12 United States Patent

US009626236B2

(10) Patent No.: US 9,626,236 B2

Ayres et al. 45) Date of Patent: *Apr. 18, 2017
(54) METHOD, APPARATUS AND COMPUTER (52) U.S. CL
PROGRAM FOR ADMINISTERING CPC e, GO6F 9/546 (2013.01)
MESSAGES WHICH A CONSUMING (58) Field of Classification Search

APPLICATION FAILS TO PROCESS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Malcolm D. Ayres, Romsey (GB);
Andrew 1. Hickson, Hants (GB);
Andrew M. Leonard, Hampshire (GB);
David Ware, Wiltshire (GB); Andrew
J. Whitfield, Southampton (GB)

(73) Assignee: nternational Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 14/831,833
(22) Filed: Aug. 20, 2015

(65) Prior Publication Data
US 2015/0355956 Al Dec. 10, 2015

Related U.S. Application Data

(63) Continuation of application No. 12/049,908, filed on
Mar. 17, 2008, now Pat. No. 9,146,788.

(30) Foreign Application Priority Data
Mar. 16, 2007 (EP) e, 07104343

(51) Int. CL

GO6F 9/54 (2006.01)

Queue Manager

! 260
/

270~

Delete message from Reset consec
queue failure counter

280

Move Message to
DLQ

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,878,056 A * 3/1999 Black HO4L 1/1835
370/249

9,146,788 B2* 9/2015 AVIescccocevvirnnn, GOO6F 9/546
2004/0068479 Al* 4/2004 Wolfson GOO6F 17/30578

OTHER PUBLICATTONS

Dixon et al.; “United States Patent Trial and Appeal Board Deci-

siton—Appeal No. 2013-000089; Apr. 29, 2015.*
Paul Titheridge; “How WebSphere Application Server handles
poison messages”; May 26, 2004,

* cited by examiner

Primary Examiner — Umut Onat

(74) Attorney, Agent, or Firm — Steven M. Greenberg,
Esq.; CRGO LAW

(57) ABSTRACT

Disclosed 1s a method for administering messages. In
response to a determination that one or more consuming
applications have failed to process the same message on a
queue a predetermined number of times, the message 1s
made unavailable to consuming applications. Responsive to
determining that a predetermined number of messages have
been made unavailable to consuming applications, one or
more consuming applications are prevented from consuming
messages from the queue.

30 Claims, 8 Drawing Sheets

Message is locked to a ,..200
consumer

v

An indication as to whether the 210

transaction should be comititted [

is received from the transaction
co-grdinator

N
Increment retry counter |- 230

Reached retry
threshold

N

240

Make message re-available on
the queue

=B

US 9,626,236 B2

Sheet 1 of 8

Apr. 18, 2017

U.S. Patent

| 8inbi4

0t eNend 0€ ananp

09 uoledlddy
Buiunsuon

01 uoneolddy
Buibnpoud

GO JOAIDS uoneol|ddy

0cZ Jabeuejn ananp)

US 9,626,236 B2

Sheet 2 of 8

Apr. 18, 2017

U.S. Patent

Ovl

0¢l

0cl

Obl

001

INJSS823NsSUnN
12y] JOJBUIpJO0D
UOIOBSURI) WIOJU|

abessaw ay] sse20.4d

0] sjdwajle Jawnsuon

uoloesuel]
pajealo Ajmau Jo led se
abessaw e s)ab Jawnsuon

uoloesuel)
B S8]BaId JaWNsuo)

[NJSS820NS
Jey] JOJBUIPJOOD

uoljoesuel) Wioju|

gel

. abessap
Jayjouy

ez a2.nbi4

Jawinsuon

US 9,626,236 B2

Sheet 3 of 8

Apr. 18, 2017

U.S. Patent

qg 8inbi

O (&

O1d

ananb ay
UO a|ge|ieAe-a.) abessall aYe|n

0G¢

ploysaiy)

AJjol payoeay 0} obessa\ 9AON

> s
0] 74 0Q7
0CZ A J8juno9 Aljal Juswaloul
JaJuNo9 ainjej ananb
09SU0D JOSaY wouj abessaw ajv1aQ
07z —04LC
/
09¢
10jeuIplo-09
uoljoesuel} ayj WoJj PaAIdoal S|
PAIIIIWOD 8Q PINOYS uonoesuel)
4 9y} Joyjaym 0} se uoljesipul uy
JaWwNsuoo _ labeue| ananpd

B 0] PaYO0| Sl abessa
007 | } PaX00] SI A

US 9,626,236 B2

07 9Jnbi4
o
I
-
M J9JUNOD aIN|ie}
m OLE 99SUOD JUBWAIOU
=
— .
“ ¢PIOYSSIL} uoneoidde
% 00g S nites 0esuoo unsuco doig [N
2 PoERd A 0EE
<

