12 United States Patent

US009619165B1

(10) Patent No.: US 9.619.165 B1
45) Date of Patent: Apr. 11, 2017

Shelton
(54) CONVERTIBLE LEAF MEMORY MAPPING
(71) Applicant: SanDisk Technologies Inc., Plano, TX
(US)
(72) Inventor: Lance Shelton, Philadelphia, PA (US)
(73) Assignee: SANDISK TECHNOLOGIES LLC,
Plano, TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.
(21) Appl. No.: 14/929,171
(22) Filed: Oct. 30, 2015
(51) Int. CL
Gool’ 12/14 (2006.01)
Gool’ 3/06 (2006.01)
(52) U.S. CL
CPC GooF 3/0629 (2013.01); Gool’ 3/0604
(2013.01); GO6F 3/0638 (2013.01); GO6F
3/0679 (2013.01)
(58) Field of Classification Search
CPC ... GO6F 3/0629; GO6F 3/0679; GO6F 12/0246
USPC e 711/103
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
9,170,938 B1 10/2015 Walsh et al.
2003/0229627 Al 12/2003 Carlson et al.
2004/0167898 Al 8/2004 Margolus et al.
2007/0156842 Al 7/2007 Vermeulen et al.
2007/0174309 Al 7/2007 Pettovello
2007/0185902 Al 8/2007 Messinger et al.
2009/0012976 Al 1/2009 Kang et al.
2009/0119450 Al1* 5/2009 Saeki GOG6F 12/0246

711/103

Data Storage System 100

2011/0145512 Al 6/2011 Adl-Tabatabai et al.
2011/0252067 Al 10/2011 Marathe et al.
2012/0005419 Al 1/2012 Wu et al.
2012/0259863 Al 10/2012 Bodwin et al.
2015/0242307 Al 8/2015 Busaba et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO 2015/047398 4/2015
WO WO 2015/152830 10/2015

OTHER PUBLICATTONS

International Search Report and Written Opinion dated Jun. 30,
2015, received 1n International Patent Application No. PCT/
US2015/023927, which corresponds to U.S. Appl. No. 14/454,687,

11 pages (Kadayam).
(Continued)

Primary Examiner — Jae Yu
(74) Attorney, Agent, or Firm — Morgan, Lewis &
Bockius LLP

(57) ABSTRACT

Systems, methods and/or devices are used to store metadata
in a storage system. In one aspect, an indication of data to
be stored by the storage system 1s received by a computing
device including non-volatile memory and a tiered data
structure. A leaf having a first leaf type 1s selected from the
tiered data structure. Leaves of the first leaf type include
locations of variable-length data stored in the non-volatile
memory. At least one criterion 1s used to determine whether
to convert the selected leal to a converted leal having a
second leaf type. Leaves of the second type include locations
of fixed-length data. In response to a determination to
convert the selected leaf to a converted leat, first location
information 1s stored i1n the converted leaf. In response to a
determination to not convert the selected leat, second loca-
tion information 1s stored in the second leat.

21 Claims, 9 Drawing Sheets

Storage Device 120

Management Module 121-1

CPU(s) -
122

| ¥ I Y Storage Medium 130

Computer System | 104 103 . (e.g., Flash Memory)
110 I g/ f 1
- : storage i : e |
il Mool Host |l Additionsl | ___» Mo di:_?m {{\ > %ii?;ibi |
:h:'i ESEIQE‘E;HE ! [} interface Modute({s) nterface | [:; ‘ Stormne
A T 129 |la—o, = 125 128 | L ot
e E \/ === ./ 134 *

US 9,619,165 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2015/0277794 Al 10/2015 Tudor et al.
2015/0278093 Al 10/2015 O’Krafka et al.

2015/0281389 Al 10/2015 Firsov et al.

OTHER PUBLICATIONS

International Search Report and Written Opinion dated Nov. 7,
2016, received in International Patent Application No. PCT/
US2016/051717, which corresponds to U.S. Appl. No. 14/929,171,
13 pages (Shelton).

International Search Report and Written Opinion dated Sep. 14,
2016, recerved 1n International Patent Application No. PCT/

US2016/036720, which corresponds to U.S. Appl. No. 15/144,704,
12 pages (Cheru).

* cited by examiner

US 9,619,165 B1

Sheet 1 of 9

Apr. 11,2017

U.S. Patent

| 81nDi4

el
WINIPOA
abrIOiIq
JO UOILIOd
2ige109les

(AJOUIBIN Uselj4 “b o)

OC [winipsin 8beioig

Ol

muMmME_ g Scl ¥l 6cl g ¢-L 1 SINPONY
LMD (s)o|NpPOo; CRIZISEN N ' Juswabeuepy
. Lt H SRR
96e101S |EUOIpPY JSOH -
L1
101 WaIsAS Jondwon
A A A
| 4
cel -
($)NdD

T-171 9NPON 1uduwisbeuep

Yel J9jj04uo0n abeioig

0z 1 9aina(q abeinig

001 wesAg aberio)g rle(]

U.S. Patent Apr. 11, 2017 Sheet 2 of 9 US 9,619,165 B1

Memory 202-1

Management
Module 121-1 1
\ Operating System 212-1
CPU(s) Communications Module 214-1
122-1 Driver 216-1
204-1 -
N Data Read Module 218-1
Data Write Module 220-1
Data Erase Module 222-1
Tiered Data Structure (TDS) Module 224-1
TDS Storage Module 226-1
TDS Search Module 228-1
®
L
B
Host Additional Storage
Medium
Interface Module(s)
129 125 IO
- - 128

Figure 2A

U.S. Patent Apr. 11,2017 Sheet 3 of 9 US 9.619.165 B1

Memory 202-2
Management 1
Module 121-2
\‘ Operating System 212-2
Applications 213
CPU(s)
201 Communications Module 214-2
204-2 Driver 216-2
_

Data Read Module 218-2

Data Write Module 22(0-2

Data Erase Module 222-2 I

Tiered Data Structure (TDS) Module 224-2

TDS Storage Module 226-2 I

TDS Search Module 2238-2 I

o0 @

Storage Device
130

Figure 2B

US 9,619,165 B1

Sheet 4 of 9

Apr. 11,2017

U.S. Patent

0ce

(adA] 18414
jeat

gl€

(8dA] 15414)
jea

90¢

9PON
1=0IEN TN

V¢ ainbi

8ct

gi¢
(odA] 18414)

jea

0219 vad ‘I us] LG vaT

0806 v3d "I ue} '01¢ val

000 v8d | Ul ‘806G vg1

%S
(9dA] 1sMi4)

$E7

c0t |
SPON J00Y |

0¥0Z vad "I us| 0} vg7

000} Vad T us| '8 vg1

0ZS Vad '8 U8 ‘0 vaT

80¢€
0 vg1
(8dA] 1841d)

jes]

0r¢
280G Vg1

(8dA] 18114)

jea]

¥0¢

OPON
leuiajul

G0C ainonig eleq patsi|

L CE

US 9,619,165 B1

Sheet 5 of 9

Apr. 11,2017

U.S. Patent

0Z¢
(8dA L 1sa14

Jed]

)

A

g¢ a4nbi

84t

9Ge

PGt

ALY

058 — <=

e Ol¥
8lE

o1¢ 45 | 806 v
adA | 1si14) (8dA] 1s4i) (8dAL1sud) | | (adA] puoosg)
jea] 2o jesT L jea

aoc 0%

JPON
{eUIDIY|

9PON
eUIBU

70t |
| 9PON 100y |

80€

0 vd
(9dA L 1s4id)
jes]

CCt

Of 2iN1oNAg Ble(pasall

US 9,619,165 B1

Sheet 6 of 9

Apr. 11,2017

U.S. Patent

o R ST

LT Sy P S S
Ta, Tw o Ta) Tw) T

4 . . [
A el M el e

ror __.h & 1] .l.r.l.l ..-
L S
T BT S S L P s)

oo m I

. . . 1 . . .
R N ' ' . . % . a1 r [- . ' 1 d M - ' > [- .
1 X\ a x : r ' 1 . . = 1 .._ a M X b ' b . 1 4 . x > 1 " " X . - r 4
a a a2 a b aoaaoa h a s aaaaaaa bk m a m ad s s moaFaaoaadhaa s s aasa fasaom o aom s oadaa s dE s amxaaaa 4 a a8 m a aFd s E m aa s S aaAE A amaaSsaaaaaa 3 2 a2 & a'd a & a a'haaaadaaaakadaadaaacabasaalaaaadaaaaacraaaaa A 2 m a am s aoamoa T * a2 a2 a a] aaaadkaaaalaaaa
" N
LS
s - s
.......... .
. - - [
- i .
............ - . .
Rl . u
........ ...
------- ol
. A
..... L
...... .
; .-
B T T T T T T T T T T T, 1, T e T T T T T T T T T T T T T T TR T T T e O T T T T T T e T TR T T TR T T T T T T T T T e T TR T T TR T O T T T SO TR T TR TR T T TR TE T T e T TR e T TR TE T TR TRTE TO TR TR T

4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
L]
L]
1
1
1
1
1
L]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+
1

W N N N N N N N N N N N S N SN N N N N N N N N N S N N N SN N S N N N N N S N N N SN N S N N N N N S N N N SN N S N SN N N N S N N N SN N S N SN N SN N S N N N SN S S N SN N SN N S N N N SN N S N N N SN N SN N N S SN S SN N N N SN N SN N N N N N SN NN NN NN NN NN NN NN W N W AW W o ooy ooy ooy ooy oy

I e e e e e il e e e e Tl e e e il e e e e e Tl e e e e e e e e Tl e e e e e e il e e e e e e e Tl e e e e e e e e T e e e e e e e e e e e e e e T e T e e e e e e e e e e e e Tl e e e e T e e e e Tl e e e e Tl Tl e e Tl T e Tl e Tl e e e Tl il Tl Tl e e Tl e e Tl e e Tl e e Tl e e Tl e e e e Tl Tl e e

T

.
S,

a0

T, -

Mt

e
[

ot

ﬁ..

