanged. For example,
the value of mf in (1 +1)” round may be determined as:

(19)

Due to the increase of mjz, the weight u of the spatial
acoustic features of the speaker j in the (141)” round may be
decreased. It should be note that that one example way of
decreasing the weight 1s shown in the equation (19), and the
weight may be decreased by any other value in other
examples.

In some embodiments, the second audio clip may be used
to update each of the existing speaker models based on
respective weight. That 1s, the second audio clip may be
softly assigned to update the speaker models. This method
may be called a soft refinement method. In the soft refine-
ment method, spatial acoustic features across the multiple
channels may be extracted from the second audio clip and a
weight for each first model may be determined based on the
spatial acoustic features of the second audio clip. Then the
spatial acoustic features of the second audio clip may be
added to a respective first model according to the determined
weight.

In one example embodiment, the weight of the second
audio clip for a speaker model may be determined based on
the closeness score between the spatial acoustic features of
the second audio clip and the speaker model. For example,
the weight of an audio clip 1 for a speaker model w, may be
determined by a ratio of the closeness score for the speaker
model w, to a total closeness score for all existing speaker
models, which may be represented as:

Score;(y;) (20)

PGy = =
2. score;(y;)
J

The closeness scoring model of a speaker 7 in all speakers
may be represented as:
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Scoref(y:) = [umwh + g P(j | y)b(yi)]b(y:) 21

with
1 (22)
U= ———.
m;+ P(j| yi)
and
+1 _ :
m' =m; + P(J| y;). (23)

where pm;wf +uP(3ly,)b(y,) represents the updated model of
the speaker j in the 1”” round, vy, is a spatial acoustic feature
vector of a new audio clip used for updating, and u 1s a
weight for updating the model of speaker j in the 1 round
based on the spatial acoustic feature vector y, and may be
determined by the equation (22). The value of 111j.z may be
predetermined. In this case, each of the existing speaker
models 1s updated by a respective weight.

In the embodiments where the weight for each speaker 1s
based on the closeness score, when a new coming audio clip
does not belong to any existing speaker model, the closeness
scores calculated for all existing speaker model may be
approximately equal and there may not be a dominant score.
However, according to the above refinement method, the
new audio clip may still be used for updating the existing
speaker models evenly. That 1s, with the refinement method
above, a new speaker model may not be built for a new
coming speaker even using a suilicient amount of audio
content to refine or retrain the existing speaker models.

For a better speaker model updating, in another example
embodiment, the weight for each speaker model 1s provided
based on using an Estimation-Maximization (EM) process to
determine a probability of the second audio clip coming
from each of the speakers. In the EM process, Gaussian
Mixture Modeling (GMM) may be imtroduced. A GMM
model (a third model) may be constructed for a speaker. The
probability of the second audio clip containing voices from
a speaker may then be determined by the closeness between
the second audio clip and each GMM model corresponding
to the speaker. The EM process can provide an iterative way
to find the probability.

It 1s known that the EM process 1s sensitive to initial
conditions. Theretfore, 1n an embodiment, the GMM model
may be constructed based on the spatial information of the
speakers, ¢.g., DOA and distance information. As described
above, clusters detected from the location mformation may
roughly indicate the presence of speakers involved in the
audio content. Based on the DOA and distance information,
the number of GMM models for the speakers and the GMM
parameters (for example, means and variance) may be
determined when built. For example, a GMM model corre-
sponding to a speaker cluster 1 may be built by:

(24)

1 1 T -1
Nx|uj, o5 = - exp(—i(x—ﬂ;) o ; (x—#j)]

22+l

The GMM models are maybe not exactly identical to the
GLDS models, which are multi-dimensional clusters 1n a
hyper plane giving out a closeness probability by computa-
tion of scores using a GLDS kernel. To achieve iterative
refinement from a two-dimensional polar system to the
multi-dimensional GLDS sequence kernel 1n hyper plane, a
probabilistic composite learning may be used as an inter-
mediate bridge. In some embodiments, a probability of the
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second audio clip coming from a speaker corresponding to
cach GMM model may be determined based on the spatial
acoustic features of the second audio clip in an EM 1terative
process. Then the weight for each first model may be based
on the probability.

The objective of the EM process 1s to find a hidden
variable by maximizing the likelihood p(XI0) of given data
sequence X drawn from unknown distributions, given the
model parameterized by 0, which may be determined by the
tollowing:

L (25)
¢ =argmax p(X | 0) = argmax| | P(X; | 6)
i=1

With the concept of the EM process above, 1n the embodi-
ments of the present invention, 1t 1s intended to determine in
the EM process a GMM model that has the maximized
probability of the second audio clip coming from the speaker
characterized by this GMM model.

An example of the EM process 1s described below.

