12 United States Patent
Syed et al.

US009607059B2

(10) Patent No.:
45) Date of Patent:

US 9,607,059 B2
Mar. 28, 2017

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

INTELLIGENT DATA MINING AND
PROCESSING OF MACHINE GENERATED
LOGS

Applicants: Awez Syed, San Jose, CA (US); Nancy
Yan, Cupertino, CA (US); Hermant
Puranik, San Ramon, CA (US); Justin
Martinson, Bellevue, WA (US);
MonFor Yee, Palo Alto, CA (US);
David Burdett, Orinda, CA (US)

Inventors: Awez Syed, San Jose, CA (US); Nancy
Yan, Cupertino, CA (US); Hermant
Puranik, San Ramon, CA (US); Justin
Martinson, Bellevue, WA (US);
MonFor Yee, Palo Alto, CA (US);

David Burdett, Orinda, CA (US)

Assignee: SAP SE, Walldort (DE)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 239 days.

Notice:

Appl. No.: 14/169,389

Filed: Jan. 31, 2014

Prior Publication Data

US 2015/0220605 Al Aug. 6, 2015

Int. CI.

GO6F 17/30 (2006.01)

GO6F 17/40 (2006.01)

U.S. CL

CPC ... GO6F 17/30563 (2013.01); GO6F 17/40

(2013.01)

Field of Classification Search
None
See application file for complete search history.

100\

(56) References Cited

U.S. PATENT DOCUMENTS
8,620,928 B1* 12/2013 Walton GO6F 17/3053
707/748
8,676,863 Bl1* 3/2014 Connell GO6F 17/30917
707/804
2002/0073138 Al* 6/2002 Gilbert GO6F 17/30
709/201
2003/0046370 Al* 3/2003 Courtney HO4L 41/0266
709/220
2003/0055723 Al* 3/2003 English G06Q 30/02
705/14.51
2003/0130801 Al1* 7/2003 Kagan GO6F 19/22
702/20
2006/0184529 Al* 8/2006 Bergc......... GO6F 11/0709
2008/0021898 Al1* 1/2008 Hoglund GO6F 17/30657
2013/0018781 Al1* 1/2013 Prada Peyser G06QQ 20/20
705/39
2013/0205192 Al1* 8/2013 Spada GOO6F 17/2264
715/227

OTHER PUBLICATIONS

CsvReader, Jan. 15, 2008, accessed May 9, 2016 at http://web.
archive.org/web/20080115121753/http://javacsv.sourceforge.net/
com/csvreader/CsvReader html .*

* cited by examiner

Primary Examiner — William Spieler

(74) Attorney, Agent, or Firm — Buckley, Mascholl &
Talwalkar LLC

(57) ABSTRACT

According to some embodiments, a method and an appara-
tus of analyzing log files comprises sampling a log and
determining a structure associated with the log file based on
the sampling and a pattern within the structure. If the
structure and the pattern are stored 1n a repository, data from
the log file will be exported into a database based on the
determined pattern.

20 Claims, 6 Drawing Sheets

110
L

Sample A Log File

|

/-120 1

Determine A Structure Associated With The Log File Based On The
Sampling And A Pattern Within The Structure

|

/130 1

Determine If The Structure And The Pattern Are Stored In A
Repository

|

M0

When The Structure And Pattern Are Determined To Be Stored In
The Repository, Export Data From The Log File Into A Relational
Database Based On The Determined Pattern

U.S. Patent Mar. 28, 2017 Sheet 1 of 6 US 9,607,059 B2

100
N 110

Sample A Log File

120

Determine A Structure Associated With The Log File Based On The
Sampling And A Pattern Within The Structure

130

Determine If The Structure And The Pattern Are Stored In A
Repository

140

When The Structure And Pattern Are Determined To Be Stored In

The Repository, Export Data From The Log File Into A Relational
Database Based On The Determined Pattern

FIG. 1

US 9,607,059 B2

Sheet 2 of 6

Mar. 28, 2017

U.S. Patent

¢ Old

€L
uoisiaApuewlo ‘(991 G9¢€ L G-'GL9¢6/€G€E] 921N0S *SISIXe J0U SB0P [GO0EEESH.LL-"90G891618] +'2'891°Z61
1obue) :()puewiwogbunasNuMOUNUN PaAIBOSY:[L]oINqUNY-X 0S 2202 +8YL $66°25:02:CL Z1/90/€10T

