US009619650B2

a2y United States Patent (10) Patent No.: US 9.619,650 B2

Wang et al. 45) Date of Patent: Apr. 11, 2017
(54) METHOD AND DEVICE FOR IDENTIFYING (58) Field of Classification Search
VIRUS APK CpPC ... GO6F 21/563; GO6F 21/561; GO6F 17/27;
GO6F 21/56; GO6F 21/51;
(71) Applicant: BEIJING QIHOO TECHNOLOGY (Continued)
COMPANY LIMITED, Beijing (CN
- Bepyng (CN) (56) References Cited
(72) Inventors: Xun Wang, Beljing (CN); Xu Zhang, U.S PATENT DOCUMENTS
Beijmg (CN)
8,590,039 B1* 11/2013 Muttik ................ HO4L 63/1416
(73) Assignee: BEILJING QIHOO TECHNOLOGY 726/22
COMPANY LIMITED, Beijing (CN) 8,826,439 B1* 9/2014 Hu ... GO6F 21/56
726/24
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 . _
U.S.C. 154(b) by 74 days. FOREIGN PATENT DOCUMENTS
CN 1567118 A 1/2005
(21)  Appl. No.: 14/386,681 CN 1752888 A 3/2006
Continued
(22) PCT Filed:  Mar. 12, 2013 (Continued)
(86) PCT No.: PCT/CN2013/072474 OIHER PUBLICAIIONS
§ 371 (c)(1), Enck et al., A Study of Android Application Security, USENIX
(2) Date: Sep. 19, 2014 Security Symposium, Aug. 2011.*
(Continued)
(87)  PCI Pub. No.: WO2013/139215 Primary Examiner — Morshed Mehedi
PCT Pub. Date: Sep. 26, 2013 Assistant Examiner — Shu Chun Gao
(74) Attorney, Agent, or Firm — Baker & Hostetler LLP
(65) Prior Publication Data
(57) ABSTRACT

US 2015/0052612 Al Feb. 19, 2015 Disclosed are a method and a device for identifying a virus

APK. The method comprises: presetting a virus database

30 Foreign Application Priority Data . : . :
(30) = ty comprising a virus characteristic code; detecting whether a
designated file 1n a target Android installation package APK
Mar. 21, 2012  (CN) oo, 2012 1 0076889 &l : & . P 2C AL
contains the virus characteristic code; and if yes, determin-
(51) Int. CL ing that the target An@rqd 1115‘[:5111@‘[1011 package APK 1S 2
GO6F 21/56 (2013.01) virus APK. In the application, the virus APK and a variation
(52) US. Cl thereof can be rapidly, accurately and eflectively 1dentified,
S thereby improving the security of an APK application.
CPC ... GO6F 21/561 (2013.01); GOG6F 21/563 Y HIPTOVIIE ty PP
(2013.01) 13 Claims, 3 Drawing Sheets
. , . — 107
prescting a vings database comprising a vims characterisiic ¢ode Ve
"""""""""""""""""""""""""""""""""""""""""""""""""" ST
scanning an exceutable fide in o source Androtd package APK “
extracting specitic data in the execurable file, and judging whether the o512
soeeific dala comlain vires formabion, wherem the specific data include |7
heades information of the execurable file, constants in a constant pool of
the executable Hie, and/or operation instructions w the executable file
- 813
if ves, gensrainyg a vous charciensiic code according to the speciilc data
$14
storing the virus characterisiic code to the virus database
detecting whether a designated file in a target Android installation package 102
APK contains the virus characteristic code, the designated file comprising an {7
executable fite
if ves, determining that the target Android installation package APK isa virus {7 o3
AlPK




US 9,619,650 B2
Page 2

(58) Field of Classification Search
CPC ......... GO6F 2221/2119; GO6F 21/554; GO6F
2221/033; GO6F 21/562; GO6F 21/566;
HO4L 63/145; HO4L 63/1466; HO4L
63/168; HO4L 63/1425; HO4L 63/1441;
HO4L 63/1433; HO4W 12/12; GO6N
99/00

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0145920 Al1* 6/2011 Mahafley .............. GO6F 21/564
726/22
2013/0067577 Al* 3/2013 Turbin .................. GO6F 21/562
726/24

FOREIGN PATENT DOCUMENTS

3/2007
11/2011

CN 1936910 A
CN 102254113 A

CN 102346829 A 2/2012

OTHER PUBLICATIONS

Castillo, Android Malware Past, Present, and Future, Mobile Secu-

rity Working Group, Copyright © 2011, McAfee, Inc.*

International Search Report regarding Chinese International Appli-
cation No. PCT/CN2013/072474 1ssued May 7, 2013, 4 pages.
English translation of abstract only of Chinese application
CN1567118A, Publication date: Jan. 19, 2005, Country: CN, Inven-
tors: L1 Tao, et al., one page.

English translation of abstract only of Chinese application
CN1441351A, Publication date: Sep. 10, 2003, Country: CN,
Inventors: Akl Morota, et al., one page.

English translation of abstract only of Chinese application
CN101162485A, Publication date: Apr. 16, 2008, Country: CN,
Inventors: Zh1 Wang, et al., one page.

English translation of abstract only of Chinese application
CN102663285A, Publication date: Sep. 12, 2012, Country: CN,
Inventors: Xun Wang, et al., one page.

* cited by examiner



U.S. Patent Apr. 11, 2017 Sheet 1 of 3 US 9,619,650 B2

. . . L . - 101
presetting a virus database comprising a virus characteristic code 7
811
scanming an executable file m a source Android package APK
cxtracting spectfic data in the exccutable file, and judging whether the ,, S>12
specific data contain virus information, wherein the specific data include
header information of the cxecutable file, constants in a constant pool of
the executable file, and/or operation instructions in the executable file
813
_J’
if yes, generating a virus characteristic code according to the specific data |-~
-~ S14
storing the virus characteristic code to the virus database

detecting whether a designated file 1n a target Android installation package 102
APK contains the virus characteristic code, the designated file comprising an |~
exccutable tile

if yes, determining that the tareet Android installation package APK is a virus _..-f*’"f - 103
APK -
Figure 1
. . ~— 301
virus database generating | 7
moduie

302

virus detecting moduie
303

virus 1dentiftying module

Figure 3



U.S. Patent Apr. 11, 2017 Sheet 2 of 3 US 9,619,650 B2

B . . . .. 201
presetting a virus database includimg virus characteristic codes
scanning a designated file in a source Android package APK, the | S51
designated file comprising an cxecutable file
extracting speciiic data in the executable file, and judging whether the LV 52
specific data contain virus information, wherein the specific data include -
header information of the executable file, constants 1n a constant pool of
the executable file, and/or operation instructions in the executable file
853
if yes, generating a virus characteristic code according to the specific data -
. . _ . * 9534
extracting a hinux command m the text file and judging whether the linux ‘
command include virus information B
| — — _. . ~855
if yes, generating a virus characteristic code according to the linux
command
856
. * » * " _ v
storing the virus characteristic code to the virus database

detecting whether a designated file in a target Android installation package 202
APK contains the virus characteristic code, the designated file comprising an |/

executable file and a text file

l

if yes, determining that the target Android installation package APK isa virus | -~ <Y
APK

Figure 2



U.S. Patent Apr. 11, 2017 Sheet 3 of 3 US 9,619,650 B2

Processor 41()}  [eememmmip- Memory 420

a spacc for a program code 430 A3}

a program for executing steps of a method
according to the present mvention

r‘”ﬂﬂ#“”“”ﬂ_*“
M-ﬂ-'—ﬁ-‘-“”-‘.-”-‘-'—'n-‘-‘-‘..‘-‘.ll

Hph gy gk plgl Epll gk iglly Sgh iy Spik Syl Sl Eyl Ipgily Jgh iy Spik Eg Sgll iyl dpih Vgl Gly Sgll iy Spi pEghk dgll JEpE Aglly Egkh

Apphication server

Figure 4

A memory unit for a program code

a program for executing steps of a method
according to the present mvention

Figure 5



US 9,619,650 B2

1

METHOD AND DEVICE FOR IDENTIFYING
VIRUS APK

FIELD OF THE INVENTION

The present mvention relates to the technical field of
network information security, and particularly to a method
for 1dentitying virus APK and a device for identifying virus

APK.