E Step:

In the discussion 1n embodiments of the present invention,
the hidden varniable in the EM process 1s the actual speaker
to which the second audio clip belongs. In the estimation
step, assuming that the hidden variable 1s available by
observing the comparison result of GMM models with a
two-dimensional parameter of means and variances (u,0).
Therefore, 1n the E step, a probability P(jlx_,0%) of the spatial
acoustic feature of the second audio clip belonging to a
GMM model j may be determined as by the posterior

probability P(x.11,0°), which may be represented as:

Elgii| X,8]=1«Plg;;=1|X,8)+0«Pg;; =0| X, &) (26)

Plxi | j, )P(j16)

= P(j| %, 0) = ——5

where s represents the sth round of the EM iteration, and q, ,
1s determined by the following:

(27)

1f an audio sample i 1s closed

1,
to a GMM model j;

gqi; =
0, otherwise.

M Step:

In the first round, each of the existing first models (the
GLDS models) may be updated by the second audio clip
with the probability obtained 1n the E step. For example, a
spatial acoustic feature vector x, of the second audio clip
may be used to update a GLDS model j by the probability
P(lx,,0%).

In subsequent rounds of the EM process, after the poste-
rior probabilities of each sample have been obtained for each

GMM model, the probability P(jlx,,0°) can be refined by
introducing the score resulting from a GLDS model which
may be represented as:

P(j1x;,0° )=aP(jlx,0°)+(1-a)Score(y;) (28)

The M step 1s used to determine a parameter O that
maximizes the auxiliary function A by
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tor the mean p; and the variance o; of the GMM model, or
an importance weight w; of a speaker j.

In the M step for the mean p,, the determination process
may be represented as the following, where n represents the
number of features extracted from the second audio clip:

dlogp(x; | j, 0) (29)

é‘p,j-

A _Z”: dA

Op; & dlogp(xil J. )

dlogp(x; | j, 0)
5‘p,j

i Z 5 A
" L Flogp(x; | . 0)

N (30)

PIENG IS

0_2_
i=1

J

z 31)
D PULx, 6 xx,
i=1

M

__Zl P(j | xi, )

In the M step for the variance o;, the determination
process may be represented as:

L (32)

dA dA dlogp(x; | j, &)
ok Z dlogp(x; | j, 0) do s
i=1

M

. (x; — )1
= E P(jlx;, & -—|=0
Ul )( Zﬂ'jf 2::1'%

i=1

" (33)
D PG i 0% (x; — p))
=1

——

p—
ﬂ}—

n

L PG| %, 6

In some mmplementations of the speaker identification,
alter one speaker 1s 1dentified from the audio content, some
audio processing may be applied to the audio content. For
example, 1n a multi-party conference, 1n some cases one or
more of the participating speakers may have dominant times
in talking than the others, especially in some broadcast
scenarios. Therefore, 1n some embodiments, a weight
parameter w, for a speaker j that indicates the importance of
the speaker may be obtained 1n the E step, and

N
ij-=1

f=1

where N 1s the number of existing speaker models. This
importance weight parameter may be used for subsequent
processing regarding this speaker.

In the M step for the weight parameter w,, the auxiliary
tunction used for w, may be written as:
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(34)
J(0, 6;) = A6, 0,) +

where A, 1s the Lagrange multipliers.
The determination process of the weight parameter w;,
may be represented as:

A & 8J  BA(, ) (35)
dw; L1 JA6,8,) Iw; -
1 141 (36)
D PGIx 6 ) P(ilx. 6) .
~ =1 =1 .
Wy = ;Lj = N =EZ P(;lx“f?s)
2. 2 Pl | xi, 68) =1

k=1 i=1

After the M step 1n each round of iteration, the obtained
parameters, the mean and the variance o,, may be used to
refine the GMM model. Based on the updated GMM model,
the probability P(j1x,,0°). in the E step may be updated 1n the
next round of iteration, as well as P(x.11,0°). In some
embodiments, with the updated probability P(jlx,,0%), the
closeness scoring model Score(x;) based on the GLDS
model may be updated according to the equation (28), and
then the GLDS model 1s updated. The EM process may be
iteratively performed until a certain level of convergence 1s
achieved.

FIG. 12 illustrates a block diagram of a system 1200 for
speaker modeling and identification in accordance with
another example embodiment of the present invention. In
view of the model refinement based on the GMM model,
compared with the system 400 shown in FIG. 4, an addi-
tional module, a GMM modeling module 405, 1s added. The
GMM modeling module 405 may be configured to perform
GDLS model refinement by the EM iterative process as
described above.

In the above description, the speaker models (including
the GLDS models and the GMM models) are built based on
the assumption that the clusters detected from the location
information corresponding to positions of respective speak-
ers. However, 1n some conditions, a speaker may change his
position. Under this condition, there may be two or more
models built for the speaker based on the location informa-
tion. For example, 1n the scenario shown 1n FIG. 1, Speaker
“Tom” may change his position from P1 to P2 1n a confer-
ence and may have speech captured by the device 101 1n
both positions, and then two models may be built for “Tom™
based on the location information captured by the endpoint
device 101.