 2inbi4

Alloeded %001) 9215 ¥ooig sbeisAy

G oL ta B RS B NS %l
Ak Ml LS Men L0 Mwe D

A LR R W A
AR R g g

L, el
ool o O

. . r
4 L] > r r

r -

e

o Jele Jol k(e B Gl ok Jed e
e S R WX TS N T SN A AN Y S
T I W el W T T T e he
OB LA RSN e WER e Do Jn GZS
T SR T T v T i S r e %,
et N OO0, S WP o MK e S A e T T 6
ROl 2 oS0 0 T4 R 00 i A o i

i Bh
G T
..._. =T ”.__.. .l
ol
e
k. »

s
W
_.

Z
%
2
i
&

g2
63
s
4
43
4
H
4

[T U LSO U S O DN JRY N DT U D U SO SO U SO S SO N Y

']-
o
Ir'-}
3"

“

.

4,

o,

.

g
By
¥

5
o
-0

*

£
-,
L

L N N L L

WM N N N N N N N S N N N N N S S N N N N SN S N N N N S S N N N N S S N N N N oS oSN oW oW N oW oA

A . o

JJ

ERE R R R N R R B R R B R B R R R N R B A R R R R R R R R N A B R B R B R R R I B R R B R R B N R I R R B I B N I B B R B R I B N R R R I A B R B R B B R R R R R A N R R R B A B R R R R B R I A RE R B R I BE R R R I A I R I I I I N I I I A I I I I I I I B I I T I I B I I O A IR B I I IO I IR I B I N I I I B I I | ERERE IE I NE I B R I I I I I I I I R I I |

OV AjUO SOABO) wa\ﬁt__m.__h_, WM 24N]ONAS Ble(] Polsi |

20t) SOARS| 8dAI-PUCDSS purR SaARS| 8dA~ISI UIIM S4NJONJIS BIBp Patsl |

._.-_.._.._.-_.._.._.-_.._.._.-_.1.-.._.

JJJJJJJJJJ

. ERE B BE B B I |

F

r

e

L IO T O OO O L T OO I OO OO O D T O O AL OO DL T OO OO I OO O I OO T L O TR I OO OO DL OO I IO OO OO I OO T O OO OO I OO OO I O |

..
o

o
.ﬁ
-

r

B N
PREEA 12474

LI L I L O A R L l_*'_l P N L I DL DO DA R L M L
4

1I-‘I-

GO I

I-‘I-.I I-‘I-.II-‘I-.II-‘I-.I I-‘I-.II-

1.1

i f F;ﬂiﬁuﬁw,w

e ¥ A Y

L N e e

L e T L S oL

A
¥

W W
3
S
ol
Lo
&
&
L

)

r

R R AT R) g
CRRESRES 4344

l-l-l-l-l-l-l-l-l-l-l-'-}-'-l-l-l-l-l-l-l-l-l-l-l-l-Jl-l-l-l-l-l-l-l-l-l-l-l-l-Hl-l-l-l-l-l-l-l-l-l-l-l-l-
el
¥y
T
1'5
L,
r, ' '
r":'_} j
g
k
Yot
e
oy

1I-

[

v, sty it e e S
8 L R TR

sbesn AlOWeaN SPON (BaT

U.S. Patent Apr. 11,2017 Sheet 7 of 9 US 9.619.165 B1

500

Receive indication of data to be stored by storage system 302

Select, from the plurality of leaves, a leaf to store location information for | 504
the data {o be stored, wherein the selected leaf has a first leaf type, wherein |
leaves of the first leaf type include entries indicating locations of variable- |
length data stored in the non-voiatile memory

Determine, using at least one first-type to second-type criterion, whether to }~—306
convert the selected leaf to a converted leaf, wherein the converted leaf has |
a second leaf type, wherein leaves of the second type include entries |
indicating locations of fixed-length data stored in the non-volatile memory;

doigioh wooa Soooo Jooioh 2 weoo Jeboly ooooh woao dokols 2 seoioh wono Jonoh 2 Seoa SGohois oebioh 2wt Saonl 2 oooah ooos ooy 2 Soaak Dooy Jooioh 2 woaot dSolpoo ooioloh ooy

| The tree data structure includes at least one leaf of the first leaf type |

| and at least one leaf of the second leaf type, wherein the at least one | ~o08

| leaf of the second leaf type includes an entry for storing a base logical |

| address and a sequence of fixed-size entries, where each fixed-size |

| entry for a mapped location includes a physical block address. |
__________________________ -

I The at least one first-type to second-type criterion includes a criterion 510

| that is satisfied in accordance with an indication that an insertion into :
the selected leaf will cause the selected leaf to split :

E The at least one first-type to second-type criterion inciudes a criterion
| that is satisfied in accordance with: a determination of a total size of:
i potential new entries for the selected leaf, indicating locations of the 5
! data to be stored, and existing entries, if any, in the selected leaf, and |_ }—512
| & determination that the determined tolal size is less than or equaltoa | |
| maximum size for all entries of a leaf of the second leaf type

Figure 5A

U.S. Patent Apr. 11,2017 Sheet 8 of 9 US 9.619.165 B1

00

(&)

In response to a determination to convert the selected leaf to a converted
leaf, store, in the converted leaf, first location information of the data to be 514
stored
| First location information includes a physical block address of the data 916
| to be stored |
e e e e e e e e e e o e s o e o 2o 2o
In response {o a determination to not convert the selected leaf, store, in the
selected leaf, second location information of the data to be siored 518
| Second location information includes a physical block address of the | 590

| data to be stored and at least one of: a logical block address of the
| data to be stored, or an indication of length of the data to be stored |

““““““H“H“"“H“H“““““““““““““ﬁ

Determine, using at least one second-type to first-type criterion, |
whether to revert a leaf of the second type into a new leaf of the first leaf 022

type. |
o o
| The leaf of the second leaf type has entries for a first number of | _b~524
| locations, and the at least one second-type to first-type criterion
| includes a criterion that is satisfied in accordance with a determination
| that the new leaf of the first type has sufficient space to contain entries

| for all mapped locations indicated by the entries of the leaf of the
| second leaf type plus a predefined margin

| Determining whether to revert the leaf of the second type into the new } :

leaf of the first type occurs in response to an indication of data to be L 1 —~526
deleted or unmapped by the storage system and wherein the leaf of |
the second-type contains location information for the data to be |
deleted or unmapped. |

I[Determining whether to revert the leaf of the second type into the new]
| leaf of the first type occurs in response to an indication of data to be l\—{\528
| overwritten by the storage system and wherein the leaf of the second-

| type contains location information for the data to be overwritten. l

Figure 5B

U.S. Patent Apr. 11,2017 Sheet 9 of 9 US 9.619.165 B1

One or more of the receiving, selecting, determining, storing in the
| o L.—~530
| converted leaf, or storing in the selected leaf are performed by a storage |
| device of the storage system, wherein the storage device stores the data to |
| be stored. |

AR R WRERRT iR ARG pRERpRER RNy PR oAy WRERERGE R ApRGRERE R ORpRGRERE WRpRERRL aRpRpRpRy ARRRRGRG pRpRGRER ARRRERE ARG ORRRRGRE ARG RGN ARRRRRE ARpRRRR RpRERRRe pRERERT oy el

One or more of the receiving, selecting, determining, storing in the |

converted leaf, or storing in the selected ieaf are performed by one or more —~ 532
subsystems of the storage system distinct from a storage device, wherein |
the storage device stores the data to be stored. |

wigtpliph JSpipfiply pinSpfaet $ Jatataly $Jaiataty 2 Siatafal 2 Spipinly $winNatl 0 Jafafints 2 aSaNpfat $ Jatataly 2 Jefafaty 2Dttt 0 O Spialply 2 paSatat 0 Sttt $ AaSaNnfst 0 0 JSpSataly 2 2 Jpfptals $ 2029winfafnt 0 Sptatnls 2 afataat 0 Piafafets $AaSatafe $MiaSatal 2 Sptpfaly 2 winSafad Satatats eSesenl

Figure 5C

US 9,619,165 Bl

1
CONVERTIBLE LEAF MEMORY MAPPING

TECHNICAL FIELD

The disclosed embodiments relate generally to memory
systems, and in particular, to reducing the amount of
memory consumed by tiered data structures.

BACKGROUND

Semiconductor memory devices, including flash memory,
typically utilize memory cells to store data as an electrical
value, such as an electrical charge or voltage. A flash
memory cell, for example, includes a single transistor with
a tloating gate that 1s used to store a charge representative of
a data value. Flash memory 1s a non-volatile data storage
device that can be electrically erased and reprogrammed.
More generally, non-volatile memory (e.g., flash memory, as
well as other types of non-volatile memory implemented
using any ol a variety of technologies) retains stored infor-
mation even when not powered, as opposed to volatile
memory, which requires power to maintain the stored infor-
mation.

