12 United States Patent

Cartwright et al.

US009608879B2

US 9,608,879 B2
Mar. 28, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND APPARATUS TO COLLECT
CALL PACKETS IN A COMMUNICATIONS
NETWORK

(71) Applicant: AT&T Intellectual Property L, L.P.,
Atlanta, GA (US)

(72) Inventors: Cory Cartwright, Harwinton, CT (US);
Paul A. Raccio, Wallingford, CT (US)

(73) Assignee: AT&T Intellectual Property L, L.P.,
Atlanta, GA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 93 days.

(21) Appl. No.: 14/558,203

(22) Filed: Dec. 2, 2014
(65) Prior Publication Data
US 2016/01563531 Al Jun. 2, 2016
(51) Inmt. CL
HO4L 12/26 (2006.01)
HO4L 1/00 (2006.01)
(52) U.S. CL
CPC ... HO4L 43/04 (2013.01); HO4L 10061

(2013.01); HO4L 43/062 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 43/04; HO4L 1/0061; HO4L 12/1428;
HO4L 12/2407; HO4L 51/10; HO4L
12/2493; HO4L 12/3845; HO4L 29/06387
USPC e 370/252; 709/224
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,954,789 B2* 10/2005 Dietz GO6F 17/30985
370/392
7,299,176 B1* 11/2007 Leecoevvvviviinnnn, G10L 25/69
704/228

116

P Sririsi= i

acket Collector 1

.
T f__,,r'HJQ

110

\ ¥

¢ Nelwork Noge 1 |< M Nalwork Node 4

18 1

124) 4
h 2
- \..A —— 122
t Packet Facket Database
P
-

7,299,282 B2 11/2007 Sarkissian et al.
8,275,875 B2 9/2012 Pruthi
2010/0211675 Al 8/2010 Ainali et al.
2010/0278068 Al 11/2010 Nobert et al.
2011/0125748 Al 5/2011 Wood et al.
2011/0125749 Al1* 5/2011 Wood ... HO4L 43/026

707/737

4/2012 Pruthi et al.
(Continued)

2012/0092343 Al

FOREIGN PATENT DOCUMENTS

JP 2005223870 A 8/2005
WO 2009038384 Al 3/2009
WO 2014071084 A2 5/2014

Primary Lxaminer — Kwang B Yao
Assistant Examiner — Syed M Bokhari

(74) Attorney, Agent, or Firm — Hanley, Flight &
/Zimmerman, LLLLC

(57) ABSTRACT

Methods and apparatus to collect call packets 1n a commu-
nications network are disclosed. An example method
includes extracting data from packets captured at nodes 1n a
communication network; storing the extracted data in a
database 1n association with the voice data corresponding to
the captured packets; searching, in response to a query
including information, the extracted data in the database to
identily records matching the information; identifying a
second record 1n the database as belonging to a same unique
voice call as the first record i1n the database based on
determining that first metadata of the first record matches
second metadata of the second record; and returning a first
packet corresponding to the first record, a second packet
corresponding to the second record, and a third packet
comprising voice data corresponding to the same unique
voice call i response to the query.

20 Claims, 11 Drawing Sheets

[F’acket Collector 2

Processor Index Table
_ 4 B0) are] rrmsemmssrsmmsneoesreed
f 132~ __ Calls Table
e o
106 /[114

Facket Collector 3 4

US 9,608,879 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0212263 Al 8/2013 Breslin et al.
2014/0032748 Al 1/2014 Pruthi et al.

* cited by examiner

¢ 10109]|0D) o308

US 9,608,879 B2

/
/

0cl

18pINOI4 9o1MBS | ¢ OPON MJOMIBN |

-
= plLl \ 901
Y
@ 2|1ge] S| cel
= ™01
2 a|qe] xepu| | 10888901 -
asegele(19Moe e
= e N el
= > " 80
=) 174’
“ N OPON YJOM}ON
= N
> N
™~
/
M—

108882014 Adanp

Ovl

oo_\\

U.S. Patent

f

L Ol4

¢ 10}03]|0)) 19X0kd

¢ ©PON HIOM]SN
L SPON I0MIoN

—— —| | 10}09]|0D 0308

¢Ol

9Ll

8l

U.S. Patent Mar. 28, 2017 Sheet 2 of 11 US 9,608,879 B2

200
'

202 204 200

Packet Data Packet Data

Packet Buffer Extractor Analyzer

212 ~ 210 208

—
Packet Packager N ———— - Packet
Imestamper
Packet Storage

214 216 218

Packet De- Package Package

duplicator Compressor Encrypter

FIG. 2

U.S. Patent Mar. 28, 2017 Sheet 3 of 11 US 9,608,879 B2

Package Package Packet Data
Decrypter Decompressor Identifier

|
|
I 310 308
: Packet Linker Packet Indexer

Packet Databass.

Packet Database

403 406

Query Result
Analyzer

FIG. 4

U.S. Patent Mar. 28, 2017 Sheet 4 of 11 US 9,608,879 B2

[500
Call Fields

508—» 1

510 —>|h responsecode _ [200 OK
512—>|h_responsetxt

514 —»|h fromlP | 0x***5f3c1
516—>h tolP |Ox***ficdf
518—>|h method [INVITE

5 57¢cb5a0-0-5749-147a9-dcdb9-
020 h_callD 24c54032-efab?
<SP 14 XKD XXX XXX XXX XXX>; transpor
022 h 1O t=udp;tag=ds-9bc-aa4fdao8
524 —»|h TO number 4 0O0KXX
<SP : 8 XK@ XXX XXX XXX XXX> tag=eal
526 —»|h_FROM c340-0-13¢c4-50022-ccccO-2b53defO-
ccccH

528 —»|h FROM number | 830000000
530 —>|h Pident num <si p:$Ho000000od>

532 —>|h geolocation num |[<geo:41.879044, -87.635901>
534 —»|h Via1 branchiD Z9hG4bK-cccc9-31fff3cb-7f264b82
536 —>|h Via2 branchiD 79hG4bK-ccdd1-ef3c43bc-7f154b7 1

038 —>Ih Via3 branchD |0
040 —>1h filename |xwooxeth1.11 06 14 20-15-00.sip.pcar
542 —> 1415305037.000324388

FIG. 5

US 9,608,879 B2

Sheet 5 of 11

Mar. 28, 2017

U.S. Patent

9 Ol4

NLY| ¥102 02:22:L) T AON POM 8PZ6Y 1-89¢09207-8PC6 Y| dO.l=Hodsuel<|d1d+dIS dIS
-2200S-70¢1-0-08¥0.8=Der<ge | 06'8¢C'6L.°86@ Ll i6:dis>. [[

/226, 8605/£8Y156/.218:dI1S>...
MLLL| #1002 90:22:2) 21 ANON PO

ceO9L9

PeJOSE|dLd+dIS dIS| 909
"1922-NOV=beL<29'822°6.'8] -€09SGELIP-PEAOS6-220S-79¢0| [[
6006 1¥5.2879:d1S>06115/.2879| -084E619=bE):<0UOYd=1asNig| | /T
26,860,162 |:dIS>|1621ET 509
GO9G €00} peagy | -82910/2G5-Peagy L |d1d+dlS dIS
-4969-NOV=be¥<09'822'6.'8|-22005-+°¢ }-0-0tgco=be)<duoyd=
6@01170225958:d1S>011$02.5958|19SN:ZZ1 922 6.'86® | 216690:dIS>

ASOL| ¥1L0C €0-4LC-L) ¢ 1 AON POM

0c9 8IY

1 276690)
S9IAQ 1IAD) 8wl WO 0] PEOJUMOQ]
oz| ¢09
1S
919 19 219 %5 w.w@
\M
009

U.S. Patent Mar. 28, 2017 Sheet 6 of 11 US 9,608,879 B2

700

KJ

702
Receive packet from network node
704
Extract packet data for filtering packet
706
Based on extracted packet data, does
received packet match capture criteria?
708
Store packet for sending to database
710
Create a packet capture file? 0
VES 712
Create packet capture file to include packets
captured since last packet capture file
714
De-duplicate packets in packet capture file
716
Compress packet capture file
718
Encrypt packet capture file
720

Transmit packet capture file

FIG. 7

U.S. Patent Mar. 28, 2017 Sheet 7 of 11 US 9,608,879 B2

80

802
Receive packet capture file from packet collector
804
Decrypt packet capture file

S

30
Decompress packet capture file

8

80
Select packet from packet capture file
81
Parse selected packet to obtain packet metadata

812
Store extracted metadata in corresponding index
fields of an index record
814

Is the packet capture file that includes the
selected packet stored in the packet
database?

NO

0

816

Generate table entry to add selected packet capture
file to Call table in packet database

818

Generate table entry to add index record to index
table, the index record including the index fields and
referencing the packet capture file in the database

0

82
YES Additional packets in packet capture file’?
NO

FIG. 8

U.S. Patent Mar. 28, 2017 Sheet 8 of 11 US 9,608,879 B2

900
s

902

Recelve packet database search request
904

Generate packet database query based on

search request parameters

906

Execute packet database query at packet

database
907
Match query results into unique call(s)

908

Provide query results to requester
0

91
NO Call(s) selected from query results”
YE
- 9
Merge selected results into individual call(s)

12

914
Call content requested?
YES NO
916

Provide SIP data and corresponding RTP data for
selected call(s) to requester

138

9
Provide SIP data for selected call(s) to requester

FIG. 9

U.S. Patent Mar. 28, 2017

1002
Select record in database
query results
1004
Has selected record
been included In a
unique call file? YES
10006 NO

Does selected record
match any unique call
file from the present

query?

Generate a new unique call file

1010

Add the selected record to the
unique call file

1012

Obtain h_Via_branchlD field
value(s), h_calllD field value

and timestamp from the
selected record

1014

(Generate a subquery to
iIdentify records having at least
one same h Via branchlD
value and/or the same h_calllD

value as the selected record
and having a timestamp within
a threshold time range of the
selected record

1016

Execute the subqguery on the
records In the database query
results

Sheet 9 of 11

1000
1018 S

Execute the subquery on the
packet database

1020

Generate list of results from
executing the subquery on

the packet database and the
database query results

1022
Select a subquery record
from the list of results
1024
IS the selected
subquery record In the
unique call file’?
1026 NO

Add the selected subquery
record to the unique call file

1028

Remove selected subquery
record from the list of results

1030

Additional records In
ist of results? YES

NO

Remove selected record from
the database query results

Additional record(s) in
YES query results?

