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(57) ABSTRACT

The disclosure 1s directed to protecting data of a scalable
storage system. A scalable storage system includes a plural-
ity of nodes, each of the nodes having directly-attached
storage (DAS), such as one or more hard-disk drives and/or
solid-state disk drives. The nodes are coupled via an inter-
node communication network, and a substantial entirety of
the DAS 1s globally accessible by each of the nodes. The
DAS 1s protected utilizing intra-node protection to keep data
stored 1n the DAS reliable and globally accessible 1n pres-
ence of a failure within one of the nodes. The DAS 1s further
protected utilizing inter-node protection to keep data stored
in the DAS reliable and globally accessible if at least one of
the nodes fails.

21 Claims, 3 Drawing Sheets
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SCALABLE STORAGE PROTECTION

PRIORITY

The present application claims priority to U.S. Provisional

Application Ser. No. 61/696,720, entitled SCALABLE
STORAGE PROTECTION, By Earl Cohen et al., filed Sep.
4, 2012, which 1s currently co-pending, or 1s an application
of which a currently co-pending application 1s entitled to the

benelit of the filing date.

BACKGROUND

Scalable storage systems with directly attached disks
require redundancy mechamsms for data protection. Within
a single node, such as a single server, various techniques are
used for protection of directly-attached storage (DAS), such
as RAID-35, RAID-6, other RAID levels, or wvariations
thereol. In distributed systems or in large-scale storage
systems, such as large JBOD complexes, erasure-coding
techniques are used to provide protection by distributing
error-correction coding over a larger number of disks. Era-
sure-coding, however, requires shipping (1.e. sending and
receiving) large amounts of data. In some embodiments,
data must be updated at r separate disks to handle r out of n
drive failures. When combined with resiliency against node
tailures, the foregoing systems tend to become very expen-
s1ve 1n an amount of redundancy and/or in an amount of data
that must be shipped between nodes for updating or for
recovery.

SUMMARY

An embodiment of the disclosure 1s directed to a storage
system 1ncluding a plurality of processing nodes in commu-
nication with one another. Each processing node includes a
plurality of disks 1n communication with at least one host.
The host 1s configured for writing data to a selected disk of
the plurality of disks. A local redundancy computation unit
1s configured for determining local redundant data utilizing
data written to the selected disk by the host. The local
redundancy computation unit 1s further configured for stor-
ing local redundant data on at least one disk of the plurality
of disks. A delta computation unit 1s configured for deter-
miming delta data utilizing data written to the selected disk
by the host. The delta computation unit 1s further configured
for sending delta data to at least one other processing node.
A global redundancy computation unit 1s configured for

receiving delta data from at least one other processing node.
The global redundancy computation umit 1s further config-
ured for determining global redundant data utilizing delta
data received from the other processing node and storing
global redundant data on at least one disk of the plurality of
disks.

It 1s to be understood that both the foregoing general
description and the following detailed description are not
necessarily restrictive of the disclosure. The accompanying,
drawings, which are incorporated in and constitute a part of
the specification, illustrate embodiments of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the disclosure may be better under-
stood by those skilled in the art by reference to the accom-
panying figures 1 which:
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FIG. 1 1s a block diagram 1illustrating a scalable storage
system, 1n accordance with an embodiment of the disclo-
SUre;

FIG. 2 1s a flow diagram 1llustrating a method of process-
ing a host data write, 1n accordance with an embodiment of
the disclosure: and

FIG. 3 1s a flow diagram 1llustrating a method of process-
ing delta data, in accordance with an embodiment of the
disclosure.

DETAILED DESCRIPTION

Retference will now be made 1n detail to the embodiments
disclosed, which are 1illustrated in the accompanying draw-
Ings.

FIGS. 1 through 3 generally illustrate embodiments of a
system and method for protecting at least one scalable
storage system. Some challenges 1n scalable storage systems
include providing a combination of global access to all data,
resiliency from disk failures, and mechamisms for handling
failures of one or more processing nodes. At least some of
the foregoing challenges are accomplished by balancing
redundancy at the intra-node level to protect against intra-
node failures, such as hard disk drive (HDD) failures, with
redundancy at the inter-node level to protect against failures
of one or more of the nodes, such as {failures of the
intra-node protection. In some embodiments, caching at the
nodes 1n a distributed manner further improves local per-
formance of each of the nodes and improves the system-
level performance of the scalable storage system by enabling
carlier acknowledgements of writes used for data protection.

FIG. 1 illustrates an embodiment of a storage system 100
such as, but not limited to, a scalable directly-attached
storage (DAS) system. The system 100 includes a plurality
of processing nodes 102, such as servers. Each of the
processing nodes 102 includes respective (1.e. local) host
104 (such as one or more processors or CPUs), and respec-
tive (1.e. local) DAS 106, such as a plurality of disk drives
106. In various embodiments, the local DAS 106 are com-
municatively coupled to the local host 104 via one or more
respective (1.e. local) I/O controllers 108. A substantial
entirety, such as all, of the storage 106A-106Z 1s globally
visible to all of the processing nodes 102. The DAS 106A-
106C of a particular processing node 102A 1s termed the
respective “local storage” of the particular processing node
102A. DAS 106D-1067 of other processing nodes 102B-
102M 1s termed the respective “foreign storage™ of the
particular processing node 102A. The processing nodes 102
are 1n communication with one another via an inter-node
communication network 116 such as, but not limited to, a
serial attached small computer system interface (SAS)
switching interconnect. The processing nodes 102 have
access to the substantial entirety of the storage 106A-1067
through the inter-node communication network 116. In some
embodiments, however, access to the respective local stor-
age 106A-106C of a particular processing node 102A 1is
quicker and/or higher in bandwidth than access to the
respective foreign storage 106D-1067. In some embodi-
ments, the inter-node communication network 116 includes,
but 1s not limited to, at least one SAS fabric, Ethernet
network, InfiniBand network, peripheral component inter-
connect express (PCle) mterconnect network, Local Area
Network (LAN), Wide Area Network (WAN), proprietary
network, or any combination of the foregoing.