As flash memory storage systems grow 1n size, the
elliciency with which data stored by flash memory can be
accessed becomes more mmportant. Tiered data structures
can be used to improve the speed and efliciency of data
access. Some tiered data structures enable data searches,
data insertions, data deletions, and sequential data access to
be performed in logarithmic time. Often, a tiered data
structure 1s used for mapping physical locations of stored
data in tlash memory to logical addresses. However, when
the average size of data writes 1s small, memory consumed
by a tiered data structure may increase dramatically.
Improvements to tiered data structure components can

reduce the amount of memory consumed by the tiered data
structure.

SUMMARY

Without limiting the scope of the appended claims, after
considering this disclosure, and particularly after consider-
ing the section entitled “Detailed Description” one will
understand how the aspects of various embodiments are
used to create a tiered data structure including multiple leaf
types, where entries of a first leaf type include indications of
locations of variable-length data and where entries of a

second leaf type include indications of locations of fixed-
length data.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the present disclosure can be understood 1n greater
detail, a more particular description may be had by reference
to the features of various embodiments, some of which are
illustrated 1n the appended drawings. The appended draw-
ings, however, merely illustrate pertinent features of the
present disclosure and are therefore not to be considered
limiting, for the description may admit to other eflective
features.

FIG. 1 1s a block diagram illustrating an implementation
ol a data storage system, in accordance with some embodi-
ments.

FIG. 2A 15 a block diagram illustrating an implementation
ol a management module, in accordance with some embodi-
ments.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2B 1s a block diagram 1illustrating an implementation
ol a management module, in accordance with some embodi-

ments.

FIG. 3A illustrates an example of a tiered data structure
including leaves of a first type, 1n accordance with some
embodiments.

FIG. 3B illustrates an example of a tiered data structure
including leaves of a first type and a leaf of a second type,
in accordance with some embodiments.

FIG. 4 1llustrates calculated performance values of a
tiered data structure including only leaves of a first type
compared with calculated performance values of a tiered
data structure including leaves of a first type and leaves of
a second type.

FIGS. 5A-5C 1illustrate a flowchart representation of a
method of storing metadata, in accordance with some
embodiments.

In accordance with common practice the various features
illustrated 1n the drawings may not be drawn to scale.
Accordingly, the dimensions of the various features may be
arbitrarily expanded or reduced for clarity. In addition, some
of the drawings may not depict all of the components of a
given system, method or device. Finally, like reference
numerals may be used to denote like features throughout the
specification and figures.

DETAILED DESCRIPTION

A tiered data structure used for storing location metadata
for flash memory storage has leal nodes, sometimes herein
called leaves, with entries including fields for storing infor-
mation such as a key (i.e., a logical block address), a
physical address (sometimes called a physical block
address), a data length, etc. Factors such as the size of
metadata entries 1n leal nodes, data sparseness (1.e., preva-
lence of unmapped addresses intermixed with mapped
addresses), extent to which data 1s written sequentially, etc.,
may result 1n a dramatic 1increase of space consumed by leaf
nodes. In some situations, the amount of memory consumed
by the tiered data structure may be reduced by changing the
format for entries used in particular leal nodes. It 1s noted
that 1n this document the terms “leal” and “leaf node” are
used interchangeably, and thus mean the same thing.

The various embodiments described herein include sys-
tems, methods and/or devices used to determine whether to
store metadata using a first leal entry structure or a second
leaf entry structure.

(Al) More specifically, some embodiments include a
method of storing metadata. In some embodiments, the
method includes, receiving, at a computing device of a
storage system including non-volatile memory and a tree
data structure including a plurality of leaves, an indication of
data to be stored by a storage system. The method further
includes selecting, from the plurality of leaves (sometimes
called leaf nodes), a leafl (sometimes called a leafl node) to
store location information for the data to be stored, wherein
the selected leatf has a first leaf type. Leaves of the first leaf
type include entries indicating locations of variable-length
data stored 1n the non-volatile memory. The method further
includes determining, using at least one first-type to second-
type criterion, whether to convert the selected leaf to a
converted leal. The converted leal has a second leaf type.
Leaves of the second type include entries indicating loca-
tions of fixed-length data stored 1n the non-volatile memory.
The method further includes, 1n response to a determination
to convert the selected leat to a converted leat, storing, in the
converted leatf, first location information of the data to be

US 9,619,165 Bl

3

stored. The method further includes, 1n response to a deter-
mination to not convert the selected leaf, storing, in the
selected leatf, second location information of the data to be
stored.

(A2) In some embodiments of the method of Al, the first
location information mncludes a physical block address of the
data to be stored.

(A3) In some embodiments of the method of any of
Al-A2, the second location information includes a physical
block address of the data to be stored and at least one of: a
logical block address of the data to be stored, or an 1ndica-
tion of length of the data to be stored.

(A4) In some embodiments of the method of any of
A1-A3, the tree data structure includes at least one leaf of the
first leal type and at least one leafl of the second leaf type,
wherein the at least one leat of the second leat type stores a
base logical address and a sequence of fixed-size entries,
where each fixed-size entry for a mapped location includes
a physical address (sometimes called a physical block
address).

(AS) In some embodiments of the method of any of
Al-A4, the at least one first-type to second-type criterion
includes a criterion that i1s satisfied 1n accordance with an
indication that an insertion (i.e., ol one or more entries) into
the selected leat will cause the selected leaf to split.

(A6) In some embodiments of the method of any of
Al-AS3S, the at least one first-type to second-type criterion
includes a criterion that 1s satisfied 1 accordance with a
determination of a total size of potential new entries for the
selected leal and existing entries (if any) 1n the selected leat,
and a determination that the determined total size 1s less than
or equal to a maximum size for all entries of a leaf of the
second leaf type. The potential new entries indicate locations
of the data to be stored.

(A7) In some embodiments of the method of any of
Al-A6, the method further comprises determining, using at
least one second-type to first-type criterion, whether to
revert a leal of the second type 1into a new leatf of the first leaf
type.

(A8) In some embodiments of the method of A7, the leal
of the second leal type has entries for a first number of
locations, and the at least one second-type to first-type
criterion 1ncludes a criterion that 1s satisfied 1n accordance
with a determination that the new leaf of the first type has
suilicient space to contain entries for all mapped locations
indicated by the entries of the leaf of the second leal type
plus a predefined margin.

(A9) In some embodiments of the method of any of
A’7-AR8, determining whether to revert the leaf of the second
type mto the new leal of the first type occurs 1n response to
an 1ndication of data to be deleted by the storage system. The
leat of the second type contains location information for the
data to be deleted.

(A10) In some embodiments of the method of any of
Al-A9, determining whether to revert the leaf of the second
type 1nto the new leal of the first type occurs in response to
an 1ndication of data to be overwritten by the storage system.
The leat of the second type contains location information for
the data to be overwritten.

(All) In some embodiments of the method of any of
Al1-A10, one or more of the receiving, selecting, determin-
ing, storing 1n the converted leaf, or storing 1n the selected
leat are performed by a storage device of the storage system,
wherein the storage device stores the data to be stored.

(Al12) In some embodiments of the method of any of
Al1-A10, one or more of the receiving, selecting, determin-
ing, storing 1n the converted leaf, or storing in the selected

10

15

20

25

30

35

40

45

50

55

60

65

4

leat are performed by one or more subsystems of the storage
system distinct from a storage device, wherein the storage
device stores the data to be stored.

(Al13) In another aspect, a storage device includes (1)
non-volatile memory, (2) one or more processors, and (3)
controller memory (e.g., a non-transitory computer readable
storage medium 1n the storage device) storing one or more
programs, which when executed by the one or more pro-
cessors cause the storage device to perform or control
performance of any of the methods Al1-Al10 described
herein.

(Al14) In yet another aspect, any of the methods A1-A10
described above are performed by a storage device including
means for performing any of the methods described herein.

(A15) In yet another aspect, some embodiments include a
non-transitory computer readable storage medium, storing
one or more programs configured for execution by one or
more processors of a storage device, the one or more
programs including instructions for performing any of the
methods A1-A10 described herein.

Numerous details are described herein 1n order to provide
a thorough understanding of the example embodiments
illustrated 1n the accompanying drawings. However, some
embodiments may be practiced without many of the specific
details, and the scope of the claims 1s only limited by those
features and aspects specifically recited in the claims. Fur-
thermore, well-known methods, components, and circuits
have not been described 1n exhaustive detail so as not to
unnecessarily obscure pertinent aspects of the embodiments
described herein.

FIG. 1 1s a block diagram 1llustrating data storage system
100, in accordance with some embodiments. While some
example features are illustrated, various other features have
not been 1llustrated for the sake of brevity and so as not to
obscure pertinent aspects of the example embodiments dis-
closed herein. To that end, as a non-limiting example, data
storage system 100 includes a storage device 120, which
includes a storage controller 124 and a storage medium 130,
and 1s used i1n conjunction with or includes a computer
system 110. In some embodiments, storage medium 130 1s
a single flash memory device while 1n other embodiments
storage medium 130 includes a plurality of flash memory
devices. In some embodiments, storage medium 130 1is
NAND-type flash memory or NOR-type flash memory. In
some embodiments, storage medium 130 includes one or
more three-dimensional (3D) memory devices, as further
defined herein. Further, 1n some embodiments, storage con-
troller 124 1s a solid-state drive (SSD) controller. However,
other types of storage media may be included 1n accordance
with aspects of a wide variety of embodiments (e.g.,
PCRAM, ReRAM, STT-RAM, etc.). In some embodiments,
a flash memory device includes one or more tlash memory
die, one or more flash memory packages, one or more flash
memory channels, or the like. In some embodiments, data
storage system 100 can contain one or more storage devices
120.