U.S. Patent

US 9,626,236 B2

Sheet 5 of 8

Apr. 18, 2017

U.S. Patent

GO/ Ploysaly |
alnjie{ 99suU0)

08/
181unon Aney

044 Ploysaiyl
Aoy

0S . J9nO

09/ J91UN0H
aJnjle{ 99su0n

GG/
Jusuoduwo)

do1g

GE.
Jajuswialou

Gv/
Jauiwliaya

0cL
jusuodulon

A9eq||0d

GlLZ
Janosoy

JUNON

¢ ainbi4

Gcl
Ja)lwwion

OLZ
JaAI809Y

UoNeoIpuU|

GO.
Jjusuodwo)

3007

labeuey ananpy)

ananb auyj
uo a|gejieAr-a) abessaw ayen

US 9,626,236 B2

09v ey a.nbi4
(PloysaJay)
opiyAaias - pjoysaiyl O1a 0} SA0W
0Gt 01Q) = Ajas A
GGY
" (ploysaiy) e
= apiy Asjal) = Al A
= Ovv
'
s
s
@nu JoJUN0o AJjal JUSLUBJIOUY
Oty sabessaw enanb
— | USPPIL JBJUNOD ain|e) wou) abessouwl
& . D9SU0D 1980 POLINSU0D
N Aue apiyun 819190]
0
y—
s 08V GV
-« JOJBUIPIO-09

UuoIoBSURL] 8] WO} POAISDSL S
POIHLWIOD 8¢ PINOYS UOIDBSUE)
aU) JOUIBUM 0] SB UOIIEIIDUI UY

labeuepy snanp

Oy —

JBWINSU0D
001 B 0) pa)o0| sl sbessaip]

U.S. Patent

US 9,626,236 B2

Sheet 7 of 8

obessaw apiH

024

Ja)unod ainjie)
29SU0D JUBWAIOU|

OLG |

(PIoYsaly)

0€S

0

1%

G

qp 84nbi

0GG

Apr. 18, 2017

U.S. Patent

sobessalu
uappiy spiyun

uoneoijdde
Buiunsuoo dojg

121unod bulpe)
DOSUOD 18S9

ain|ie} 99suUo?
payoeay

00G

US 9,626,236 B2

Sheet 8 of 8

Apr. 18, 2017

U.S. Patent

G 8Inbi4

098 J9junoyH
ainjie4 2asuon

. @

088
181uno") Aoy

G.8
ploysaiyl O'1d

@ >

0.8 Ploysaly|
aplyAney

GO8 ploysaly
aJn|ie4 29suU0n

Ghg Ot8

GC8
lauiwa1a jusuodwod JOPIUWIOY

SpIH

GG3 0) 2% 0¢8 0L8
jJusuodwo) Jusuodwo) jusuodwod I8N0 Y

dois ANIQISIA A9e(||0H uolyeaipu

c1 G08
ceg Jusuodwo)
053 1°9A0N Jajuawaiou| (_MMMMMW_ MO0
ol

J1abBuUBp\ ananp

US 9,626,236 B2

1

METHOD, APPARATUS AND COMPUTER
PROGRAM FOR ADMINISTERING

MESSAGES WHICH A CONSUMING
APPLICATION FAILS TO PROCESS

This application 1s a Continuation of U.S. application Ser.
No. 12/049,908, filed Mar. 17, 2008, now U.S. Pat. No.
9,146,788, which claims priority to European Patent Appli-

cation 07104343 4, filed Mar. 16, 2007/, the entirety of which
are 1ncorporated herein by reference.

FIELD OF THE INVENTION

The invention relates to the field of messaging and more
particularly to the failure by a consuming application to
Process one or more messages.

BACKGROUND OF THE INVENTION

Asynchronous transier of messages between application
programs running on different data processing systems
within a network 1s well known 1n the art, and 1s 1mple-
mented by a number of commercially available messaging,
systems. A sender application program 1ssues a command to
send (put) a message to a target queue, and a queue manager
program handles the complexities of transferring the mes-
sage from the sender to the target queue, which may be
remotely located across a heterogeneous computer network.
The target queue 1s a local mnput queue for another applica-
tion program, which retrieves (gets) the message from this
input queue asynchronously from the send operation. The
receiver application program then performs 1ts processing on
the message, and may generate further messages.

Thus the receiver application program services requests
which are mnstigated by the messages that it retrieves and
consumes (typically under a transaction). Such an applica-
tion will however occasionally be unable to process a
request/message successiully. Generally such applications
are transacted, 1.e. they consume each request message
inside a transaction and on successiul completion of the
request the transaction 1s committed. When the transaction
commits the message 1s removed from the queue. However,
if the consuming application fails to process the request the
transaction may be rolled back. Rolling back a transaction
will make the message re-available on the queue, generally
at the head of the queue (if the queue works 1n a FIFO way)
resulting in the consuming application being given the same
message when they ask for the next message on the queue.
If the application 1s still unable to process the request
another roll back will occur and the whole process repeats.