In order to maintain a umque model for a respective
speaker, 1n some embodiments, redundant models of a
speaker may be merged 1n the model refinement process. In
the conditions where redundant models of a speaker exist,
spatial acoustic features extracted from an audio sample of
the speaker may be closed to all of the redundant models. In
this sense, a closeness score between the spatial acoustic
teatures of the second audio clip (the audio sample used to
update the existing models) and each first model (1.e., the
GLDS model) may be first determined 1n some embodi-
ments, so as to measure the closeness degree of the audio
sample to the existing model. In some other embodiments,
the probability of the second audio clip coming from each
GMM model may also be determined and used to measure
the closeness degree.
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By observing the closeness score, in some embodiments,
if the closeness scores of at least two first models are higher

than a first threshold, the at least two GLDS models may be
merged and the at least two GMM models may also be
merged, for example, by linear combination. The first
threshold may be configured.

For example, 1f the closeness scores determined for
GLDS models from 7, to 7, are higher than the threshold, the
new merged GLDS model may be obtained by linear com-
bination of the GLDS models from j_ to 7, . For example, the
new merged GLDS model may be represented by the
following;:

Jn (37)
Score;, . (y;) = Z #mjwjb(}’r);

J.:J.m

with

1 (33)

By observing the closeness score, 1n some embodiments,
if the closeness scores of at least two GLDS models are
higher than the first threshold, at least two GMM models of
the speakers corresponding to the at least two GMM models
may also be merged. The correspondence of the GLDS
models and the GMM models may be built by the corre-
sponding speaker.

Dt

erent from the linear combination of the GLDS mod-
cls, the new merged GMM model based on the GMM
models from 1 to 1. may be represented by the following:

(39)

Nix|u; ) = UN(xlu o)

7
YT j=im

fnew ®

In some cases, two or more speakers may be positioned 1n
proximity to each other and their speeches may be over-
lapped. Due to the proximity 1n positions, in both the GLDS
model building and GMM model building process, the same
GLDS model (or a GMM model 1n case of GMM modeling)
may be assigned to these speakers based on the location
information. As a result, the model may not be able to well
represent any of these speakers, and thus audio samples
come from these speakers may not exhibit a dominant
closeness to the model. In some other cases, when a new
speaker joins the audio call and no model has been bult for
the new speaker, the closeness score between an audio
sample of this speaker and each of existing GLDS models or
the probability of the audio sample coming from each of
existing GMM models may be equal to one another. There-
fore, 11 the closeness score of each first model 1s observed to
be lower than a second threshold (the value of which may be
configured), a new GLDS model may be built in order to
represent the new speaker in some embodiments. Also, a
new GMM model may also be built. In one example, to
obtain a new GMM model, the cluster corresponding to the
existing GMM model may be split into two or more clusters
with different cluster centers and then two or more new
GMM models may be built. In an embodiment, 1n the model
refinement using the EM process as described above, when
the closeness score of each model 1s observed to be low 1n
one round of iteration, the posterior probability of the
sample audio may be proportionally split for each of the two




US 9,626,970 B2

21

new GMM models based on the distance (the Fuclidean
distance 1n one example) of the new cluster centers to the
center of the original cluster.

It should be noted that for better model refinement, model
merging or split described above may be performed based on
the observation of the incoming audio samples over a period
of time.

In embodiments of the present invention, speaker mod-
cling and identification 1s described. After speaker models
has been built and trained to a converged level, the models
may be stored in a database for further identification. In use
cases ol telecontference, models built 1n previous confer-
ences may be stored and when a new conierence starts, the
built models may be directly utilized to perform speaker
identification and audio samples captured in the new con-
ference may be used to refine the existing models. In other
embodiments, at start of each teleconterence, new models
may be built based on audio samples captured in this
conierence.

According to speaker modeling and identification pro-
vided 1in the embodiments of the present invention, spatial
acoustic features are extracted across multiple channels from
sample audio clip to better represent speakers and location
information 1s used to facilitate speaker model building, so
that the speaker 1dentification 1s applied to audio content of
the format based on multiple channels and accuracy of the
speaker 1dentification 1s improved. Furthermore, since the
GLDS kernel function 1s used for model bwlding an
refinement, computational complexity 1s reduced and advan-
tages can be achieved from the linearization characteristic of
the GLDS kernel function as well.

FIG. 13 shows a block diagram of a system 13 of speaker
identification for audio content in accordance with one
example embodiment of the present mnvention 1s shown. As
shown, the system 1300 comprises a first feature extraction
unit 1301 configured to extract, from a first audio clip 1n the
format, a plurality of spatial acoustic features across the
multiple channels and location information, the first audio
clip containing voices from a speaker, and a first model
construction unit 1302 configured to construct a first model
tor the speaker based on the spatial acoustic features and the
location mformation, the first model indicating a character-
1stic of the voices from the speaker. The system 1300 further
comprises a first speaker 1dentification unit 1303 configured
to 1dentily whether the audio content contains voices from
the speaker based on the first model.