Computer system 110 1s coupled to storage controller 124
through data connections 101. However, in some embodi-
ments computer system 110 includes storage controller 124,
or a portion of storage controller 124, as a component and/or
a subsystem. For example, 1n some embodiments, some or
all of the functionality of storage controller 124 1s 1mple-
mented by software executed on computer system 110.
Computer system 110 may be any suitable computer device,
such as a computer, a laptop computer, a tablet device, a
netbook, an internet kiosk, a personal digital assistant, a
mobile phone, a smart phone, a gaming device, a computer

US 9,619,165 Bl

S

server, or any other computing device. Computer system 110
1s sometimes called a host, host system, client, or client
system. In some embodiments, computer system 110 1s a
server system, such as a server system 1n a data center. In
some embodiments, computer system 110 includes one or
more processors, one or more types of memory, a display
and/or other user interface components such as a keyboard,
a touch screen display, a mouse, a track-pad, a digital camera
and/or any number of supplemental devices to add function-
ality. In some embodiments, computer system 110 does not
have a display and other user interface components.

Storage medium 130 1s coupled to storage controller 124
through connections 103. Connections 103 are sometimes
called data connections, but typically convey istructions 1n
addition to data, and optionally convey metadata, error
correction information and/or other information in addition
to data values to be stored in storage medium 130 and data
values read from storage medium 130. In some embodi-
ments, storage controller 124 and storage medium 130 are
included in the same device (1.e., an integral device) as
components thereof. Furthermore, 1n some embodiments,
storage controller 124 and storage medium 130 are embed-
ded 1n a host device (e.g., computer system 110), such as a
mobile device, tablet, other computer or computer controlled
device, and the methods described herein are performed, at
least 1n part, by the embedded memory controller. Storage
medium 130 may include any number (1.¢., one or more) of
memory devices including, without limitation, non-volatile
semiconductor memory devices, such as flash memory
device(s). For example, flash memory device(s) can be
configured for enterprise storage suitable for applications
such as cloud computing, for database applications, primary
and/or secondary storage, or for caching data stored (or to be
stored) 1n secondary storage, such as hard disk drives.
Additionally and/or alternatively, flash memory device(s)
can also be configured for relatively smaller-scale applica-
tions such as personal tlash drives or hard-disk replacements
for personal, laptop, and tablet computers.

In various embodiments, storage medium 130 includes
and/or 1s included in one or more devices (e.g., computer
system 110) remote from storage controller 124.

Storage medium 130 1s divided 1into a number of address-
able and 1ndividually selectable blocks, such as selectable
portion 131. In some embodiments, the individually select-
able blocks (sometimes called erase blocks) are the mini-
mum size erasable units 1n a flash memory device. In other
words, each block contains the minimum number of
memory cells that can be erased simultaneously. Each block
1s usually further divided into a plurality of pages and/or
word lines, where each page or word line 1s typically an
instance of the smallest individually accessible (readable)
portion 1 a block. In some embodiments (e.g., using some
types of flash memory), the smallest individually accessible
unit of a data set, however, 1s a sector, which 1s a subunit of
a page. That 1s, a block includes a plurality of pages, each
page contains a plurality of sectors, and each sector 1s the
mimmum unit of data for reading data from the flash
memory device.

In some embodiments, storage controller 124 includes a
management module 121-1, a host interface 129, a storage
medium 1nterface 128, and/or additional module(s) 125.
Storage controller 124 may include various additional fea-
tures that have not been illustrated for the sake of brevity and
so as not to obscure pertinent features of the example
embodiments disclosed herein, and a different arrangement
of features may be possible. Host interface 129 provides an
interface to computer system 110 through data connections

10

15

20

25

30

35

40

45

50

55

60

65

6

101. Similarly, storage medium interface 128 provides an
interface to storage medium 130 though connections 103. In
some embodiments, storage medium interface 128 includes
read and write circuitry, including circuitry capable of
providing reading signals to storage medium 130 (e.g.,
reading threshold voltages for NAND-type flash memory).

In some embodiments, management module 121-1
includes one or more processing units (e.g., CPU(s), also
sometimes called processors) 122 configured to execute
instructions in one or more programs (€.g., In management
module 121-1). In some embodiments, the one or more
CPU(s) 122 are shared by one or more components within,
and 1n some cases, beyond the function of storage controller
124. Management module 121-1 1s coupled to host interface
129, additional module(s) 125 and storage medium interface
128 1n order to coordinate the operation of these compo-
nents. In some embodiments, one or more modules of
management module 121-1 are implemented 1n management
module 121-2 of computer system 110. In some embodi-
ments, one or more processors of computer system 110 (not
shown) are configured to execute mstructions 1n one or more
programs (e.g., 1n management module 121-2). Manage-
ment module 121-2 1s coupled to storage device 120 1n order
to manage the operation of storage device 120.

Additional module(s) 1235 are coupled to storage medium
interface 128, host interface 129, and management module
121-1. As an example, additional module(s) 125 may
include an error control module to limit the number of
uncorrectable errors madvertently introduced into data dur-
ing writes to memory or reads from memory.

In some embodiments, module(s) as described herein,
such as management module 121-1, management module
121-2, modules of management module 121-1, modules of
management module 121-2, additional modules 125, etc. are
executed 1n software by the one or more CPU(s) (e.g.,
CPU(s) 122 of management module 121-1, CPU(s) of
computer system 110 (not shown) etc.). In other embodi-
ments, module(s) as described herein are implemented in
whole or 1n part using special purpose circuitry (e.g., to
perform encoding and decoding functions).

In some embodiments, during a write operation, host
interface 129 receives data to be stored in storage medium
130 from computer system 110. The data received by host
interface 129 1s made available to an encoder (e.g., 1n
additional module(s) 125), which encodes the data to pro-
duce one or more codewords. The one or more codewords
are made available to storage medium interface 128, which
transiers the one or more codewords to storage medium 130

in a manner dependent on the type of storage medium being
utilized.

In some embodiments, a read operation 1s 1initiated when
computer system (host) 110 sends one or more host read
istructions (e.g., via data connections 101, or alternatively
a separate control line or bus) to storage controller 124
requesting data from storage medium 130. Storage control-
ler 124 sends one or more read access instructions to storage
medium 130, via storage medium interface 128, to obtain
raw read data in accordance with memory locations (ad-
dresses) specified by the one or more host read instructions.
Storage medium 1interface 128 provides the raw read data
(e.g., comprising one or more codewords) to a decoder (e.g.,
in additional module(s) 1235). It the decoding 1s successiul,
the decoded data 1s provided to host intertace 129, where the
decoded data 1s made available to computer system 110. In
some embodiments, 1f the decoding 1s not successtul, stor-

US 9,619,165 Bl

7

age controller 124 may resort to a number of remedial
actions or provide an indication of an irresolvable error
condition.

As explamned above, a storage medium (e.g., storage
medium 130) 1s divided 1nto a number of addressable and
individually selectable blocks and each block 1s optionally
(but typically) further divided into a plurality of pages
and/or word lines and/or sectors. While erasure of a storage
medium 1s performed on a block basis, 1n many embodi-
ments, reading and programming of the storage medium 1s
performed on a smaller subunit of a block (e.g., on a page
basis, word line basis, or sector basis). In some embodi-
ments, the smaller subunit of a block consists of multiple
memory cells (e.g., single-level cells (SLC) or multi-level
cells). In some embodiments, programming 1s performed on
an entire page. In some embodiments, a multi-level cell
(MLC) NAND flash typically has four possible states per
cell, yielding two bits of mformation per cell. Further, 1n
some embodiments, a MLC NAND has two page types: (1)
a lower page (sometimes called fast page), and (2) an upper
page (sometimes called slow page). In some embodiments,
a triple-level cell (TLC) NAND flash has eight possible
states per cell, yielding three bits of mformation per cell.
Although the description herein uses TLC, MLC, and SLC
as examples, those skilled in the art will appreciate that the
embodiments described herein may be extended to memory
cells that have more than eight possible states per cell,
yielding more than three bits of information per cell.

FIG. 2A 1s a block diagram illustrating a management
module 121-1, as shown 1n FIG. 1, 1n accordance with some
embodiments. Management module 121-1 typically
includes one or more processing units 122-1 (sometimes
called CPUs, processors, hardware processors, or micropro-
cessors) for executing modules, programs and/or instruc-
tions stored in memory 202-1 and thereby performing pro-
cessing operations, memory 202-1 (sometimes called
controller memory), and one or more communication buses
204-1 for interconnecting these components. The one or
more communication buses 204-1 optionally include cir-
cuitry (sometimes called a chipset) that interconnects and
controls communications between system components.
Management module 121-1 1s coupled to host interface 129,
additional module(s) 125, and storage medium interface 128
by the one or more communication buses 204-1. Memory
202-1 includes high-speed random access memory, such as
DRAM, SRAM, DDR RAM or other random access solid
state memory devices, and may include non-volatile
memory, such as one or more magnetic disk storage devices,
optical disk storage devices, flash memory devices, or other
non-volatile solid state storage devices. Memory 202-1
optionally includes one or more storage devices remotely
located from the CPU(s) 122-1. Memory 202-1, or alterna-
tively the non-volatile memory device(s) within memory
202-1, comprises a non-transitory computer readable storage
medium. In some embodiments, memory 202-1, or the
non-transitory computer readable storage medium of
memory 202-1 stores the following programs, modules, and
data structures, or a subset or superset thereof:

Operating system 212-1, which includes procedures for
handling various basic system services and for per-
forming hardware dependent tasks.