NO

FIG. 10

US 9,608,879 B2

U.S.
S. Patent Mar. 28, 2017 Sheet 10 of 11 US 9,608.879 B2

| 1114 _1; | 1132
| RANDOM MASS DE

ACCESS STORAGE INSTRUC
| - MEMORY |
| 1132 |

1116 190
| READ ONLY INPUT |
- MEMORY DEVICE(S)

ol |
| 1120 | 1126
' i
| LOCAL 1124 |

MEMORY OUTPUT
| DEVICE(S) |
I |
I |
I |
I |
I |

U.S. Patent Mar. 28, 2017 Sheet 11 of 11 US 9,608,879 B2

\(INSTRUCTIONS

ACCESS

MEMORY | ~~~~~~
1232
1216 1222 |
READ ONLY INPUT |
. MEMORY DEVICE(S)
1232 1218 1220 | 1226

1224

OUTPUT
DEVICE(S)

LOCAL
MEMORY

|

|

|

|

|

|

I o>
| PROCESSOR
|

|

|

|

|

|

US 9,608,879 B2

1

METHODS AND APPARATUS TO COLLECT
CALL PACKETS IN A COMMUNICATIONS
NETWORK

FIELD OF THE DISCLOSURE

This disclosure relates generally to communication net-
work management and, more particularly, to methods and
apparatus to collect call packets 1n a communications net-
work.

BACKGROUND

Diagnosing causes of problems with real-time communi-
cations 1n a communications network can require extensive
resources. Known techmques of diagnosing real-time com-
munications include capturing and analyzing packets at the
time they are transmitted through the network. However, i
the problem 1s not consistent, the problem may be dithcult
to replicate 1n a cost-eflective manner. For instance, if a
customer of a communications network experiences inter-
mittent problems, such as echoes occurring on voice calls,
the problem may be difficult to replicate using known
techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example communication
network including packet collection, packet processing, and
packet querying to trace an end-to-end communication in
accordance with the teachings of this disclosure.

FIG. 2 15 a block diagram of an example packet collector
that may implement any of the example packet collectors of
FIG. 1.

FIG. 3 1s a more detailed block diagram of the example
packet processor of FIG. 1.

FIG. 4 1s a more detailed block diagram of the example
query processor of FIG. 1.

FIG. 5§ 1s an example packet index that may be stored in
the example packet database of FIG. 1.

FIG. 6 1s an example table illustrating results of a query
of the packet database of FIG. 1 that may be delivered to a
requester of the query.

FIG. 7 1s a flowchart representative of example machine
readable mstructions which may be executed by the example
packet collector of FIGS. 1 and/or 2 to collect packets 1n a
network.

FIG. 8 1s a flowchart representative of example machine
readable mstructions which may be executed by the example
packet processor of FIGS. 1 and/or 3 to process packets
collected by the example packet collectors of FIG. 1.

FIG. 9 15 a flowchart representative of example machine
readable 1nstructions which may be executed by the example
query processor of FIGS. 1 and/or 4 to query the packet
database of FIG. 1 for captured packets corresponding to a
call of interest.

FIG. 10 1s a flowchart representative of example machine
readable mstructions which may be executed by the example
query result analyzer of FIG. 4 to match query results into
unique calls.

FIG. 11 1s a block diagram of an example processor
platform capable of executing the instructions of FIG. 7 to
implement the apparatus of FIGS. 1 and/or 2.

FIG. 12 1s a block diagram of an example processor
platform capable of executing the instructions of FIGS. 8, 9,
and 10 to implement the apparatus of FIGS. 1, 3, and/or 4.

10

15

20

25

30

35

40

45

50

55

60

65

2

The figures are not to scale. Wherever appropriate, the
same reference numbers will be used throughout the draw-

ing(s) and accompanying written description to refer to the
same or like parts.

DETAILED DESCRIPTION

When diagnosing a communications network or data
protocol trouble, a packet capture of the data flowing
through the network 1s often useful. In the past, a packet
capture required sending a person out to a remote site with
special hardware and training. Arranging such a packet
capture can be diflicult and require coordination that may not
be practical and can extend time needed to resolve the
problem.

In contrast to known methods of packet capture, example
methods and apparatus disclosed herein provide rapid query
access to both signaling and voice data occurring on a
communications network. Example methods and apparatus
provide access to calls occurring 1n the past to, for example,
enable a communications network provider to review com-
munications (e.g., voice and/or video calls) experiencing
issues aiter the fact, when the 1ssues are reported by the
custometr.

Example methods and apparatus disclosed herein contrib-
ute to the field of communications networks by reducing the
time and resources required to i1dentily problems with net-
work communications, determine the root causes of such
problems, and resolve the problems, thereby freeing network
resources for more desirable uses. Furthermore, examples
disclosed herein may use commodity hardware to perform
packet capture at adequate packet capture rates 1n even the
largest known communications networks. Enabling the use
of commodity hardware stands 1n contrast to specialized
packet capture hardware currently 1n use and reduces the
costs of packet capture and storage.

Example methods disclosed herein include extracting data
from packets captured at nodes 1n a communication net-
work. In the example methods, the extracted data includes
data representative of voice calls 1n the communications
network and the captured packets comprising control infor-
mation and voice data. The example methods turther include
storing the extracted data 1n a database 1n association with
the voice data corresponding to the captured packets. The
example methods further include, 1n response to a query
including information describing a voice call, searching the
extracted data 1n the database to identily records matching
the mformation. The example methods further include, in
response to determining that a first record in the database
matches the information, 1dentitying a second record in the
database as belonging to a same unique voice call as the first
record 1n the database based on determining that first meta-
data of the first record matches second metadata of the
second record. The example methods further include return-
ing a first packet corresponding to the first record, a second
packet corresponding to the second record, and a third
packet comprising voice data corresponding to the same
unmque voice call in response to the query.

Example apparatus disclosed herein include a processor
and a computer readable storage medium comprising coms-
puter readable instructions. When executed by the processor,
the mstructions cause the processor to perform operations
that include extracting data from packets captured at nodes
in a communication network. In the example apparatus, the
extracted data includes data representative of voice calls 1n
the communications network and the captured packets com-
prising control mformation and voice data. The example

US 9,608,879 B2

3

operations further include storing the extracted data 1n a
database 1n association with the voice data corresponding to
the captured packets. The example operations further
include, 1 response to a query including information
describing a voice call, searching the extracted data in the
database to 1dentily records matching the mformation. The
example operations further include, 1n response to determin-
ing that a first record 1n the database matches the informa-
tion, 1dentitying a second record in the database as belong-
ing to a same unique voice call as the first record 1n the
database based on determining that first metadata of the first
record matches second metadata of the second record. The
example operations further include returning a first packet
corresponding to the first record, a second packet corre-
sponding to the second record, and a third packet comprising
voice data corresponding to the same unique voice call in
response to the query.

FIG. 1 1s a block diagram of an example communication
network 100 mncluding packet collection, packet processing,
and packet querying to trace an end-to-end communication.

The example communication network 100 of FIG. 1
includes network nodes 102-108 to route trathic within the
communication network 100 and/or between the communi-
cation network 100 and other communication networks. The
communication network 100 may include any number of
network nodes 102-108. The example network nodes 102-
108 include a combination of routers (e.g., provider edge
routers, customer edge routers, border routers, core routers,
gateways, efc.), servers (e.g., proxXy servers, home subscriber
servers, application servers, etc.), and/or any other type(s) of
communication network nodes.

The example network nodes 102-108 route communica-
tions between different points in the network to achieve
communications between devices such as voice over Inter-
net protocol (VoIP) devices, mobile communications
devices (which may or may not also be VoIP devices),
computers, servers, and/or other communications devices.
For example, a first device (e.g., a VoIP telephone 110) and
a second device (e.g., a mobile device 112) are connected to
the communications network 100 via the network node 102.

The example devices 110, 112 communicate with other
entities such as a service provider 114 via the network nodes
102-108. The example service provider 114 may be any
device, entity, organization, or network, and accesses the
communication network via the network node 106. In the
example communication network 100 of FIG. 1, the devices
110, 112 establish a communication path with the service
provider 114 via the network nodes 102, 104, 106. The
example communication path between the device(s) 110,
112 and the service provider 114 may take one or more of
multiple possible routes through the communication net-
work 100 via the network nodes 102-108.

In the example communication network 100, the network
nodes 102-106 are provided with corresponding packet
collectors 116, 118, 120. The example packet collectors
116-120 collect packets traversing the communication net-
work 100 via the network nodes 102-106 and transmait the
collected packets to a packet processor 122 for processing
and storage, as described 1n more detail below. As shown 1n
FIG. 1, not all of the network nodes 102-108 are necessarily
provided with a packet collector 116-120. For example, the
network node 108 does not have a connected packet collec-
tor.

To collect the packets at the packet collectors 116-120, the
network nodes 102-106 are configured to mirror all packets
(e.g., all recerved packets, all transmitted packets, etc.) to the
respective packet collectors 116-120. For example, the net-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

work node 102 provides copies of all received packets
and/or transmitted packets to the packet collector 116.
Similarly, the network node 104 provides copies of packets
of all received packets and/or transmitted packets to the
packet collector 118 and the network node 106 provides
copies of packets of all received packets and/or transmitted
packets to the packet collector 120. The packet collectors
116-120 of FIG. 1 receive streams of packets as the packets
are mirrored from the corresponding network nodes 102-
106.

In some examples, the packet collectors 116-120 only
collect particular types of packets and drop all other types of
packets. For example, the packet collectors 116-120 may be
configured to collect only packets that are associated with
particular types of traflic, such as voice calls, video calls,
and/or other real-time applications. In some examples, the
network nodes 102-106 only provide copies of the packet
types ol interest to the packet collectors 116-120, which
frees the packet collectors 116-120 from the task of analyz-
ing and dropping packets but may increase the processing
burden on the communications network 100.

In the example of FIG. 1, the packet collectors 116-120
collect any packets that contain signaling, control, and
content of voice calls traversing the network nodes 102-108
to the service provider 114. Packets that are collected by the
packet collectors 116-120 according to one or more criteria
are referred to herein as “packets of interest.”