¢/
uoIsIsAPUBWIWOY ‘[99169€ L #G-‘GL9€6.LE£GE] 82IN0S ‘S)SIXS J0U S80P [G90€EEG6.LL-"90G891678] 9°€891°Z61
Jabue) :()puewwoDbuneauMoUun PaAIRoaY:[L]aINquIv-X 0S 2202 8L S66°25:02:2L Z1/90/€102

¢/ UOISIQAPUBLILLIOND

991 G9€E L ¥G-GL9€6.LEGE] 82IN0S ‘SISIXd JOU SA0P [GY0EEESHLL-"00G891678] GGZ'G 891 261
Jable) :()puewwoDbuneaumouun paARoay:[L]aINquNv-X 0S 2202 8l ¥66°25:02:2L Z1/90/S102

¢l
uoIsidApUBLIWOY ‘(991 GOCL1G-'G/9€6/.EGE] ©24N0S ‘S)SIXd J0U S90P [GI0EEEG6.1-"9058916%8] 8'1'891°261

Jable) :()puewiwoDbunaaUMOUNUN PaAIROSY:[L]aINquNV-X 0S 2202 8l ¥66°25:02:2L Z1/90/€10Z

¢/ UOISISAPUBLUILLOND

1991 69€1¥S-'GL9€6/.€GE] 82INOS “SISIXS J0U S80P [G90EECES6.L L-'905891618] GGG 891 °Z61
Jable) :()puewiwoDbunaauUMOUNUN PaAIROSY:[L]aINquNV-X 0S 2202 8L $66°25:02:2L Z1/90/€10Z

¢/
uoISI9APUBLIWOYD ‘(991 GOC L 1G-'GL9E6/.£GE] 92IN0S ‘SISIXa J0U S0P [GO0EEEG6.1-'00G891678] 9°€'891°261
Jable) :()puewiwoDbunaauMmouun pPaAlRoay:[L]aInqunv-X 0S 2202 ¥8tl ¥66°25:02:2L Z1/90/€10Z

¢l
uoIsIs APUBLIWOY ‘[991G9€ L 1G-'G29€6/.€G€E] 824N0S ‘S)SIXd J0uU SB0P [GO0EEEG6.1-"90G891618l1'2' 891261

Jabue) :()puewwoDbunaaumouun paARday:[L]aINqunv-X 0S 2202 ¥8tl ¥66°25:02:2L Z1/90/€102
00¢

& Ol

US 9,607,059 B2

\&
-~
&
er,
D
W
=
7 p,

IIIII
— g uoneolday 1i9-DUILIBAN] vooregovd | b
= hedl €24-€2l EI
“ g uoned|ddy 0/4444 ANQLUIY-X
& XXX vy uoneolddy [g/ UOISISAPUBLUWIOD INQLPY-X F
= ejeq buisied | (qjuiojediddy |z synquiy uiayed | | aynquiy uiayed | @l uisned
>

0G¢ 0¥ ¢ 0Z¢ 0L¢
00¢

U.S. Patent

US 9,607,059 B2

Sheet 4 of 6

Mar. 28, 2017

U.S. Patent

asegele(

vy Old

q—

4%
JOUI]

diysuonejoy
olol

H

€

v

191jUSP|

LV

901A9(]

bunndwon

ejepels|N bo

cv H

1010819
aJn)on.ns boT

U.S. Patent Mar. 28, 2017 Sheet 5 of 6 US 9,607,059 B2

Processor Memory

Storage Medium
201 202
03

FIG. 5

/. Ol

US 9,607,059 B2

I e e e e
I e e e O
ruseeqed| vSN | N.OOSOPE | M 00SC €4 UOISIBAPUBLLLUOD | SGC'S 891 ‘261
UOROGILLIOMS | PB)S| | N.EEB0CE | J.0008%E [EL UOSISADUBLLLOG| 9€'891 6l
SUOrPAOH | VSN | No£2OLLY | MEP9C. oL UOSISAPUBLLLIOD| $2'89L CE1

\&
= aweNJesn | AgunoD | epmype] | epmbuo] | Joug | ssaippvd
\&
m 0.9 099 059 0%9 029 019
P,
00/
> 9 9l
Y
~
-
&
g\
-
= e
>