In some embodiments, the system 100 further includes
locking and/or coherency mechanisms to facilitate sharing
of the storage 106. For example, a directory-based caching
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mechanism enables tracking ownership and/or modification
of data. In some embodiments, each of the processing nodes
102 includes a cache, such as a disk cache, to store fre-
quently accessed data. According to various embodiments,
some of the frequently-accessed data 1s local to the process-
ing node and/or some of the frequently-accessed data is
foreign. In some embodiments, the disk cache includes, but
1s not limited to, a solid-state disk drive (SSD).

Some failure scenarios of concern 1n multi-node storage
systems 100, include:

Failure of one or more mput/output (I/0) devices, such as

HDDs or SSDs 106 of a processing node 102;
Failure of a pathway to one or more of the I/O devices 106
within one of the processing nodes 102;

Failure of some or all of a processing node 102, such as
a host 104 or intra-node communication infrastructure;
and

Failure of higher-level communication infrastructure,

such as the inter-node communication network 116,

coupling the processing nodes 102.
These failures are categorized as intra-node or inter-node
failures. An intra-node failure 1s one that renders at least a
portion of a processing node 102 unusable but does not
prevent continued operation of the processing node 102,
including global access to data that 1s local to the processing
node 102. An inter-node failure i1s one that renders a pro-
cessing node 102 or at least a portion of data that 1s local to
the processing node 102 unusable. Some intra-node failures
are fixable at a level of the aflected processing node 102, and
are not globally visible to other processing nodes 102
(except for possible performance 1mpacts).

Failures are also characterized as hard (e.g. solid, repeat-
able) or as soft (e.g. one-time, transient, goes away after a
power-cycle). Many node failures are soft, such as software
crashing, and are thus transient or short in duration. Disk
tailures are also either soft (e.g. a transient, uncorrectable
error that 1s recoverable by writing new data) or hard (e.g.
failure of the disk due to a head crash). Failure duration,
hence hard versus soit failure categorization, 1s relevant for
computing probability of failure based on how many con-
temporaneous errors of various types are considered. In
some embodiments, probability of simultaneously having
multiple processing node failures if most processing node
tallures are soft failures 1s less than probability of simulta-
neously having multiple processing node failures 1f most
processing node failures are hard failures.

A system-level failure 1s a failure of the multi-node
storage system 100, such as an unrecoverable loss of any of
the host-written (i.e., non-redundant) data stored on any of
the processing nodes 102 or a loss of more than a specified
number of the processing nodes 102. In some embodiments,
the system 100 1s designed, at least in part, to reduce
probability of system-level failure to less than a specified
value.

Simple erasure-coding solutions tend to entaill a high
amount redundancy and/or data shipping. For example,
consider m nodes 102, each including n disks 106 (such as
HDDs or SSDs), thus a total of m*n disks 106. To protect
against a failure of any 3 disks 106, at least three of the disks
106 must include redundant data. Any write to any of the
other (m*n-3) data (1.e. non-redundant) disks 106 requires
an update of the 3 redundant disks 106. When a host 104,
such as a processor, performs a small, random write (e.g. 4
KB or 8 KB write) to one of the data disks 106, four
similar-sized writes must be done 1n total, and three of the
four writes mvolve computations (1.e. updating the redun-
dant data based on old data prior to the host write and new

10

15

20

25

30

35

40

45

50

55

60

65

4

data written by the host). Furthermore, 11 one or more node
fallures are to be handled with erasure-coding, the three
redundant disks 106 are preferably located on different
nodes 102. Accordingly, the host write requires: reading old
data from a selected data disk 106A of a node 102A
including the selected data disk; replacing old data with new
data provided by the host 104 by writing the new data to the
selected data disk 106A; computing a function, such as a
delta, between the old data and the new data; shipping the
delta to the three redundant disks 106, which may be located
on different nodes 102; reading an old version of the
redundant data on each node 102 that includes one of the
redundant disks 106; determining an update to the redundant
data utilizing the delta; and writing back a new version of the
redundant data. Shipping the delta to multiple nodes 102
consumes both latency and power. In some embodiments, a
further delay occurs because the host write cannot be
acknowledged until the host write data 1s “safe”, and the host
write data 1s not safe until the redundant data writes are
complete.

A single protection solution that works well for failures
within a node 102, such as RAID, may not be adequate
across a plurality of nodes 102. A global solution such as
erasure-coding, illustrated in the foregoing example, may be
too costly 1n terms of an amount of data that 1s shipped
between nodes 102. Furthermore, various failure scenarios
have different likelihoods. Typically, decreasing probability
of system-failure 1s more important than separately decreas-
ing probability of disk failure or probability of node failure.
In some embodiments, the system 100 1s configured for
achieving one or more of: less data shipped between nodes;
higher performance; lower cost (e.g. lowering an amount of
redundancy required for a given system-level failure prob-
ability); lower power; lower latency; and other power, cost,
and performance metrics. For example, failures of individual
hard disk drives 106 can be very likely. In some embodi-
ments, therefore, probability of system-failure 1s decreased
by providing more redundancy to protect against hard disk
drive failures and less for node failures, thereby decreasing
probability of system-failure without overly compromising
performance or requiring high data shipping or redundancy
COsts.

In an embodiment (see FIG. 1), the system 100 includes
a first type of protection (1.e. “inner”, “local”, or “intra-
node” protection) to protect data stored i I/O devices 106
within a node 102, and a second type of protection (1.c.
“outer”, “global”, or “inter-node” protection) to protect
against failures of one or more nodes 102. The foregoing
scalable storage protection scheme decreases an amount of
data that must be shipped between nodes 102 for protection
and for recovery. Furthermore, a delta-caching mechanism
decreases time required to acknowledge that a host write 1s
sately stored.