The example packet collectors 116-120 are provided with
identification criteria that enable the packet collectors 116-
120 to identily packets of interest based on the metadata
and/or contents of the packets. Additionally or alternatively,
the packet collectors 116-120 may identily packets of inter-
est based on a combination of a destination Internet protocol
(IP) address 1n a packet and one or more of a packet type
(e.g., Session Initiation Protocol (SIP), Real-time Transfer
Protocol (RTP), Real-time Transfer Control Protocol
(RTCP), etc.) or a port number (obtained from a User
Datagram Protocol (UDP) header). However, the packet
collectors 116-120 may extract any other packet data that
indicates whether the packet 1s to be captured and trans-
ferred to a packet database 124.

The packet collectors 116-120 analyze the extracted
packet data to determine whether a packet 1s to be captured.
For example, the packet collectors 116-120 may analyze the
packet data in accordance with one or more packet data rules
that specity packet data elements and/or combinations of
clements that indicate that a packet should be captured or
ignored (e.g., dropped). When the packet collectors 116-120
determines that a packet 1s to be captured, the example
packet collectors 116-120 timestamp the packet capture time
and stores the entire selected packet for subsequent delivery
to the packet processor 122.

The example packet collectors 116-120 of FIG. 1 transmit
packages ol collected packets to the example packet pro-
cessor 122. For example, the packet collector 116 may
generate a package including the packets collected during an
interval of time (e.g., 300 seconds, 12 hours, 24 hours, or
any other time period). In some examples, the packet
collector 116 compresses the package and/or encrypts the
package prior to transmitting the package to the packet
processor 122. In the example of FIG. 1, the packet collec-
tors 116-120 transmit the packages during a period of low
demand on the network nodes 102-108 and/or the commu-
nication network 100 in general to further reduce the burden
on the network nodes 102-108 for delivery of the packages
to the packet processor 122. In some other examples, the
packet collectors 116-120 send packets at shorter intervals.

US 9,608,879 B2

S

The example packet processor 122 of FIG. 1 receives
(c.g., via the network nodes 102-106) the packages of
packets collected by the packet collectors 116-120. When
necessary, the example packet processor 122 decrypts and/or
decompresses the packages to obtain the packets contained
in the package.

To process the packets in the packages, the example
packet processor 122 selects a packet and extracts available
metadata from the packet. Example items of metadata that
may be extracted by the packet processor 122 from a UDP
header of the packet include: an IP source address, an IP
destination address, a source port number, and/or a destina-
tion port number. Example 1tems of metadata that may be
extracted by the packet processor from a SIP message
include: a type of SIP message (e.g., a “method” in the SIP

protocol), a SIP message code, a TO user name, a TO user
resource 1dentifier (URI), a TO IP address, a FROM user

name, a FROM URI, a FROM IP address, a unique call

identifier, a geolocation identifier, and one or more branch
identifiers (e.g., from respective VIA fields in the SIP
protocol). However, any other standard and/or network-
proprictary data may be extracted from the packets.

The example packet processor 122 of FIG. 1 further
assigns an i1dentifier to the processed packet to enable
subsequent identification of the packet in the packet data-
base 124. The packet processor 122 stores the entirety of the
packet 1in the example packet database 124 and indexes the
packet in the packet database 124 using the extracted data.

The example packet database 124 stores an Index Table
130 and a Calls Table 132. The example Index Table 130
stores records that point to respective packet capture files
stored 1n the Calls Table 132. In the example of FIG. 1, the
Calls Table 132 stores full copies of the packet capture files
(e.g., including signaling and voice packets) with an 1index
key. The records in the Index Table 130 are searched to
identify calls of interest to, for example, a customer service
provider for the communication network. The records each
include a key pointing to a packet capture file 1n the Calls
Table 132 containing the packet from which the record was
generated. When a record 1s 1dentified during execution of a
query, the key contained 1n the record 1s used to locate and
access the packet capture file stored in the Calls Table 132.

In some examples, the packet database 124 purges (e.g.,
drops, deletes, archives) records stored 1n the Index Table
130 and/or packet capture files stored 1n the Calls Table 132
that are older than a threshold age. By purging old records
and packet capture files, the example packet database 124 1s
kept to a manageable size and/or 1s capable of providing an
acceptable response time to queries of the packet database
124.

The example communication network 100 of FIG. 1
turther includes a query processor 140. The example query
processor 140 receives a query (e.g., from a client device
142), searches the packet database 124 based on the query,
and returns one or more voice calls matching the query to the
requesting client device 142. As described 1n more detail
below, the example query processor 140 may receive mul-
tiple packets from the packet database 124 as a response to
a query representing one or more voice calls. The example
query processor 140 processes the raw results (e.g., the
packets from the packet database 124) to determine that
multiple packets belong to a same voice call. The query
processor 140 then combines the packets for the same voice
call into a single voice call file containing the entirety of the
end-to-end voice call, including the “hops™ of the packets
between the network nodes 102-106.

10

15

20

25

30

35

40

45

50

55

60

65

6

When a query matches the index values of a packet 1n the
packet database 124, the example query processor 140
retrieves the full packet referenced by the index values and
returns the packet as a query result. Assembling and return-
ing the full signaling and voice data for a call enables the
requester to analyze the entirety of the call using, for
example, the Wireshark analysis tool.

The example packet processor 122, the example packet
database 124, and/or the example query processor 140 may
be implemented by a single entity, such as the provider of the
communication network 100 and/or a network monitoring
and/or troubleshooting service that 1s a separate entity than

the provider of the communication network 100.
As shown in FIG. 1, not all of the network nodes 102-108

1s required to have a packet collector 116-120 to successiully
perform end-to-end packet capture. Instead, packet collec-
tors 116-120 may be placed at strategically-selected network
nodes 102-106 capable of capturing packet traversal through

an entire portion of 1nterest of the communications network
100.

FIG. 2 1s a block diagram of an example packet collector
200 that may implement any of the example packet collec-
tors 116-120 of FIG. 1. The example packet collector 200 of
FIG. 2 includes a packet buller 202, a packet data extractor
204, a packet data analyzer 206, a packet timestamper 208,
packet storage 210, a packet packager 212, a packet de-
duplicator 214, a package compressor 216, and a package
encrypter 218.

The example packet buller 202 receives and temporarily
stores packets obtained from the corresponding network
node 102-106. The packet buller 202 queues the obtained
packets for subsequent processing in, for example, a first-
in-first-out (FIFO) method.

The example packet data extractor 204 selects a packet
from the packet buller 202 and extracts packet data from the
selected packet. For example, the packet data extractor 204
extracts mformation from the header of Transter Control
Protocol (TCP), UDP, SIP and/or RTP layers of packets.
Examples of such information include TCP ports, UDP
ports, source and/or destination IP addresses, and/or proto-
cols (e.g. SIP, RTP).

The example packet data analyzer 206 analyzes the
extracted data to determine whether one or more of the
extracted packet data indicate that the packet 1s to be
captured. For example, 1f the extracted data includes UDP
port 5060, TCP port 5060, and/or TCP port 5061, the packet
1s a SIP packet and the packet data analyzer 206 determines
that the packet 1s to be stored in the packet storage 210. In
some examples, the packet data analyzer 206 may determine
that the packet is to be stored 1n the packet storage when the
extracted data includes a UDP port 1n the range 6000-60000
(or another range).

The example packet timestamper 208 timestamps the
packets that the packet data analyzer 206 determines are to
be captured. In the example of FIG. 2, the packet time-
stamper 208 timestamps the packet with the capture time.
When the packet 1s timestamped, the example packet time-
stamper 208 stores the full packet in the packet storage 210.
The example packet storage 210 1s a temporary storage for
collected packets until transfer (e.g., transmission) of the
collected packets to the packet processor 122 of FIG. 1.
The example packet packager 212 creates a packet cap-
ture file from the packets stored 1n the packet storage 210.
In some examples, the packet packager 212 creates the
packet capture files at designated intervals (e.g., every 300

seconds, or any other interval). The example packet pack-

[

US 9,608,879 B2

7

ager 212 includes packets collected since the most recent
packet capture file generation in the created packet capture
file.

To conserve bandwidth in the communications network
100, the example packet de-duplicator 214 de-duplicates
packets and/or removes redundant packets from the packet
capture {ile. For example, the packet de-duplicator 214 may
remove loopback packets (e.g., SIP and/or RTP loopback
packets). In RTP, a loopback packet 1s a copy of an original
packet that 1s transmitted back to the source of the original
packet. Therelfore, the loopback packet 1s redundant to the
original packet.

The example package compressor 216 compresses the
packet capture file to reduce the size (e.g., in bytes) of the
packet capture file. Compressing the packet capture file
reduces the load on the communication network 100, which
1s useful when large numbers of packet collectors 116-120
(e.g., hundreds, thousands, tens of thousands) are transmit-
ting packet capture files to the packet processor 122. The
example package encrypter 218 encrypts the (compressed)
packet capture file to reduce the chances that the voice
content 1n the collected packets may be discerned if the
packet capture files are mtercepted by an unauthorized party.

FIG. 3 1s a more detailed block diagram of the example
packet processor 122 of FIG. 1. The example packet pro-
cessor 122 of FIG. 3 receives captured packets from the
packet collectors 116-120 of FIG. 1, indexes the captured
packets, and stores the packets and the index data in the
packet database 124. The example packet processor 122 of
FIG. 1 mcludes a package decrypter 302, a package decom-
pressor 304, a packet data identifier 306, a packet indexer
308, and a packet linker 310.

The example package decrypter 302 of FIG. 3 receives
packet capture files including multiple packets from the
packet collectors 116-120 of FIG. 1 and decrypts the packet
capture files. The example package decompressor 304
decompresses the decrypted packet capture files to obtain
discrete packets captured by the packet collectors 116-120.
In some examples 1n which the packet collectors 116-120 do
not encrypt and/or do not compress the packets, the example
packet processor 122 may omit the package decrypter 302
and/or the package decompressor 304.