In some embodiments, the spatial acoustic features may
include an intra-channel SDC feature and an inter-channel
SDC feature. In these embodiments, the first feature extrac-
tion unit 1301 may comprise a cepstrum coetlicient extrac-
tion unit configured to extract a cepstrum coellicient for each
frame of the first audio clip 1n a frequency domain for each
of the multiple channels, an intra-channel SDC feature
determination unit configured to determine an intra-channel
SDC feature for each of the multiple channels based on
difference between the cepstrum coellicients for the channel
over a predetermined number of frames, and an inter-
channel SDC feature determination unit configured to deter-
mine an inter-channel SDC {feature for each two of the
multiple channels based on diflerence between the cepstrum
coellicients for the two channels.

In some embodiments, the location information may
include at least one of a direction of arrival or a distance of
the speaker relative to an audio recording device. In these
embodiments, the first model construction unit 1302 may
comprise a kernel function determination unit configured to
determine a GLDS kernel function based on the spatial
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acoustic features, and a GLDS model construction unit
configured to construct the first model based on the location
information and the GLDS kernel function.

In some embodiments, the GLDS model construction unit
may be further configured to combine the spatial acoustic
features, perform dimensional mapping on the combined
spatial acoustic feature, and determine the GLDS kernel
function based on the mapped spatial acoustic feature.

In some embodiments, the GLDS model construction unit
may be further configured to perform dimensional mapping
on each of the spatial acoustic features, combine the mapped
spatial acoustic features, and determine the GLDS kernel
function based on the combined spatial acoustic feature.

In some embodiments, the first speaker identification unit
1303 may comprise an audio content feature extraction unit
configured to extract a plurality of spatial acoustic features
across the multiple channels from the audio content, a
closeness score determination unit configured to determine
a closeness score between the spatial acoustic features of the
audio content and the first model, and a score based iden-
tification unit configured to identify whether the audio
content contains voices from the speaker based on the
closeness score.

In some embodiments, the speaker 1s a first speaker, and
the system 1300 may further comprise a location based
determination unit configured to determine whether voices
from a second speaker contain 1n the first audio clip based
on the location information, a second model construction
umt configured to constructing a second model for the
second speaker based on the spatial acoustic features and the
location information, the second model indicating a charac-
teristic of the voices from the second speaker, and a second
speaker 1dentification unit configured to 1identity whether the
audio content contains voices from the second speaker based
on the second model.

In some embodiments, the system 1300 may further
comprise a model updating unit configured to update the first
model based on a second audio clip of the format.

In some embodiments, the model updating unit may
comprise a second feature extraction unit configured to
extract a plurality of spatial acoustic features across the
multiple channels from the second audio clip, a weight
determination unit configured to determine a weight for the
first model based on the spatial acoustic features of the
second audio clip, and a weight based combination unit
configured to combimng the spatial acoustic features of the
second audio clip to the first model based on the determined
weight.

In some embodiments, the weight determination unit may
comprise a closeness score determination unit configured to
determine a closeness score between the spatial acoustic
teatures of the second audio clip and the first model, and a
scored-based weight determination unit configured to deter-
mine the weight for the first model based on the closeness
score.

In some embodiments, the weight determination unit may
comprise a third model construction unit configured to
construct a third model for the speaker based on the spatial
information, the third model being a Gaussian mixture
model, a probability determination unit configured to 1tera-
tively determine, in an EM process, a probability of the
second audio clip containing voices from the speaker based
on the third model, and a probability-based weight determi-
nation unit configured to determine the weight based on the
probability.

In some embodiments, the probability-based weight
determination unit may be further configured to determine a
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closeness score between the spatial acoustic features of the
second audio clip and each first model, and determine the
weight based on the probability and the closeness score.

In some embodiments, the probability determination unit
configured to update the third model 1n each 1iteration of the
EM process based on the probability determined in the
iteration.

In some embodiments, the model updating unit may
turther comprise a closeness score determination unit con-
figured to determine a closeness score between the spatial
acoustic features of the second audio clip and each of the
first model and a second model constructed from the first
audio clip, a model merging unit configured to merge the
first model with the second model 11 the closeness scores of
the first model and of the second model are higher than a first
threshold, and a new model construction unit configured to
construct a new model based on the spatial acoustic feature
of the second audio clip if the closeness scores of the first
model and the second model are both lower than a second
threshold.

For the sake of clarity, some optional components of the
system 1300 are not shown 1n FIG. 13. However, it should
be appreciated that the features as described above with
reference to FIGS. 1-12 are all applicable to the system
1300. Moreover, the components of the system 1300 may be
a hardware module or a software unit module. For example,
in some embodiments, the system 1300 may be imple-
mented partially or completely with software and/or firm-
ware, for example, implemented as a computer program
product embodied 1n a computer readable medium. Alter-
natively or additionally, the system 1300 may be mmple-
mented partially or completely based on hardware, for
example, as an integrated circuit (IC), an application-spe-
cific integrated circuit (ASIC), a system on chip (SOC), a
field programmable gate array (FPGA), and so forth. The
scope of the present invention 1s not limited 1n this regard.