Messaging systems provide the ability to break out of this
cternal loop 1n one of two manners:

a) Provision of a ‘dead letter queue’ (DLQ) or ‘exception
destination’ and the detection by the messaging system of a
message being re-delivered repeatedly. Once the consump-
tion of a message has been rolled back a certain number of
times (past a defined threshold) the messaging system will
automatically move the message to the dead letter queue or
exception destination so that 1t 1s no longer seen by the
consuming application. The consuming application will now
be able to process the next message in the queue. Messages
on the DLQ can be the subject of admimstrator attention.

b) Rather than moving a problem message to another
queue 1n the event of that message being rolled back past a
certain threshold, the consuming application is stopped. The
consuming application may be managed by an application
server, 1n which case the application server 1s able to stop the

10

15

20

25

30

35

40

45

50

55

60

65

2

consuming application. At this point the administrator must
step 1n to restart the application once the problem has been
resolved.

These two solutions address two diflerent situations.
Situation 1

A so called ‘poison’ message 1s mtroduced, for instance a
badly formed message that the consuming application will
never be able to process successtully. Solution (a) solves this
by automatically moving such a message ofl to the side as
soon as possible so that subsequent messages in the queue
can be processed. However, solution (b) will immediately
stop the application on this poison message. This 1s not so
ideal, since the problem does not lie with the application and
therefore prevents timely processing of further, correctly
formed messages. The administrator 1s forced to intervene to
remove the offending message and restart the application to
process any subsequent messages.
Situation 2

The consuming application experiences a transitory prob-
lem that prevents it from processing any messages for an
unknown period, for imstance 1ts backend database connec-
tion goes down for ten minutes. In this situation solution (a)
can cause the entire queue of messages to be transierred to
the dead letter queue as fast as they arrive before the
administrator notices and stops the application by hand,
fixes the problem and moves all the messages back from the
dead letter queue onto the original queue to be consumed.
Solution (b) however, stops the application on the first
message and waits for the administrator to mtervene, hope-
tully after they’ve re-established the database connection,
requiring no messages to be moved from one queue to
another and back again.

Unfortunately neither of these solutions satistfactorily

protects a system Ifrom both of these potential problem
situations.

SUMMARY OF THE INVENTION

According to a first aspect, there 1s provided a method for
administering messages, the method comprising: 1n response
to determining that one or more consuming applications
have failed to process the same message on a queue a
predetermined number of times, making that message
unavailable to consuming applications; and responsive to
determining that a predetermined number of messages have
been made unavailable to consuming applications, prevent-
Ing one or more consuming applications from consuming
messages from the queue.

A consuming application may be prevented by actually
stopping the application. In another embodiment, the whole
queue 1s disabled. In yet another embodiment, access for a
particular application 1s blocked.

In one embodiment the predetermined number of times
may be one. In other embodiments a higher threshold may
be set.

According to a preferred embodiment, a request 1is
received from a consuming application to process a mes-
sage. This results in the next appropriate message being
locked to the requesting consumer. This may be the very
next message 1 the queue or may be the next message that
the consumer 1s mterested in—-e.g. if the consuming appli-
cation 1s consuming messages using a lilter or selector.

Preferably an indication 1s received as to whether the
requesting consuming application has successiully pro-
cessed the message. This may come directly from the
consuming application itself. Alternatively this indication

US 9,626,236 B2

3

may come from a transaction co-ordinator responsible for
co-ordinating a transaction associated with the message.

In accordance with a preferred embodiment, responsive to
determining that the requesting consuming application has
failed to process the message successiully, the message 1s
made re-available to consuming applications and a retry
count for the message 1s adjusted. In the described embodi-
ment, such an adjustment involves incrementing the retry
count, however no limitation 1s intended.

The retry count may be used to determine that one or more
consuming applications have failed to process the same
message a predetermined number of times.

In one embodiment it may be determined that a prede-
termined number of consecutively consumed messages have
been made unavailable to consuming applications before
one or more consuming applications are prevented from
consuming messages from the queue. In another embodi-
ment, 1t may be determined that a predetermined number of
messages within a set ol messages have been made unavail-
able to consuming applications—e.g. 7 out of 10 messages.

In one embodiment, messages are made unavailable by
moving such messages to a side queue. Once on the side
queue, such messages may then enjoy administrative atten-
tion.

In another embodiment, messages are not moved to a side
queue straightaway. Such messages are left on the queue but
are made invisible to consuming applications.

Once any problem associated with consuming applica-
tions has been rectified then previously prevented consum-
ing applications may be permitted to consume messages
again. IT a problematic consuming application has actually
been stopped, then the fact that the application 1s back online
again and has successiully consumed a message 1s prefer-
ably used to indicate that the problem has been rectified.
This 1s not however the case for the embodiment in which
access to the queue 1s blocked for the particular application,
or where access to the whole queue 1s disabled for all
applications. Instead, the act of turning the application back
on 1s an administrative action which could be detected by a
monitoring application.