Communications module 214-1, which 1s used for com-
municating with other computer systems (e.g., com-
puter system 110) (e.g., via host interface 129 and/or
storage medium interface 128).

Driver 216-1, which detects and processes requests
received from internal requestors and/or external

10

15

20

25

30

35

40

45

50

55

60

65

8

requestors such as additional module(s) 125, computer
system 110, etc. (Requests are processed by, e.g., data
read module 218-1, data write module 220-1, data erase
module 222-1, etc.)

Data read module 218-1, which reads data from one or
more codewords, pages or blocks 1n a storage medium
(e.g., storage medium 130).

Data write module 220-1, which writes data to one or
more codewords, pages or blocks in a storage medium
(e.g., storage medium 130).

Data erase module 222-1, which erases data from one or
more blocks 1n a storage medium (e.g., storage medium
130).

Tiered data structure (IDS) module 224-1, which stores
and retrieves information (e.g., data objects and nodes)
within one or more tiered data structures (also referred
to herein as tree data structures). The one or more tiered
data structures are typically stored 1n storage medium
130, but 1n some embodiments are stored at least 1n part
(e.g., cached portions) in memory 202-1 or 1n memory
of computer system 110. In some embodiments, the
aforementioned data objects are stored 1in data nodes,
sometimes called overflow nodes, of a tiered data
structure, which in turn is stored 1n storage medium 130
(1.e., 1n non-volatile memory of the storage device).
Physical addresses, sometimes called physical block
addresses, indicate the locations 1n storage medium 130
at which the data objects are stored (e.g., locations 1n
leal nodes of the tiered data structure, which 1n turn 1s
stored 1n storage medium 130). Tiered data structure
module 224-1 includes TDS storage module 226-1 and
TDS search module 228-1.

TDS storage module 226-1, which performs memory
operations (e.g., replacement, deletion, and 1nsertion
operations) by writing information, mserting a new
data object, or replacing or updating the value of a data
object) to leal nodes of the one or more tiered data
structures or deleting information (e.g., deleting a data
object and/or replacing the value of a data object with
a tombstone) from leaf nodes of the one or more tiered
data structures so as to create new or modified leaf
nodes and writing the new or modified leal nodes to
storage medium 130.

TDS search module 228-1, which searches through the
one or more tiered data structures for requested data
(e.g., locating and retrieving a data object or node
corresponding to a memory operation in a transaction
requested by a requestor).

Each of the above identified elements may be stored 1n
one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above 1dentified modules or
programs (1.€., sets of mstructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 202-1 may store a subset of the
modules and data structures 1dentified above. Furthermore,
memory 206-1 may store additional modules and data
structures not described above. In some embodiments, the
programs, modules, and data structures stored 1n memory
206-1, or the non-transitory computer readable storage
medium of memory 206-1, provide instructions for imple-
menting some ol the methods described below. In some
embodiments, some or all of these modules may be 1mple-
mented with specialized hardware circuits that subsume part
or all of the module functionality.

US 9,619,165 Bl

9

Although FIG. 2A shows management module 121-1 1n
accordance with some embodiments, FIG. 2A 1s intended
more as a functional description of the various features
which may be present in management module 121-1 than as
a structural schematic of the embodiments described herein.
In practice, and as recognized by those of ordinary skill 1n
the art, the programs, modules, and data structures shown
separately could be combined and some programs, modules,
and data structures could be separated.

FIG. 2B 1s a block diagram illustrating a management
module 121-2 (of computer system 110, FIG. 1), in accor-
dance with some embodiments. Management module 121-2
typically includes one or more processing units 201 (some-
times called CPUs, processors, hardware processors, or
microprocessors) for executing modules, programs and/or
instructions stored 1n memory 202-2 and thereby performing
processing operations, memory 202-2, and one or more
communication buses 204-2 for interconnecting these com-
ponents. The one or more commumnication buses 204-2
optionally include circuitry (sometimes called a chipset) that
interconnects and controls communications between system
components. Management module 121-2 is coupled to stor-
age device 130 by the one or more communication buses
204-2. Memory 202-2 includes high-speed random access
memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices, and may include
non-volatile memory, such as one or more magnetic disk
storage devices, optical disk storage devices, flash memory
devices, or other non-volatile solid state storage devices.
Memory 202-2 optionally includes one or more storage
devices remotely located from the CPU(s) 201. Memory
202-2, or alternatively the non-volatile memory device(s)
within memory 202-2, comprises a non-transitory computer
readable storage medium. In some embodiments, memory
202-2, or the non-transitory computer readable storage
medium of memory 202-2 stores the following programs,
modules, and data structures, or a subset or superset thereof:

Operating system 212-2, which includes procedures for
handling various basic system services and for per-
forming hardware dependent tasks.

Applications 213, which include various native and/or
third-party procedures for virtual machine hosting,
database 1nterface tools, data processing soitware, data
analysis software, data management soitware, etc.

Communications module 214-2, which 1s used for com-
municating with other computer systems or computer
components (e.g., via host interface 129).

Driver 216-2, which detects and processes requests
received from internal requestors and/or external
requestors such as additional module(s) 125, applica-
tions 213 1n computer system 110, etc. (Requests are
processed by, e.g., data read module 218-2, data write
module 220-2, data erase module 222-2, etc.)

Data read module 218-2, which reads data from one or
more codewords, pages or blocks 1n a storage medium
(e.g., storage medium 130).

Data write module 220-2, which writes data to one or
more codewords, pages or blocks 1n a storage medium
(e.g., storage medium 130).

Data erase module 222-2, which erases data from one or
more blocks in a storage medium (e.g., storage medium
130).

Tiered data structure (TDS) module 224-2, which stores
and retrieves mformation (e.g., data objects and nodes)
within one or more tiered data structures (also referred
to herein as tree data structures). The one or more tiered
data structures may be stored by memory 202-2, by

10

15

20

25

30

35

40

45

50

55

60

65

10

storage medium 130, by computer system 110, efc.
Tiered data structure module 224-2 includes TDS stor-
age module 226-2 and TDS search module 228-2.

TDS storage module 226-2, which performs memory
operations (e.g., replacement, deletion, and 1nsertion
operations) by writing information, 1mserting a new
data object, or replacing/updating the value of a data
object) to leal nodes of the one or more tiered data
structures or deleting information (e.g., deleting a data
object and/or replacing the value of a data object with
a tombstone) from leal nodes of the one or more tiered
data structures so as to create new/modified leat nodes
and writing the new/modified leaf nodes to storage
medium 130.

TDS search module 228-2, which searches through the
one or more tiered data structures for requested data
(e.g., locating and retrieving a data object or node
corresponding to a memory operation in a transaction
requested by a requestor).

Each of the above identified elements may be stored 1n
one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above 1dentified modules or
programs (1.€., sets of mstructions) need not be implemented
as separate software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 202-2 may store a subset of the
modules and data structures 1dentified above. Furthermore,
memory 202-2 may store additional modules and data
structures not described above. In some embodiments, the
programs, modules, and data structures stored 1n memory
202-2, or the non-transitory computer readable storage
medium of memory 202-2, provide instructions for imple-
menting some ol the methods described below. In some
embodiments, some or all of these modules may be 1mple-
mented with specialized hardware circuits that subsume part
or all of the module functionality.

Although FIG. 2B shows management module 121-2 1n
accordance with some embodiments, FIG. 2B 1s intended
more as a functional description of the various features
which may be present in management module 121-2 than as
a structural schematic of the embodiments described herein.
In practice, and as recognized by those of ordinary skill 1n
the art, the programs, modules, and data structures shown
separately could be combined and some programs, modules,
and data structures could be separated.

FIG. 3A illustrates an example of a tiered data structure
300 in accordance with some embodiments. Tiered data
structure 300 includes a plurality of nodes 302-320. The
plurality of nodes are organized 1n a tiered structure in which
cach respective node 1s connected to one or more other
nodes 1n levels (tiers) above and/or below the respective
node. A parent node for a respective node in tiered data
structure 300 1s a node that 1s a level (tier) above the
respective node 1n tiered data structure 300. Typically, the
parent node 1ncludes an entry that refers to or points to the
respective node. A chuld node for a respective node 1n tiered
data structure 300 1s a node that 1s a level (tier) below the
respective node in tiered data structure 300. Typically, the
child node 1s referenced by an entry in the respective node.
Two nodes are at the same level if they have a same number
ol nodes to traverse to reach root node 302. Root node 302
1s a node that has no parent node. Internal nodes 304, 306 are
nodes that have both a parent node (1.e., 302) and one or
more child nodes and are thus internal to the tiered data
structure. Leatl nodes 308-320 are nodes that do not have

US 9,619,165 Bl

11

child nodes. Internal nodes 304, 306, (and, in some embodi-
ments, root node 302) are index nodes that store information
indicating a relationship with another node. For example, 1n
some embodiments, an index node stores one or more entries
that each include a memory pointer that points to a child
index node or parent index node.

In some embodiments, each lealt node has a maximum
size. When the leat node exceeds the maximum size, the leat
node 1s split mnto two leal nodes. In some embodiments, each
leaf node has a minimum size. When a leal node 1s below the
minimum size, the leat node 1s combined with one or more
other leal nodes. In some embodiments, each non-leat node
(e.g., root node or internal node) has a maximum number of
child nodes. When splitting of a leal node results 1n a
non-leal node having more than the maximum number of
child nodes, the non-leaf node i1s split to accommodate the
extra child nodes. In some embodiments, each non-leaf node
(e.g., root node or mternal node) has a mimmum number of
child nodes. When a combining two or more leal nodes

results 1n a non-leal node having less than the minimum
number of child nodes, the non-leat node 1s combined with
one or more other non-leal nodes to accommodate the
reduced number of child nodes. The tiered data structure
may additionally conform to some or all of the rules asso-
ciated with B-Trees, B+Trees, B*Trees or other tiered data
structures.