FIG. 14 shows a block diagram of an example computer
system 800 suitable for implementing embodiments of the
present invention. As shown, the computer system 800
comprises a central processing unit (CPU) 1401 which 1s
capable of performing various processes 1n accordance with
a program stored 1n a read only memory (ROM) 1402 or a
program loaded from a storage section 1408 to a random
access memory (RAM) 1403. In the RAM 1403, data
required when the CPU 1401 performs the various processes
or the like 1s also stored as required. The CPU 1401, the
ROM 1402 and the RAM 1403 are connected to one another
via a bus 1404. An mput/output (I/O) interface 1405 1s also
connected to the bus 1404.

The following components are connected to the I/O
interface 1405: an input section 1406 including a keyboard,
a mouse, or the like; an output section 1407 including a
display such as a cathode ray tube (CRT), a liquid crystal
display (LCD), or the like, and a loudspeaker or the like; the
storage section 1408 including a hard disk or the like; and a
communication section 1409 including a network interface
card such as a LAN card, a modem, or the like. The
communication section 1409 performs a communication
process via the network such as the internet. A drive 1410 1s
also connected to the I/O interface 1405 as required. A
removable medium 1411, such as a magnetic disk, an optical
disk, a magneto-optical disk, a semiconductor memory, or
the like, 1s mounted on the drive 1410 as required, so that a
computer program read therefrom 1s installed into the stor-
age section 1408 as required.

Specifically, in accordance with embodiments of the pres-
ent 1nvention, the processes described above with reference
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to FIGS. 1-12 may be implemented as computer software
programs. For example, embodiments of the present inven-
tion comprise a computer program product including a
computer program tangibly embodied on a machine readable
medium, the computer program including program code for
performing methods 200, 500, 700, and/or 1000. In such
embodiments, the computer program may be downloaded
and mounted from the network via the communication
section 1409, and/or installed from the removable medium
1411.

Generally speaking, various example embodiments of the
present invention may be implemented in hardware or
special purpose circuits, software, logic or any combination
thereof. Some aspects may be implemented 1n hardware,
while other aspects may be implemented in firmware or
soltware which may be executed by a controller, micropro-
cessor or other computing device. While various aspects of
the example embodiments of the present invention are
illustrated and described as block diagrams, flowcharts, or
using some other pictorial representation, 1t will be appre-
ciated that the blocks, apparatus, systems, techniques or
methods described herein may be implemented 1n, as non-
limiting examples, hardware, software, firmware, special
purpose circuits or logic, general purpose hardware or
controller or other computing devices, or some combination
thereof.

Additionally, various blocks shown 1n the flowcharts may
be viewed as method steps, and/or as operations that result
from operation ol computer program code, and/or as a
plurality of coupled logic circuit elements constructed to
carry out the associated function(s). For example, embodi-
ments of the present invention include a computer program
product comprising a computer program tangibly embodied
on a machine readable medium, the computer program
containing program codes configured to carry out the meth-
ods as described above.

In the context of the disclosure, a machine readable
medium may be any tangible medium that can contain, or
store a program for use by or 1n connection with an instruc-
tion execution system, apparatus, or device. The machine
readable medium may be a machine readable signal medium
or a machine readable storage medium. A machine readable
medium may include but not lmited to an electronic,
magnetic, optical, electromagnetic, infrared, or semiconduc-
tor system, apparatus, or device, or any suitable combination
of the foregoing. More specific examples of the machine
readable storage medium would include an electrical con-
nection having one or more wires, a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber,
a portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing.

Computer program code for carrying out methods of the
present invention may be written 1n any combination of one
or more programming languages. These computer program
codes may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus, such that the program codes,
when executed by the processor of the computer or other
programmable data processing apparatus, cause the func-
tions/operations specified in the tlowcharts and/or block
diagrams to be implemented. The program code may
execute entirely on a computer, partly on the computer, as a
stand-alone software package, partly on the computer and
partly on a remote computer or entirely on the remote
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computer or server. The program code may be distributed on
specially-programmed devices which may be generally
referred to herein as “modules”. Software component por-
tions of the modules may be written 1n any computer
language and may be a portion of a monolithic code base, or
may be developed 1n more discrete code portions, such as 1s
typical 1n object-oriented computer languages. In addition,
the modules may be distributed across a plurality of com-
puter platforms, servers, terminals, mobile devices and the
like. A given module may even be implemented such that the
described functions are performed by separate processors
and/or computing hardware platforms.

Further, while operations are depicted in a particular
order, this should not be understood as requiring that such
operations be performed 1n the particular order shown or 1n
sequential order, or that all illustrated operations be per-
formed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Likewise, while several specific implementation
details are contained 1n the above discussions, these should
not be construed as limitations on the scope of any invention
or of what may be claimed, but rather as descriptions of
features that may be specific to particular embodiments of
particular mventions. Certain features that are described in
this specification 1n the context of separate embodiments can
also be implemented 1n combination 1n a single embodi-
ment. Conversely, various features that are described 1n the
context of a single embodiment can also be implemented 1n
multiple embodiments separately or 1n any suitable sub-
combination.