Before such consumption 1s enabled, any invisible mes-
sages are preferably made visible again to consuming appli-
cations. If a consuming application fails to process a mes-
sage which has been made visible again a certain number of
additional times (e.g. 5), the message 1s then moved off to a
side queue.

In one embodiment one or more consuming applications
are prevented from consuming messages from the queue by
stopping such consuming applications.

In another embodiment, access to the queue for the one or
more consuming applications 1s blocked.

In another embodiment, only those consuming applica-
tions interested 1n consuming a particular type of message
from the queue are prevented. This 1s usetul 1f consuming
applications access a different backend resource on the basis
of the type ol messages that they are consuming. One
backend resource may be experiencing a transitory problem
which 1s not affecting other backend resources.

In another embodiment, one or more consuming applica-
tion which 1s responsible for messages being made unavail-
able 1s 1dentified. Such specific consuming applications are
then prevented from consuming messages from the queue.
This 1s useful where a particular application 1s experiencing
an internal error.

According to a second aspect, there 1s provided an appa-
ratus for administering messages, the apparatus comprising;:
means, responsive to a determination that one or more

10

15

20

25

30

35

40

45

50

55

60

65

4

consuming applications have failed to process the same
message on a queue a predetermined number of times, for
making that message unavailable to consuming applications;
and means, responsive to determining that a predetermined
number of messages have been made unavailable to con-
suming applications, for preventing one or more consuming,
applications from consuming messages from the queue.

According to a third aspect, there 1s provided a computer
program for administering messages, the computer program
comprising program code means adapted to perform the
following method when said program 1s run on a computer:
in response to determining that one or more consuming
applications have failed to process the same message on a
queue a predetermined number of times, making that mes-
sage unavailable to consuming applications; and responsive
to determining that a predetermined number of messages
have been made unavailable to consuming applications,
preventing one or more consuming applications from con-
suming messages from the queue.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now
be described, by way of example only, and with reference to
the following drawings:

FIG. 1 illustrates a messaging system 1n which a preferred
embodiment of the present invention may be implemented;

FIGS. 2a, 2b and 2¢ 1llustrate the processing of the present
invention 1n accordance with a preferred embodiment;

FIG. 3 provides additional exemplary detail with respect

to the componentry of FIG. 1’s queue manager; and
FIGS. 4a, 4b and FIG. 5 illustrate the processing and

componentry of an optional enhancement of the present
invention.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary messaging system 1n
which a preferred embodiment of the present invention may
be implemented. FIGS. 2a, 25 and 2c¢ 1llustrate the process-
ing of a preferred embodiment of the present invention. FIG.
3 provides a more detailed view of the componentry hosted
by the queue manager of FIG. 1 in accordance with a
preferred embodiment of the present invention. The figures
should be read 1n conjunction with one another.

With reference to FIG. 1, a producing application 10 puts
messages to an mput queue 30 which 1s hosted by queue
manager 20. Such messages are transierred from 1mnput queue
30 to output queue 40. Consuming application (consumer)
60, which may be managed by application server 65, then
retrieves messages from queue 40 and processes them.
(Note, the application server 1s an optional element.) The
invention 1s particularly concerned with messages on the
output queue that consuming application 60 finds itself
unable to process. Such messages may eventually find their
way onto dead letter queue (DLQ) 50. The preferred pro-
cessing and use of the DLQ will be described 1n more detail
below.

As 1llustrated 1n FIG. 2a, consumer 60 wishes to retrieve
message 70 and so creates a transaction at step 100. The
consumer gets the message as part of the newly created
transaction at step 110. Overall co-ordination of the trans-
action 1s performed by a transaction co-ordinator (not
shown).

Queue manager 20 then locks message 70 to consumer 60

at step 200 (as shown 1 FIG. 2b) (lock component 705).

US 9,626,236 B2

S

This may, for example, involve leaving the message on the
queue but making 1t 1nvisible to other consumers.

The consumer 1s now able to attempt to process the
message at step 120. Such processing may, for example,
involve accessing a backend resource such as a database (not
shown).

At step 130, it 1s determined whether the consumer has
been successful 1n its processing of message 70. It the
answer 1s ves (step 135), then the consumer informs the
transaction co-ordinator which 1n turn mstructs the queue
manager to commit the message.

At step 133 the transaction co-ordinator can be notified of
the successtul processing of the message and, the consumer
may then attempt to retrieve another message and the
process repeats (steps 150, 100).

In the alternative, the consumer may not have been able
to process message 70 successiully. For example, the back-
end database may be experiencing a transitory problem

which prevents the consumer from using the message to
update the database.

The consumer mnforms the transaction co-ordinator at step
140 that processing has been unsuccesstul. The transaction
co-ordinator in turn mstructs the queue manager to rollback
the transaction.

(Note, the discovery of a failure may be made by a
backend resource rather than the consuming application.)