LI77-77-777 £ UORRAPUBLLUIOD (GGC GBIl ol
— R RLUORSADII0] SEeorea!
o000 FLUORO R0 b7 891 bl
—Ns | sua [ssepoval

0€9Y 0¢9Y — 019
00

U.S. Patent

US 9,607,059 B2

1

INTELLIGENT DATA MINING AND
PROCESSING OF MACHINE GENERATED
LOGS

BACKGROUND

A log file, or simply a log, 1s a file that records events
which have occurred during execution of a computer system
or during the execution of a file. The purpose of a log file 1s
to provide data which may be used to understand activity
that occurred during the execution of the computer system
and to diagnose problems with applications or an operating
system running on the computer system. Logs may comprise
machine-generated data that are generated by internet pro-
tocol (“IP”) enabled end-points or devices like web logs,
network events, call data records, and RFID information.

Log files may be partitioned based on a maximum file size
ol a log file which can make a log file ditlicult to understand.
Most organizations lack an ability to understand unfiltered
data embedded 1n logs to derive any real business value from
the log files. Data contained within a log file may vary
depending on a type of log file and may require one or more
tools to capture and store data. However, even when cap-
tured and stored, understanding the log files must come from
manual 1nteraction with the log files, 1t the data 1s even
manageable. Data analysts still face challenges organizing
and processing log data due to a lack of proper technical
skills. Moreover, data analysts often find themselves 1n a
repeated eflort on manual data classification and data min-
ng.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates a method according to some embodi-
ments.

FI1G. 2 1llustrates a portion of a log file according to some
embodiments.

FIG. 3 illustrates a portion of a repository with defined
patterns according to some embodiments.

FIG. 4 1llustrates a system according to some embodi-
ments.

FIG. § illustrates an apparatus according to some embodi-
ments.

FIG. 6 1illustrates a portion of a repository according to
some embodiments.

FIG. 7 1llustrates a portion of a repository according to
some embodiments.

DETAILED DESCRIPTION

The present embodiments relate to a method, system and
apparatus to automatically examine log files, determine a log
format, discover relationships 1n and across other log files,
propose best field names as well as mining options based on
a content type of a log field. The present embodiments may
automatically recognize a structure based on pattern(s) in a
repository, automatically recognize fields based on content
types 1n a log file, and automatically provide field enhance-
ments based on content of the log file.

Determining a structure and a pattern associated with the
log file may use patterns stored in a repository as a reference
for automatic detection of structures and patterns. When a
pattern 1s determined to be stored 1n the repository, data from
the log file may be exported into a database (e.g., a relational
database) based on the determined pattern. In addition, a

10

15

20

25

30

35

40

45

50

55

60

65

2

content type may be determined based on a pattern of a log
field and subsequent enhancement options may be provided
for log processing.

Referring to FIG. 1, an embodiment of a method 100 1s
illustrated. The method 100 may relate to automatically
processing a log file. Furthermore, the method 100 may be
performed by an apparatus such as, but not limited to, the
apparatus ol FI1G. 5. At 110, a log file 1s sampled. The log file
may be sampled by traversing the log file, line by line by line
breaking, and processing each line as it 1s sampled. In some
embodiments, processing each line may comprise scanning
cach line of the log file for structures that comprise (1) a
pattern (e.g., data patterns, data, distinct values, and regular
expressions), (2) a series of known characters (e.g., a group
of American Standard Code for Information Interchange
(“ASCII”) characters), and/or other recognizable attributes.
A structure may comprise a segment of the log file, such as
an entry 1n the log file. Log file entries may be separated, for
example, by a new line, a time stamp, or a carriage return.
In some embodiments, when multiple log files are examined,
the log files may be clustered based on file names prior to
sampling a log file.

For illustrative purposes, and to aid in understanding
teatures of the specification, an example will be itroduced.
This example 1s not intended to limit the scope of the claims.
Now referring to FIG. 2, an embodiment of a portion of a log
file 200 1s illustrated. Log file 200 comprises a plurality of
text lines. However, in the present embodiment, nowhere
does the log file 200 1indicate a name of an application or an
operating system that generated the log file 200. Each line of
the log file 200 may be read and analyzed for structures as
well as a known series of characters and/or a pattern.