BACKGROUND OF THE INVENTION

Android 1s an open source code operating system based
on Linux and mainly used for mobile terminals such as
mobile phones, and does not have a uniform Chinese equiva-
lent term to date. An Android platform consists of an
operating system, middleware, a user interface and applica-
tion soitware.

APK 1s an abbreviation of Android application package
file, namely, Android installation package, and 1t may also be
understood as application software installed on the Android
terminal. APK 1s 1n a file format similar to Symbian Sis or
Sisx. The APK file may be istalled by being directly
delivered to an Android simulator or Android terminal and
executed. Like sis, the apk file packages an android sdk
compiling project into an installation program file in an apk
format. The APK file 1s in fact in a zip format with an
extension name being modified to apk, and it 1s decom-
pressed by UnZip to get a Dex {file. Dex represents Dalvik
VM executes, namely, an Android Dalvik execution pro-
gram, not a standard Java byte code but a Dalvik byte code.
Upon running a program, Android {irst needs to decompress
by using UnZip and then directly run 1t like Symbaian,
different from a PE file in Windows Mobile.

Specifically, the structure of the APK file 1s shown in the
following table:

META-INFEY Store files CERT.RSA, CERT.SE, and
MANIFEST.MFE

resh Store APK-related source files

AndroidManifest.xml APK global configuration file

classes.dex Dalvik Executable (Dalvik virtual machine

executable file)

resources.arsc Binary resource file after compilation

Upon specific application, APK may be imported 1nto a
mobile terminal via a data line or via wireless data trans-
mission, or directly downloaded and installed through a
market (tool software such as Android market) or webpages.
As Android terminals get popularized and developed, vari-
ous APK come mto being and include virus APK, for
example, some APK do harm to a user’s rights and interests
by malicious behaviors such as short message customization
payment service, dialing charged telephone or backing up
sensitive data 1n the user’s mobile phone to a specific server.

Currently, there already occur some mobile terminal-
specific security software (e.g., mobile phone antivirus soft-
ware) for checking and killing these viruses APK. Methods
for checking and killing the virus APK by these current
security software mainly include the following two kinds:

The first kind 1s 1dentifying the virus APK by means of
HASH, signature, package name of the APK file on the
principle of extracting a KEY for APK by using HASH
algorithm, and then i1dentifying virus APK according to the
KEY, or identifying it through the virus APK maker’s APK

digital signature and package name.

10

15

20

25

30

35

40

45

50

55

60

65

2

However, the above current manner of 1dentifying based
on HASH of the APK file probably, by re-confusing or

adding a new source file to the APK file or even moditying
the code, causes the KEY extracted through HASH algo-
rithm to change and thereby causes failure to 1dentify; the
above current signature-based identifying manner may be
evaded by changing the signature; the above current package
name-based 1dentifying manner may be evaded by changing
the package name. Furthermore, 1t 1s very easy for virus
maker to change the confusion manner, modily APK file
(adding or deleting resource, code or the like) or change the
signature. Hence, the virus maker can very easily make a
new virus variation and thereby evade the i1dentification of
the security software.

The second kind 1s identifying the virus APK through a
class name 1n classes.dex 1n the APK file on the principle of
identifying by analyzing classes 1n the classes.dex and then
extracting names ol several classes as virus characteristic
codes, and then parsing the classes.dex file in the virus APK
to see whether 1t contains specific class names.

However, this identifying manner by scanning class
names might cause mis-reporting as only checking class
names on the one hand, and on the other hand, 1t 1s very
casily evaded by the virus maker by confusing or directly
modifying the class name.

Hence, a technical problem to be solved by those skilled
in the art currently 1s to provide a virus APK 1dentifying
mechanism to rapidly, accurately and effectively identify the
virus APK and a variation thereof, thereby improving the
security ol an APK application.

SUMMARY OF THE INVENTION

In view of the above problems, the present invention 1s
proposed to provide a method and device for identifying
virus APK, which can overcome the above problems or at
least partially solve or ease the above problems.

According to an aspect of the present invention, there 1s
provided a method for identifying virus APK, comprising;:
presetting a virus database comprising a virus characteristic
code; detecting whether a designated file 1n a target Android
installation package APK contains the virus characteristic
code; and 1f yes, determining that the target Android instal-
lation package APK 1s a virus APK.

According to another aspect of the present invention,
there 1s provided a device for identifying virus APK, com-
prising: a virus database generating module configured to
preset a virus database comprising a virus characteristic
code; a virus detecting module configured to detect whether
a designated file 1n a target Android installation package
APK contains the virus characteristic code; a virus identi-
tying module configured to determine that the target
Android 1nstallation package APK 1s a virus APK when the
designated file in the target Android installation package
APK contains the virus characteristic code.

According to a further aspect of the present invention,
there 1s provided a computer program which comprises a
computer readable code; when the computer readable code
1S run on a server, the server executes the method for
identifying the virus APK according to any one of claims
1-8.

According to a further aspect of the present invention,
there 1s provided a computer readable medium which stores
the computer program according to claim 17.

Advantageous eflects of the present invention are as
tollows: 1n the present invention, a designated file such as an
executable file or a text file 1n a source APK file 1s scanned




US 9,619,650 B2

3

and analyzed, corresponding virus characteristic codes are
generated with respect to istructions, constants or header
information contaiming virus information according to pre-
determined rules; then during virus APK 1dentification, the
designated file 1n a target APK f{ile 1s detected, judgment 1s
made as to whether the designated file contains virus char-
acteristic codes 1n the virus database, and thereby determin-
ing whether the target APK 1s virus APK. When the embodi-
ments of the present invention are applied, no matter how
the virus maker makes virus variants by modilying confu-
s10n manner, 1creasing resources, moditying codes (chang-
ing class name, function name and the like), replacing
signature or package name, the characteristic codes of the
virus APK do not change so that the present invention may
quickly, accurately and eflectively identily the virus APK
and variants thereof. Furthermore, it 1s troublesome and
time-consuming for the virus maker to make virus variants
by purposefully changing program logic and specific char-
acter string (malicious code and malicious web address).
Hence, this manner can also efliciently increase dithiculty for
the virus maker in making virus varnants and improve
security ol APK application.

The above description only generalizes technical solu-
tions of the present invention. The present invention may be
implemented according to the content of the description 1n
order to make technical means of the present invention more
apparent. Specific embodiments of the present invention are
exemplified to make the above and other objects, features
and advantages of the present invention more apparent.

BRIEF DESCRIPTION OF THE DRAWINGS

Various other advantages and merits will become apparent
to those having ordinary skill 1n the art by reading through
the following detailed description of preferred embodi-
ments. Figures are only intended to illustrate preferred
embodiments and not construed as limiting the present
invention. In all figures, the same reference number denotes
the same part. In the figures:

FI1G. 1 illustrates a flow chart of a method for identifying
virus APK according to Embodiment 1 of the present
invention;

FI1G. 2 illustrates a flow chart of a method for identifying
virus APK according to Embodiment 2 of the present
invention;

FI1G. 3 illustrates a block diagram of a device for 1denti-
tying virus APK according to an embodiment of the present
invention;

FI1G. 4 1llustrates a block diagram of a server for executing,
the method according to the present invention; and

FIG. 5 illustrates a memory unit for maintaining or
carrying a program code for implementing the method
according to the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1l

The present invention will be further described below
with reference to figures and specific embodiments.

One of core 1deas of embodiments of the present appli-
cation 1s as follows: scanning and analyzing a designated file
such as an executable file or a text file 1n a source APK file,
generating corresponding virus characteristic codes with
respect to instructions, constants or header information
contaiming virus information according to predetermined
rules, and compiling the virus characteristic codes into a
virus database; then, during virus APK 1dentification, detect-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing the designated file 1n a target APK file, judging whether
the designated file contains virus characteristic codes in the
virus database, and thereby determining whether the target
APK 1s virus APK.