Thus 1rrespective of whether the consumer i1s able to
process the message, according to the preferred embodiment
the queue manager receives an 1indication (indication
receiver 710) from the transaction co-ordinator as to whether
the transaction should be committed or rolled back at step
210 of FIG. 2b.

If 1t 1s determined (determiner 743) at step 220 that the
transaction 1s to be committed, then a consecutive failure
(consec failure) counter 760 1s reset at step 260 by count
resetter 715. The consecutive failure counter 1s maintained
to keep track of the number of consecutively consumed
messages that have been placed on dead letter queue (DLQ)
50, and will be explained 1n more detail later. A message 1s
preferably placed on the DLQ after 1t has been rolled back
a certain number of times.

After the counter has been reset, at step 270 the message
1s deleted (committer 725) from the output queue 40 and the
consumer can retrieve another message (11 one exists) at step
150. Thus the process repeats itsell.

Alternatively, it may be determined (determiner 745) at
step 220 that the transaction should be rolled back. If this 1s
the case, then the retry counter (which maintains a retry
count) 1s mncremented (incrementer 735; step 230) It 1s then
determined at step 240 whether a retry threshold 770 has
been reached (determiner 745). Such a determination 1s
made using a retry counter 780. Again this will be discussed
in more detail later. Briefly however, the retry counter keeps
a count ol the number of times the consumption of a
message, performed under a transaction, has had to be rolled
back. For example, 1f consumption of the same message has
been rolled back five times already, this may be indicative of
a problematic message. Whilst the consecutive failure coun-
ter 1s maintained across the whole output queue, a retry
counter 1s maintained for each individual message. It is
preferably a property of the message header.

If the retry threshold has not yet been met, the message 1s
made re-available on queue 40 at step 250 (rollback com-
ponent 720). This may involve unlocking the message such
that 1t 1s no longer 1nvisible to other consumers. The process
then repeats 1tself.

10

15

20

25

30

35

40

45

50

55

60

65

6

If on the other hand the retry threshold 770 has been
reached for a message, then previously the message would
have been moved straight to the DLQ. As indicated above,
the problem with this approach 1s that it does not cater for
the situation where the problem lies not with the message
itself but with the application attemptmg to process the
message. This approach would result 1n all messages being
moved to the DLQ, despite the messages themselves being
valid.

Thus some additional processing 1s added in between
steps 230 and 280. Such additional processing 1s illustrated
in FIG. 2c.

At step 300 1t 1s determined (determiner 745) whether a
consecutive failure threshold 765 has been reached using the
consec failure counter 760. The consecutive failure thresh-
old indicates the maximum allowable number of consecu-
tively consumed messages that can be placed on the dead
letter queue. If the threshold has not been reached, then the
consecutive failure counter 1s adjusted. In the embodiment
described the counter 1s incremented (incrementer 733) at
step 310 and the message 1s moved (mover 750) to DLQ 50
at step 280. The process then repeats.

On the other hand, 1f the consecutive failure threshold 765
has been reached this may be indicative of a problem with
the application itself. Thus the consuming application 1s
stopped (stop component 755) at step 330 and any problem
can recerve administrative attention before the application 1s
restarted.

Thus a mechanism 1s prowded which 1s lenient enough to
permit the occasional ‘poison’ message (o be re-routed off to
a side queue (DLQ) when it arrives but to prevent an entire
stream of messages from being routed to the side queue 1n
the event of a transient application problem occurring. This
reduces the spontaneous ntervention required by the admin-
istrator 1n such situations.

This solution preferably allows an administrator to con-
figure the level of ‘lemence’ that they wish to give to failing
messages:

(1) zero: never move a message to the side queue, just stop
the consuming application—i.e. original solution (b); or

(1) defined values (1, 2,3, 4, . . .): Allow a number of bad
message to be moved off to the side but it the problem
persists, stop the consuming application before all messages
are diverted; or

(111) unlimited: always move problem messages to the side
queue—i.¢. original solution (a)

Additional refinements of the solution discussed above
are also possible:

The ‘consecutive’ nature of failures (i.e. those messages
moved to a side queue) may be relaxed to a proportion of
falled messages to successful messages, e.g. “Stop the
consuming application 1f seven out of ten consecutively
consumed messages fail”.

A further enhancement involves temporarily refraining
from sending any failing messages to the side queue until 1t
has been determined whether the failure i1s particular to
certain messages or probably across all messages (1.e. appli-
cation specific). This will be described 1n more detail with
reference mainly to FIGS. 4a, 4b and 5.

When a consuming application retrieves a message, the
message 1s locked to the consumer at step 400 (lock com-
ponent 805). An indication 1s subsequently received (indi-
cation receiver 810) from the transaction co-ordinator as to
whether the transaction containing the retrieved message
should be commutted (step 410). It 1s therefore determined
(determiner 845) whether to commit the message (step 420).
If the message can be committed, then any hidden messages

US 9,626,236 B2

7

are unhidden at step 490 (visibility component 840). The
circumstance under which messages become hidden will be
discussed 1n more detail later. The consecutive failure coun-
ter 860 1s then reset at step 480 (count resetter 815) and the
consumed message can be deleted from the output queue at
step 475 (commuitter 825). The process then repeats itself
with Previously Presented messages.