In some embodiments, the system 100 includes separate
mechanisms 110, 114 to protect against local (i.e. intra-
node) vs. global (1.e. inter-node) failures. In further embodi-
ments, the local protection mechanisms 110 and global
protection mechanisms 114 are each selected to reduce a
respective failure probability, thereby reducing an overall
system-level failure probability to a specified level. In
various embodiments, the local protection mechanisms 110
and global protection mechanisms 114 are each selected to
reduce an amount of data that 1s shipped among nodes 102
for redundant data storage and recovery from failures.

In some embodiments, the system 100 with scalable
storage protection offers cost advantages. For example,
consider the previously described simple, erasure-coding
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with m nodes 102 each with n disks 106 and a requirement
to protect against 3 disk failures, and assuming the redun-
dant disks 102 are all on different nodes 102. The simple,
erasure-coding approach 1s shipping three times as much
data as the write data to other nodes 102 for redundancy. The
multiple layer protection offered by the system 100 with
scalable storage protection allows flexible balancing. For
example, 1n some embodiments the system 100 1s designed
based on various failure probabilities (e.g. hard failures
versus solt failures) or expense factors (e.g. expense of
shipping data).

In an exemplary embodiment of the system 100 with
scalable storage protection instead of the simple, erasure-
coding approach described above, two of n disks 106 at each
of the nodes 102 include redundant local data of that node
102, and one or more of the m nodes 102 (1.e. redundant
nodes) mclude globally redundant data. In an embodiment
with one redundant node 102, when a host 104 performs a
small, random write (e.g. 4 KB or 8 KB write) to one of the
data disks 106, four similar-sized writes must be done 1n
total, but three of the similar-sized writes are local (1.e. the
host write data and two local redundant data writes). Only
one of the similar-sized writes must be shipped to the
redundant node 102. Compared to the simple, erasure-
coding example, the amount of data to be shipped 1s reduced
(e.g. 24 as much). In the foregoing example, the system 100
with scalable storage protection i1s able to handle at least
three disk failures. In some embodiments, the system 100 1s
enabled to handle two disk failures per node 102.

In the foregoing example, three disk failures on one node
102 1s substantially equivalent or similar to failure of a node
102 because the two redundant disks 106 of each node 102
are only able to correct for failures of two of the n disks 106
at the node 102. In some embodiments, probability of
intra-node protection failing 1s included 1n probability of the
node 102 failing and 1s utilized, at least in part, to determine
a required level of inter-node protection. The simple, era-
sure-coding approach 1s able to handle up to three node
tailures, but a consequence of this 1s that a higher percentage
of the nodes 102 are used to process globally redundant data.
If node failure probability 1s small compared to disk failure
probability, the scalable storage protection alternative offers
equivalent or better protection at a lower cost 1n at least one
of I/O shipping and redundancy.

The foregoing examples illustrate at least some advan-
tages of the system 100 with scalable storage protection
compared to a simple, erasure-coding protected system.
However, the examples are not intended to limait the disclo-
sure 1n any way. According to various embodiments, the
system 100 includes any combination of selected parameters
and configurations implementing the scalable storage pro-
tection scheme generally described herein. In an embodi-
ment, the system 100 includes m nodes 102, each with n
disks 106. The system 100 1s configured to survive k node
tailures (e.g. k=2). Every group of g disks includes at least
h redundant disks 106 to handle disk-level {failures
adequately (e.g. h=3 out of g=10 disks 106 are redundant).

In some embodiments, g=n by appropriate scaling of h.
Accordingly, the system 100 includes m*n total disks 106
and h*m of the disks 106 store redundant data. To survive k
of m node failures, the redundant disks 106 in one codeword
(e.g. one protection group) are on at least k different nodes
102. None of the m nodes 102 1s able to have more than
h*m/k of the redundant disks 106 that are protected by a
same codeword. Otherwise, k node failures may not be
survivable. In an embodiment, therefore, n 1s greater than
h*m/k or redundant data must be present on more than k of
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6
the nodes 102. For example, 1if n=10, m=8, h=3, and k=2,
then 24 redundant disks 106 out of 80 are required. How-
ever, there are only 10 disks 106 per node 102 so the

redundant disks must be spread among at least three nodes,
even though k 1s only 2.

Erasure-coding may be able to meet reliability require-
ments; however, 1t has a number of deficits including the
following. An h of g erasure code 1s computationally expen-
stve If h 1s larger than k, then either one node 102 must
process multiple erasure code updates (leading to unbal-
anced computational eflort), or required I/O shipping 1is
proportional to h rather than k. If n 1s less than h*m/k, then
I/O shipping 1s greater than proportional to k. Recovery from
even a single disk failure generally requires I/O shipping.
Furthermore, system-level performance 1s typically poor
because having at least one failed disk 106 1s common and
I/O shipping is often required for recovery.

The system 100 with scalable storage protection includes
an 1ntra-node protection mechanism 110 using local redun-
dancy to protect against intra-node failures, such as disk
failures, and an inter-node protection mechanism 114 using
global redundancy to protect against inter-node failures,
such as node failures. According to various embodiments,
the system 100 offers several advantages including one or
more of: I/O shipping 1s based on a selected number of
survivable node failures and i1s orthogonal to handling of
disk failures; hard disk failures are recoverable locally
without I/O shipping with up to a specified reliability level
being recoverable with intra-node protection; shorter, sim-
pler coding types are used to achieve a specified level of
system-failure probability, allowing for more efhicient hard-
ware; and other performance, efliciency, and/or scalability
advantages.

The 1ntra-node protection mechanism 110 includes one or
more coding types, such as one or more ol: RAID-1;
RAID-2; RAID-3; RAID-4; RAID-5; RAID-6; any other
RAID level; an erasure code, such as a Reed-Solomon code,
a Tountain code, a Raptor code, a rate-less erasure code, or
an Online code; and any combination of the foregoing. The
inter-node protection mechanism 114 includes one or more
coding types, such as one or more of: RAID-1; RAID-2;
RAID-3; RAID-4; RAID-5; RAID-6; any other RAID level;
an erasure code, such as a Reed-Solomon code, a fountain
code, a Raptor code, or an Online code; and any combination
of the foregoing.