Referring back to FIG. 1, at 120, a structure associated
with the log file and a pattern within the structure are
determined. The determination may be made via a processor
such as, but not limited to, the processor described with
respect to FIG. 5. For each log file that 1s sampled, a
structure associated with the log 1s determined. Each struc-
ture may contain multiple line patterns (e.g., multiple regu-
lar expressions where a regular expression comprises a
sequence ol characters that forms a search pattern). A pattern
may comprise a reliable sample of traits, tendencies, or other
repeatable observable characteristics of the log file. Patterns
may comprise a single attribute that 1s repeated over a
plurality of lines 1n a log file or may comprise multiple
attributes that are repeated over a plurality of lines 1n the log
file.

Continuing with the above example, the log file 200 may
comprise a plurality of structures, such as “2013/06/12

12:20:52.994 1484 2072 SO X-Attribute[1]::Received_Un-
knownMeetingCommand(): target 192.168.5.255
[849168506,-1795333065] does not exists, source
[353793675,-541365166], CommandVersion 73 which are
separated by carriage returns and each structure of log file
200 may indicate the phrase “X-Afttribute” and “Command
Version 737 and each of these attributes may be associated
with an individual pattern or the combination of the two
(e.g., having both “X-Attribute” and “CommandVersion
73”) may be associated with an individual pattern. Patterns
may comprise any repeated character or symbol grouping.

At 130, a determination if the structure and the pattern are
stored 1 a repository 1s made. In some embodiments, a
determination 1s made as to whether or not the structure and
pattern (e.g., a regular expression) exist 1n a repository. Each
pattern of the structure may be looked up 1n a repository to
determine 1f the pattern 1s a known pattern (and if the
structure 1s known) or 11 the pattern has yet to be discovered.

US 9,607,059 B2

3

I1 the pattern 1s known, then information associated with the
pattern may be retrieved from the repository. If the pattern
1s not known, then information associated with the pattern
may be stored in the repository for reuse later.

Continuing with the above example, and now referring to
FIG. 3, a portion of a repository 300 1s illustrated according
to some embodiments. The repository 300 may comprise a
database table or a flat file. In some embodiments, the
repository 300 may comprise fields such as, but not limited
to, a pattern unique identifier 310, a first pattern attribute
320, a second pattern attribute 330, a software application or
operating system 340 that 1s associated with the pattern, and
data related to parsing 350 a log file for a particular
application or operating system.

The pattern attributes “X-Attribute” and “CommandVer-
sion 73 may be looked up in repository 300 to determine 11
these pattern attributes are associated with a known pattern.
In the present example, pattern 1 of FIG. 300 1s associated
with both pattern attributes “X-Afttribute” and “Command
Version 73”. Theretfore, the pattern associated with pattern
attributes “X-Attribute” and “CommandVersion 73 may be
already stored 1n the repository.

At 140, when the pattern 1s determined to be stored in the
repository data from the log file 1s exported into a database
based on the determined pattern. The database may comprise
a relational database such as database 460 of FIG. 4. The
repository may comprise information associated with pars-
ing a particular log file so that it may be imported into a
database. For example, the parsing data may indicate where
important information 1s located within a log file as well as
which kinds of important information should be imported
from a particular type of log file.

Continuing with the above example, since a pattern asso-
ciated with the log file of FIG. 2 1s a known pattern (e.g., 1t
1s stored in the repository), information from the log file may
be automatically parsed and stored in a database based on
the parsing data stored in the repository. For example, a
structure of the log file may be parsed into known patterns
and the information associated with the known patterns may
be stored 1n the repository.

However, when the pattern associated with the log file 1s
not known (e.g., the pattern 1s absent from the repository),
the log file may be further analyzed. It a pattern or structure
1s not known, a new structure and associated patterns based
on the log data content type may be 1dentified and stored 1n
the repository. In some embodiments, the new structure and
associated patterns may be verified by a user prior to being
stored 1n the repository. Now referring to FIG. 4, an embodi-
ment of a system 400 1s 1llustrated. The system 400 may
comprise a log analyzer 450 that receives a log file from a
computing device 410 (e.g., an IP enabled device). The log
analyzer may determine information contained within the
received log file and store the information associated with
the log file 1n a database 460.