Referring to FIG. 1, it illustrates a flow chart of a method
for identiiying virus APK according to Embodiment 1 of the
present invention. It may specifically comprise the following
steps:

Step 101: presetting a virus database including virus
characteristic codes;

In a preferred embodiment of the present invention, the
designated file comprises an executable file. The wvirus
database may be preset by the following substeps:

Substep S11: scanning an executable file 1n a source
Android package APK;

Substep S12: extracting specific data in the executable
file, and judging whether the specific data contain virus
information, wherein the specific data include header infor-
mation of the executable file, constants 1n a constant pool of
the executable file, and/or operation instructions in the
executable file;

Substep S13: 11 yes, generating a virus characteristic code
according to the specific data;

Substep S14: storing the virus characteristic code to the
virus database.

Regarding APK, the executable file may comprise a Dex
file which 1s mainly classes.dex file, namely, Dalvik Execut-
able (Dalvik virtual machine executable file) in APK. As
well known, Dalvik 1s a Java virtual machine for use 1n an
Android platform. The Dalvik virtual machine (Dalvik VM)
1s one of kernel integral parts of an Android mobile appa-
ratus platform. It may support the running of Java applica-
tion program already converted nto .dex (namely Dalvik
Executable) format. The .dex format 1s a compression for-
mat purposetully designed for Dalvik and 1s adapted for a
system with limited memory and processor speed. After
optimization, Dalvik permits an example of simultaneously
running a plurality of wvirtual machines 1n the limited
memory, and each Dalvik application 1s executed as an
independent Linux process. The independent process may
prevent all programs from being closed when the virtual
machines fail.

More preferably, the executable file may include a file
with an extension name .jar. The JAR file in the Android
installation package 1s 1n fact a Dex file, and the only thing
1s that 1ts extension name 1s .jar. Regarding other files 1n the
APK other than classes.dex, whether to scan may be decided
so long as 1t 1s judged as Dex f{ile.

In practical application, the Dex file may further include
other files 1n Dex format.

In a preferred embodiment of the present invention, the
specific data in the executable file may be extracted in the
tollowing order:

1) Constants 1n the constant pool 1n the executable file

Specifically, the constants 1n the constant pool in the
executable file may include constants in character strings,
types, fields and methods. Whether the constants in the
constant pool 1n the executable file contain virus information
may be judged by the following substeps:

Substep S21: judging whether constants 1n the character
strings contain malicious information such as pre-defined
malicious web address information, malicious file names or
malicious number information; and/or,

Substep S22: judging whether constants in the types,
fields and methods invoke self-defined class names, self-
defined function names, Android system SDK class names,
and Android system function names.




US 9,619,650 B2

S

Upon specific application, the virus information in the
constants may be regarded as virus characteristic codes. The
virus characteristic codes generated in the embodiment
include constant characteristic codes, and class name func-
tion name characteristic codes.

For example, the constant pool in the classes.dex file of a
certain APK 1includes the following character string:

com.noshufou.android.su

/system/app/com.google.update.apk

After 1t 1s judged as virus information, 1t may be directly
stored to the virus database as a virus characteristic code.

For example, the constant pool 1n the classes.dex file of a
certain APK 1ncludes the following method:

[L.com/android/main/SmsRece1ver;

[L.com/android/main/ActionRece1ver;

After 1t 1s judged as virus information, 1t may be directly
stored to the virus database as a virus characteristic code.

For example, the constant pool in the classes.dex file of a
certain APK 1includes the following type:

[.com/androidkernel/flash/Main$1;

After 1t 1s judged as virus information, 1t may be directly
stored to the virus database as a virus characteristic code.

For example, the constant pool in the classes.dex file of a
certain APK includes the following field:

[.com/androidkernel/flash/b/br$1:.this $0:L.com/android-
kernel/flash/b/br;

After 1t 1s judged as virus information, 1t may be directly
stored to the virus database as a virus characteristic code.

2) Operation instructions 1n the executable file;

Dalvik VM 1s designed based on a register. Data such as
strings, types, fields and methods used in the program are
stored 1n a dedicated data storage area (constant pool), and
they are cited by corresponding index in the program. The
character literal constant 1s directly stored in instructions
(operation 1nstructions) and 1ts operating codes (opcode) are
classified into two types:

One type 1s placing designated data in the register, e.g., as
shown 1n Example 1 through Example 4 below:

Example 1

1303 6100 [0000: const/16 v3, # it 97//#61
wherein an 1nteger 97 1s placed 1n a register v3.

Example 2

1700 0000 0040
2.000000//#40000000

Wherein a floating point number 2.000000 1s placed 1n a
register v0.

10049: const-wide/32 v0, # {float

Example 3

1200 7d00 “%.2tMB”//
string(@007d

Wherein a string “%.2IMB” 1s placed 1n the register vO.

|0001): const-string VO,

Example 4

1c03 604 |0013: const-class v3, Lcom/qithoo360/mobile-
sate/service/NetTrathicService; //type@046¢e

Wherein a
com.qihoo360.mobilesate.service.NetTrathicService,
placed in the register v3.

The other type 1s performing operation based on the
register, €.g., as shown 1n the following Example 5 through
Example 10:

class,
1S

5

10

15

20

25

30

35

40

45

50

55

60

65

6
Example 5

3100 0305 10042: cmp-long vO, v3, v35

Wherein long values in the registers v3 and v5 are
compared and a comparison result 1s stored in the register

vO).

Example 6

3221 0400 |001a: if-eq v1, v2, 001e//+0004 if shows a

condition that, execution of the flow 1s decided according to
whether v1 1s equal to v2.

Example 7

3800 1500 1001e: 1f-eqz vO, 0033//+0015 1f shows a

condition that, execution of the tlow 1s decided by judging
whether v0 1s equal to O.

Example 8

6e10 0e29 0500 |0006: invoke-virtual {v5}, Ljava/io/File;
length:( )J//method@?290e¢
Wherein length( ) function of File 1s mnvoked.

Example 9

7010 042a 0800 |011d: invoke-direct {v8}, Lj ava/lang/
StringBuilder; .<imit>:( )//method@2a04
Wherein it function 1 StringBuilder 1s invoked.

Example 10

b021 10035: add-int/2addr v1, v2
wherein the result of v1+v2 1s stored in v1 .

User class name, function name and string in the class-
es.dex file and JAR file in the APK vary with confusion or
modification, but instructions of Dalvik VM and 1invocation
of the class provide by Android system SDK are not affected
by confusion or modification of the user class name, func-
tion name and variable name. Accordingly, the APK may be
identified through a group of sequential specific instructions.
Dalvik VM i1s based on the register, its instructions per se can
only operate the register, character literal constant and data
storage area, while an address of the register 1s invarnable,
hence, fuzzy matching 1s required upon 1dentification,
namely, through a fixed portion, namely, by identifying fixed
portions 1n the mnstructions—opcode and 1ts related character
literal constant parameters or strings, types, fields and meth-
ods 1n the data storage area. Certainly, the instructions and
its operands themselves may be directly regarded as the
virus characteristic codes.

In a preferred embodiment of the present invention,
whether the operation instructions contain the virus infor-
mation may be judged by the following substeps:

Substep S31: judging whether the operands includes
pre-defined 1llegal operands;

and/or

substep S32: judging whether the combination of the
opcodes and operands comply with predetermined illegal
matching rules.

In a preferred embodiment of the present invention, the
virus characteristic code may be generated according to the
operation instruction by the following substeps:

Substep S41: regarding the operation nstruction 1tself as
the virus characteristic code; and/or




US 9,619,650 B2

7

Sustep S42: regarding the opcode of the operation instruc-
tion and a character string or wildcard of the operand as the
virus characteristic code.

The virus characteristic codes generated by applying the
embodiment comprise an operand characteristic code, an
instruction characteristic code and an instruction character-
istic code sequence.

The first solution of generating the characteristic code:

An instruction set 1tself 1n the classes.dex file and JAR file
in the APK 1s directly used as the virus characteristic codes.