Data stored on a plurality of disks 106 that i1s protected by
one instance of the intra-node protection mechanism 110 or
the inter-node protection mechanism 114 1s referred to as a
codeword. For example, data stored on five disks, one of
which 1s redundant as 1n RAID-3, represents one codeword
for each separately readable and correctable set of the data.
RAID-5 1s operable at a byte level, whereas many disks are
only able to read 512 B sectors of data, hence 1in such a case,
each codeword would be a number of 512 B sectors, one
sector from each of the five disks.

In some embodiments, the 1ntra-node protection mecha-
nism 110 and the inter-node protection mechanism 114 are
both configured for a same coding type. For example, in
various embodiments, both the intra-node protection mecha-
nism 110 and the iter-node protection mechanism 114 use
a two-erasure-correcting code, such as in RAID-6, or both
can use a one-erasure-correcting code, such as in RAID-5. In
other embodiments, the intra-node protection mechanism
110 and the inter-node protection mechanism 114 use dif-
terent coding types. For example, in some usage scenarios,
the intra-node protection mechanism 110 uses a two-erasure-




US 9,613,656 B2

7

correcting code and the inter-node protection mechanism
114 uses a one-erasure-correcting code, such as in RAID-3.

Computations of the intra-node protection mechanism
110 and the inter-node protection mechanism 114 are
according to a respective coding type. For example, a
one-erasure-correcting RAID-5 coding type requires XOR
computations, and a RAID-6 coding type requires compu-
tations according to a two-erasure-correcting code, such as
a Reed-Solomon code.

Each of the plurality of processing nodes 102 of the
system 100 includes at least one host 104, such as a
processor, 1n communication with a plurality of disks 106 of
each node 102. In some embodiments, the host 104 includes,
but 1s not limited to, at least one single-core or multiple-core
CPU. In some embodiments, an I/O controller 108 1s con-
figured for coupling the disks 106 to the host 104. Each node
102 further includes local memory, such as cache memory
and/or DRAM memory. Each node 102 further includes a
respective set ol one or more disks 106, such as hard disk
drives and/or solid-state disks. Each node 102 {further
includes an inter-node communication mechanism commu-
nicatively coupling the nodes via the mter-node communi-
cation network 116, such as a network 1nterface card or any
other components present in networked processing systems
known to the art.

In some embodiments, the host 104 includes one or more
multi-core x86-architecture CPU chips. In some embodi-
ments, the /O controller 108 includes a Raid-On-Chip
controller (ROC), and the host 104 1s coupled to the 1/0
controller 108 via a PCle interconnect. In some embodi-
ments, the one or more disk drives 106 include one or more
SAS and/or SATA hard disk drives. In some embodiments,
the one or more disk drives 106 include one or more
solid-state disk drives. In some embodiments, the inter-node
communication mechanism is integrated into the I/O con-
troller 108. For example, a ROC provides SAS and/or SATA
connectivity to both local disks 106 and, via a SAS fabric,
to disks 106 of other processing nodes 102.

Each processing node 102 further includes a respective
intra-node redundancy computation unit 110 configured to
determine redundant data for protection of data stored in the
disks 106 of the node 102. Each processing node 102 further
includes a respective delta redundancy computation unit 112
configured to determine delta data used locally by the
intra-node redundancy computation unit 110 and/or sent to
other nodes 102 1n response to a write of data stored 1n the
disks 106 of the node 102. Each processing node 102 further
includes an inter-node redundancy computation unit 114
configured to determine redundant data for protection of
data stored in the disks 106 of other the nodes 102.

In some embodiments, one or more of the redundancy
computation units 110, 112, and 114 are combined into a
single mechanism and/or share one or more components.
For example, the redundancy computation units 110, 112,
and 114 are, according to various embodiments, embodied 1n
separate or combined hardware, software, and/or firmware
modules, such as one or more electronic circuits or program
instructions executed from carrier media by at least one
processor. In some embodiments, the controller 108 includes
one or more of the redundancy computation units 110, 112,
and 114 and/or i1s configured to perform one or more
tunctions of the redundancy computation units 110, 112, and
114.

In some embodiments, a first intra-node protection
mechanism (e.g., RAID-3) protects a first subset of the disks
106 of a first processing node 102A, and a second 1ntra-node
protection mechanism different from the first intra-node
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protection mechanism (e.g., RAID-6) protects a second
subset of the disks 106 of the first processing node 102A. In
further embodiments, the first subset of the disks 106 1s of
a different type than the second subset of the disks 106. For
example, the first subset of the disks 106 may include one or
more HDDs, and the second subset of the disks 106 may
include one or more SSDs. In some embodiments, a first
inter-node protection mechanism provides inter-node pro-
tection for disks 106 of the first subset of the disks 106, and
a second inter-node protection mechamsm (different from
the first inter-node protection mechanism) provides inter-
node protection for disks 106 of the second subset of the
disks 106.

In some embodiments and/or usage scenarios, two or
more disks 106 of one of the processing nodes 102 are
protected by a same codeword of an inter-node protection
mechanism 114. In other embodiments and/or usage sce-
narios, no more than one of the disks 106 of any of the
processing nodes 102 1s 1n a same codeword of an inter-node
protection mechamsm 114.

In some embodiments, a write of data by the host 104A
of a first processing node 102A to one of the disks 106 of the
first processing node 104A causes an update of first local
(1.e. mtra-node) redundant data stored in other disks 106 of
the first processing node 102A. The host data write also
causes an update of global (1.e. inter-node) redundant data
stored 1n at least some of the disks 106 of a second
processing node 102B. In some embodiments, the update of
the global redundant data causes an update of second local
redundant data stored 1n other disks of the second processing
node 102B. In some embodiments, the host data write 1s
acknowledged subsequent to the update of global redundant
data reaching a point of safety, such as when the host data

write 1s recoverable even if the first processing node 102A
fails.