In some embodiments, leal nodes include location infor-
mation such as a logical block address (LBA) of stored data.
For example, leat node 308 stores an LBA 1n a header field
321 (e.g., the format of leaf node 308 includes a header field
321 for storing a logical block address value). In an 1llus-
trative example, leal node 308 stores (e.g., in a node header
321 or in a first entry 322 of node 308) an LBA of 0 and leaf
node 310 stores (e.g., in a node header 331 or {irst entry 328
of node 310) an LBA of 508, indicating, e.g., that entries for
L.BAs greater than or equal to 0 and less than 508 are stored
in leal node 308.

In some embodiments, a respective leat node of leat nodes
308-320 (e.g., leat node 308) includes one or more entries
including location information indicating a physical location
of stored data (e.g., a physical address of data stored by
storage medium 130). In some embodiments, location infor-
mation of an entry may be mapping information that
includes an LBA {for stored data and a physical address for
the same data. The physical address for the data 1s some-
times called a physical block address (PBA). It 1s noted,
however, that a physical block address (PBA) typically does
not point to (nor correspond to) an entire block (1.e., erase
block) 1n storage medium 130, and instead points to the
location 1n storage medium 130 at which the data for the
corresponding logical block address 1s stored. A logical
block address typically corresponds to a unit of data (e.g., 1
KB) that 1s much smaller than an entire erase block of
non-volatile storage, with typical logical block sizes ranging,
from 512 bytes to 8 KB. For ease of explanation, a logical
block size of 1 KB 1s used in some of the examples provided
below.

FIG. 3A displays a tiered data structure 300 in which leaf
nodes 308-320 are all leaf nodes of a first type. Leal nodes
of a first (leal) type are also referred to herein as “first-type
leaves.” In some embodiments, an entry of a leaf node of a
first type includes a length of stored data. In an illustrative
example, leal node 308 includes entries 322-326. A respec-
tive entry of leal node 308 includes an LBA, a length
(“len”), and a PBA, or more generally includes a logical
address, a length, and a physical address. For data stored 1n
selectable portion 131 of storage medium 130, a PBA

5

10

15

20

25

30

35

40

45

50

55

60

65

12

indicates the physical address of selectable portion 131, a
length indicates the length of the data stored at (or beginning
at) selectable portion 131, and an LBA indicates a logical
address corresponding to data stored at selectable portion
131. For example, entry 324 of leat 308 includes fields LBA,
len, and PBA that store values of 1, 2, and 1000, respec-
tively. In this example, entry 324 indicates data having a
length of 2 logical blocks (e.g., 2 KB) stored beginning at
PBA 1000 of storage medium 130. In various modules
and/or devices that generate memory requests (e.g., appli-
cations 213, additional modules 125, management module
121, etc.), data stored and/or to be stored 1n storage medium
130 1s i1dentified using an LBA. Entries 1n leaves of tiered
data structure 300, provide a mapping between an LBA and
a PBA. For example, entry 324 provides a mapping between
LBA 8 and PBA 1000. Similarly, entry 328 of leaf 310
indicates data having a length of one logical block (e.g., 1
KB) stored at PBA 4000 of storage medium 130 and entry
328 provides a mapping between LBA 508 and PBA 4000.

In some embodiments, the amount of storage space con-
sumed by tiered data structure 224 1s reduced by selectively
using a second entry format that 1s different from the format
of entries 322-326. To reduce the storage space consumed by
tiered data structure 224, a respective leaf (e.g., leat 310)
having a first type of entries 1s converted to a leatl having a
second type of entries when various conversion criteria are
satisfied.

FIG. 3B illustrates an example of a tiered data structure
400 1n accordance with some embodiments. In FIG. 3B, the
tiered data structure 300 of FIG. 3A 1s shown 1n an alter-
native state in which leat 310 has been converted from a leaf
of a first type to a leat 410 of a second type. A converted leal
1s also referred to herein as a “leaf of a second leaf type,” and
a “second-type leal.” In an 1illustrative example, converted
leat 410 includes entries 352-358, sometimes herein called
PBA entries or mapped entries. A respective mapped entry
(e.g., entry 352) of converted leat 410 includes a PBA. For
example, entries 352, 356, and 358 indicate data stored at
physical block addresses PBA 4000, PBA 5080, and PBA
6120, respectively. Entry 354 1s unmapped, indicating that
the block 1s no longer 1n use (e.g., by computer system 110,
applications 213, additional modules 125, management
module 121, etc.).

An entry of a converted leaf has a fixed length and the
entry typically stores no length information. For example, 1n
FIG. 3B, each PBA value of converted leat 410 indicates a
location of data having a fixed length, for example the length
of a logical block (e.g., 1 KB).

Because entries of converted leaves are fixed-length PBA
entries, an LBA corresponding to a first PBA entry 1n a
converted leaf 1s determinable from a single, starting point
LBA stored by the converted leaf (e.g., 1n a node header 331
of the converted leat, such as LBA 3508 stored by converted
leat 410, or 1n an LBA entry 350 positioned, for example,
before the LBA entries of the converted leat). For example,
an LBA of entry 356 1s determined by adding an integer
(e.g., 2) corresponding to the position of entry 356 in leaf
node 410 to the starting point LBA 508, to produce an LBA
of 510 for entry 356.

FIG. 4 illustrates calculated performance values of a
tiered data structure in which only first type leaves are used
(402) 1n comparison with calculated performance values of
a tiered data structure 1n which first type leaves and second
type leaves are used (404). The data shown i FIG. 4 1s
calculated for a device with a 4 KB format (e.g., page and
logical block) size. In comparison with tiered data structure
404, data usage by tiered data structure 402 grows at an

US 9,619,165 Bl

13

increasing rate as the average block size of data written to a
device drops below twice the format size (1.e., below 8 KB).
FIG. 4 demonstrates the data usage savings that can be
realized by using a hybrid tiered data structure, using both
first type leaves and second type leaves, such as the tiered
data structure shown 1n FIG. 3B.

FIGS. 5A-5C illustrate a flowchart representation of a
method 500 of storing metadata, in accordance with some
embodiments. In some embodiments, the method 500
includes receiving (502), at a computing device (e.g., stor-
age controller 124) of a storage system (e.g., data storage
system 100) including non-volatile memory (e.g., storage
medium 130) and a tiered data structure (e.g., tiered data
structure module 224), an indication of data to be stored by
the storage system. For example, storage controller 124
receives a write command or instruction that specifies data
to be stored. The corresponding write operation, for storing
the specified data, 1s performed by data write module 220,
(e.g., 1n response to an instruction received from an appli-
cation 213 executed by computer system 110). The write
operation stores data (e.g., data received from computer
system 110) to storage medium 130. In some embodiments,
storage controller 124 recerves information indicating logi-
cal locations (e.g., LBAs) assigned to the data to be stored
in storage medium 130.

In some embodiments, method 500 includes, selecting
(504), from the plurality of leaves (e.g., leaves 308, 410, and
314-320 of FIG. 4A), a leaf (e.g., leat 308 of FIG. 3B) to
store location information for the data to be stored. The
selected leaf has a first leaf type. For example, leal 308 as
shown 1n FIG. 3B 1s a leaf having a first leaf type. Leaves
of the first leaf type include entries indicating locations of
variable-length data stored 1in non-volatile memory (storage
medium 130). For example, as discussed with regard to
FIGS. 3A and 3B, because entries of {irst-type leaves store
variable-length data, entries 322-326 of first-type leal 308
(FIG. 3A) and entry 328 of first-type leal 310 (FIG. 3A)
include entries with a length field (*len™) for storing a value
indicating a length of stored data.

In some embodiments, method 500 includes determining,
(506), using at least one first-type to second-type criterion,
whether to convert the selected leat (e.g., leat 310 as shown
in FIG. 3A) to a converted leaf (e.g., leat 410 as shown 1n
FIG. 3B). The converted leal has the second leaf type.
Leaves of the second type include entries indicating loca-
tions of fixed-length data stored 1n the non-volatile memory.
For example, leat 410 as shown 1n FIG. 3B includes entries
352, 356, and 358, each of which indicates a PBA of a
fixed-length amount of data (e.g., typically a fixed amount
between 512 bytes and 8 KB), stored 1n storage medium 130.