If on the other hand a message 1s not to be commutted, the
retry counter for the message 1s incremented (incrementer
735; step 430). It 1s then determined (determiner 845)
whether a retryhide threshold has been reached at step 440.
As before a retry counter 880 1s maintained for each message
to keep track of the number of times a message has been
rolled back. The retryhide threshold 1s the maximum number
of times that the consumption of the same message 1s
allowed to be rolled back before the message 1s hidden on
the output queue.

If the retryhide threshold has been reached, processing
proceeds to FIG. 4b. It 1s determined (determiner 845)
whether the consecutive failure threshold 8635 has been
reached at step 500. If 1t hasn’t, then the consecutive failure
counter 1s mncremented (incrementer 835; step 510) and the
message 1 question 1s hidden (hide component 830) at step
520. This means that the message remains on the output
queue but 1s 1nvisible to all applications consuming from the
queue. Having hidden the message the process may repeat
itself.

If 1n the alternative the consecutive failure threshold 865
has been reached (in other words, the maximum number of
messages that are allowed to fail in succession has been
reached), it 1s determined that this 1s likely to be as a result
of a problem with the consuming application. Consequently
the consuming application 1s stopped (stop component 855)
at step 530 so that it can be the subject of administrative
attention. Meantime, any hidden messages on output queue
40 are unhidden (visibility component 840) 1n preparation
for the restart of the application (step 540). The consecutive
tailure counter 1s reset at step 550.

Once the problem with the application has been fixed, it
can be restarted.—Processing then proceeds to step 410 of
FIG. 4a.

The application then starts retrieving messages as before.
For each message, an indication 1s received (indication
receiver 810) at the queue manager as to whether a trans-
action containing the message can be committed (step 410).
If a commut 1s possible (step 420), then processing continues
at step 460 as previously described.

On the other hand, 11 the message 1s not to be commutted,
then the retry counter for the message 1s incremented (step
430; incrementer 735) and then 1t 1s determined (determiner
845) at step 440 whether the retrylude has been reached for
the message. The answer on this loop for a previously hidden

message will be no, since the retry count will exceed this
threshold.

A second threshold 1s also maintained, the DLQ threshold
875. The DLQ threshold 875 1s the maximum number of
times the consumption of same message 1s allowed to be
rolled back (rollback component 820) before the message 1s
moved to the dead letter queue (mover 850). This threshold
1s used 1n conjunction with the retryhide threshold to deter-
mine the number of additional times a previously hidden
message 1s allowed to be rolled back before 1t 1s moved to
the dead letter queue.

Thus 11 the DLQ threshold—retryhide threshold has been
reached at step 450 the message will be moved (mover 850)
to the dead letter queue at step 4355. The process may then
repeat itsell for additional messages. Thus 11 the DLQ

5

10

15

20

25

30

35

40

45

50

55

60

65

8

threshold 1s 15 and the retryhide threshold 1s 10, then the
message 1s tried a further 5 times once 1t has been made
visible again before it 1s moved off to a side queue.

If 1n the alternative, the DLQ threshold 875—retryhide
threshold 870 has not yet been reached (1.e. for messages
that have not previously been hidden), then the message 1s
made re-available on the queue and processing repeats 1itself.

Thus a further mechanism has been described which
involves temporarily refraining from sending any failing
messages to the side queue until 1t has been determined
whether the failure 1s particular to certain messages or more
probably across all messages (1.e. application specific). This
1s particularly advantageous because once a message 1s on
the side queue, administrative attention 1s required to get the
message back into the output queue. This 1s particularly
pertinent when the message 1tself 1sn’t the cause of the
problem.

The behaviour described saves having to move the first
few failing messages to the side queue 1n the event that the
problem 1s application specific, but also maintains the ability
to move messages ol to the side queue 1n the event that 1t
1s the messages themselves that are at fault.

This obviously introduces reordering of messages but the
existence of the side queue has already introduced that
possibility and so this 1s deemed acceptable behaviour.

With regard to the solution as described as a whole, it
should be noted that typically consumers will be performing,
the same kind of task on all the messages on output queue
40. In other words, all consumers are likely to be using the
same backend resources etc. to complete the processing of
cach message they retrieve. This means that 1f a backend
resource 1s experiencing some kind of problem, the problem
will manifest itself across all consumers.