FIGS. 2 and 3 respectively illustrate a method 200 of
processing a data write and a method 300 of processing delta
data to provide scalable storage protection. System 100 1s a
mamifestation of methods 200 and 300 and all steps or
features described with regard to embodiments of system
100 or methods 200 or 300 are applicable to both the system
100 and methods 200 and 300. However, 1t 1s noted herein
that one or more steps of methods 200 or 300 may be
executed via other means known to the art. Embodiments of
system 100 described herein should not be interpreted to
limit methods 200 or 300 1n any way.

At step 202, data 1s written to a selected logical block
address (LBA) by a host 104A of a first processing node
102A. At step 204, at least one destination disk 106 of the
first processing node 102A storing data of the selected LBA
and one or more redundant disks 106 of the first processing
node 102A storing intra-node protection data for the desti-
nation disk 106 are determined. In some embodiments, the
destination and intra-node redundant disks 106 are deter-
mined by at least one of the host 104A and the controller
108 A of the first processing node 102A. For example, driver
soltware executing on the host 104 A of the first processing
node 102A determines the destination disk 106, and the
controller 108 A determines the redundant disks 106. At step
206, one or more redundant processing nodes 102 storing
inter-node protection data for the destination disk 106 are
determined by at least one of the host 104A and the
controller 108A of the first processing node 102A.

At step 208, old data 1s read from the destination disk 106
at the selected LBA. At step 212, new data of the host data
write 1s written to the destination disk 106 at the selected
LBA. At step 210, the delta computation unit 112A of the
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first processing node 102A determines delta data utilizing
the new data and the old data. At step 214, the intra-node
redundancy computation unit 110A of the {first processing
node 102 A updates {irst redundant data stored on the redun-
dant disks 106 of the first processing node 102A according
to the delta data.

At step 216, the first processing node 102A sends the delta
data to at least one redundant processing node 102, such as
a second processing node 102B different from the first
processing node 102A. Referning to FIG. 3, the second
processing node 102B receives the delta data at step 302,
and stores the delta data in the disk cache of the second
processing node 1028 at step 304. Once the delta data 1s
stored 1n the disk cache, at step 306, the second processing
node 102B 1s configured to acknowledge completion of the
delta data write to the first processing node 102A. At this
point, the second processing node 1s able to participate in
recovery of the data written to the selected LBA by the host
104 A of the first processing node 102A, i1 the first process-
ing node 102A were to fail. At step 218, a determination 1s
made that all of the redundant nodes 102 have acknowl-
edged completion of the delta data writes. At step 220, the
completion of the host data write 1s acknowledged to the
host 104 A of the first processing node 102A.

At step 308, subsequent to storing the delta data in the
disk cache of the second processing node 102B, delta data
1s selectively flushed from the disk cache. In some embodi-
ments, such as where the disk cache 1s small, step 308 1s
performed relatively quickly, as compared to other embodi-
ments with a larger disk cache that use algorithms such as
least-recently used to determine when to flush. At step 310,
in response to flushing or making a determination to flush
the delta data from the disk cache, one or more inter-node
redundancy disks 106 of the second processing node 102B
storing the inter-node protection data corresponding to the
delta data and one or more redundant disks 106 of the second
processing node 102B storing intra-node protection data for
the inter-node redundancy disks 106 are determined by at
least one of the host 104B and the controller 108B of the
second processing node 102B.

At step 312, the inter-node redundancy computation unit
114B of the second processing node 102B updates global
redundant data stored on the inter-node redundancy disks
106 of the second processing node 102B according to the
delta data. At step 314, the intra-node redundancy compu-
tation unit 1106 of the second processing node 102B updates
second local redundant data stored on the redundant disks
106 of the second processing node 102B according to the
update of the inter-node redundancy disks 106. At step 316,
the delta data 1s removed from the disk cache of the second
processing node 102B. In some embodiments, such as where
the disk cache 1s volatile, step 306 1s delayed until after one
or more of step 312 and/or step 314 to ensure that the delta
data 1s non-volatilely stored.

In some embodiments, delta data shipped between nodes
102 for computation of global redundant data 1s a function
of old data (prior to a write of data by a host 104) and new
data written by the host 104. In some embodiments, delta
data 1s determined utilizing an XOR function or an XNOR

function of old data and new data written by the host 104.
In other embodiments, delta data includes the old data and
the new data, and both old and new data are shipped between
nodes 102. In some embodiments, delta data further includes
at least one of: an indication of which node generated the
delta data; a position within an inter-node protection code-
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word of a write that caused the delta data to be generated;
and other information associated with an origin and/or a
position of the delta data.

In some embodiments, inter-node redundancy computa-
tion 1s performed independently on each of one or more
nodes 102 storing a portion of the global redundant data. For
example, with a RAID-6 coding type using a two-erasure-
correcting Reed-Solomon code, delta data 1s sent to each of
two processing nodes 102 storing a portion of the global
redundant data, and each of the two processing nodes 102
independently updates a portion of the global redundant
data. For a two-erasure-correcting Reed-Solomon code, a
position of the delta data within a codeword of the Reed-
Solomon code 1s sent with the delta data, and each of the two
processing nodes 102 1s configured to independently com-
pute an update to a portion of the global redundant data by
determining a corresponding update to a portion of a remain-
der obtained when data in the position of the delta data
within the codeword 1s divided by a generator polynomial of
the Reed-Solomon code.

In some embodiments, delta data 1s reduced and/or com-
bined locally prior to shipping to others of the nodes for
computation of global redundant data. In a first example, a
first write of data by the host of a first one of the processing
nodes and a second write of data by the host of the first
processing node are to a same LBA, and a single delta data
1s shipped corresponding to both of the first write and the
second write. For example, where the function 1s an XOR,
the delta data corresponds to old data (prior to the first write)
XORed with second (final) data of the second write. In a
second example, a codeword of an inter-node protection
mechanism covers two or more disks stored on a {irst one of
the processing nodes, and a write to more than one of the two
or more disks causes a single delta data corresponding to the
write to be created. Depending on a coding type of the
inter-node protection mechamsm and a specified reliability,
a size of the delta data 1s equal to a size of the write to just
one of the two or more disks.