For example, the characteristic code of the above
Example 1 may be 1303 6100, the characteristic code of
Example 2 may be 1700 0000 0040, the characteristic code
of Example 3 may be 1a00 7d00, the characteristic code of
Example 4 may be 1c03 6e04, the characteristic code of
Example 5 may be 3100 0303, the characteristic code of
Example 6 may be 3221 0400, the characteristic code of
Example 7 may be 3800 1500, the characteristic code of
Example 8 may be 6¢10 0e29 0500, the characteristic code
of Example 9 may be 7010 042a 0800, and the characteristic
code of Example 10 may be b021.

The second solution of generating the characteristic code:

A specific opcode 1n the classes.dex file and JAR file 1n
the APK and a character string or wildcard of its operand are
used as the virus characteristic code.

For example, the characteristic code 1n the above Example
1 may be 135%8* (wherein * represents fuzzy matching, the
same hereunder; noticeably “*” here 1s only used for exem-
plary purpose and any character may be used 1n practice),
the characteristic code in Example 2 may be 178%*, the
characteristic code of Example 3 may be 1a$, the charac-
teristic code of Example 4 may be 1¢$ Lcom/qihoo360/
mobilesate/service/NetTratlicService, the characteristic
code of Example 5 may be 31$*, the characteristic code of
Example 6 may be 32$%*, the characteristic code of Example
7 may be 38%*, the characteristic code of Example 8 may be
6e$Ljava/io/File; length:( ) the characteristic code of
Example 9 may be 70$Ljava/lang/StringBuilder;.<init>, and
the characteristic code of Example 10 may be b0$*.

The third solution of generating the characteristic code:

The above solution 1 and solution 2 are used 1n mixture,
that 1s, an 1nstruction set 1tself 1n the classes.dex file 1n the
APK, and a specific opcode 1n the classes.dex file in the APK
and a character string or wildcard of 1ts operand are all used
as the virus characteristic codes.

Noticeably, “$” is used as a separating character in the
embodiment of the present invention. Any other character

may be used as the separating character in practice. “*” 1

1S
used as wildcard in the embodiment of the present invention,
but any other character may be used as the wildcard in
practice.

The following specific examples are presented to help
those skilled in the art to better understand the above
characteristic code generating procedure:

Regarding extracting the constant pool (string, type, field
and method) 1n the classes.dex, the characteristic code
extracted from the constants therefrom 1s as follows: for
example, the character string constant pool of a certain virus
includes the following feature character string:

zZiphonecall.txt and zjsms.txt. The two files include a
malicious telephone number and a special service short
message number, and they may be extracted as the virus
characteristic codes.

The characteristic code extracted for disassembling class-
es.dex 1s as follows:

For example, a virus X-undercover.apk contains the fol-
lowing instructions to back up the user’s private data to

5

10

15

20

25

30

35

40

45

50

55

60

65

8

http://www.mybackup.me, as listed below according to the
sequential order of occurrence thereof:

2200 1600 10000: new-instance v0, Ljava/lang/String-
Builder; //type@0016

Its virus characteristic code 1s extracted as:
22001600 or 22$1java/lang/StringBuilder

7010 9804 0000 10002: invoke-direct {v0}, Ljava/lang/
StringBuilder;.<init>:( )//method@0498

Its virus characteristic code 1s extracted as:

70109804000 or 70$Ljava/lang/StringBuilder;.<init>
1a01 5506 [0005: const-string v1, “http://www.myback-
up.me’’//string(@ 0655

Its virus characteristic code 1s extracted as:
701098040000 or 1aShttp://www.mybackup.me

6€20 9¢04 1000 10007: invoke-virtual {v0, v1}, Ljava/
lang/StringBuilder;.append:(Ljava/lang/String; )Ljava/lang/
StringBuilder; //method(@049¢

Its virus characteristic code 1s extracted as:

6e209e041000 or 6e$Ljava/lang/StringBuilder;.append

3902 0900 [0003: 1f-nez v2, 000e//+0009

Its virus characteristic code 1s extracted as: 39020900 or
398

0c02 10003: move-result-object v2

Its virus characteristic code 1s extracted as:

0c02 or Oc$™
The finally obtained characteristic code 1s:

The first solution for selecting the characteristic code:

220016007010980400007010980400006€209¢041000-
39020900002

The second solution for selecting the characteristic code:

22%1java/lang/StringBuilder$70$Ljava/lang/String-
Builder;.<init>$1a$  http://www.mybackup.me$6e$l java/
lang/StringBuilder;.append$39$*$0c$*

The third solution for selecting the characteristic code:
2231 java/lang/StringBuilder$701098040000$ 1a$http://
www.mybacku p.me$6eSljava/lang/StringBuilder;.

append$39$*$0c02

Again for example, mstructions (operation mnstructions) 1n
the classes.dex file of a certain APK are listed as follows:

1aOc bb08 1009b: const-string v12, “tiger”//string(@08bb

1a0d1e03 [009d: const-string v13, “P5”//string@031¢

7120 1404 dc00 |009f: invoke-static {v12, v13}, Lcom/
androidkernel/tflash/util/LogUtil;.1:(Ljava/lang/String; 11
ava/lang/String;)V//method@0414

2205 9700 100a2: new-1nstance v5, Lcom/androidkernel/
flash/http/base/D1Struct;//type@0097

7010 1603 0500 100a4: invoke-direct {v5}, Lcom/an-
droidkernel/tflash/http/base/D1 Struct;.<init>:
( )//method@0316

1a0c7200 100a7: const-string v12, “AA”//string(@0072

7020 1402 ce00 100a9: invoke-direct {v14, v12}, Lcom/
androidkernel/flash/helper/Tiger;.getUrl:(Ljava/lang/
String; )Ljava/lang/String;

//method(@0214

OcOb |00ac: move-result-object v11

When judging the combination of the above opcode and
operand complies with pre-defined illegal combination
rules, or upon judging the above operand includes a pre-
defined 1llegal operand, the following manners are employed
to generate the characteristic code:

Manner 1:
1a0cbb081a0d1e0371201404dc0022059700701016030-

5001a0c¢720070 201402¢ce000c0b
Manner 2:

la$tiger$1a$P5 $71  $Lcom/androidkernel/flash/util/
LogUtil;.1: (Lj ava/la ng/String; Lj ava/lang/String;)V$22
$Lcom/androidkernel/flash/http/base/D1Struct; $70% Lcom/
androidkernel/flash/http/base/D1Struct;. <init>:




US 9,619,650 B2

9

OVS$1a$AA$708Lcom/androidke rnel/flash/helper/Tiger;.
getUrl:(Ljava/lang/String;)Lj ava/lang/String; $0c$*

Manner 3:

1a0cbb08%$1a$P5$71201404dc00$22$*$70$L.com/an-
droidkernel/flash/http/base/D1Struct;.<init>:

( )$1a$AAS70$Lcom/androidkernel/flash/helper/Tiger;.ge
tUrl:(Lj ava/lang/String;)Lj ava/lang/String; $0c$*

3) Header information of the executable file

In specific implementation, the header information of the
executable file includes summary information checksum
and/or signature information Signature. In this case, whether
the header information includes virus information may be
determined by judging whether the summary information
checksum and/or signature information Signature include
pre-defined 1llegal character strings.

In specific application, the summary imformation check-
sum and/or signature information Signature may be directly
regarded as the virus characteristic code. That is to say, in the
present embodiment, the virus characteristic code incudes a
header information characteristic code.

For example, the checksum of the header information
header of the classes.dex file in the APK 1s: 11126cac; and
the Signature 1S
2911621 AD0O71F675ADFOF590C3F1 AFB5443BEBB.
When they are judged as Trojan wvirus, 11i26cac and
2911621 AD0O71F675ADFOF590C3F1 AFB5443BEBBE

are directly extracted as virus characteristic codes, and the
virus characteristic codes are stored 1n the database.

As an example of specific application of the embodiment
of the present invention, the step of storing the wvirus
characteristic codes to the virus database may comprise the
following substeps:

Substep S51: storing the header information characteristic
code, constant characteristic code, operand characteristic
code, 1nstruction characteristic code, instruction character-
1stic code sequence, class name function name characteristic
code respectively 1n different storage areas of the database;
or

Substep S52: storing the header information characteristic
code, constant characteristic code, operand characteristic

code, 1nstruction characteristic code, instruction character-
1stic code sequence, class name function name characteristic
code 1n the database, and marking a classification tag
respectively.