The example packet data identifier 306 of FIG. 3 1dentifies
or extracts data (e.g., metadata) from the packets. In some
examples, the packet data i1dentifier 306 extracts SIP data
representing a unique leg, between ones of the network
nodes 102-106, of a unique end-to-end call (e.g., a VoIP
call). In some examples, the packet data identifier 306
includes and/or makes calls to code libraries that correspond
to protocols of interest. For example, the packet data iden-
tifier 306 may call methods from a library for processing SIP
and/or RTP packets to parse the packets 1n a manner similar
or 1dentical to the extraction of SIP and/or RTP data by the
devices participating 1n a call. In the example of FIG. 3, the
packet data 1dentifier 306 receives the resulting metadata as
an output from the method call.

The example packet indexer 308 generates a packet
record or index entry 1n an index table (e.g., the Index Table
130) of the packet database 124 based on the identified
packet data. For example, the packet indexer 308 may
generate a SQL statement to add a row including the
metadata 1dentified by the packet data identifier 306.

The example packet linker 310 stores packet files 1n the
packet database 124 (e.g., 1n the Calls Table 132) and links
the corresponding packet records to the packet file(s).
Because multiple packets are received 1n a packet file from
a packet collector 116-120, 1n some examples multiple

10

15

20

25

30

35

40

45

50

55

60

65

8

indexes point to a same packet file containing the packet
data, including signaling and content of calls. To link a
packet index to i1ts corresponding packet {file, the example
packet linker 310 updates an 1index record (e.g., index table
row) 1n the Index Table 130 of the packet database 124 with
the file name of the corresponding packet {ile.

FIG. 4 1s a more detailed block diagram of the example
query processor 140 of FIG. 1. The example query processor
140 of FIG. 4 recerves queries from client devices (e.g., the
client device 142 of FIG. 1), executes the query at the packet
database 124, and processes the query results to provide a set
ol packets corresponding to a same unique call. The example
query processor 140 of FIG. 4 includes a request parser 402,
a query generator 404, a query result analyzer 406, and a call
constructor 408.

The example request parser 402 receives search requests
for call mformation i1n the packet database 124. In the
example of FIG. 4, search requests may specily one or more
of a time range, a search string (e.g., keywords, Boolean
searches, etc.), a particular portion of the communication
network 100 from which packets are (e.g., a particular
deployment of the packet collectors 116-120).

Using the data in the search query, the example query
generator 404 generates a query (e.g., a SQL query) to be
executed by the packet database 124. For example, the query
generator 404 may transform one or more fields of the search
request 1nto parameters or premises on one or more keys in
the Index Table 130 of the packet database 124. The example
query generator 404 executes the query (or submits the
query for execution) at the packet database 124.

The example query result analyzer 406 receives the
results of the query from the packet database 124. The query
results iclude, for example, a set of index records (e.g.,
rows) satisiying the query generated by the query generator
404. The example query result analyzer 406 formats the
query results for presentation to the requester (e.g., to the
user at the client device 142 that provided the search request
to the request parser 402). An example presentation of
search results may include a table such as the table described
below with reference to FIG. 6. In the example of a table,
cach record (e.g., row) corresponds to an 1dentified packet
(e.g., an 1dentified SIP packet), which 1s linked in the packet
database 124 to a corresponding packet capture file contain-
ing the SIP packets and the RTP packets. Example search
results including the TO SIP address, the FROM SIP
address, a timestamp, and/or a size of the file(s) associated
with the search result.

The example query generator 404, the example query
result analyzer 406, and the example call constructor 408
analyze the search results and/or perform subsequent queries
(e.g., subqueries on the search results, subsequent queries of
the packet database 124 based on the search results, etc.) to
identily corresponding ones of the packets that are part of
the same call. An example field that may be used to match
packets 1s a call identifier field. A SIP call identifier uniquely
identifies a call between parties. An example field 1s a branch
identifier (e.g., branchlD), which 1s extracted from the SIP
header of a packet (e.g., by the packet data identifier 306 of
FIG. 3) and that identifies one or more prior “hops” taken by
a SIP message prior to being captured at a network node 102.
The branch identifier may be matched to the branch 1dent-
fier and/or IP addresses of other packets so that, in combi-
nation with the call identifier, source identifier(s), and/or
destination identifier(s), the packets can be matched.

For example, 1n response to determining that a first record
in the packet database 124 matches a query, the query
generator 404, the example query result analyzer 406, and

US 9,608,879 B2

9

the example call constructor 408, identily a second record 1n
the packet database 124 as belonging to the same unique
voice call as the first record 1n the packet database 124 based
on determining that first metadata of the first record matches
second metadata of the second record. In some such
examples, the query result analyzer 406 1dentifies a second
record 1n the packet database 124 as belonging to the same
unique voice call as a first record by determining that a
difference between the respective timestamps of the first and
second records satisfies a threshold and matching at least
one branch i1dentifier of the first record to at least one branch
identifier of the second packet and/or determining that the
first and second records have matching unique call 1denti-
fiers.

The example call constructor 408 receives selection of
one or more search results (e.g., from the client device 142).
The call constructor 408 identifies, for each of the selected
search results, additional packet(s) corresponding to the
same call as the selected search result. For example, the call
constructor 408 may analyze the index records (e.g., rows)
of the selected search results to 1dentity fields that can be
used to match different packets and/or legs of a call.

FIG. 5 1s an example packet index 500 that may be stored
in the example packet database of FIG. 1. The example
packet index 500 of FIG. 5 includes a set of fields 502-542
and corresponding data extracted from a captured data
packet.

An example 1d field 502 1s a unique value to 1dentily the
packet 1n the Index Table 130. Each record in the Index
Table 130 has a umique value 1 the i1d field 502. In the
example of FIG. 3, the packet indexer 308 generates a value
for the 1d field 502 and includes the value in the index
record. An example h_1p_src field 504 1s an IP address of a
source of the packet. Conversely, an example h_1p_dest field
506 1s an IP address of a destination of the packet. The
example h_1p_src field 504 and h_1p_dest field 506 may be
obtained from, for example, a UDP header of a captured
packet.

An example h_isresponse field 508 1s a Boolean value
indicating whether a code (e.g., a SIP code), or type of
message, 1n the packet 1s a response code or a non-response
code (e.g., a request code). Examples of response codes for
SIP include 100 Trying, 200 Ok, and 180 Ringing. If the
message 1s a response (e.g., not a request), the h_isresponse
ficld 508 has a value indicating that the message 1s a
response and a h_responsecode field 510 and a h_respon-
setxt field 512 provide further detail about the response. The
h_responsecode field 510 includes the response code (e.g.,
200, 100, 180, etc. for SIP) and the h_responsecode field 512
may include further information such as a reason phrase.

An example h_fromlIP field 514 may be obtained from the
SIP header of a packet (e.g., from an SDP header 1n a SIP
packet) and indicates the IP address of the sending party
(1.e., the sending party of the packet, not necessarily the
calling party). Similarly, an example h_tolP field 516 may be
obtained from the SIP header of a packet (e.g., from the SDP
header 1n a SIP packet) and indicates the IP address of the
receiving party (1.e., the receiving party of the packet, not
necessarily the called party).

An example h_method field 518 indicates the type of
request and/or the type of request to which the packet 1s a
response. In the case of a SIP packet, the example packet
data identifier 306 may obtain the method to populate the
h_method field 518 from a SIP packet header. For example,
the h_method field 518 may include a SIP method such as
INVITE or OPTION. However, these are examples and any
method may be included 1n the h_method field.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

An example h_callID field 520 may be obtained from the
SIP header of a packet (e.g., the Call-ID), and uniquely
identifies a call. The SIP Call-ID appears in every SIP
request and every SIP response. The Call-ID 1s required by
the applicable standard to be globally unique and 1s gener-
ally a GUID (Globally Unique Identifier) associated with the
IP addresses of the sender. An example of a Call-ID 1s
77_296a31b7bd48e¢a6d916db4_I@ 43.56.1.10.

An example h_TO field 522 may be obtained from the SIP
header of a packet (e.g., a to field of the SIP header). The
example TO field 522 1s a URI of the receiving party of the
packet. An example h_TO number ficld 524 includes, fo
example, a phone number corresponding to the URI speci-
fied 1n the h TO field 524.

Similarly, an example h_FROM field 526 may be
obtained from the SIP header of a packet (e.g., a to field of
the SIP header). The h_ FROM field 526 1s a URI of the
sending party of the packet. An example h. FROM_number
field 528 includes, for example, a phone number correspond-
ing to the URI specified in the h. FROM field 526.

An example h_Pident_num field 530 1s an asserted 1den-
tity that may be 1nserted into a packet by a server and/or by
the calling device to indicate privacy of some aspect of the
call. In SIP, an asserted 1dentity enables the communications
network 100 and/or a call server to identify the calling party
(e.g., Tor billing purposes) without necessarily revealing the
calling party’s identity to the called party. The example
h_Pident_num field 530 may be extracted from the P-As-
serted-Identity header in a SIP packet, when present in the
packet.

An example h_geolocation_num field 332 1s an identifier
of a geographic area of the calling party and/or the called
party. The geolocation may be any type of i1dentification,
such as a cell tower number, an access point location, or
Global Positioning System (GPS) coordinates (or their
encoded equivalent). The example h_geolocation_num field
532 may be extracted from a SIP header.

An example h_Vial_branchlD field 534, an example
h_Via2_branchID field 336, and an example
h Via3 branchID field 538 are fields that indicate the rout-
ing of the corresponding packet through the network. When
a user agent client (e.g., the client devices 110, 112 of FIG.
1) creates a SIP request, the user agent client must 1nsert a
Via header into that request. The Via header identifies the
protocol name (e.g., SIP), protocol version (e.g., 2.0), trans-
port type (e.g., UDP or TCP), IP address of the user agent
client, and the protocol port (e.g., 5060) used for the request.

Along with the protocol and IP information, every Via
header contains a “branch” parameter. In SIP communica-
tions that are in accordance with RFC 3261, the branch
parameter always begins with the same string of seven
characters: “zS9hG4bK.” For example, 1 a SIP soit-phone
were to send an INVITE request, the request would contain
a Via similar to: “Via: SIP/2.0/UDP 17.202.87.23:5060;
branch=7z9h(G4bK 10 16a83292baalde54e0b7843 1. The
example table 500 includes 3 branchlID fields 524-528 to
enable subsequent merging of packets into a unique call, as
described 1n more detail below.