In some embodiments, a host data write of a first pro-
cessing node 102A generates a plurality of different delta
datas, each to be sent to a corresponding processing node
102 storing a portion of the global redundant data. In other
embodiments, a host data write of a first processing node
102 A generates a single delta data that 1s sent to one or more
processing nodes 102 storing a portion of the global redun-
dant data.

In some embodiments, a host data write of a first pro-
cessing node 102A 1s to one of the disks 106 of a second
processing node 102B different from the first processing
node 102A (1.e. a “foreign™ data write). With respect to the
disks 106 of the system 100, the foreign write 1s performed
similarly to a local write. However, data of the foreign write
1s shipped to the second processing node 102B rather than
staying local to the first processing node 102A. In some
embodiments, another difference 1s that an acknowledgment
of completion of the foreign write 1s returned to the first
processing node 102A by the second processing node 102B
subsequent to the second processing node 102B determining,
completion of any inter-node redundant writes due to the
foreign write.

In some embodiments, at least some of the processing
nodes 102 include a disk cache, such as a solid-state disk
used as a cache. The disk cache stores one or more of: data
(e.g. storage) accessed by the host 104 of the processing
node 102; data accessed by the host 104 of another process-
ing node 102; local redundant data of the processing node

102; global redundant data stored on disks 106 of the
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processing node 102; delta data computed by the processing
node 102 and/or received from another processing node 102;
and other types of data. In some embodiments, storing delta
data recerved from other processing nodes 102 1n the disk
cache enables an acknowledgement of safety of the delta
data and thus of safety of the corresponding host data write
prior to updating of global redundant data and/or the second
local redundant data protecting the global redundant data.

In some embodiments, the disk cache of a processing

node 102 1s managed by one or more of: the host 104 the
processing node 102; an 1/O controller 108, such as a ROC,
ol the processing node; a dedicated management processor;
and any combination of the foregoing.
In some embodiments, the disk cache tags delta data
differently from other types of data. In some embodiments,
the delta data 1s tagged as being both dirty and in deﬁ.ta
format, as opposed to being able to be stored directly like
non-delta dirty data. In order to flush the delta data from the
disk cache of a first processing node 102A, the inter-node
redundancy computation unit 114A of the {first processing
node 102A 1s configured to update global redundant data
stored 1n the disks 106 of the first processing node 102A
according to the delta data, prior to the delta data being
deleted or removed from the disk cache. In some embodi-
ments, updating the global redundant data stored 1n the disks
106 of the first processing node 102A includes updating
intra-node redundant data protecting the global redundant
data. The intra-node redundant data stored in other disks of
the first processing node 102 A 1s updated via the intra-node
redundancy computation unit 110A of the first processing
node 102A.

In some embodiments wherein delta data 1s stored 1n the
disk cache of a processing node 102, the processing node
102 receiving delta data performs at least a portion of the
inter-node redundancy computation on the delta data prior to
storing the delta data 1n the disk cache and stores a trans-
formed version of the delta data in the disk cache. For
example, for a multiple-erasure-correcting code, the
received delta data 1s not 1n a form that 1s directly able to be
combined into global redundant data stored 1n the processing
node 102. By transforming the received delta data using the
inter-node redundancy computation unit 114, the trans-
tormed delta data 1s able to be later combined with the global
redundant data via a simpler operation, such as an XOR
function. In some embodiments, storing the transformed
version ol the delta data in the disk cache further enables
combining subsequently received delta data into the trans-
formed version of the delta data, advantageously saving
space 1n the disk cache. For example, with a Reed-Solomon
code as the inter-node protection coding type, the delta data
1s transformed according to a generator polynomial of the
Reed-Solomon code mto an update (via XOR) to a portion
of a codeword remainder stored as the global redundant data.

In some embodiments cached delta data 1s updated or
combined 1n the disk cache. For example, first delta data
corresponding to a first write at a selected logical block
address (LBA) by a host 104A of a first processing node
102A 1s stored 1n the disk cache of a second processing node
102B, and second delta data corresponding to a second write
at the selected LBA 1s received by the second processing
node 102B. The disk cache of the second processing node
102B 1s configured to update the first delta data according to
the second delta data so that only a single update of the
global redundant data stored in the disks 106 of the second
processing node 102B 1s required for both of the first write
and the second write. For example, 1f the delta data is
computed at the first processing node 102A utilizing an
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XOR function, the first delta data 1s updated by an XOR
operation with the second delta data.

In some embodiments, first delta data corresponding to a
first write by the host 104 A of the first processing node 102A
to data protected by an inter-node protection codeword 1s
stored 1n the disk cache of a second processing node 102B,
and second delta data corresponding to a second write to
data protected by the inter-node protection codeword is
received by the second processing node 102B. The disk
cache of the second processing node 102B 1s configured to
update the first delta data according to the second delta data
so that only a single update of the global redundant data
stored 1n the disks 106 of the second processing node 1028
1s required for both of the first write and the second write.

In some embodiments, local redundant data 1s distributed
among the disks 106 of a processing node 102 in a deter-
mined fashion, such as by a CRUSH (Controlled Replication
Under Scalable Hashing) algorithm or another data distri-
bution algorithm. In some embodiments, global redundant
data 1s distributed among the disks 106 of two or more of the
processing nodes 102 1n a determined fashion, such as by the
CRUSH algorithm or another data distribution algorithm.
For example, a first inter-node protection codeword spans
disks 106 on a first subset of the processing nodes 102, and
a second inter-node protection codeword spans disks 106 on
a second subset of the processing nodes 102 diflerent from
the first subset. In some embodiments, the first subset and
the second subset overlap (1.e. include a at least one pro-
cessing node 102 1n common).