Various modifications, adaptations to the foregoing
example embodiments of this invention may become appar-
ent to those skilled in the relevant arts in view of the
foregoing description, when read in conjunction with the
accompanying drawings. Any and all modifications will still
fall within the scope of the non-limiting and example
embodiments of this invention. Furthermore, other embodi-
ments of the inventions set forth herein will come to mind
to one skilled 1n the art to which these embodiments of the
invention pertain having the benefit of the teachings pre-
sented 1n the foregoing descriptions and the drawings.

Accordingly, the present invention may be embodied 1n
any of the forms described herein. For example, the follow-
ing enumerated example embodiments (EEEs) describe
some structures, features, and functionalities ol some
aspects of the present mvention.

EEE 1

A method of speaker modeling and 1dentification, com-
prising: spatial computation of SDC {features based on
spatial mput audio, utilizing spatial GLDS-SVM 1n model-
ing and testing ol a speaker 1dentity model (SPID), unsu-
pervised training of the speaker identity model using loca-
tion information, and performing back-end fusion in
detection of speaker 1dentity.

EEE 2

17 1

The method according to EEE 1, wherein the SDC
features are extracted across diflerent channels in a spatial

K-d-P-q domain.

EEE 3

L.

The method according to EEE 1, wherein good advan-
tages of fast computation, low space, online adaptation of
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GLDS have been taken of in modeling. Fast spatial com-
putation via inner product either 1n parallel or 1n a cascade
way 1s carried on after generalized linear discriminant
sequences have been expanded.

[T

EE 4

-

I'he method according to EEE 1, wherein a powertul tool
of EM process has been used in unsupervised training of
speaker 1dentity model. To this end, results acquired by a
GMM model based on the location information are used to
refine the SPID model iteratively, and the refined SPID
model can conversely be of benefit to the next round of the

GMM model.

[T

EE 5

The method according to EEE 4, wherein the EM process
includes an intermediate bridge of using probability fusion
to mitigate the divergence of two coordinate systems of the
GMM model (which 1s 1n a polar system) and the SPID
model (which 1s 1 a hyper plane in the generalized
sequence).

[T

EE 6

The method according to EEE 4, wherein the Maximiza-
tion step 1 the EM process includes a cluster split process
and a cluster introduction process 1n order to compensate the

person count difference between the GMM model and the
SPID model.

[T]

EE 7

A system of speaker 1dentification for audio content, the
audio content being of a format based on multiple channels,
the system comprising:

a first feature extraction unit configured to extract, from a
first audio clip 1n the format, a plurality of spatial acoustic
features across the multiple channels and location 1informa-
tion, the first audio clip containing voices from a speaker;

a first model construction unit configured to construct a
first model for the speaker based on the spatial acoustic
features and the location information, the first model indi-
cating a characteristic of the voices from the speaker; and

a first speaker i1dentification unit configured to identify
whether the audio content contains voices from the speaker
based on the first model.

[T

EE 8

The system according to EEE 7, wherein the spatial
acoustic features include an intra-channel shifted delta cep-
strum (SDC) feature and an 1nter-channel SDC feature, and

wherein the first feature extraction unit comprises:

a cepstrum coellicient extraction unit configured to extract
a cepstrum coellicient for each frame of the first audio clip
in a frequency domain for each of the multiple channels;

an intra-channel SDC feature determination unit config-
ured to determine an intra-channel SDC feature for each of
the multiple channels based on difference between the
cepstrum coeflicients for the channel over a predetermined
number of frames; and

an inter-channel SDC feature determination unit config-
ured to determine an inter-channel SDC feature for each two
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of the multiple channels based on difference between the
cepstrum coetlicients for the two channels.

EEE 9

T 17 171

The system according to EEE 7 or EEE 8, wherein the
location information includes at least one of a direction of
arrival or a distance of the speaker relative to an audio
recording device, and

wherein the first model construction unit comprises:

a kernel function determination unit configured to deter-

mine a generalized linear discriminant sequence (GLDS)
kernel function based on the spatial acoustic features; and

a GLDS model construction unit configured to construct
the first model based on the location information and the

GLDS kernel function.

.
Bl
A S

(L]

10

The system according to EEE 9, wherein the GLDS model
construction unit 1s further configured to:

combine the spatial acoustic features;

perform dimensional mapping on the combined spatial
acoustic feature; and

determine the GLDS kernel function based on the mapped
spatial acoustic feature.

.
EB
A S

11

(Ll

The system according to EEE 9, wherein the GLDS model
construction unit 1s further configured to:

perform dimensional mapping on each of the spatial
acoustic features;

combine the mapped spatial acoustic features; and

determine the GLDS kernel function based on the com-
bined spatial acoustic feature.

E.

]
L

12
The system according to any one of EEEs 7 to 11, wherein
the first speaker 1dentification unit comprises:

an audio content feature extraction unit configured to
extract a plurality of spatial acoustic features across the
multiple channels from the audio content;

a closeness score determination unit configured to deter-
mine a closeness score between the spatial acoustic features
of the audio content and the first model; and

a score based identification unit configured to identify
whether the audio content contains voices from the speaker
based on the closeness score.