An example h_filename field 540 describes a file name of
a packet capture file containing the packet from which the

data 1n the table 500 1s extracted. The example h_filename
field 540 may include, for example, a key corresponding to
the packet capture file location 1n the Calls Table 132 of the
packet database 124.

US 9,608,879 B2

11

An example timestamp field 542 1s a timestamp of the
packet from which the data 1s extracted. The timestamp field
542 may include, for example, the timestamp from the SIP
header.

In some examples, the packet index 500 includes non-
standard information available to the provider of the com-
munications network 100 and/or to the service provider 114.
For example the packet index 500 may further include
proprietary call identifiers, trunk information, channel infor-
mation, diagnostic information, and/or other non-standard
information which may be present in the packets. Such
information may be added to SIP and/or RTP packets by, for
example, the network nodes 102-108 and/or call servers
during traversal of the packets through the communication
network 100.

FIG. 6 1s an example table 600 illustrating results of a
query of the packet database 124 of FIG. 1. The example
table 600 of FIG. 6 includes entries 602-606 that correspond
to index records i1dentified by executing the query. Each of
the example entries 602-606 includes fields 608-616 that
enable a requester to identify and/or select calls of interest
from the query results.

An example Seclect field 608 enables the requester to
select erther signaling or a combination of signaling and
voice for a particular call corresponding to the 602-606. The
example Select field 608 of FIG. 6 includes selection options
tor SIP-only 618 and SIP+RTP 620. If the SIP-only option
618 1s selected, the example call constructor 408 of FI1G. 4
returns only the SIP packets to the requester. Conversely, 1
the SIP+RTP option 620 1s selected, the example call con-
structor 408 returns the SIP packets and the RTP packets
containing the voice content of the call corresponding to the
selected record 602-606.

An example To field 610 of FIG. 6 includes the content of
one or more of the h_TolP field 516, the h TO field 522,
and/or the h TO number field 524 of the table 500 of FIG.
5. An example From field 612 of FIG. 6 includes the content
of one or more of the h_ FromlIP field 514, the h FROM field
526, and/or the h. FROM_number field 528 of the table 500.
The TO field 610 and/or the FROM field 612 may assist a
requester 1n 1dentitying the calls of interest.

An example Time field 614 i1ncludes the content of the
timestamp field 542 of FIG. 5 for the corresponding record.
The example Time field 614 of FIG. 6 1s expressed 1n
Greenwich Mean Time (GMT), but any time zone may be
used.

An example Size field 616 of FIG. 6 describes the size of
the corresponding packet capture file to referenced by the
h_filename field 340 of FIG. 4. The example Size field 616
of FIG. 6 1s expressed in Bytes (e.g., K=kilobytes,
M=megabytes, etc.). The example Size field 616 of FIG. 6
reflects the size of all of the packet capture files referenced
in the corresponding records.

While example manners of implementing the example
communication network 100 are illustrated in FIGS. 1, 2, 3,
and 4 one or more of the elements, processes and/or devices
illustrated 1n FIGS. 1, 2, 3, and/or 4 may be combined,
divided, re-arranged, omitted, eliminated and/or imple-
mented mm any other way. Further, the example packet
database 124, the example packet bufler 202, the example
packet data extractor 204, the example packet data analyzer
206, the example packet timestamper 208, the example
packet storage 210, the example packet packager 212, the
example packet de-duplicator 214, the example package
compressor 216, the example package encrypter 218, the
example package decrypter 302, the example package
decompressor 304, the example packet data identifier 306,

10

15

20

25

30

35

40

45

50

55

60

65

12

the example packet indexer 308, the example packet linker
310, the example request parser 402, the example query
generator 404, the example query result analyzer 406, the
example call constructor 408 and/or, more generally, the
example packet collectors 116-120, the example packet
processor 122, and/or the example query processor 140 of
FIGS. 1, 2, 3, and/or 4 may be implemented by hardware,
soltware, firmware and/or any combination of hardware,
software and/or firmware. Thus, for example, any of the
example packet database 124, the example packet buller
202, the example packet data extractor 204, the example
packet data analyzer 206, the example packet timestamper
208, the example packet storage 210, the example packet
packager 212, the example packet de-duplicator 214, the
example package compressor 216, the example package
encrypter 218, the example package decrypter 302, the
example package decompressor 304, the example packet
data 1dentifier 306, the example packet indexer 308, the
example packet linker 310, the example request parser 402,
the example query generator 404, the example query result
analyzer 406, the example call constructor 408 and/or, more
generally, the example packet collectors 116-120, the
example packet processor 122, and/or the example query
processor 140 could be implemented by one or more analog
or digital circwt(s), logic circuits, programmable
processor(s), application specific integrated circuit(s)
(ASIC(s)), programmable logic device(s) (PLD(s)) and/or
field programmable logic device(s) (FPLD(s)). When read-
ing any of the apparatus or system claims of this patent to
cover a purely software and/or firmware implementation, at
least one of the example packet database 124, the example
packet builer 202, the example packet data extractor 204, the
example packet data analyzer 206, the example packet
timestamper 208, the example packet storage 210, the
example packet packager 212, the example packet de-
duplicator 214, the example package compressor 216, the
example package encrypter 218, the example package
decrypter 302, the example package decompressor 304, the
example packet data identifier 306, the example packet
indexer 308, the example packet linker 310, the example
request parser 402, the example query generator 404, the
example query result analyzer 406, and/or the example call
constructor 408 1s/are hereby expressly defined to include a
tangible computer readable storage device or storage disk
such as a memory, a digital versatile disk (DVD), a compact
disk (CD), a Blu-ray disk, etc. storing the software and/or
firmware. Further still, the example the example packet
collectors 116-120, the example packet processor 122, and/
or the example query processor 140 of FIG. 1 may include
one or more elements, processes and/or devices 1in addition
to, or 1nstead of, those 1llustrated 1n FIGS. 1, 2, 3, and/or 4,
and/or may include more than one of any or all of the
illustrated elements, processes and devices.

Flowcharts representative of example machine readable
instructions for implementing the example packet collectors
116-120, the example packet processor 122, and/or the
example query processor 140 of FIGS. 1, 2, 3, and/or 4 are
shown 1n FIGS. 7, 8,9, and 10. In this example, the machine
readable instructions comprise programs for execution by a
processor such as the processors 1112, 1212 shown in the
example processor platforms 1100, 1200 discussed below 1n
connection with FIGS. 11 and 12. The programs may be
embodied 1n software stored on a tangible computer read-
able storage medium such as a CD-ROM, a floppy disk, a
hard drive, a digital versatile disk (DVD), a Blu-ray disk, or
a memory associated with the processor 1112, 1212, but the
entire programs and/or parts thereof could alternatively be

US 9,608,879 B2

13

executed by a device other than the processor 1112, 1212
and/or embodied in firmware or dedicated hardware. Fur-
ther, although the example programs are described with
reference to the flowcharts 1llustrated in FIGS. 7, 8, 9, and
10, many other methods of implementing the example
packet database 124, the example packet bufler 202, the
example packet data extractor 204, the example packet data
analyzer 206, the example packet timestamper 208, the
example packet storage 210, the example packet packager
212, the example packet de-duplicator 214, the example
package compressor 216, the example package encrypter
218, the example package decrypter 302, the example pack-
age decompressor 304, the example packet data identifier
306, the example packet indexer 308, the example packet
linker 310, the example request parser 402, the example
query generator 404, the example query result analyzer 406,
and/or the example call constructor 408 may alternatively be
used. For example, the order of execution of the blocks may
be changed, and/or some of the blocks described may be
changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 7,
8.9, and/or 10 may be implemented using coded instructions
(e.g., computer and/or machine readable mstructions) stored
on a tangible computer readable storage medium such as a
hard disk drive, a flash memory, a read-only memory
(ROM), a compact disk (CD), a digital versatile disk (DVD),
a cache, a random-access memory (RAM) and/or any other
storage device or storage disk 1n which information 1s stored
for any duration (e.g., for extended time periods, perma-
nently, for brief instances, for temporarly buflering, and/or
for caching of the information). As used herein, the term
tangible computer readable storage medium 1s expressly
defined to include any type of computer readable storage
device and/or storage disk and to exclude propagating
signals and transmission media. As used herein, “tangible
computer readable storage medium™ and “tangible machine
readable storage medium”™ are used interchangeably. Addi-
tionally or alternatively, the example processes of FIGS. 7,
8.9, and/or 10 may be implemented using coded instructions
(e.g., computer and/or machine readable nstructions) stored
on a non-transitory computer and/or machine readable
medium such as a hard disk drive, a flash memory, a
read-only memory, a compact disk, a digital versatile disk,
a cache, a random-access memory and/or any other storage
device or storage disk 1n which information 1s stored for any
duration (e.g., for extended time periods, permanently, for
brief 1nstances, for temporarily buflering, and/or for caching,
of the information). As used herein, the term non-transitory
computer readable medium 1s expressly defined to include
any type ol computer readable storage device and/or storage
disk and to exclude propagating signals and transmission
media. As used herein, when the phrase “at least” 1s used as
the transition term 1n a preamble of a claim, 1t 1s open-ended
in the same manner as the term “comprising” 1s open ended.

FIG. 7 1s a flowchart representative ol example machine
readable instructions 700 which may be executed by the
example packet collectors 116-120, 200 of FIGS. 1 and/or 2
to collect packets 1n a network. The example nstructions
700 are described below with reference to the packet col-
lector 200 of FIG. 2. However, the instructions 700 are also
applicable to the packet collectors 116-120 of FIG. 1.

The example packet buller 202 receives a packet from a
network node (e.g., a network node 102-108 of FIG. 1
corresponding to the packet collector 200) (block 702). In
some examples, the packet data extractor 204 receives the
packet via the packet butler 202.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

The example packet data extractor 204 extracts packet
data from the packet for filtering the packet (block 704). For
example, the packet data extractor 204 may extract a pro-
tocol used 1n the packet, source and/or destination addresses
and/or ports, and/or any other information about the packet.

The packet data analyzer 206 determines whether the
received packet matches capture criteria based on the
extracted packet data (block 706). If, based on the extracted
packet data, the received packet matches one or more
capture criteria (block 706), the packet data analyzer 206
stores the packet in the packet storage 210 for subsequent
transier to a central packet collection or database (e.g., the
packet database 124 of FIG. 1) (block 708). In some
examples, the packet timestamper 208 timestamps the
packet prior to storage in the packet storage 210 and/or
timestamps the stored packet in the packet storage 210.