In certain circumstances however consumers may be
consuming from the queue using selectors. For example,
consumer A may desire messages of type 1, whilst consumer
B 1s after messages of type 2. In such a scenario it 1s possible
that consumer A may be interacting with a different backend
resource to that being used by consumer B. If this 1s the case,
then any solution would have to keep a counter for the
number of consecutively failing messages of type 1 but also
a separate counter for the number of consecutively failing
messages of type 2. In other words all consuming applica-
tions which are consuming the same type of message will
share their own consecutive failure counter. Thus when 1t 1s
deemed necessary to stop consuming applications, 1t may be
necessary to stop only a certain type ol consuming applica-

tion—e.g. those consuming messages of type one only.

In another embodiment, applications which fail to con-
sume messages are kept track of and when it 1s deemed
necessary to stop a consuming application, these are the ones
that are stopped. Consuming applications which fail to
process a certain proportion of messages may be the ones
that are stopped. Such consuming applications may fail to
process a certain proportion of messages because one of
them 1s experiencing, for example, an internal error. In this
embodiment, each consuming application has 1ts own con-
secutive failure counter.

It should also be appreciated that whilst the invention has
been described in terms of transactional message retrieval,
the invention 1s not limited to such. In other words, the
invention 1s also applicable to non-transactional message
retrieval. For example, the Java™ Message Service (JMS)
1.1 specification discusses non-transacted message
acknowledgement options. These, in conjunction with a
IMS Messagel istener, make 1t possible for messages to be
consumed outside of a transaction but still put back on the

US 9,626,236 B2

9

queue 1f the application fails for some reason. (Java and all
Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. 1 the United States, other countries, or
both.)

It should further be appreciated that whilst the embodi-
ment has been described 1 terms of a problem with a
backend resource with which the consumer i1s interacting,
the problem may instead lie with the consumer itself. The
consumer will be able to retrieve messages but may be
unable to process them due to an internal fault.

In terms of stopping a consumer, or group ol consumers,
it may be possible for the queue manager to request such a
stoppage—1or example, if the application 1s running in a
managed environment such as an application server or
monitoring system, via notification to that system. Alterna-
tively, the queue manager may be able to block access to a
particular consumer, or group of consumers,—1.e. to prevent
those consumers from consuming messages from the queue.
Another option 1s to disable the whole queue such that no
messages may be consumed. This 1s useful 1n the situation
where 1t 1s no This solution does not however work well in
the situation where a particular application 1s at fault as
opposed to all application which are consuming from the
queue.

It should be appreciated that the embodiments described
herein mention incrementing various counters. This 1s by
way example only and no limitation 1s intended. For
example, a counter could be decremented 1nstead.

The invention claimed 1s:

1. A computer program product for administering mes-

sages, the computer program product comprising:

a non-transitory computer readable storage medium hav-
ing computer readable program code embodied there-
with, the computer readable program code comprising;:

computer readable program code for, in response to a
determination that one or more consuming applications
have failed to process a same message on a queue a
predetermined number of times, making the same mes-
sage unavailable to the one or more consuming appli-
cations; and

computer readable program code for, responsive to deter-
mining that a predetermined number of messages have
been made unavailable to the one or more consuming
applications, preventing the one or more consuming
applications from consuming messages from the queue.

2. The computer program product of claim 1, further

comprising;

computer readable program code for recerving a request
to process a message Irom a requesting consuming
application; and

computer readable program code for locking a next appro-
priate message to the requesting consuming applica-
tion.

3. The computer program product of claim 2, further

comprising:

computer readable program code for receiving an 1ndica-
tion as to whether or not the message has been suc-
cessiully processed by the requesting consuming appli-
cation.

4. The computer program product of claim 2, further

comprising;

computer readable program code for responsive to deter-
mining that the requesting consuming application has
failed to process the message successiully, making the
message re-available to others of the one or more
consuming applications; and

10

15

20

25

30

35

40

45

50

55

60

65

10

computer readable program code for adjusting a retry

count for the message.

5. The computer program product of claim 4, further
comprising:

computer readable program code for using the retry count

to determine that the one or more consuming applica-
tions have failed to process the same message a difler-
ent predetermined number of times.

6. The computer program product of claim 1, wherein the
computer readable program code for determining that the
predetermined number of messages have been made
unavailable to the one or more consuming applications,
COmMprises:

computer readable program code for determining that a

predetermined number of consecutively consumed
messages have been made unavailable to the one or
more consuming applications.

7. The computer program product of claim 1, wherein the
computer readable program code for determining that the
predetermined number of messages have been made
unavailable to the consuming applications, comprises:

computer readable program code for determining that a

predetermined number of messages within a set of
messages have been made unavailable to the consum-
ing applications.

8. The computer program product of claim 1, wherein the
computer readable program code for making the message
unavailable to the consuming applications, comprises:

computer readable program code for moving each mes-

sage 1o a side queue.

9. The computer program product of claim 1, wherein the
computer readable program code for making the message
unavailable to consuming the applications, comprises:

computer readable program code for leaving the message

on the queue but making 1t 1invisible to the consuming
applications.
10. The computer program product of claim 9, further
comprising;
computer readable program code for making invisible
messages visible again to the consuming applications;

computer readable program code for permitting a previ-
ously prevented consuming application to consume
messages;

computer readable program code for permitting a number

of additional attempts by one or more of the consuming
applications at processing previously invisible mes-
sages belore moving the previously 1invisible messages
to a side queue.