In some embodiments, tiered data structure 400 includes
(508) at least one leaf of the first leaf type (e.g., leat 308 as
shown 1n FIG. 3B) and at least one leaf of the second leaf
type (e.g., leat 410 as shown 1n FIG. 3B). The leaf of the
second leaf type stores a base logical address (e.g., LBA 508
for leal 410) and a sequence of fixed-size entries (e.g.,
entries 352, 356, 358 as shown 1n FIG. 3B). Each fixed-size
entry 352, 356, 358 for a mapped location includes a PBA
field for storing a PBA value. In some circumstances or in
some embodiments, the fixed-sized entries of a second leat
type indicate contiguous blocks of stored data in storage
medium 130. More generally, though, the fixed-sized entries
ol a second leal type correspond to contiguous blocks in a
logical address space (e.g., a logical address used by com-
puter system 110, FIG. 1), starting at either the base logical
address for the leat, or at the logical address associated with
the first mapped entry 1n the leaf.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

As discussed above with regard to 506, at least one
first-type to second-type criterion 1s used to determine
whether to convert the selected leaf to a converted leaf. In
some embodiments, the at least one first-type to second-type
criterion 1mcludes (510) a criterion that 1s satisfied 1n accor-
dance with an mdication that an insertion into the selected
leat (e.g., leal 310 as shown in FIG. 3A) will cause the
selected leat to split. An indication that an insertion into the
selected leat will cause the selected leat to split occurs, for
example, when 1) the selected leal contains a maximum
number of entries specified for first-type leaves of the tiered
data structure, and 2) an entry cannot be inserted into a
neighbor of the selected leaf. In some embodiments, a
maximum number of entries for a leat of a first type 1s, e.g.,
508 entries (e.g., when a tiered data structure has a 4 KB leaf
node size and the format first-type leal entries includes a
24-bit LBA, an 8-bit length, and a 32-bit PBA). In various
embodiments, a maximum number of entries for a leat of a
first type 1s value 1n a range o1 200 to 1000, such as 451, 406,
369, or 338. In an illustrative example in which leat 310 as
shown 1n FIG. 3A 15 a selected leat, an insertion into leat 310
will cause leal 310 to split when criteria (1) and (2)
discussed above are satisfied, that 1s, when leat 310 1s full
(1.e., contains a maximum number of entries as defined for
leaves of tiered data structure 400) and when leat 310 cannot
move one of 1ts entries to a neighboring leaf (e.g., cannot
move entry 328 to leal 308 or leal 314). In some embodi-
ments, a leaf 310 1s unable to move one of its entries to a
neighboring leal when the neighboring leaves (e.g., a neigh-
boring leat *“to the left,” 1 any, having lower logical
addresses than the logical addresses of the mapped entries 1n
leat 310, and a neighboring leaf “to the rnght,” 1f any, having
higher logical addresses than the logical addresses of the
mapped entries 1 leal 310) are full.

In some embodiments, the at least one first-type to sec-
ond-type criterion mncludes (512) a criterion that 1s satisfied
in accordance with 1) a determination of a total size of: a)
potential new entries for the selected leaf, indicating loca-
tions of the data to be stored, and b) existing entries, 1f any,
in the selected leal, and 2) a determination that the deter-
mined total size 1s less than or equal to a maximum size for
all entries of a leal of the second leaf type. For example, the
criterion 1s satisfied when the following 1s true:

If entry[incoming|- LBA>=entry[first]- LBA:

entry[incoming|- LBA+entry[incoming]-len-entry
[first]-LBA<Max,

If the entry[incoming|-LBA<entry[first]-LBA:

entry[last]-LBA+entry[last]-len-entry[incoming]
-LBA=Max

where Max 1s a maximum number of entries for a second
type leal. As shown, the mathematical representation of the
criterion differs depending on whether the incoming LBA 1s
lower or higher than the first LBA 1n the leaf. A maximum
number of entries for a second type leal may be a value 1n
a range of 200 to 2000 entries, for example, 1016 entries
when a 32 bit PBA value 1s stored in each entry, or 812
entries when a 40 bit PBA value 1s stored in each entry, etc.
In an 1llustrative example, an incoming entry for received
data has LBA 1300 and length 8. A first entry 328 1n leaf 310
as shown in FIG. 3A has LBA 508. The criterion as
described with regard to operation 512 (FIG. 5A) 1s satisfied
when Max=812 because (1300+8)-(508) 1s less than 812.
In various embodiments, a first-type leal 1s converted to
a second-type leat only when both a first-type to second-type

US 9,619,165 Bl

15

criterion as described with regard to operation 510 and a
first-type to second-type criterion as described with regard to
operation 512 are satisfied.

In some embodiments, 1n response to a determination to
convert the selected leat to a converted leat, method 500
stores (514), 1n the converted leatf (e.g. leal 410 as shown 1n
FIG. 3B), first location information of the data to be stored.

In some embodiments, the first location nformation
includes (516) a PBA of the data to be stored. For example,
entry 358 of leat 310 as shown 1n FIG. 3B includes a PBA
indicating a location 1n memory 130 (such as a PBA {for a
selectable portion 131) of the data to be stored. The value
6120 stored as a PBA 1n entry 358 of leaf 310 1s an example
of first location information of data to be stored. In various
embodiments, entries of a converted leal do not include
length metadata for data to be stored. Because the PBA field
of entries 1n converted leaves has a fixed size (e.g., a tiered
data structure 1s defined such that a 32-bit PBA field 1s used
for entries of all converted leaves), 1t 1s not necessary to
include length metadata for data to be stored in entries of
converted leaves. Memory usage by the tiered data structure
1s reduced 1n some cases, such as when variable sized data
writes to memory include many small sized writes, by using,
converted leaves with entries that store location information
without storing length metadata for data to be stored.

In some embodiments, 1n response to a determination to
not convert the selected leat, the method 500 stores (518), in
the selected leaf (e.g., leat 310 as shown 1n FIG. 3A), second
location 1information of the data to be stored.

In some embodiments, the second location information
includes (520) a PBA of the data to be stored and at least one
of: an LBA (1.e., key) of the data to be stored, or an
indication of length of the data to be stored. In various
embodiments, second location information includes an
LBA, a length, and a PBA. For example, second location
information stored 1n entry 328 of selected leat 310 as shown
in FIG. 3A includes LBA (508), length (2) and PBA (4000).
In some embodiments, method 500 includes determining,
(522), using at least one second-type to first-type criterion,
whether to revert a leaf of the second type (e.g., leat 410 as
shown 1n FIG. 3B) into a new leatf of the first leaf type (e.g.,
leat 310 as shown 1n FIG. 3A). In some embodiments, a
second-type to first-type criterion 1s applied after processing
a trigger condition as discussed below with regard to opera-
tions (526) and (528).

In some embodiments, the leaf of the second leaf type has
entries for a first number of locations, and the at least one
second-type to first-type criterion includes (524) a criterion
that 1s satisfied 1 accordance with a determination that the
new leal of the first type has suflicient space to contain
entries for all mapped locations indicated by the entries of
the leat of the second leatf type plus a predefined margin. For
example, a leat of the second type may include entries for
PBAs 4000, 5080, and 6120, as indicated by entries 352,
354, and 358 (FIG. 3B), respectively. In the example shown
in FIG. 3B, a second-type to first-type criterion 1s satisfied
1l a maximum number of entries for a first leaf type exceeds
the number of entries required to store mapping information
tor PBAs 4000, 5080, and 6120 by a suflicient margin (e.g.,
leaving space available for one additional entry in the
first-type leat).

In some embodiments, determining whether to revert the
leat of the second type 1nto the new leaf of the first type, as
discussed with regard to operation 522, occurs (526) 1n
response to an indication of data to be deleted or unmapped
by the storage system. The leaf of the second-type (e.g., leaf
310 as shown 1 FIG. 3B) contains location information

10

15

20

25

30

35

40

45

50

55

60

65

16

(e.g., a PBA as indicated in entry 352) for the data to be
deleted or unmapped. For example, reverting the leaf of the
second type mnto a new leal of the first type 1s triggered by
a deletion, such as a deletion performed by data erase
module 222 (e.g., inresponse to an mstruction received from
an application 213 executed by computer system 110).

In some embodiments, determining whether to revert the
leat of the second type into the new leaf of the first type, as
discussed with regard to (522), occurs (528) 1n response to
an mdication of data to be overwritten by the storage system.
The leaf of the second-type (e.g., leat 310 as shown in FIG.
3B) contains location information (e.g., a PBA as indicated
in entry 352) for the data to be overwritten. For example,
reverting the leat of the second type into a new leatf of the
first type 1s triggered by an overwrite, such as an overwrite
performed by data write module 220 (e.g., 1n response to an
istruction received from an application 213 executed by
computer system 110).

In some embodiments, one or more of the receiving,
selecting, determining, storing in the converted leaf, or
storing 1n the selected leaf are performed (330) by a storage
device 120 of storage system 100 (e.g., performed by
management module 121-1). Storage device 120 stores the
data to be stored, e.g., 1n storage medium 130.

In some embodiments, one or more of the receiving,
selecting, determining, storing in the converted leaf, or
storing 1n the selected leal are performed (532) by one or
more subsystems of the storage system 100 distinct from a
storage device 120 (e.g., performed by management module
121-2 of computer system 110). Storage device 120 stores
the data to be stored, e.g., 1n storage medium 130.

Semiconductor memory devices include volatile memory
devices, such as dynamic random access memory
(“DRAM”) or static random access memory (“SRAM”)
devices, non-volatile memory devices, such as resistive
random access memory (“ReRAM™), electrically erasable
programmable read only memory (“EEPROM”™), flash
memory (which can also be considered a subset of
EEPROM), f{ferroelectric random access memory
(“FRAM™), and magnetoresistive random access memory
(“MRAM”), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, tlash memory devices
may be configured in a NAND or a NOR configuration.

The semiconductor memory elements located within and/
or over a substrate may be arranged 1n two or three dimen-
s10ms, such as a two dimensional memory structure or a three
dimensional memory structure.

The term “three-dimensional memory device” (or 3D
memory device) 1s herein defined to mean a memory device
having multiple memory layers or multiple levels (e.g.,
sometimes called multiple memory device levels) of
memory elements, including any of the following: a memory
device having a monolithic or non-monolithic 3D memory
array; or two or more 2D and/or 3D memory devices,
packaged together to form a stacked-chip memory device.