After storing the packet (block 708) or 1if, based on the
extracted packet data, the received packet matches one or
more capture criteria (block 706), the example packet pack-
ager 212 determines whether to create a packet capture file
(block 710). For example, the packet packager 212 may be
configured create a packet capture file 1n response to the
expiration of a time 1nterval (e.g., 300 seconds or any other
interval) that resets after the creation of a packet capture file,
and/or at a particular time of day (e.g., 2 A.M.). I the packet
packager 212 1s to create a packet capture file (block 710),
the example packet packager 212 creates the packet capture
file to include packets captured since the last packet capture
file was created (block 712). In this way, the example packet
packager 212 does not duplicate packets between packet
capture {iles.

The example packet de-duplicator 214 de-duplicates
packets 1in the packet capture file (block 714). For example,
the packet de-duplicator 214 may de-duplicate packets by
identifying and removing loopback packets from the packet
capture {ile.

The example package compressor 216 compresses the
packet capture file (block 716). The package compressor 216
may use any type of data compression. Data compression of
the packet capture file reduces the load on the communica-
tion network 100 from multiple packet collectors 116-120
transmitting packet capture files that include relatively high
amounts of data, such as voice call contents. The example
package encrypter 218 encrypts the packet capture file
(block 718). The package encrypter 218 may use any type of
encryption to reduce the probability that a party that inter-
cepts the packet capture file 1s capable of listeming to the
voice call contents (e.g., intentional or umintentional eaves-
dropping). The example package encrypter 218 transmits the
packet capture file to a packet processor (e.g., the packet
processor 122 of FIGS. 1 and/or 3) (block 720).

FIG. 8 1s a flowchart representative of example machine
readable instructions 800 which may be executed by the
example packet processor 122 of FIGS. 1 and/or 3 to process
packets collected by the example packet collectors 116-120
of FIG. 1. The example instructions 800 are described below
with reference to FIG. 3.

The example packet processor 122 (e.g., via the package
decrypter 302, the package decompressor 304, or the packet
data identifier 306) receives a packet capture file (e.g., from
one of the packet collectors 116-120 of FIG. 1) (block 802).
In the example of FIG. 8, the package decrypter 302
decrypts the packet capture file (block 804) and the package
decompressor 304 decompresses the packet capture file
(block 806). In examples in which the received packet
capture file 1s not encrypted and/or 1s not compressed, block

804 and/or block 806 may be omitted.

US 9,608,879 B2

15

The example packet data identifier 306 selects a packet
from the packet capture file (block 808). The packet data
identifier 306 parses the selected packet to obtain packet
metadata (block 810). For example, the packet data identifier
306 may parse packets using one or more parsers (€.g., SIP
parsers, UDP parsers, RTP parsers, IP parsers, Ethernet
parsers, etc.). The example packet data identifier 306 of FIG.
3 extracts the metadata described above with reference to
FIG. §.

The example packet indexer 308 stores the extracted
metadata in corresponding imndex fields of an index record
(block 812). Example index fields are described above with
reference to FI1G. 5. An index record includes a combination
of the index fields, which may be subsequently searched 1n
response to a query.

The example packet linker 310 determines whether the
packet capture file that included the selected packet 1s stored
in the packet database 124 (block 814). For example, the
packet linker 310 may have stored the selected packet 1n the
packet database 124 while processing a previous packet
obtained 1 the same packet capture file. If the packet
capture {ile 1s not stored 1n the packet database (block 814),
the example packet linker 310 generates a table entry to add
the selected packet capture file to a “Call” table 1n the packet
database 124 (block 816). The example “Call” table stores
the packet capture files with a reference number or 1dentifier
for linking from the Index Table 130.

If the packet capture file that included the selected packet
1s stored 1n the packet database 124 (block 814), or after
generating the table entry (block 816), the example packet
indexer 308 generates a table entry to add an index record to
an Index Table 130, where the index record includes the
index fields and references the corresponding packet capture
file 1n the packet database 124 (block 818). For example, the
packet indexer 308 may create a record 1n the Index Table
130 of the packet database 124, populate the record with the
packet metadata of the selected packet, and include the
reference or identifier to the packet capture file 1n the Index
Table 130.

The example packet data identifier 306 determines
whether there are additional packets 1n the packet capture
file (block 820). If there are additional packets in the packet
capture file (block 820), control returns to block 808 to
select another packet. When there are no more packets in the
packet capture file (block 820), control returns to block 802
to receive another packet capture file. In some other
examples, when there are no more packets in the packet
capture file, the example 1nstructions 800 end. The struc-
tions 800 may then be called again for a subsequent packet
capture {file received at the packet processor 122.

FIG. 9 1s a flowchart representative of example machine
readable instructions 900 which may be executed by the
example packet query processor of FIGS. 1 and/or 4 to query
the packet database of FIG. 1 for captured packets corre-
sponding to a call.

The example request parser 402 receives a packet data-
base search request (e.g., from the client device 142 of FIG.
1) (block 902). The packet database search request may be
a set of parameters specified by a user of the client device
142 to access one or more desired calls (e.g., to perform
network troubleshooting services voice calls or other com-
munications). Example search criteria for a call search
include a start and/or an end of a date and/or time range,
keyword(s), and/or an 1dentification of one or more portions
of the communication network 100 to which the query
should be applied (e.g., a geographically-bounded part of the
network, a particular deployment to a service provider, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

16

The example query generator 404 generates a query for
execution at the packet database 124 based on the search
request parameters (block 904). For example, the query
generator 404 may convert the parameters specified 1n the
search request to query premises (e.g., SQL statements) on

the Index Table 130 of the packet database 124. In some

examples, the query generator 404 creates query premises
using the search string on multiple ones of the fields 502-538
of FIG. 5. In some examples, the query may restrict the
packets to one or more portions ol the communications
network 100 (e.g., to particular ranges of IP addresses, to
particular calling and/or called parties, etc.). The example
query generator 404 executes the packet database query
(e.g., via the packet database 124 and/or a query handler that
manages the packet database 124) (block 906). For example,
the query generator 404 may submit the query for processing
by the packet database 124.

The example query result analyzer 406 matches the query
results (e.g., unique calls) 1nto one or more unique call(s)
(block 907). As used herein, the term “unique call” refers to
a single voice and/or video session between two or more
devices. In the SIP protocol, a unique call may be mnitiated
by an INVITE request from a calling device and end with a
“BYE” message sent from one or more of the devices. The
query result analyzer 406 may match query results 1nto calls
by 1dentifying packets that are part of a same unique voice
call between devices across the communications network
100 and merges the packets mnto a call file. In some
examples, the call constructor 408 identifies additional pack-
cts not included in the selected results in the unique call
based on the matching. Instructions that may be performed
to implement block 907 are described below with reference
to FIG. 10.

The example query result analyzer 406 provides the query
results to the requester (block 908). For example, the query
result analyzer 406 may provide the query results in a table
similar to the table 600 of FIG. 6 described above. In some
examples, the query result analyzer 406 may format the
query results (e.g., the records identified by executing the
query) for display at the client device 142 (e.g., as an HTML
document) and send the formatted query results to the client
device 142.

The example query result analyzer 406 determines
whether one or more calls are selected from the query results
(e.g., by a user of the client device 142) (block 910). For
example, the query result analyzer 406 may await a response
from the client device 142 including the selection of one or
more results from the results provided by the query result
analyzer 406. 1T one or more calls are selected (block 910),
the example call constructor 408 merges the selected
result(s) ito individual calls (block 912). For example, the
call constructor 408 may merge records that are located 1n
different packet capture files in the packet database 124 nto
individual call files. The call constructor 408 may, for
example, select records identified as belonging to a call,
retrieve the packet capture files identified i the selected
records, order the packets 1in the packet capture files by
timestamp, and reassemble the packets into a call file n
order by timestamp.

The example call constructor 408 determines whether the
call content was requested (block 914). For example, the
requester may be given the ability to select between down-
loading just the signaling files for a call (e.g., the SIP
packets) and downloading the signaling files and the call
content (e.g., the SIP packets and the voice data in the RTP
packets). In the example of downloading calls to facilitate

US 9,608,879 B2

17

network troubleshooting, full call content may be useful in
diagnosing and fixing a problem.

If the call content was requested (block 914), the example
call constructor 408 provides the signaling (e.g., SIP) data
for the call and the corresponding RTP data for the selected
call(s) to the requester (block 916). To provide the RTP data
for a call, the example call constructor 408 accesses the
packet capture files referenced by the index records obtained
from the query of the packet database 124. For example, the
call constructor 408 may access an index record correspond-
ing to a query result, identity the filename information that
identifies the location of the packet capture file, and access
the packet capture file from the Calls Table 132.

If the call content was not requested (e.g., only the
signaling information 1s requested) (block 914), the example
call constructor 408 provides the signaling (e.g., SIP) data to
the requester (block 918).

After providing the signaling data (block 918), providing
both the signaling and call content (block 916), or if no calls
are selected from the query results (block 910), the example
instructions 900 of FIG. 9 end. The example instructions 900
may then be repeated for subsequent search requests for the
packet database 124.

FIG. 10 1s a flowchart representative of example machine
readable instructions 1000 which may be executed by the
example query result analyzer 406 of FIG. 4 to match query
results into unique calls. The example instructions 1000 may
be performed by the example query generator 404, the
example query result analyzer 406, and/or the example call
constructor 408 of FIG. 4 to implement block 907 of FIG. 9.
In the example described below, a query has been executed
on the packet database 124 (e.g., on the Calls Table 132) and
a set of database query results has been returned to the query
results analyzer 406 (e.g., block 906 of FIG. 9).

The example query results analyzer 406 selects a record
from the database query results (block 1002). The selected
record 1s a record 1n the Index Table 130 and includes the
example fields 502-542 of FIG. 3, including a unique
identifier (e.g., the 1d field 502) of the record.

The example call constructor 408 determines whether the
selected record has been included 1n a unique call file (block
1004). The unique call file(s) are call file(s) to be returned to
a requester as query results. The unique call files may be
selected by the requester to include signaling-only or sig-
naling and voice data.