In some embodiments, the intra-node redundancy com-
putation unit 110 1s part of and/or integrated into one or more
of the disks 106. For example, some SSDs implement a
RAID-3-like or RAID-6-like redundancy mechanism pro-
tecting data stored 1n non-volatile memory chips of the SSD.
The redundancy mechanism of the SSD 1s able to serve as
the intra-node redundancy computation unit 110 for data
stored 1n the SSD.

In some embodiments, the processing nodes 102 are
substantially i1dentical or similarly configured. In other
embodiments, the processing nodes 102 are not all symmet-
ric, either in number and/or configuration of the host(s) 104,
amount of the local memory, number, configuration, type,
and/or capacity of the disks, or in any other parameter(s),
component(s), or configuration(s).

In some embodiments, at least some of the processing
nodes 102 have limited or no processing ability, and are
cllectively “disk-only.” The disk-only processing nodes 102
participate 1 global redundancy computation, such as by
storing a portion of the global redundancy. In some embodi-
ments, one of the processing nodes 102 becomes disk-only
due to a crash of the respective host 104, provided that at
least some storage of the disk-only processing node 102 1s
still globally accessible. Accordingly, foreign writes from
other processing nodes 102 to storage of the disk-only
processing node 102 are still able to cause delta data to be
generated and transmitted, such as by a controller 108 (e.g.
a ROC) of the disk-only processing node 102.

In some embodiments, a plurality of intra-node protection
mechanisms 110 and/or inter-node protection mechanisms
114 are used according to one or more of: a type and/or a
reliability of the disks 106 being protected; a type of data
stored 1 the disks 106 being protected; a probability of
failure of the nodes 102 covered by a selected inter-node
protection mechamsm 114; and other factors.

It should be recognized that in some embodiments the
various steps described throughout the present disclosure
may be carried out by a single computing system or multiple
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computing systems. A computing system may include, but 1s
not limited to, a personal computing system, mainframe
computing system, workstation, 1image computer, parallel
processor, or any other device known 1n the art. In general,
the term “computing system™ 1s broadly defined to encom-
pass any device having one or more processors, which
execute mstructions from a memory medium.

Program instructions implementing methods, such as
those manifested by embodiments described herein, may be
transmitted over or stored on carrier medium. The carrier
medium may be a transmission medium, such as, but not
limited to, a wire, cable, or wireless transmission link. The
carrier medium may also include a storage medium such as,
but not limited to, a read-only memory, a random access
memory, a magnetic or optical disk, or a magnetic tape.

Embodiments manifesting methods described herein may
include storing results 1n a storage medium. After the results
have been stored, the results are accessible in the storage
medium and used by any of the method or system embodi-
ments described herein, formatted for display to a user, used
by another software module, method, or system, etc. Fur-
thermore, the results may be stored “permanently,” “semi-
permanently,” temporarily, or for some period of time. For
example, the storage medium may be random access
memory (RAM), and the results may not necessarily persist
indefinitely 1n the storage medium.

It 1s further contemplated that any embodiment of the
disclosure manifested above as a system or method may
include at least a portion of any other embodiment described
herein. Those having skill in the art will appreciate that there
are various embodiments by which systems and methods
described herein can be effected, and that the implementa-
tion will vary with the context in which an embodiment of
the disclosure deployed.

Furthermore, 1t 1s to be understood that the invention 1s
defined by the appended claims. Although embodiments of
this 1nvention have been illustrated, 1t 1s apparent that
various modifications may be made by those skilled 1n the
art without departing from the scope and spirit of the
disclosure.

What 1s claimed 1s:

1. A storage system, comprising:

a plurality of processing nodes in communication with

one another, each processing node including:

a plurality of disks local to a respective processing
node;

at least one host, the at least one host configured to
write data to a first selected disk of the plurality of
disks;

a local redundancy computation unit configured to
determine local redundant data utilizing the data
written to the first selected disk by the at least one
host to establish a redundancy protection for the data
written 1n the respective processing node, the local
redundant data being stored on at least one disk of
the plurality of disks;

a delta computation unit configured to determine a first
delta data utilizing the data written to the first
selected disk by the at least one host, the delta
computation umt further configured to send the
determined first delta data to at least one other
processing node; and

a global redundancy computation unit configured to
receive a second delta data from at least a second
processing node of the plurality of processing nodes,
the global redundancy computation unit further con-
figured to determine global redundant data utilizing
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the received second delta data, the global redundant

data establishing a redundancy protection for data

contained 1n the at least the second processing node,

the global redundant data being stored on at least one

disk of the plurality of disks,

wherein the second delta data 1s derived from data
written to a second selected disk of a plurality of
disks foreign to the respective processing node.

2. The system of claim 1, wherein the local redundancy
computation unit 1s further configured to recover the data
written to the first selected disk utilizing the local redundant
data when the first selected disk fails.

3. The system of claim 1, wherein the global redundancy
computation unit 1s further configured to recover data of the
at least a second processing node utilizing the global redun-
dant data when the at least a second processing node fails,
and wherein the second delta data 1s sent by a second local
redundancy computation unit of the at least the second
processing node.

4. The system of claim 1,

wherein the local redundant data 1s first local redundant

data,

wherein the local redundancy computation unit 1s further

configured to determine second local redundant data
utilizing the global redundant data, and

wherein the second local redundant data 1s stored on at

least one disk of the plurality of disks local to the
respective processing node.

5. The system of claim 4,

wherein the local redundancy computation unit 1s further

configured to recover the data written to the first
selected disk utilizing the local redundant data when
the first selected disk fails,
wherein the global redundancy computation unit 1s further
configured to recover data of the at least the second
processing node utilizing the global redundant data
when the at least the second processing node fails, and

wherein the local redundancy computation unit 1s further
configured to recover the global redundant data utiliz-
ing the second local redundant data when the at least
one disk storing the global redundant data fails.