Certainly, the above manners for storing the virus char-
acteristic codes are only exemplary. It 1s feasible for those
skilled in the art to employ any storing manner according to
actual situations. The present invention does not limit 1n this
regard.

Step 102: detecting whether a designated file 1n a target
Android mstallation package APK contains the virus char-
acteristic code, the designated file including an executable
file;

As an example of specific application of the embodiment
of the present invention, the virus characteristic code may
comprise: header information characteristic code, constant
characteristic code, operand characteristic code, instruction
characteristic code, instruction characteristic code sequence,
and class name function name characteristic code; 1n this
case, step 102 may specifically comprise the following
substeps:

Substep S41: positioning the header information of the
executable file 1n the target Android installation package
APK, matching the head information with the header infor-
mation characteristic code 1n the virus database, and judging,

L1

10

15

20

25

30

35

40

45

50

55

60

65

10

the designated file 1n the target Android installation package
APK 1ncludes the virus characteristic code 1f they are
matched; and/or

Substep S42: positioning a constant in the constant pool
of the executable file 1n the target Android installation
package APK, matching the constant with the constant
characteristic code 1n the virus database, and judging the
designated file in the target Android installation package
APK 1ncludes the virus characteristic code 1f they are
matched; and/or

Substep S43: positioning an operand in the operation
instruction of the executable file n the target Android
installation package APK, matching the operand with the
operand characteristic code in the virus database, and judg-
ing the designated file in the target Android installation
package APK includes the virus characteristic code 1f they
are matched; and/or

Substep S44: positioning an opcode 1 the operation
instruction of the executable file n the target Android
installation package APK, matching the opcode with the
instruction characteristic code 1n the virus database, and
tudging the designated file 1n the target Android installation
package APK includes the virus characteristic code if they
are matched; and/or

Substep S45: positioning an opcode 1n the operation
istruction of the executable file i the target Android
installation package APK, matching the opcode with the
instruction characteristic code sequence in the virus data-
base, and judging the designated file 1n the target Android
installation package APK includes the virus characteristic
code 1f they are matched; and/or

Substep S46: positioning class name and/or function
name invoked by the constant in the constant pool 1n the
executable file and the operand 1n the operation 1nstruction
in the target Android installation package APK, matching the
class name and/or function name with the class name
function name characteristic code 1n the virus database, and
judging the designated file 1n the target Android installation
package APK includes the virus characteristic code 1t they
are matched.

In specific implementation, matching may be performed
in the following manners:

Manner 1: directly scanning every byte in sequence.

Manner 2: scanning the virus characteristic code sequence
in sequence, which only requires the virus characteristic
code 1nstructions to occur 1n sequence, not to occur con-
tinuously.

Manner 3: only all or partial characteristic code nstruc-
tions are required to exist.

Certainly, the above detecting and matching manners are
only exemplary. It 1s feasible for those skilled in the art to
employ any virus characteristic code detecting and matching
manner according to actual situations. The present invention
does not limit this.

Step 103: 1if yes, determiming that the target Android
installation package APK i1s a virus APK.

The following specific examples are presented to help
those skilled 1n the art to better understand the present
invention.

Example 1

1) Positioning to a location where the operation instruc-
tion of classes.dex or JAR 1n the APK begins (heremafter
referred to as code segment);



US 9,619,650 B2

11

2) extracting a first istruction from the virus character-
istic code sequence 1n the virus database according to a
separating character;

3) extracting a first mstruction from the code segment;

4) comparing the two, and extracting next instruction
from a characteristic code sequence according to the sepa-
rating character if they are the same, and extracting next
instruction from the code segment 1f they are different;

5) performing matching instruction by instruction 1n such
similar manner until reaching the ending of the code seg-
ment, and reporting the finding of the virus in the case of
complete matching during the matching.

Example 2

1) extracting a corresponding characteristic character
string (which may be one or more) from the virus charac-
teristic codes of the virus database;

2) searching whether the corresponding characteristic
character string exists in a character string constant pool;

3) reporting the finding of the virus APK 1n the event of
existence.

Example 3

1) extracting a corresponding characteristic character
string (which may be one or more) and characteristic func-
tion name (which may be one or more) from the virus
characteristic codes;

2) searching whether the corresponding characteristic
character string and characteristic function name exist in a
character string constant pool and a function constant pool;
scanning other combinations of string, type, field and
method pool 1 such similar way;

3) reporting the finding of the virus APK 1n the event of
existence.

Those skilled 1n the art can easily understand that the
above operation instruction, constant pool and header infor-
mation are not limited 1n the scanning sequence. It 1s feasible
for those skilled in the art to arbitrarily set the scanning
sequence of the above three according to actual situations.
The present invention does not limit this here.

The embodiment of the present invention 1s further
adapted for the situation that an APK 1s embedded 1n another
APK, 1.e., an APK includes other APKs. Parsing and viru
extraction are performed for executable files and text files 1n
the APK and the embedded APK, for example, the embodi-
ment of the present invention applies to a situation that a
root.apk 1s embedded 1n a certain 1.APK to obtain a root
right, and in this case, the virus characteristic code 1s
extracted from 1.APK as well as from the root.apk. Those
skilled 1n the art can readily envisage that the embodiment
ol the present invention also apply to a situation that APKs
are embedded for many times. The present invention does
not limit this here.

Referring to FIG. 2, 1t 1llustrates a flow chart of a method
for 1dentifying virus APK according to Embodiment 2 of the
present invention, comprising the following steps:

Step 201: presetting a virus database including virus
characteristic codes:

In a preferred embodiment of the present invention, the
step 201 may comprises the following substeps:

Substep S51: scanning a designated file 1n a source
Android package APK, the designated file comprising an
executable file and/or a text file;

Substep S32: extracting specific data in the executable
file, and judging whether the specific data contain virus

10

15

20

25

30

35

40

45

50

55

60

65

12

information, wherein the specific data include header infor-
mation of the executable file, constants 1n a constant pool of
the executable file, and/or operation instructions in the
executable file;

Substep S53: 1f yes, generating a virus characteristic code
according to the specific data;

Substep S54: extracting a linux command 1n the text file
and judging whether the limux command include wvirus

L =

information;

Substep S33: 11 yes, generating a virus characteristic code
according to the linux command;

Substep S56: storing the virus characteristic code to the
virus database.

In specific implementation, whether the linux command
incudes virus information by judging whether linux com-
mand complies with a preset malicious linux command, and
the linux command including the virus information may be
directly regarded as the virus characteristic code. In the
present embodiment, the virus characteristic code further
comprises linux command characteristic code.

For example, a corresponding linux command 1s extracted
from the text file 1n the APK as follows:

cat /system/bin/sh > /data/data/$1/files/sh.new
chown 0.0 /data/data/$1/files/sh.new
chmod 4755 /data/data/$1/files/sh.new
rm -f /data/data/$1/files/sh

mount -o remount system /system
mkdir /system/xbin/$1

myuid=$2

if [ “$myuid” == *“” ]; then
myuid="0"

fi

chown ${myuid} /system/xbin/$1
chmod 700 /system/xbin/$1

cat /system/bin/sh > /system/xbin/$1/sh
chown 0.0 /system/xbin/$1/sh

chmod 4755 /system/xbin/$1/sh

SYIC

mount -o remount,ro system /system
#/system/bin/stop vold
#/system/bin/start vold

echo “+++ending+++>

when judging the linux command complies with a preset
malicious linux command, the above command 1s written
into the virus database as the virus characteristic code.

Step 202: detecting whether a designated file 1n a target
Android 1nstallation package APK contains the virus char-
acteristic code, the designated file including an executable
file and a text file;

In a preterred embodiment of the present invention, step
202 may comprise the following substep:

positioning the text file i the target Android installation
package APK, matching the linux command 1n the text file
with the linux command characteristic code 1n the virus
database, and judging the designated file in the target
Android mstallation package APK includes the virus char-
acteristic code if they are matched.