One of skill in the art will recognize that this invention 1s
not limited to the two dimensional and three dimensional
structures described but cover all relevant memory struc-
tures within the spirit and scope of the invention as described
herein and as understood by one of skill in the art.

It will be understood that, although the terms *“first,”
“second,” etc. may be used herein to describe various
clements, these elements should not be limited by these
terms. These terms are only used to distinguish one element
from another. For example, a first storage device could be
termed a second storage device, and, similarly, a second

US 9,619,165 Bl

17

storage device could be termed a first storage device, with-
out changing the meaning of the description, so long as all
occurrences of the “first storage device” are renamed con-
sistently and all occurrences of the “second storage device”
are renamed consistently. The first storage device and the
second storage device are both storage devices, but they are
not the same storage device.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not mtended to be
limiting of the claims. As used 1n the description of the
embodiments and the appended claims, the singular forms

“a,” “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
also be understood that the term *“and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items. It will be
turther understood that the terms “comprises™ and/or “com-
prising,” when used in this specification, specily the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

As used herein, the term “11” may be construed to mean
“when” or “upon” or “in response to determining” or “in
accordance with a determination” or “in response to detect-
ing,” that a stated condition precedent is true, depending on
the context. Similarly, the phrase “if it 1s determined [that a
stated condition precedent 1s true]” or “if [a stated condition
precedent 1s true]” or “when [a stated condition precedent 1s
true]” may be construed to mean “upon determining” or “in
response to determining” or “in accordance with a determi-
nation” or “upon detecting” or “in response to detecting’”
that the stated condition precedent 1s true, depending on the
context.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the 1llustrative discussions above are not intended
to be exhaustive or to limit the claims to the precise forms
disclosed. Many modifications and variations are possible 1in
view of the above teachings. The embodiments were chosen
and described 1n order to best explain principles of operation
and practical applications, to thereby enable others skilled 1n
the art.

What 1s claimed 1s:

1. A method of storing metadata, the method comprising:

at a computing device of a storage system including
non-volatile memory and a tiered data structure,
wherein the tiered data structure includes a plurality of
leaves:

receiving an 1mndication of data to be stored by the storage
system:

selecting, from the plurality of leaves, a leal to store
location information for the data to be stored, wherein
the selected leaf has a first leaf type, wherein leaves of
the first leaf type include entries indicating locations of
variable-length data stored in the non-volatile memory;

determining, using at least one first-type to second-type
criterion, whether to convert the selected leat to a
converted leat, wherein the converted leaf has a second
leal type, wherein leaves of the second type include
entries mdicating locations of fixed-length data stored
in the non-volatile memory;

in response to a determination to convert the selected leaf
to a converted leat, storing, 1n the converted leat, first
location information of the data to be stored; and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

in response to a determination to not convert the selected

leat, storing, 1n the selected leatf, second location 1nfor-
mation of the data to be stored.

2. The method of claim 1, wherein the first location

information includes a physical address of the data to be

stored, and the second location information includes the

physical address of the data to be stored and at least one of:

a logical block address of the data to be stored, or

an indication of length of the data to be stored.

3. The method of claim 1, wherein the tiered data structure
includes at least one leat of the first leaf type and at least one
leat of the second leaf type, wherein the at least one leal of
the second leal type stores a base logical address and a
sequence of fixed-size entries, where each fixed-size entry
for a mapped location includes a physical block address.

4. The method of claim 1, wherein the at least one
first-type to second-type criterion includes a criterion that 1s
satisfied 1n accordance with an indication that an insertion
into the selected leal will cause the selected leaf to split.

5. The method of claim 1, wherein the at least one
first-type to second-type criterion includes a criterion that 1s
satisfied 1n accordance with:

a determination of a total size of:

potential new entries for the selected leaf, indicating
locations of the data to be stored, and
existing entries, 1 any, i the selected leat; and
a determination that the determined total size 1s less than
or equal to a maximum size for all entries of a leat of
the second leaf type.

6. The method of claim 1, further comprising;:

determining, using at least one second-type to first-type

criterion, whether to revert a leaf of the second type
into a new leal of the first leaf type.

7. The method of claim 6, wherein the leat of the second
leat type has entries for a first number of locations, and the
at least one second-type to first-type criterion includes a
criterion that 1s satisfied 1n accordance with a determination
that the new leafl of the first type has suflicient space to
contain entries for all mapped locations indicated by the
entries of the leaf of the second leaf type plus a predefined
margin.

8. The method of claim 6, wherein determining whether
to revert the leat of the second type into the new leatf of the
first type occurs 1n response to an indication of data to be
deleted or unmapped by the storage system and wherein the
leat of the second type contains location information for the
data to be deleted or unmapped.

9. The method of claim 6, wherein the determining
whether to revert the leaf of the second type into the new leaf
of the first type occurs 1n response to an mndication of data
to be overwritten by the storage system and wherein the leaf
of the second type contains location information for the data
to be overwritten.

10. The method of claim 1, wherein one or more of the
receiving, selecting, determining, storing in the converted
leat, or storing 1n the selected leatf are performed by a storage
device of the storage system, wherein the storage device
stores the data to be stored.

11. The method of claim 1, wherein one or more of the
receiving, selecting, determining, storing in the converted
leat, or storing in the selected leal are performed by one or
more subsystems ol the storage system distinct from a
storage device, wherein the storage device stores the data to
be stored.

12. A storage device, comprising:

non-volatile memory; and

US 9,619,165 Bl

19

a controller having one or more processors and controller
memory storing one or more programs, which when
executed by the one or more processors, cause the
storage device to:

receive an indication of data to be stored by the storage
device;

select, from the plurality of leaves, a leatf to store location
information for the data to be stored, wherein the
selected leaf has a first leaf type, wherein leaves of the
first leal type include entries indicating locations of
variable-length data stored 1n the non-volatile memory;

determine, using at least one first-type to second-type
criterion, whether to convert the selected leat to a
converted leaf, wherein the converted leaf has a second

leat type, wherein leaves of the second type include
entries mndicating locations of fixed-length data stored
in the non-volatile memory;

in response to a determination to convert the selected leaf

to a converted leatf, store, in the converted leat, first
location information of the data to be stored; and

in response to a determination to not convert the selected

leat, store, in the selected leat, second location infor-
mation of the data to be stored.

13. The storage device of claim 12, wheremn the selected
leat comprises a leal node of a tiered data structure stored 1n
the non-volatile memory, and the controller includes a tiered
data structure module that stores and retrieves information
within the tiered data structure.

14. The storage device of claim 12, wherein the first
location information includes a physical address of the data
to be stored, and the second location information includes
the physical address of the data to be stored and at least one
of:

a logical block address of the data to be stored, or

an 1ndication of length of the data to be stored.

15. The storage device of claim 12, wherein the tiered data
structure includes at least one leaf of the first leaf type and
at least one leaf of the second leaf type, wherein the at least
one leat of the second leatf type stores a base logical address
and a sequence of fixed-size entries, where each fixed-size
entry for a mapped location includes a physical block
address.

16. The storage device of claim 12, wherein the at least
one {irst-type to second-type criterion includes a criterion
that 1s satisfied 1n accordance with an indication that an
insertion 1nto the selected leatl will cause the selected leaf to
split.

17. The storage device of claim 12, wherein the at least
one first-type to second-type criterion includes a criterion
that 1s satisfied 1n accordance with:

a determination of a total size of:

10

15

20

25

30

35

40

45

50

20

potential new entries for the selected leaf, indicating
locations of the data to be stored, and
existing entries, 1i any, in the selected leaf; and
a determination that the determined total size 1s less than
or equal to a maximum size for all entries of a leaf of
the second leaf type.

18. The storage device of claim 12, wherein the one or
more programs, when executed by the one or more proces-
sors, Turther cause the storage device to determine, using at
least one second-type to first-type criterion, whether to
revert a leal of the second type 1nto a new leat of the first leaf

type.
19. The storage device of claim 18, wherein the leaf of the

second leaf type has entries for a first number of locations,
and the at least one second-type to first-type criterion
includes a criterion that 1s satisfied 1n accordance with a
determination that the new leaf of the first type has sutlicient
space to contain entries for all mapped locations indicated
by the entries of the leal of the second leaf type plus a
predefined margin.

20. A non-transitory computer readable storage medium,
storing one or more programs configured for execution by
one or more processors of the controller of a storage device,
the storage device including non-volatile memory, the one or
more programs including mstructions that when executed by
the one or more processors, cause the storage device to:

recerve an 1ndication of data to be stored by the storage

device;
select, from the plurality of leaves, a leat to store location
information for the data to be stored, wherein the
selected leaf has a first leal type, wherein leaves of the
first leat type include entries indicating locations of
variable-length data stored 1n the non-volatile memory;

determine, using at least one first-type to second-type
criterion, whether to convert the selected leat to a
converted leat, wherein the converted leaf has a second
leal’ type, wherein leaves of the second type include
entries ndicating locations of fixed-length data stored
in the non-volatile memory;

in response to a determination to convert the selected leat

to a converted leaf, store, in the converted leatf, first
location information of the data to be stored; and

in response to a determination to not convert the selected

leaf, store, 1n the selected leatf, second location infor-
mation of the data to be stored.

21. The non-transitory computer readable storage medium
of claim 20, wherein the selected leal comprises a leafl node
of a tiered data structure stored in the non-volatile memory,
and the controller includes a tiered data structure module
that stores and retrieves information within the tiered data
structure.

	Front Page
	Drawings
	Specification
	Claims