6. The system of claim 1, wherein the plurality of pro-
cessing nodes includes a first set of disks of the pluralities of
disks among the processing nodes protected via a first global
coding type and a second set of disks of the pluralities of
disks among the processing nodes protected via a second
global coding type, wherein the first global coding type 1s

different from the second global coding type.

7. The system of claim 6, wherein the first set of disks
includes at least one disk of a first processing node of the
plurality of processing nodes and at least one disk of a
second processing node of the plurality of processing nodes.

8. The system of claim 1, wherein the local redundancy
computation unit 1s further configured to process data uti-
lizing a first erasure-correcting code type, wherein the global
redundancy computation unit 1s further configured to pro-
cess data utilizing a second erasure-correcting code type,
and wherein the first erasure-correcting code type 1s difierent
from the second erasure-correcting code type.

9. The storage system of claim 1,

wherein the local redundant data 1s stored on the at least

one disk of the plurality of disks using local redundant
data writes to the at least one disk of the plurality of
disks:

wherein the at least one other processing node 1s config-

ured to receive the first delta data to perform global
redundant data writes; and
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wherein the global redundant data writes are less than the plurality of processing nodes and at least one disk of a
local redundant data writes. second processing node of the plurality of processing nodes.
10. A storage system, comprising: 15. The system of claim 10, wherein the controller 1s
a plurality of processing nodes in communication with further configured to:
one another, each processing node including: 5 determine the local redundant data utilizing a first erasure-
a plurality of disks local to a respective processing correcting code type; and

determine the global redundant data utilizing a second

at least one host, the at least one host configured to crasure-correcting code type, wherein the first erasure-

write data to a first selected disk of the plurality of correcting cpde type 1s different from the second era-
disks: and 10 sure-correcting code type.

16. A method of storage protection, comprising:

writing data to a first selected disk of a plurality of disks
local to a first processing node of a plurality of pro-
cessing nodes, the plurality of processing nodes being,

node;

a controller in commumcation with the plurality of
disks, the controller configured to:

determine local redundant data utilizing the data

written to the first selected disk to establish a

_ _ _ 15 in communication with one another;
redundancy protection for the data written 1 the determining local redundant data utilizing the data written
respective processing node; to the first selected disk to establish a redundancy
store the local redundant data on at least one disk of protection for the data written in the first processing
the plurality of disks; node;
determine a first delta data utilizing the data written 20  storing the local redundant data on at least one disk of the
to the first selected disk; plurality of disks;
send the determined first delta data to at least one determining {irst delta data utilizing the data written to the
other processing node of the plurality of process- first selected disk;
ing nodes; sending the first delta data to at least one other processing
receive a second delta data from at least a second 25 node;
processing node of the plurality of processing receiving second delta data at the first processing node
nodes, wherein the second delta data 1s derived from at least a second processing node, wherein the
from data written to a second selected disk of a second delta data 1s derived from data written to a
plurality of disks foreign to the respective pro- second selected disk of a plurality of disks local to the
cessing node; 30 at least a second processing node;
determine global redundant data utilizing the determining global redundant data utilizing the second
received second delta data, the global redundant delta data, the global redundant data establishing a
data establishing a redundancy protection for data redundancy protection for data contained 1n the at least
contained in the at least the second processing the second processing node; and
node; and 35  storing the global redundant data on at least one disk of
store the global redundant data on at least one disk of the plurality of disks local to the first processing node.
the plurality of disks local to the respective pro- 17. The method of claim 16, wherein the method further
cessing node. includes:
11. The system of claim 10, wheremn the controller is recovering the data written to the first selected disk of the
turther configured to: 40 first processing node utilizing the local redundant data
recover the data written to the first selected disk utilizing when the first selected disk fails; and
the local redundant data when the first selected disk recovering data of the at least the second processing node
fails; and utilizing the global redundant data when the at least the
recover data of the at least the second processing node second processing node fails.
utilizing the global redundant data when the at least a 45  18. The method of claim 17,
second processing node fails. wherein the local redundant data 1s first local redundant
12. The system of claim 11, data, and
wherein the local redundant data 1s first local redundant wherein the method turther includes:
data, and determining second local redundant data utilizing the
wherein the controller 1s further configured to: 50 global redundant data;
determine second local redundant data utilizing the storing the second local redundant data on at least one
global redundant data; disk of the plurality of disks local to the first pro-
store the second local redundant data on at least one cessing node; and
disk of the plurality of disks local to the respective recovering the global redundant data utilizing the sec-
processing node; and 55 ond local redundant data when the at least one disk
recover the global redundant data utilizing the second storing the global redundant data fails.
local redundant data when the at least one disk 19. The method of claim 16, wherein the method further
storing the global redundant data fails. includes:
13. The system of claim 10, wherein the plurality of protecting a first set of disks of the processing nodes
processing nodes includes a first set of disks of the pluralities 60 utilizing a first global coding type; and
of disks among the processing nodes protected via a {first protecting a second set of disks of the processing nodes
global coding type and a second set of disks of the pluralities utilizing a second global coding type, wherein the first
of disks among the processing nodes protected via a second global coding type 1s different from the second global
global coding type, wherein the first global coding type 1s coding type.
different from the second global coding type. 65  20. The method of claim 16, wherein the plurality of disks
14. The system of claim 13, wherein the first set of disks comprises multiple sets of disks, and wherein storing the

includes at least one disk of a first processing node of the local redundant data on the at least one disk of the plurality
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of disks further comprises storing redundant data propor-
tionally to a total number of disks 1n each set of the multiple
sets of disks, and wherein storing the global redundant data
on at least one disk of the plurality of disks local to the first
processing node further comprises storing redundant data
proportionally to a number of survivable node failures.
21. The method of claim 16, wherein the method further
includes:
determining the local redundant data utilizing a first
erasure-correcting code type; and
determining the global redundant data utilizing a second
crasure-correcting code type, wherein the first erasure-

correcting code type 1s different from the second era-
sure-correcting code type.
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