It the selected record has not been included 1n a unique
call file (block 1004), the example query results analyzer
406 determines whether the selected record matches any
unique call file(s) from the present database query (block
1006). If the selected record does not match any of the
unique call files from the present database query (block
1006), the example call constructor 408 generates a new
unique call file (block 1008).

After generating a new unique call file (block 1008), or 1f
the selected record matches of the unique call files from the
present database query (block 1006), the example call con-
structor 408 adds the selected record to the unique call file
(block 1010). For example, 11 the selected record matches an
existing umique call file (block 1006), the call constructor
408 adds the selected record to that existing unique call file.
Conversely, 1 the call constructor 408 generates a new
unique call file (block 1008), the example call constructor
408 adds the selected record to the newly-generated gener-
ated umique call file.

The example query result analyzer 406 obtains the
h_Via_branchID field value(s), the h_calllD field value,

and/or the timestamp from the selected record (block 1012).

10

15

20

25

30

35

40

45

50

55

60

65

18

For example, the query result analyzer 406 may obtain the
h_Via_branchID field value(s) from the h_Vial_branchID

field 534, the h_Via2 branchID field 536, and/or the
h_Via3_branchlD field 538 of FIG. 5. The query result
analyzer 406 may obtain the h_callID field value from the
h_calllD field 520 of FIG. 5. The query result analyzer 406

may obtain the timestamp from the timestamp field 542 of
FIG. S.

The query generator 404 generates a subquery to 1dentily

records having at least one same h_Via_branchlD field value
and/or a same h_calllD field value as the selected record and
having a timestamp within a threshold time range of the
selected record (block 1014). For example, the query gen-
crator 404 generates a query specilying one or more of the

h_Via_branchID field value(s) obtained from the selected
record, the h_calllD field value obtained from the selected
record, and/or a range of time determined based on the
timestamp obtained from the selected record. The subquery
identifies records belonging to a same unique call in the
communication network because records that have the same
h_Via_branchlID field value(s) and/or h_calllD field values
and that fall within the same time frame are likely to
originate from the same call.

The example query generator 404 executes the subquery
on the records in the database query results (block 1016).
For example, the query generator 404 executes the query to
identify the subset of the database query results that match
the selected record based on the h Via branchID field
values, the h_calllD field value, and/or the time range
determined from the timestamp.

The example query generator 404 also executes the sub-
query on the packet database 124 (block 1018). For
example, the query generator 404 executes the subquery to
identily any packets that may not have been 1dentified 1n the
original query (e.g., the query performed at block 906 of
FIG. 9 prior to execution of the instructions 1000) but that
might be part of the same unique call as the selected record.

The example query result analyzer 406 generates a list of
results from the executing the subquery on the packet
database 124 and on the database query results (block 1020).
For example the query result analyzer 406 may combine the
results from executing the subquery on the packet database
124 and the database query results. In some examples, the
query result analyzer 406 de-duplicates records 1n the list of
results by identifying duplicates in the 1d fields 502 of the
records 1n the list of results. Additionally or alternatively, the
example query result analyzer 406 may de-duplicate the list
of results with the unique call file associated with the
selected record by comparing the 1d fields 502 of the records
with the 1d fields 502 of the records 1n the unique call file.

The example call constructor 408 selects a subquery
record (e.g., a record from the list of results of the subquery
generated 1 block 1020) (block 1022). The call constructor
408 determines whether the selected subquery record 1is
already included 1n the unique call file associated with the
selected record (block 1024). For example, the call con-
structor 408 may determine whether the 1d field value of the
selected subquery record matches the 1d field value of any of
the records 1n the unique call file.

If the selected subquery record i1s not included in the
umque call file associated with the selected record (block
1024), the example call constructor 408 adds the selected
subquery record to the unique call file (block 1026). After
adding the selected subquery record to the unique call file
(block 1026), or 11 the selected subquery record 1s already
included 1n the unique call file associated with the selected

US 9,608,879 B2

19

record (block 1024), the example call constructor 408
removes the selected subquery record from the list of results

(block 1028).

The example call constructor 408 determines whether
there are additional records 1n the list of results (block 1030).
If there are additional records in the list of results (block

1030), control returns to block 1022 to select another
subquery record from the list of results.

When there are no additional records 1n the list of results
(block 1030), or 11 the selected record has been 1included 1n
a umque call file (block 1004), the example query result
analyzer 406 remove the selected record from the database
query results (block 1032). The example query result ana-
lyzer 406 determine whether there are additional record(s) 1in
the database query results (block 1034). If there are addi-
tional record(s) in the database query results (block 1034),
control returns to block 1002 to select another record from
the database query results. When there are no more record(s)
in the database query results (block 1034), the example
istructions 1000 end and control returns to a calling pro-
cedure, such as block 907 of FIG. 9.

FIG. 11 1s a block diagram of an example processor
plattorm 1100 capable of executing the istructions of FIG.
7 to implement the example packet bufler 202, the example
packet data extractor 204, the example packet data analyzer
206, the example packet timestamper 208, the example
packet storage 210, the example packet packager 212, the
example packet de-duplicator 214, the example package
compressor 216, the example package encrypter 218 and/or,
more generally, the example packet collectors 116-120 and
200 of FIGS. 1 and/or 2. The processor platform 1100 can
be, for example, a server, a personal computer, a routing
device, a network node, or any other type of computing
device.

The processor platiorm 1100 of the illustrated example
includes a processor 1112. The processor 1112 of the 1llus-
trated example 1s hardware. For example, the processor 1112
can be implemented by one or more integrated circuits, logic
circuits, microprocessors or controllers from any desired
family or manufacturer.

The processor 1112 of the 1llustrated example includes a
local memory 1113 (e.g., a cache). The example processor
1112 of FIG. 11 executes the instructions of FIG. 7 to
implement the example packet bufler 202, the example
packet data extractor 204, the example packet data analyzer
206, the example packet timestamper 208, the example
packet storage 210, the example packet packager 212, the
example packet de-duplicator 214, the example package
compressor 216, the example package encrypter 218 and/or,
more generally, the example packet collectors 116-120 and
200 of FIGS. 1 and/or 2.

The processor 1112 of the 1llustrated example 1s 1n com-
munication with a main memory including a volatile
memory 1114 and a non-volatile memory 1116 via a bus
1118. The volatile memory 1114 may be implemented by
Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS
Dynamic Random Access Memory (RDRAM) and/or any
other type of random access memory device. The non-
volatile memory 1116 may be implemented by flash memory
and/or any other desired type of memory device. Access to
the main memory 1114, 1116 1s controlled by a memory
controller.

The processor platiorm 1100 of the illustrated example
also 1includes an interface circuit 1120. The interface circuit
1120 may be implemented by any type of interface standard,

10

15

20

25

30

35

40

45

50

55

60

65

20

such as an Ethernet interface, a universal serial bus (USB),
and/or a PCI express interface.

In the illustrated example, one or more mput devices 1122
are connected to the interface circuit 1120. The 1input
device(s) 1122 permit(s) a user to enter data and commands
into the processor 1112. The 1nput device(s) can be 1mple-
mented by, for example, an audio sensor, a microphone, a
camera (still or video), a keyboard, a button, a mouse, a
touchscreen, a track-pad, a trackball, 1sopoint and/or a voice
recognition system.

One or more output devices 1124 are also connected to the
interface circuit 1120 of the 1llustrated example. The output
devices 1124 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode
ray tube display (CRT), a touchscreen, a tactile output
device, a light emitting diode (LED), a printer and/or
speakers). The interface circuit 1120 of the illustrated
example, thus, typically includes a graphics driver card, a
graphics driver chip or a graphics driver processor.

The terface circuit 1120 of the illustrated example also
includes a communication device such as a transmitter, a
recelver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 1126
(e.g., an Fthernet connection, a digital subscriber line
(DSL), a telephone line, coaxial cable, a cellular telephone
system, etc.).

The processor platform 1100 of the illustrated example
also includes one or more mass storage devices 1128 for
storing soltware and/or data. The example mass storage
device 1128 implements the packet storage 210 of FIG. 2.
Examples of such mass storage devices 1128 include floppy

disk drives, hard drive disks, compact disk drives, Blu-ray
disk drives, RAID systems, and digital versatile disk (DVD)

drives.

The coded instructions 1132 of FIG. 7 may be stored 1n
the mass storage device 1128, 1n the volatile memory 1114,
in the non-volatile memory 1116, and/or on a removable
tangible computer readable storage medium such as a CD or
DVD.

FIG. 12 1s a block diagram of an example processor
platiorm 1200 capable of executing the instructions of FIGS.
8,9, and/or 10 to implement the example package decrypter
302, the example package decompressor 304, the example
packet data identifier 306, the example packet indexer 308,
the example packet linker 310, the example request parser
402, the example query generator 404, the example query
result analyzer 406, the example call constructor 408 and/or,
more generally, the example packet processor 122, and/or
the example query processor 140 of FIGS. 1, 3, and/or 4.
The processor platform 1200 can be, for example, a server,
a personal computer, a routing device, a network node, or
any other type of computing device.

The processor platform 1200 of the i1llustrated example
includes a processor 1212. The processor 1212 of the
illustrated example 1s hardware. For example, the processor
1212 can be implemented by one or more integrated circuits,
logic circuits, microprocessors or controllers from any
desired family or manufacturer.

The processor 1212 of the 1llustrated example includes a
local memory 1213 (e.g., a cache). The example processor
1212 of FIG. 12 executes the instructions of FIGS. 8, 9,
and/or 10 to implement the example package decrypter 302,
the example package decompressor 304, the example packet
data i1dentifier 306, the example packet indexer 308, the
example packet linker 310, the example request parser 402,

US 9,608,879 B2

21

the example query generator 404, the example query result
analyzer 406, the example call constructor 408 and/or, more
generally, the example packet processor 122, and/or the
example query processor 140 of FIGS. 1, 3, and/or 4.

The processor 1212 of the illustrated example 1s in
communication with a main memory including a volatile
memory 1214 and a non-volatile memory 1216 via a bus
1218. The volatile memory 1214 may be implemented by
Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS
Dynamic Random Access Memory (RDRAM) and/or any
other type of random access memory device. The non-
volatile memory 1216 may be implemented by flash
memory and/or any other desired type of memory device.
Access to the main memory 1214, 1216 1s controlled by a
memory controller.