11. The computer program product of claim 1, wherein the
computer readable program code for preventing one or more
of the consuming applications from consuming messages
from the queue, comprises:

computer readable program code for stopping the one or

more consuming applications.

12. The computer program product of claim 1, wherein
the computer readable program code for preventing the one
or more consuming applications from consuming messages
from the queue, comprises:

computer readable program code for blocking access by

the one or more consuming applications to the queue.

13. The computer program product of claim 1, wherein
the computer readable program code for preventing the one
or more consuming applications from consuming messages
from the queue, comprises:

computer readable program code for preventing those of

the one or more consuming applications interested in
consuming messages of a particular type.

US 9,626,236 B2

11

14. The computer program product of claim 1, wherein
the computer readable program code for preventing the one
or more consuming applications from consuming messages
from the queue, comprises:

computer readable program code for identifying amongst
the one or more consuming applications a consuming
application responsible for messages being made
unavailable; and

computer readable program code for preventing the iden-
tified consuming application from consuming messages
from the queue.

15. The computer program product of claim 1, wherein
the computer readable program code for preventing the one
or more consuming applications from consuming messages
from the queue, comprises:

computer readable program code for disabling the queue.

16. A system for administering messages, the system
comprising;

a computer with memory and at least one processor;

a queue manager executing in the memory of the com-
puter, the queue manager comprising program code that
when executed 1n the memory of the computer causes
the computer to:

in response to a determination that one or more consum-
ing applications have failed to process a same message
on a queue a predetermined number of times, make the
same message unavailable to the one or more consum-
ing applications; and

responsive to determining that a predetermined number of
messages have been made unavailable to the one or
more consuming applications, prevent the one or more
consuming applications from consuming messages
from the queue.

17. The system of claim 16, wherein the queue manager
turther comprises program code to receive a request to
process a message from a requesting consuming application
and to lock locking a next appropriate message to the
requesting consuming application.

18. The system of claim 16, wherein the queue manager
turther comprises program code to receive an indication as
to whether or not the message has been successiully pro-
cessed by the requesting consuming application.

19. The system of claim 16, wherein the queue manager
turther comprises program code to, responsive to determin-
ing that the requesting consuming application has failed to
process the message successiully, make the message re-
available to others of the one or more consuming applica-
tions, and to adjust a retry count for the message.

20. The system of claim 16, wherein the queue manager
turther comprises program code to use the retry count to
determine that the one or more consuming applications have
tailed to process the same message a diflerent predetermined
number of times.

21. The system of claim 16, wherein the program code to
determine that the predetermined number of messages have
been made unavailable to the one or more consuming

10

15

20

25

30

35

40

45

50

55

12

applications, comprises program code to determine that a
predetermined number of consecutively consumed messages
have been made unavailable to the one or more consuming
applications.

22. The system of claim 16, wherein the program code to

determine that the predetermined number of messages have
been made unavailable to the one or more consuming
applications, comprises program code to determine that a
predetermined number of messages within a set of messages
have been made unavailable to the consuming applications.

23. The system of claim 16, wherein the program code to
make the message unavailable to the consuming applica-
tions, comprises program code to move each message to a
side queue.

24. The system of claim 16, wherein the program code to
make the message unavailable to the consuming applica-
tions, comprises program code to leave the message on the
queue but making it invisible to the consuming applications.

25. The system of claim 24, wherein the queue manager
further comprises program code to:

make 1nvisible messages visible again to the consuming

applications;

permit a previously prevented consuming application to

consume messages;

permit a number of additional attempts by one or more of

the consuming applications at processing previously
invisible messages before moving the previously invis-
ible messages to a side queue.

26. The system of claim 16, wherein the program code to
prevent one or more ol the consuming applications from
consuming messages irom the queue, comprises program
code to stop the one or more consuming applications.

277. The system of claim 16, wherein the program code to
prevent one or more of the consuming applications from
consuming messages from the queue, comprises program
code to block access by the one or more consuming appli-
cations to the queue.

28. The system of claim 16, wherein the program code to
prevent one or more ol the consuming applications from
consuming messages irom the queue, comprises program
code to prevent those of the one or more consuming appli-
cations interested 1n consuming messages of a particular
type.

29. The system of claim 16, wherein the program code to
prevent one or more ol the consuming applications from
consuming messages irom the queue, comprises program
code to 1dentily amongst the one or more consuming appli-
cations a consuming application responsible for messages
being made unavailable and to prevent preventing the 1den-
tified consuming application from consuming messages
from the queue.

30. The system of claim 16, wherein the program code to
prevent one or more ol the consuming applications from
consuming messages irom the queue, comprises program
code to disable the queue.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