Step 203: if yes, determiming that the target Android
installation package APK i1s a virus APK.

The embodiment of the present invention applies to client
software and Cloud checking and killing, 1.e., the above
procedure of identifying the virus APK may be implemented
either at the client, or at a server or a cloud. The present
invention does not limit this here.



US 9,619,650 B2

13

Application scenarios of the embodiment of the present
invention are presented as follows:

Scenar1io 1: according to the user’s virus scanning start
operation, first Checklng whether the APK 1s altered and
whether a scanning result i1s buflered; 1f the APK 1s not
altered and the scanning result 1s buflered, the scanning
result 1s outputted directly, and blacklist scanning 1s per-
formed on the contrary; 1 APK 1s found therein, outputting
the scannlng result that the virus APK is found and adding
to the bufler; if not found, whitelist scanning 1s perfonned
if the APK 1s found therein, outputting the scanning result
regarding security and adding to the bufler; 11 not found, the
virus database 1s used to perfonn scanning of the virus
characteristic code, and the scanning result 1s outputted an
added to the bufler.

Scenario 2: when the user newly installs the APK, an
antivirus program receives a message about new installation
of APK and begins to scan the APK newly installed by the
user. First it performs blacklist scanning, 11 APK 1s found
therein, outputting the scanning result that the virus 1s found
and adding to the bufler; if not found, whitelist scanning 1s
performed; 11 the APK 1s found therein, outputting the
scanning result regarding security and adding to the bufler;
if not found, the virus database 1s used to perform scanning
of the virus characteristic code, and the scanning result 1s
outputted an added to the bufler.

Those skilled 1n the art can easily understand that whether
the current APK 1s the virus APK may be judged by directly
detecting whether the text file includes the virus character-
istic code. To save space, the solution 1s not detailed 1n the
description of the present mvention.

In the present invention, a designated file such as an
executable file or a text file 1n a source APK file 1s scanned
and analyzed, corresponding virus characteristic codes are
generated with respect to instructions, constants or header
information contaiming virus information according to pre-
determined rules; then during virus APK 1dentification, the
designated file 1n a target APK file 1s detected, judgment 1s
made as to whether the designated file contains virus char-
acteristic codes 1n the virus database, and thereby determin-
ing whether the target APK 1s virus APK. When the embodi-
ments of the present invention are applied, no matter how
the virus maker makes virus variants by modifying confu-
$10n manner, increasing resources, modifying codes (chang-
ing class name, function name and the like), replacing
signature or package name, the characteristic codes of the
virus APK do not change so that the present invention may
quickly, accurately and eflectively identily the virus APK
and variants thereof. Furthermore, it 1s troublesome and
time-consuming for the virus maker to make virus variants
by purposefully changing program logic and specific char-
acter string (malicious code and malicious web address).
Hence, this manner can also eth

iciently increase difhiculty for
the virus maker in making virus varniants and improve
security of APK application.

Noticeably, embodiments of the present invention 1s not
only adapted for various Android terminals, namely, termi-
nals using Android platform (operating system), including
computers, PC, notebook computer, mobile phone, flat panel
computer and the like, but also adapted for virus character-
istic code extracting solutions used on other computer
systems (such as Windows or Linux).

Regarding the method embodiments, for sake of simple
depiction, they are described as a series of combinations of
actions. However, those skilled 1n the art should appreciate
that the present invention 1s not limited to the order of the
described actions because according to the present mmven-

10

15

20

25

30

35

40

45

50

55

60

65

14

tion, some steps may be performed 1n other order or simul-
taneously. Secondly, those skilled in the art should appreci-
ate that embodiments described 1n the description all belong
to preferred embodiments and the involved actions and
modules are not certainly requisite in the present invention.

Referring to FIG. 3, 1t illustrates a block diagram of a
device for identitying virus APK according to an embodi-
ment of the present invention, which may specifically com-
prise the following modules:

a virus database generating module 301 configured to
preset a virus database comprising a virus characteristic
code;

a virus detecting module 302 configured to detect whether
a designated file in a target Android installation package
APK contains the virus characteristic code;

a virus 1dentitying module 303 configured to determine
that the target Android installation package APK 1s a virus
APK when the designated file 1n the target Android instal-
lation package APK contains the virus characteristic code.

In a preferred embodiment of the present invention, the
designated file comprises an executable file, and the virus
database generating module 301 may include the following
submodules:

a source file scanning submodule configured to scan the
designated file 1 a source Android package APK, the
designated file comprising an executable file;

a specific data extracting submodule configured to extract
specific data 1n the executable file, and judge whether the
specific data contain virus information, wherein the specific
data include header information of the executable file,
constants 1n a constant pool of the executable file, and/or
operation nstructions 1n the executable file;

a first characteristic code generating submodule config-
ured to generate a virus characteristic code according to the
specific data when the specific data contain the virus infor-
mation;

a characteristic code storing submodule configured to
store the virus characteristic code to the virus database.

As an example of specific application of the embodiment
of the present invention, the characteristic code storing
submodule may further comprise the following units:

an area-specific storing unit configured to store the header
information characteristic code, constant characteristic code,
operand characteristic code, instruction characteristic code,
instruction characteristic code sequence, class name func-
tion name characteristic code respectively 1n different stor-
age areas ol the database; or

a tag storing unit configured to store the header informa-
tion characteristic code, constant characteristic code, oper-
and characteristic code, instruction characteristic code,
instruction characteristic code sequence, class name func-
tion name characteristic code 1n the database, and mark a
classification tag respectively.

In specific application, the executable file may comprise
Dex files, the Dex files may comprise classes.dex files, files
with an extension name .jar, and files in Dex format.

In a preferred embodiment of the present invention, the
virus characteristic code may comprise: header information
characteristic code, constant characteristic code, operand
characteristic code, 1nstruction characteristic code, instruc-
tion characteristic code sequence, and class name function
name characteristic code; the operation instructions in the
executable file comprise two portions: opcode and operand.

In this case, the virus detecting module 302 may comprise
the following submodules:

a first detecting submodule configured to position the
header information of the executable file 1n the target




US 9,619,650 B2

15

Android 1nstallation package APK, match the head infor-
mation with the header information characteristic code 1n the
virus database, and judge the designated file 1n the target
Android 1nstallation package APK includes the virus char-
acteristic code 1t they are matched; and/or,

a second detecting submodule configured to position a
constant 1n the constant pool of the executable file 1n the
target Android installation package APK, match the constant
with the constant characteristic code 1n the virus database,
and judge the designated file 1n the target Android installa-
tion package APK includes the virus characteristic code if
they are matched; and/or,

a third detecting submodule configured to position an
operand 1n the operation instruction of the executable file 1n
the target Android installation package APK, match the
operand with the operand characteristic code in the virus
database, and judge the designated file 1n the target Android
installation package APK includes the virus characteristic
code 1f they are matched; and/or,

a fourth detecting submodule configured to position an
opcode 1n the operation instruction of the executable file 1n
the target Android imstallation package APK, match the
opcode with the instruction characteristic code in the virus
database, and judge the designated file 1n the target Android
installation package APK includes the virus characteristic
code 1f they are matched; and/or,

a fifth detecting submodule configured to position an
opcode 1n the operation instruction of the executable file 1n
the target Android installation package APK, match the
opcode with the instruction characteristic code sequence 1n
the virus database, and judge the designated file 1n the target
Android mstallation package APK includes the virus char-
acteristic code if they are matched; and/or,

a sixth detecting submodule configured to position class
name and/or function name invoked by the constant 1n the
constant pool 1n the executable file and the operand 1n the
operation instruction 1n the target Android installation pack-
age APK, match the class name and/or function name with
the class name function name characteristic code in the virus
database, and judge the designated file 1n the target Android
installation package APK includes the virus characteristic
code 1f they are matched.

In specific implementation, the header information char-

acteristic code, constant characteristic code, operand char-
acteristic code, and class name function name characteristic
code may be directly generated according to the header
information, constant, operand, and class name function
name including the virus mformation;

The 1nstruction characteristic code and the instruction
characteristic code sequence may be directly generated
according to the operation instruction including the virus
information, or generated according to the opcode and the
character string or wildcard of the operand including the
virus information.