The processor platform 1200 of the illustrated example
also includes an intertace circuit 1220. The mterface circuit
1220 may be implemented by any type of interface standard,
such as an Ethernet interface, a universal serial bus (USB),
and/or a PCI express interface.

In the 1llustrated example, one or more 1input devices 1222
are connected to the interface circuit 1220. The 1nput
device(s) 1222 permit(s) a user to enter data and commands
into the processor 1212. The input device(s) can be imple-
mented by, for example, an audio sensor, a microphone, a
camera (still or video), a keyboard, a button, a mouse, a
touchscreen, a track-pad, a trackball, 1sopoint and/or a voice
recognition system.

One or more output devices 1224 are also connected to the
interface circuit 1220 of the illustrated example. The output
devices 1224 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode
ray tube display (CRT), a touchscreen, a tactile output
device, a light emitting diode (LED), a printer and/or
speakers). The interface circuit 1220 of the illustrated
example, thus, typically includes a graphics driver card, a
graphics driver chip or a graphics driver processor.

The mterface circuit 1220 of the illustrated example also
includes a communication device such as a transmitter, a
recelver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 1226
(c.g., an Ethernet connection, a digital subscriber line
(DSL), a telephone line, coaxial cable, a cellular telephone
system, etc.).

The processor platform 1200 of the illustrated example
also includes one or more mass storage devices 1228 for
storing soltware and/or data. The example mass storage
device 1228 implements the packet database 124, the
example Index Table 130, and/or the example Calls Table
132 of FIG. 1. Examples of such mass storage devices 1228
include floppy disk drives, hard drive disks, compact disk

drives, Blu-ray disk drives, RAID systems, and digital
versatile disk (DVD) drives.

The coded instructions 1232 of FIGS. 8, 9, and/or 10 may
be stored 1n the mass storage device 1228, in the volatile
memory 1214, 1n the non-volatile memory 1216, and/or on
a removable tangible computer readable storage medium
such as a CD or DVD.

From the foregoing, 1t will be appreciated that methods,
apparatus and articles ol manufacture have been disclosed
which enhance the operations of a computer to provide call
information to a requester. In some examples, computer
operations can be made more eflicient by reducing the
number of requests for call information that must be made

10

15

20

25

30

35

40

45

50

55

60

65

22

for the requester to successiully retrieve all of the signaling
and/or content associated with a call, by constructing dii-
ferent components and/or legs of the call that may not be
located by a first request. In some examples, network
communications can be made more etlicient by reducing the
communications required between a requester, a query pro-
cessor, and a packet database to provide whole call files
using the call construction methods disclosed herein.

Although certain example methods, apparatus and articles
of manufacture have been disclosed herein, the scope of
coverage of this patent 1s not limited thereto. On the con-
trary, this patent covers all methods, apparatus and articles
of manufacture fairly falling within the scope of the claims
of this patent.

What 1s claimed 1s:

1. A method to process packets collected from a commu-
nications network icluding network nodes, comprising: in
response to a user query mcluding information describing a
voice call, performing, by executing an instruction with a
query processor, a first search of extracted data stored 1n a
database using a first set of search terms to 1dentily records
matching the information, the extracted data representing
voice calls 1n the communication network and being
extracted from packets captured at nodes 1n the communi-
cation network, and the packets including control informa-
tion and voice data; in response to determining that a first
record 1n the database matches the information based on the
first search, analyzing, by executing an instruction with an
analyzer processor, the first record to 1dentily a second set of
search terms, at least some of the second set of search terms
being identified using the first record, the second set of
search terms being selected to identify a second record 1n the
database as belonging to a same unique call as the first
record 1n the database; performing, by executing an nstruc-
tion with the at least one of the query processor and the
analyzer processor, a second search of the same extracted
data 1n the database using the second set of search terms, the
second search to i1dentify the second record based on deter-
mining that first metadata of the first record matches second
metadata of the second record; and returning, by executing
an instruction with the at least one of the query processor
and the analyzer processor, a first packet corresponding to
the first record, a second packet corresponding to the second
record, and a third packet including voice data correspond-
ing to the umque voice call 1n response to the user query.

2. The method defined 1n claim 1, wherein the information
describing the voice call includes a first identifier of a called
party 1n the unique voice call, a second 1dentifier of a calling
party 1n the umique voice call, and a time range of the unique
voice call.

3. The method defined 1n claim 1, wherein the extracted
data includes at least one of a first branch 1dentifier, a first
umque call identifier, and a first timestamp.

4. The method defined 1n claim 3, wherein the identifying
of the second record in the database as belonging to the
umque voice call includes a) determining that a difference
between the first timestamp and a second timestamp satisfies
a threshold and b) at least one o1 1) matching the first branch
identifier corresponding to the first packet to a second
branch 1dentifier corresponding to the second packet and 11)
matching the first unique call identifier to a second unique
call identifier corresponding to the second packet.

5. The method defined in claim 1, further including
storing the extracted data 1n the database, the storing of the
extracted data 1n the database to include:

US 9,608,879 B2

23

generating an index record to include the extracted data;

including i the index record an identifier of a file

containing voice data corresponding to the extracted
data;

storing the index record 1n the database; and

storing the file 1n the database.

6. The method defined i1n claim 1, further including
retrieving from the database voice packets that are identified
in all records determined to correspond to the unique voice
call 1n response to the query.

7. An apparatus to process packets 1n a communication
network including network nodes, the apparatus comprising;:
a query processor; an analyzer processor; and a non-transi-
tory computer readable storage medium including computer
readable instructions which, when executed by the at least
one of the query processor and the analyzer processor, cause
the at least one of the query processor and the analyzer
processor to perform operations including: 1n response to a
user query including imformation describing a voice call,
performing a first search of extracted data stored in a
database using a first set of search terms to 1dentily records
matching the information, the extracted data being extracted
from packets captured at nodes 1 a communication net-
work, the extracted data including data representative of
voice calls 1 the communication network, and the captured
packets including control information and voice data; in
response to determining that a first record in the database
matches the information based on the first search, perform-
ing a second search of the same extracted data in the
database using a second set of search terms, the second
search to 1dentily a second record 1n the database as belong-
ing to a same unique voice call as the first record 1n the
database based on determining that first metadata of the first
record matches second metadata of the second record, at
least some of the second set of search terms being 1dentified
based on information contained in the first record; and
returning a first packet corresponding to the first record, a
second packet corresponding to the second record, and a
third packet including voice data corresponding to the
unique voice call 1n response to the user query.

8. The apparatus defined 1n claim 7, wherein the infor-
mation describing the voice call includes a first identifier of
a called party in the unique voice call, a second 1dentifier of
a calling party in the unique voice call, and a time range of
the unique voice call.

9. The apparatus defined 1n claim 7, wherein the extracted
data includes at least one of a first branch i1dentifier, a first
unique call 1dentifier, and a first timestamp.

10. The apparatus defined in claim 9, wherein the mstruc-
tions are to cause the processor to 1dentity the second record
in the database as belonging to the unique voice call by:

a) determining that a difference between the {first time-

stamp and a second timestamp satisfies a threshold; and

b) at least one of: 1) matching the first branch identifier

corresponding to the first packet to a second branch
identifier corresponding to the second packet and 11)
matching the first unique call identifier to a second
umque call identifier corresponding to the second
packet.

11. The apparatus defined 1n claim 7, wherein the instruc-
tions are further to cause the processor to store the extracted
data 1n the database by:

generating an index record to include the extracted data;

including i the index record an identifier of a file

containing voice data corresponding to the extracted
data;

storing the index record 1n the database; and

storing the file 1n the database.

10

15

20

25

30

35

40

45

50

55

60

65

24

12. The apparatus defined 1n claim 7, wherein the instruc-
tions are further to cause the processor to retrieve from the
database voice packets that are identified i1n all records
determined to correspond to the unique voice call 1n
response to the query.

13. A non-transitory computer readable storage medium
comprising computer readable instructions which, when
executed by at least one of a query processor and an analyzer
processor, cause the at least one of the query processor and
the analyzer processor to perform operations including: in
response to a user query mcluding information describing a
voice call, performing a first search of extracted data stored
in a database using a first set of search terms to i1dentily
records matching the information, the extracted data being
extracted from packets captured at nodes 1n a communica-
tion network, the extracted data including data representa-
tive of voice calls in the communication network, and the
captured packets including control information and voice
data; 1n response to determining that a first record in the
database matches the information based on the first search,
performing a second search of the same extracted data in the
database using a second set of search terms, the second
search to 1dentify a second record 1in the database as belong-
ing to a same unique voice call as the first record in the
database based on determining that first metadata of the first
record matches second metadata of the second record, at
least some of the second set of search terms being identified
using the first record; and returning a first packet corre-
sponding to the first record, a second packet corresponding
to the second record, and a third packet including voice data
corresponding to the unique voice call 1n response to the user
query.

14. The storage medium defined in claim 13, wherein the
information describing the voice call includes a first 1den-
tifier of a called party in the unique voice call, a second

identifier of a calling party in the unique voice call, and a
time range ol the unique voice call.

15. The storage medium defined in claim 13, wherein the
information describing the voice call includes a first 1den-
tifier of a called party in the unique voice call, a second
identifier of a calling party in the unique voice call, and a
time range of the unique voice call.

16. The storage medium defined in claim 15, wherein the
instructions are to cause the processor to identily the second
record 1n the database as belonging to the unique voice call

by:
a) determining that a difference between the {first time-
stamp and a second timestamp satisfies a threshold; and

b) at least one of: 1) matchung the first branch identifier
corresponding to the first packet to a second branch
identifier corresponding to the second packet and 1)
matching the first unique call identifier to a second
unique call identifier corresponding to the second
packet.

17. The storage medium defined in claim 13, wherein the
istructions are further to cause the processor to retrieve
from the database voice packets that are identified 1n all
records determined to correspond to the unique voice call in
response to the query.

18. The method defined 1n claim 1, wherein the query
processor and the analyzer processor are a same processor.

19. The apparatus defined 1n claim 7, wherein the query
processor and the analyzer processor are a same processor.

US 9,608,879 B2
25

20. The storage medium defined in claim 13, wherein the
query processor and the analyzer processor are a same
Processor.

26

	Front Page
	Drawings
	Specification
	Claims