In some embodiments, the database 460 may comprise a
column based in-memory database. An in-memory database
may comprise a database management system that primarily
relies on main memory for data storage and may be faster
than a magnetic or optical disk based database.

The log analyzer 450 may comprise a log structure
detector 420, a log metadata identifier 430 and a log rela-
tionship miner 440. The log structure detector 420 may
automatically analyze the received log file to determine a
pattern of structure associated with the log file. The log
structure detector may also detect a log type, a log format
and a log structure. In practice, the log file may be received
at the log analyzer 450 1n response to a selection of a file or

10

15

20

25

30

35

40

45

50

55

60

65

4

folder that comprises the log file or via an automated 1nput
that may be used to receive log files that are to be automati-
cally analyzed. The log structure detector 420 may classily
a log type based on a type of application that may be
associated with the log file. For example, the log structure
detector 420 may determine that the log file 410 1s a
common log scheme associated with a windows operating
system, or a log file associated with a SAP HANA database.
The determination of an application associated with the log
file may be based on a pattern of data stored 1n the log file.

The log structure detector 420 may also determine a log
format of the log file. The log structure detector 420 may
determine a type of delimiter associated with the log file
such as, but not limited, to a comma, a space or a tab. For
example, 11 a log structure 1s 1dentified as comma separated
values, the corresponding delimiter (e.g., the commas) may
be used for log structure and log field parsing.

In some embodiments, the log file may comprise a schema
description that 1s embedded within the log file and the log
format may be based on the embedded schema description.
For example, a schema description may be located at a start
of the log file or the schema description may be embedded
within the contents of the log file. In some embodiments, the
log structure detector 420 may analyze a nested structure
within the log file to determine a schema. Once a schema
associated with the log file 1s determined, the log fields
associated with schema may also be determined and parsed.
In some other embodiments, a format of the log file may be
automatically determined based on a log file type, historical
data associated with the log file type as well as a context 1n
which the log file 1s being used (e.g., stored on a server,
stored on a router, etc.).

The log metadata 1dentifier 430 may automatically dis-
cover the metadata, content type, and standardize field
names associated with each field of the log file. Based on
data associated with similar log files in a repository, and the
determined schema, content types associated with each field
may be determined. The content types may be based on the
log file’s data, patterns, distinct values and regular expres-
sions. The log metadata 1dentifier 430 may standardize the
log fields based on 1dentified content types. For example, a
social security number (“SSN”) may be standardized as
“SSN” throughout the repository. However, in some
embodiments, a user may be presented options such as, for
example, “SSN”, “SocialSecurityNumber”, “Social”, etc.
The user may then select a desired name of a field. Having
a user select a name for a field may be useful when a vaniety
of field names may be possible based on a content type
within a repository or to confirm a data type for a particular
field.

Once log field content types are discovered, the log field
content types are assigned to the parsed log fields (e.g., each
parsed log field 1s assigned a corresponding content type).
For example, field names and parameters may be standard-
1zed based on content from other log file patterns stored 1n
the database 460. The determination of file names may be
based on similar field names and parameters already stored
in the database 460.

The log relationship miner 440 may automatically deter-
mine relationships 1n the log file 410 and among the other
log file types stored 1n the database 460. Once content types
for each field are identified, enhancement options for each
log field may be suggested. For instance, and now referring
to FIG. 6 and FIG. 7 which illustrate example database
tables 600 and 700, respectively. Additional fields such as,
but not limited to, longitude, latitude, country, and region
may be added to the log file 410 as an enhancement for a log

US 9,607,059 B2

S

field “IP Address”, and fields of month, year, and quarter
may be enhancements for log field “Log Timestamp”.

As 1llustrated in FIG. 6, database table 600 may comprise
data that was mput from a log file. In the present example,
database table 600 comprises an IP address 610, an error 620
associated with that IP address and an SSN of a user
associated with the IP address 610. Database table 700 of
FIG. 7, 1llustrates an enhanced version of database table 600
by the adding in the fields of longitude 640, latitude 650,
country 660, and user name 670. In some embodiments,
database tables may be automatically enhanced. In some
embodiments, a user may be presented with a list of fields
to potentially enhance the database table associated with the
imported log file. In this embodiment, the user may be able
to select which fields can be added to enhance the log file
table.