E.

]
L

13

The system according to any one of EEEs 7 to 12, wherein
the speaker 1s a first speaker, and the system further com-
prising;:

a location based determination unit configured to deter-
mine whether voices from a second speaker contain in the
first audio clip based on the location imnformation;

a second model construction unit configured to construct-
ing a second model for the second speaker based on the
spatial acoustic features and the location information, the
second model indicating a characteristic of the voices from
the second speaker; and

a second speaker 1dentification unit configured to identify
whether the audio content contains voices from the second
speaker based on the second model.
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EE.

T

14

[T]

The system according to any one of EEEs 7 to 13, further
comprising:
a model updating unit configured to update the first model

based on a second audio clip of the format.

EE.

T

15

[T

The system according to EEE 14, wherein the model
updating unit comprises:

a second feature extraction unit configured to extract a
plurality of spatial acoustic features across the multiple
channels from the second audio clip;

a weight determination unit configured to determine a
weight for the first model based on the spatial acoustic
teatures of the second audio clip; and

a weight based combination umit configured to combining,
the spatial acoustic features of the second audio clip to the

first model based on the determined weight.

EE

T

16

The system according to EEE 15, wherein the weight
determination unit comprises:

a closeness score determination unit configured to deter-
mine a closeness score between the spatial acoustic features
of the second audio clip and the first model; and

a scored-based weight determination unit configured to
determine the weight for the first model based on the
closeness score.

EEE

17

The system according to EEE 15, wherein the weight

determination unit comprises:

a third model construction unit configured to construct a
third model for the speaker based on the spatial information,
the third model being a Gaussian mixture model;

a probability determination unit configured to iteratively
determine, 1 an estimation-maximization (EM) process, a
probability of the second audio clip containing voices from
the speaker based on the third model; and

a probability-based weight determination unit configured
to determine the weight based on the probability.

EE.

T

18

The system according to EEE 17, wherein the probability-
based weight determination unit 1s further configured to:

determine a closeness score between the spatial acoustic
features of the second audio clip and each first model; and

determine the weight based on the probability and the
closeness score.

EE

T

19

The system according to EEE 17 or EEE 18, wherein the
probablhty determination unit configured to update the third
model in each iteration of the EM process based on the
probability determined 1n the 1teration.

EE.

20

T

The method according to any one of EEEs 14 to 19,
wherein the model updating unit further comprises:
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a closeness score determination unit configured to deter-
mine a closeness score between the spatial acoustic features
of the second audio clip and each of the first model and a
second model constructed from the first audio clip;

a model merging unit configured to merge the first model
with the second model 1f the closeness scores of the first
model and of the second model are higher than a first
threshold; and

a new model construction unit configured to construct a
new model based on the spatial acoustic feature of the
second audio clip i1 the closeness scores of the first model
and the second model are both lower than a second thresh-
old.

It will be appreciated that the embodiments of the inven-
tion are not to be limited to the specific embodiments
disclosed and that modifications and other embodiments are
intended to be included within the scope of the appended
claims. Although specific terms are used herein, they are
used 1 a generic and descriptive sense only and not for
purposes ol limitation.

The 1nvention claimed 1s:

1. A method of speaker identification for audio content,
the audio content being of a format based on multiple
channels, the method comprising:

extracting, from a first audio clip in the format, a plurality

ol spatial acoustic features across the multiple channels
and location information, the first audio clip including
a plurality of frames for each of a plurality of channels,
the first audio clip including audio content correspond-
ing to voices from a speaker, the spatial acoustic
features 1including acoustic characteristics of the voices
from the speaker;

constructing a first model for the speaker based on the

spatial acoustic features and the location information,

the first model indicating a characteristic of the voices

from the speaker; and
identifying whether the audio content contains voices from
the speaker based on the first model, wherein the spatial
acoustic features include an intra-channel shifted delta cep-
strum (SDC) feature and an inter-channel SDC feature, and
wherein extracting the spatial acoustic features from the first
audio clip comprises:

for each of the multiple channels, extracting a cepstrum

coellicient for each frame of the first audio clip 1n a
frequency domain;

determining an intra-channel SDC feature for each of the

multiple channels based on difference between the
cepstrum coellicients for the channel over a predeter-
mined number of frames; and

determining an inter-channel SDC feature for each two of

the multiple channels based on diflerence between the
cepstrum coetlicients for the two channels.

2. The method according to claim 1, wherein the location
information includes at least one of a direction of arrival or
a distance of the speaker relative to an audio recording
device, and

wherein constructing a first model for the speaker based

on the spatial acoustic features and the location infor-

mation comprises:

determining a generalized linear discriminant sequence
(GLDS) kernel function based on the spatial acoustic
features; and

constructing the first model based on the location
information and the GLDS kernel function.