In a preferred embodiment of the present invention, the
designated file may further comprise a text file, and 1n this
case, the virus database generating module 301 may 1nclude
the following submodule:

a lmmux command extracting submodule configured to
extract a linux command 1n the text file and judge whether
the linux command includes virus information;

a second characteristic code generating submodule con-
figured to generate a virus characteristic code according to
the linux command when the linux command incudes the
virus information.

10

15

20

25

30

35

40

45

50

55

60

65

16

Correspondingly, the virus characteristic code may turther
comprise a linux command characteristic code. The virus
detecting module 302 may further comprise the following
submodule:

a seventh detecting submodule configured to position the
text file 1 the target Android installation package APK,
match the linux command in the text file with the linux
command characteristic code in the virus database, and
judge the designated file 1n the target Android installation
package APK includes the virus characteristic code 1t they
are matched.

In specific application, constants in the constant pool 1n
the executable file may comprise constant in the character
strings, types, fields and methods; the header information of
the executable file may include summary information check-
sum and/or signature information Signature.

The embodiment of the system substantially corresponds
to the previous method embodiment shown n FIG. 1 and
FIG. 2, so it 1s describer brietly and reference may be made
to the corresponding depictions in the above method
embodiment.

Embodiments regarding parts in the present invention
may be implemented 1n hardware, or implemented by soft-
ware modules running on one or more processors, or imple-
mented 1n their combinations. Those skilled in the art should
understand that a microprocessor or digital signal processor
(DSP) may be used i practice to implement some or all
functions of some or all parts of the device for 1dentitying
virus APK according to embodiments of the present inven-
tion. The present invention may also be implemented as an
apparatus or apparatus program (e.g., computer program and
computer program product) for executing part or all methods
described here. Such programs implementing the present
invention may be stored 1n a computer-readable medium, or
may be in a form having one or more signals. Such signals
can be obtained by downloading from the Internet, or
provided on a carrier signal or provided 1n any other forms.

For example, FIG. 4 illustrates a server, for example, an
application server, which can implement a method for
identifving virus APK according to the present invention.
The server conventionally comprises a processor 410 and a
computer program product or computer-readable medium 1n
the form of a memory 420. The memory 420 may be a flash
memory, EEPROM (Electrically Erasable Programmable
Read—Only Memory), EPROM, hard disk or ROM-like
clectronic memory. The memory 420 has a storage space
430 for a program code 431 for executing any step of the
above method. For example, the storage space 430 for the
program code may comprise program codes 431 respec-
tively for implementing steps of the above method. These
program codes may be read from one or more computer
program products or written mto one or more computer
program products. These computer program products com-
prise program code carriers such as hard disk, compact disk
(CD), memory card or floppy disk. Such computer program
products are usually portable or fixed memory units as
shown i FIG. 5. The memory unit may have a storage
section, a storage space or the like arranged 1n a similar way
to the memory 420 1n the server of FIG. 4. The program code
may for example be compressed 1n a suitable form. Usually,
the memory unit includes a computer-readable code 431",
namely, a code readable by a processor for example similar
to 410. When these codes are run by the server, the server 1s
caused to execute steps of the method described above.

Reference herein to ‘“one embodiment”, “an embodi-
ment”, or to ‘“one or more embodiments” means that a
particular feature, structure, or characteristic described in




US 9,619,650 B2

17

connection with the embodiments 1s included 1n at least one
embodiment of the invention. Further, it 1s noted that
instances of the phrase “in one embodiment™ herein are not
necessarily all referring to the same embodiment.

The description as provided here describes a lot of spe-
cific details. However, it 1s appreciated that embodiments of
the present invention may be implemented 1n the absence of
these specific details. Some embodiments do not specily
detail known methods, structures and technologies to make
the description apparent.

It should be noted that the above embodiment illustrate
the present invention but are not intended to limait the present
invention, and those skilled 1n the art may design alternative
embodiments without departing from the scope of the
appended claims. In claims, any reference signs placed 1n
parentheses should not be construed as limiting the claims.
The word “comprising” does not exclude the presence of
clements or steps not listed 1n a claim. The word *““a” or “an”
preceding an element does not exclude the presence of a
plurality of such elements. The present mmvention may be
implemented by virtue of hardware including several dii-
ferent elements and by virtue of a properly-programmed
computer. In the device claims enumerating several units,
several of these units can be embodied by one and the same
item of hardware. The usage of the words first, second and
third, et cetera, does not indicate any ordering. These words
are to be interpreted as names.

In addition, 1t should be noted that the language used in
the specification has been principally selected for readability
and 1nstructional purposes, and may not have been selected
to delineate or circumscribe the mventive subject matter.
Theretfore, those having ordinary skill 1in the art appreciate
that many modifications and variations without departing
from the scope and spirit of the appended claims are
obvious. The disclosure of the present invention 1s intended
to be illustrative, but not limiting, of the scope of the

invention, which 1s set forth in the claims.

What 1s claimed 1s:
1. A method for identifying virus APK, comprising:
presetting a virus database comprising virus characteristic
codes, wherein the presetting the virus database further
including;:
scanning an executable file 1n a source Android pack-
age APK,
extracting specific data in the executable {ile,
determining whether the specific data contain virus
information, wherein the specific data include header
information of the executable file, constants in a
constant pool of the executable file, or operation
instructions 1n the executable file,
in response to a determination that the specific data 1n
the executable file contain virus information, gener-
ating the virus characteristic codes according to the
specific data, and
storing the virus characteristic codes to the virus data-
base;
detecting that a designated file 1 a target Android 1nstal-
lation package APK contains at least one of the virus
characteristic codes; and
if yes, determining that the target Android installation
package APK 1s a virus APK;
wherein the virus characteristic codes comprises: header
information characteristic code, constant characteristic
code, operand characteristic code, mnstruction charac-
teristic code, mnstruction characteristic code sequence,
and class name function name characteristic code; the

5

10

15

20

25

30

35

40

45

50

55

60

65

18

operation instructions 1n the executable file comprise
two portions: opcode and operand;
wherein the header information characteristic code, con-

stant characteristic code, operand characteristic code,
and class name function name characteristic code are
directly generated according to the header information,
constant, operand, and class name function name
including the virus information; and

wherein the instruction characteristic code and the

istruction characteristic code sequence are directly
generated according to the operation istruction includ-
ing the virus information, or generated according to the
opcode and the character string or wildcard of the
operand including the virus information.

2. The method according to claim 1, wherein

the storing the virus characteristic codes to the virus

database comprises:

storing the header information characteristic code, con-

stant characteristic code, operand characteristic code,
instruction characteristic code, instruction characteris-
tic code sequence, class name function name charac-
teristic code respectively in different storage areas of
the database; or

storing the header information characteristic code, con-

stant characteristic code, operand characteristic code,
instruction characteristic code, instruction characteris-
tic code sequence, class name function name charac-
teristic code 1n the database, and marking a classifica-
tion tag respectively.

3. The method according to claim 2, wherein the of
detecting that a designated file in a target Android 1installa-
tion package APK contains at least one of the virus charac-
teristic codes comprises:

positioning the header information of the executable file

in the target Android installation package APK, match-
ing the head information with the header information
characteristic code 1n the virus database, and judging
the designated file in the target Android installation
package APK includes the virus characteristic code it
they are matched; and/or

positioning a constant in the constant pool of the execut-

able file 1n the target Android 1nstallation package APK,
matching the constant with the constant characteristic
code 1n the virus database, and judging the designated
file in the target Android installation package APK
includes the wvirus characteristic code 1f they are
matched; and/or

positioning an operand in the operation instruction of the

executable file 1n the target Android installation pack-
age APK, matching the operand with the operand
characteristic code 1n the virus database, and judging
the designated file in the target Android installation
package APK includes the virus characteristic code it
they are matched; and/or

positioning an opcode in the operation instruction of the

executable file 1n the target Android installation pack-
age APK, matching the opcode with the instruction
characteristic code 1n the virus database, and judging
the designated file in the target Android installation
package APK includes the virus characteristic code it
they are matched; and/or

positioning an opcode 1n the operation instruction of the

executable file 1n the target Android installation pack-
age APK, matching the opcode with the instruction
characteristic code sequence 1n the virus database, and
judging the designated file 1n the target Android 1nstal-




US 9,619,650 B2

19

lation package APK includes the virus characteristic
code 1f they are matched; and/or

positioning class name and/or function name mmvoked by
the constant 1n the constant pool i the executable file
and the operand in the operation 1nstruction in the target
Android 1nstallation package APK, matching the class
name and/or function name with the class name func-
tion name characteristic code in the virus database, and
judging the designated file 1n the target Android 1nstal-
lation package APK includes the virus characteristic
code 1f they are matched.