Log fields such as “User ID” or “SSN” may have
enhancement options that provide data protection. Log rela-
tionships of log fields and their metadata may be based on
relationships 1nside the log itself or among multiple logs that
are automatically discovered. Therelore, a user may be
presented with relationships from other log tables and the
user may decide which relationships to include 1n their log
file. For example, 1f SSNs were included 1n the log file, the
log analyzer may find a relationship to the SSN 1n another
table (e.g., a user name, address, etc.) and this data may also
be imported to enhance the data. To protect sensitive data,
such as the SSN, the sensitive data may be substituted by
other related fields, such as substituting an SSN for a user
name and address as an identifier. This may limit dissemi-
nation of the users SSN that was contained 1n the log file. As
illustrated 1n the example database tables 600 and 700, the
SSN field 630 may be automatically changed to a user 1d
ficld based on a relationship with another table in the
database.

Now referring to FIG. 5, an embodiment of an apparatus
500 1s 1llustrated. In some embodiments, the apparatus 500
may be associated with a log file analyzer.

The apparatus 300 may comprise a storage device 501, a
medium 502, a processor 503, and a memory 504. According,
to some embodiments, the apparatus 500 may turther com-
prise a digital display port, such as a port adapted to be
coupled to a digital computer monitor, television, portable
display screen, or the like.

The medium 502 may comprise any computer-readable
medium that may store processor-executable mstructions to
be executed by the processor 503. For example, the medium
502 may comprise a non-transitory tangible medium such
as, but not limited to, a compact disk, a digital video disk,
flash memory, optical storage, random access memory, read
only memory, or magnetic media.

A program may be stored on the medium 502 1 a
compressed, uncompiled and/or encrypted format. The pro-
gram may furthermore include other program elements, such
as an operating system, a database management system.,
and/or device drivers used by the processor 503 to interface
with peripheral devices.

The processor 503 may include or otherwise be associated
with dedicated registers, stacks, queues, etc. that are used to
execute program code and/or one or more of these elements
may be shared there between. In some embodiments, the
processor 503 may comprise an integrated circuit. In some
embodiments, the processor 303 may comprise circuitry to
perform a method such as, but not limited to, the method
described with respect to FIG. 1.

The processor 503 communicates with the storage device
501. The storage device 501 may comprise any appropriate

10

15

20

25

30

35

40

45

50

55

60

65

6

information storage device, including combinations of mag-
netic storage devices (e.g., a hard disk drive), optical storage
devices, flash drives, and/or semiconductor memory
devices. The storage device 501 stores a program for con-
trolling the processor 503. The processor 303 performs
instructions of the program, and thereby operates 1n accor-
dance with any of the embodiments described herein. For
example, the processor 303 may determine information
associated with a log file.

The main memory 504 may comprise any type ol memory
for storing data, such as, but not limited to, a flash driver, a
Secure Diagital (SD) card, a micro SD card, a Single Data
Rate Random Access Memory (SDR-RAM), a Double Data
Rate Random Access Memory (DDR-RAM), or a Program-
mable Read Only Memory (PROM). The main memory 504
may comprise a plurality of memory modules.

As used herein, mformation may be “received” by or
“transmitted” to, for example: (1) the apparatus 500 from
another device; or (11) a software application or module
within the apparatus 500 from another software application,
module, or any other source.

In some embodiments, the storage device 501 stores a
database (e.g., including information associated with log
files). Note that the database described herein 1s only an
example, and additional and/or different information may be
stored therein. Moreover, various databases might be split or
combined in accordance with any of the embodiments
described herein.

Embodiments have been described herein solely for the
purpose of illustration. Persons skilled in the art will rec-
ognize Irom this description that embodiments are not
limited to those described, but may be practiced with modi-
fications and alterations limited only by the spirit and scope
of the appended claims.