3. The method according to claim 2, wherein determining,
the GLDS kernel function based on the spatial acoustic
features comprises:
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combining the spatial acoustic features;

performing dimensional mapping on the combined spatial

acoustic feature; and

determiming the GLDS kernel function based on the

mapped spatial acoustic feature.

4. The method according to claim 2, wherein determining,
the GLDS kernel function based on the spatial acoustic
features comprises:

performing dimensional mapping on each of the spatial

acoustic features;

combining the mapped spatial acoustic features; and

determiming the GLDS kernel function based on the

combined spatial acoustic feature.

5. The method according to claim 1, wherein 1dentifying
whether the audio content contains voices from the speaker
based on the first model comprises:

extracting a plurality of spatial acoustic features across

the multiple channels from the audio content;
determining a closeness score between the spatial acoustic
features of the audio content and the first model; and
identifying whether the audio content contains voices
from the speaker based on the closeness score.

6. The method according to claim 1, wherein the speaker
1s a first speaker, and the method further comprising:

determiming whether voices from a second speaker con-

tain in the first audio clip based on the location infor-
mation;

constructing a second model for the second speaker based

on the spatial acoustic features and the location infor-
mation, the second model 1indicating a characteristic of
the voices from the second speaker; and

identifying whether the audio content contains voices

from the second speaker based on the second model.

7. The method according to claim 1, further comprising:

updating the first model based on a second audio clip of

the format.

8. The method according to claim 7, wherein updating the
first model based on the second audio clip comprises:

extracting a plurality of spatial acoustic features across

the multiple channels from the second audio clip;
determiming a weight for the first model based on the
spatial acoustic features of the second audio clip; and
combining the spatial acoustic features of the second
audio clip to the first model based on the determined
weight.

9. The method according to claim 8, wherein determining,
a weight for the first model based on the spatial acoustic
features of the second audio clip comprises:

determining a closeness score between the spatial acoustic

features of the second audio clip and the first model;
and

determining the weight for the first model based on the

closeness score.

10. The method according to claim 8, wherein determin-
ing a weight for the first model based on the spatial acoustic
features of the second audio clip comprises:

constructing a third model for the speaker based on the

spatial information, the third model being a Gaussian
mixture model;

iteratively determining, 1n an estimation-maximization
(EM) process, a probability of the second audio clip

containing voices irom the speaker based on the third
model; and

determining the weight based on the probability.

11. The method according to claim 10, wherein determin-
ing the weight based on the probability comprises:
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determining a closeness score between the spatial acoustic
features of the second audio clip and each first model;
and

determining the weight based on the probability and the

closeness score.

12. The method according to claim 10, further compris-
ng:

updating the third model 1n each iteration of the EM

process based on the probability determined in the
iteration.

13. The method according to claim 7, wherein updating
the first model based on the second audio clip further
COmMprises:

determining a closeness score between the spatial acoustic

features of the second audio clip and each of the first
model and a second model constructed from the first
audio clip;
merging the first model with the second model 1T the
closeness scores of the first model and of the second
model are higher than a first threshold; and

constructing a new model based on the spatial acoustic
feature of the second audio clip 1t the closeness scores
of the first model and the second model are both lower
than a second threshold.

14. A computer program product for speaker identification
for audio content, the computer program product being
tangibly stored on a non-transitory computer-readable
medium and comprising machine executable instructions
which, when executed, cause the machine to perform steps
of the method according to claim 1.

15. A non-transitory computer readable medium having
soltware stored thereon, the software including instructions
for controlling one or more devices to perform a method of
speaker 1dentification for audio content, the audio content
being of a format based on multiple channels, the method
comprising;

extracting, from a first audio clip in the format, a plurality

of spatial acoustic features across the multiple channels
and location information, the first audio clip including
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a plurality of frames for each of a plurality of channels,
the first audio clip including audio content correspond-
ing to voices from a speaker, the spatial acoustic
features 1including acoustic characteristics of the voices
from the speaker;

constructing a first model for the speaker based on the
spatial acoustic features and the location information,
the first model 1indicating a characteristic of the voices
from the speaker; and

identifying whether the audio content contains voices
from the speaker based on the first model, wherein the
location information includes at least one of a direction
of arrival or a distance of the speaker relative to an
audio recording device and wherein constructing a first
model for the speaker based on the spatial acoustic
features and the location information comprises:
determining a generalized linear discriminant sequence
(GLDS) kernel function based on the spatial acoustic
features; and
constructing the first model based on the location
information and the GLDS kernel function.

16. The non-transitory computer readable medium of
claim 15, wherein determining the GLDS kernel function
based on the spatial acoustic features comprises:

combining the spatial acoustic features;

performing dimensional mapping on the combined spatial

acoustic feature; and

determiming the GLDS kernel function based on the

mapped spatial acoustic feature.

17. The non-transitory computer readable medium of
claim 15, wherein determining the GLDS kernel function
based on the spatial acoustic features comprises:

performing dimensional mapping on each of the spatial

acoustic features;

combining the mapped spatial acoustic features; and

determining the GLDS kernel function based on the

combined spatial acoustic feature.
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