4. The method according to claim 3, wherein constants in

the constant pool 1n the executable file comprise constant in
the character strings, types, fields and methods; the header

information of the executable file includes summary infor-
mation checksum and/or signature information Signature.

5. The method according to claim 1, wherein the desig-

nated file comprises a text file, the step of presetting the virus
database comprises:

C

extracting a linux command 1n the text file and judging
whether the linux command includes virus information:

in response to a determination that the linux command
includes virus mformation, generating a virus charac-
teristic code according to the linux command.

6. The method according to claim 5, wherein the virus

haracteristic codes further comprises a linux command

C|

naracteristic code, and the step of detecting whether a

esignated file 1n a target Android installation package APK
contains the virus characteristic code further comprises:

positioning the text file i the target Android installation
package APK, matching the linux command 1n the text
file with the linux command characteristic code 1n the
virus database, and judging the designated file in the
target Android 1nstallation package APK includes the
virus characteristic code 1f they are matched.
7. A device for 1dentitying virus APK, comprising:
a processor; and
a memory communicatively coupled to the processor and
storing instructions that upon execution by the proces-
sor cause the device to: scan an executable file 1n a
source Android package APK;
extract specific data 1n the executable file;
determine whether the specific data contain virus infor-
mation, wherein the specific data include header infor-
mation of the executable file, constants in a constant
pool of the executable {file, or operation structions in
the executable file, 1n response to a determination that
the specific data in the executable file contain virus
information, generate the virus characteristic codes
according to the specific data, and generate a virus
database by storing the virus characteristic codes to the
virus database;
detect whether a designated file 1n a target Android
installation package APK contains the virus character-
1stic codes:
determine that the target Android installation package
APK 1s a virus APK when the designated file in the
target Android installation package APK contains at
least one of the virus characteristic codes; and
wherein the virus characteristic codes comprises:
header 1nformation characteristic code, constant
characteristic code, operand characteristic code,
instruction characteristic code, instruction character-
1stic code sequence, and class name function name
characteristic code; the operation instructions 1n the
executable file comprise two portions: opcode and

operand;

10

15

20

25

30

35

40

45

50

55

60

65

20

wherein the header information characteristic code,
constant characteristic code, operand characteristic
code, and class name function name characteristic
code are directly generated according to the header
information, constant, operand, and class name func-
tion name including the virus information; and
wherein the instruction characteristic code and the
instruction characteristic code sequence are directly
generated according to the operation instruction
including the virus information, or generated accord-
ing to the opcode and the character string or wildcard
of the operand including the virus information.
8. The device according to claim 7, wherein
the storing the virus characteristic codes to the virus
database further comprises:
storing the header information characteristic code, con-
stant characteristic code, operand characteristic code,
instruction characteristic code, 1nstruction characteris-
tic code sequence, class name function name charac-
teristic code respectively in diflerent storage areas of
the database; or
storing the header information characteristic code, con-
stant characteristic code, operand characteristic code,
instruction characteristic code, instruction characteris-
tic code sequence, class name function name charac-
teristic code 1n the database, and marking a classifica-
tion tag respectively.
9. The device according to claim 8, wherein the memory

turther storing istructions that upon execution by the pro-
cessor cause the device to:

position the header information of the executable file 1n
the target Android installation package APK, match the
head information with the header information charac-
teristic code 1n the virus database, and judge the des-
ignated file 1n the target Android installation package
APK 1ncludes the virus characteristic code if they are
matched; and/or,

position a constant 1n the constant pool of the executable
file 1 the target Android installation package APK,
match the constant with the constant characteristic code
in the virus database, and judge the designated file 1n
the target Android installation package APK includes
the virus characteristic code 1if they are matched; and/
or,

position an operand in the operation instruction of the
executable file 1 the target Android installation pack-
age APK, match the operand with the operand charac-
teristic code 1n the virus database, and judge the des-
ignated file 1n the target Android installation package
APK 1ncludes the virus characteristic code if they are
matched; and/or,

position an opcode in the operation instruction of the
executable file 1n the target Android installation pack-
age APK, match the opcode with the instruction char-
acteristic code in the virus database, and judge the
designated file 1n the target Android installation pack-
age APK 1ncludes the virus characteristic code 1if they
are matched; and/or,

position an opcode in the operation instruction of the
executable file 1 the target Android installation pack-
age APK, match the opcode with the mnstruction char-
acteristic code sequence in the virus database, and
judge the designated file in the target Android instal-
lation package APK includes the virus characteristic
code 1f they are matched; and/or,

position class name and/or function name mvoked by the
constant in the constant pool in the executable file and



US 9,619,650 B2

21

the operand in the operation instruction in the target
Android 1nstallation package APK, match the class
name and/or function name with the class name func-
tion name characteristic code 1n the virus database, and
judge the designated file 1in the target Android instal-
lation package APK includes the virus characteristic
code 1f they are matched.
10. The device according to claim 8, wherein constants 1n
the constant pool in the executable file comprise constant in
the character strings, types, fields and methods; the header
information of the executable file includes summary infor-
mation checksum and/or signature information Signature.
11. The device according to claim 7, wherein the desig-
nated file comprises a text file, and the memory further
storing 1nstructions that upon execution by the processor
cause the system to:
extract a linux command 1n the text file and judge whether
the linux command includes virus information;

generate a virus characteristic code according to the linux
command when the linux command incudes the virus
information.

12. The device according to claim 11, wherein the
memory further storing instructions that upon execution by
the processor cause the system to:

position the text file in the target Android installation

package APK, match the linux command 1n the text file
with the linux command characteristic code 1n the virus
database, and judge the designated file in the target
Android installation package APK includes the virus
characteristic code 11 they are matched.

13. A non-transitory computer readable medium which
stores a computer program comprising computer readable
code, and running of said computer readable code on a
computing device causes said device to carry out a method
for identitying virus APK, said method comprising preset-
ting a virus database comprising virus characteristic codes,
wherein the presetting the virus database further including;:
scanning an executable file mn a source Android package
APK, extracting specific data in the executable file, deter-

10

15

20

25

30

35

22

mining whether the specific data contain virus information,
wherein the specific data include header information of the
executable file, constants 1n a constant pool of the executable
file, or operation instructions 1n the executable file, 1n
response to a determination that the specific data in the
executable file contain virus information, generating the
virus characteristic codes according to the specific data,
wherein the virus characteristic codes mclude header infor-
mation characteristic code, constant characteristic code,
operand characteristic code, instruction characteristic code,
mstruction characteristic code sequence, and class name
function name characteristic code, and storing the virus
characteristic codes to the virus database;
Detecting that a designated file 1n a target Android instal-
lation package APK contains at least one of the virus
characteristic code; and
determining that the target Android installation package
APK 1s a virus APK: and
wherein the virus characteristic codes comprises:
header information characteristic code, constant
characteristic code, operand characteristic code,
instruction characteristic code, instruction character-
1stic code sequence, and class name function name
characteristic code; the operation instructions in the
executable file comprise two portions: opcode and
operand;

wherein the header information characteristic code,
constant characteristic code, operand characteristic
code, and class name function name characteristic
code are directly generated according to the header
information, constant, operand, and class name func-
tion name including the virus information; and

wherein the instruction characteristic code and the
instruction characteristic code sequence are directly
generated according to the operation instruction
including the virus information, or generated accord-
ing to the opcode and the character string or wildcard
of the operand including the virus information.

% o *H % x



	Front Page
	Drawings
	Specification
	Claims