What 1s claimed 1s:
1. A method of analyzing log files, the method compris-
ng:
sampling a log file comprising a plurality of structures;
determiming, via a processor, one of the plurality of
structures associated with the log file based on the
sampling and a pattern within the one of the plurality of
structures;
determinming a type of delimiter associated with the log
file;
determining if the one of the plurality of structures and the
pattern are stored in a repository;
parsing the log fields based on the type of delimiter;
discovering log field content types based on the log file’s
data, patterns, distinct values and regular expressions;
assigning log field content types to the parsed log fields;
determining that a variety of field names are possible
based on content from previously stored log file pat-
terns within the repository;
presenting field name options to a user to select a field
name based on the determined variety of field names;
standardizing the parsed log fields based on a selected
field name from the previously stored log file patterns
within the repository; and
exporting data from the log {file into a database.
2. The method of claim 1, wherein sampling comprises
analyzing the log file line by line and exporting 1s based
on the schema embedded within a start of the log file.
3. The method of claim 1, further comprising determining,
a format of the log file based on a location of the log file.
4. The method of claim 1, wherein the method further
COmprises:

US 9,607,059 B2

7

standardizing log fields further based on receiving a
selection of field names from a vanety of possible field
names for the log fields that are stored within the
repository; and

saving the pattern i1n the repository.

5. The method of claim 4, wherein the method further
COmprises:

proposing enhancements.

6. The method of claim 5, wherein proposing enhance-
ments comprises:

presenting related fields to a user, the related fields
associated with data contained within the log file.

7. The method of claim 4, wherein the method further

COmMprises:

presenting related fields to a user, the related fields
associated with one or more other log files.

8. A non-transitory computer-readable medium compris-
ing nstructions that when executed by a processor perform
a method of analyzing log files, the method comprising:

sampling a log file;

determining, via a processor, a structure associated with
the log file based on the sampling and a pattern within
the structure:

determining 11 the structure and the pattern are stored in
a repository;

determining a type of delimiter associated with the log
file;

parsing the log fields based on the type of delimiter;

discovering log field content types based on the log file’s
data, patterns, distinct values and regular expressions;

assigning log field content types to the parsed log fields;

determining that a variety of field names are possible
based on content from previously stored log file pat-
terns within the repository;

presenting field name options to a user to select a field
name based on the determined variety of field names;

standardizing the parsed log fields based on a selected
field name from the previously stored log file patterns
within the repository; and

exporting data from the log file into a database.

9. The medium of claim 8, wherein sampling comprises

analyzing the log file line by line and exporting 1s based
on the schema embedded within a start of the log file.

10. The medium of claim 8 further comprising determin-
ing a format of the log file based on a location of the log file.

11. The medium of claim 8, wherein the method further
COmMprises:

standardizing log fields further based on receiving a
selection of field names from a varniety of possible field
names for the log fields that are stored within the
repository; and

saving the pattern 1n the repository.

12. The medium of claim 11, wherein the method further
COmMprises:

proposing enhancements.

5

10

15

20

25

30

35

40

45

50

8

13. The medium of claim 12, wherein proposing enhance-
ments comprises:

presenting related fields to a user, the related fields
associated with data contained within the log file.

14. The medium of claim 11, wherein the method further
COmMprises:

presenting related fields to a user, the related fields
associated with one or more other log files.

15. A system comprising;:
a processor; and

a non-transitory computer-readable medium comprising
instructions that when executed by a processor perform
a method of analyzing log files, the method comprising:

sampling a log file;

determining a structure associated with the log file based
on the sampling and a pattern within the structure;

determiming 1f the structure and the pattern are stored 1n
a repository;

determining a type of delimiter associated with the log
file;

parsing the log fields based on the type of delimiter;

discovering log field content types based on the log file’s
data, patterns, distinct values and regular expressions;

assigning log field content types to the parsed log fields;

determiming that a variety of field names are possible
based on content from previously stored log file pat-
terns within the repository;

presenting field name options to a user to select a field
name based on the determined variety of field names;

standardizing the parsed log fields based on a selected
field name from the previously stored log file patterns
within the repository; and

exporting data from the log file into a database.

16. The system of claim 15, wherein sampling comprises

analyzing the log file line by line and exporting 1s based
on the schema embedded within a start of the log file.

17. The system of claim 15 further comprising determin-
ing a format of the log file based on a location of the log file.

18. The system of claim 15, wherein the method further
COmMprises:

standardizing log fields further based on receiving a
selection of field names from a variety of possible field
names for the log fields that are stored within the
repository; and

saving the pattern 1n the repository.

19. The system of claim 15, wherein the schema 1s
determined by analyzing a nested structure within the log

file.

20. The system of claim 15, wherein the method further
comprises presenting related fields to a user, the related
fields associated with data contained within the log file.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

