12 United States Patent

Stephure et al.

US009602581B2

US 9,602,581 B2
Mar. 21, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

(58)

REMOTE CONTROL OF AN APPLICATION
USING DYNAMIC-LINKED LIBRARY (DLL)

INJECTION
Applicant: Calgary Scientific Inc., Calgary (CA)

Inventors: Matthew James Stephure, Calgary
(CA); Monroe M. Thomas, Calgary

(CA)

Assignee: Calgary Scientific Inc., Calgary, AB
(CA)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 83 days.

Appl. No.: 13/783,287
Filed: Mar. 2, 2013

Prior Publication Data

US 2013/0262566 Al Oct. 3, 2013

Related U.S. Application Data

Provisional application No. 61/606,001, filed on Mar.
2, 2012.

Int. Cl.
HO4L 29/08 (2006.01)
A63F 13/355 (2014.01)
HO4W 4/18 (2009.01)
U.S. CL
CPC ............ HO4L 67710 (2013.01); A63F 13/355
(2014.09); HO4L 67/34 (2013.01); HO4W 4/18
(2013.01);
(Continued)
Field of Classification Search
CPC .., A63F 13/12; A63F 2300/209; A63F
2300/538; A63F 13/30; A63F 13/40;
(Continued)

1124 1144

(56) References Cited
U.S. PATENT DOCUMENTS
4,975,690 A 12/1990 Torres
5,345,550 A 9/1994 Bloomfield
(Continued)
FOREIGN PATENT DOCUMENTS
CN 102821413 12/2012
EP 0349463 1/1990
(Continued)

OTHER PUBLICATTIONS

Coffman, Daniel, et al., “A Client-Server Architecture for State-
Dependent Dynamic Visualizations on the Web,” IBM T.J. Watson
Research Center, 2010, 10 pages.

(Continued)

Primary Examiner — Kevin Bates
Assistant Examiner — Ranjan Pant

(74) Attorney, Agent, or Firm — Meunier Carlin &
Curfman LLC

(57) ABSTRACT

Systems and methods for providing remote access to an
application using Dynamic-Linked Library (DLL) injection.
A server remote access application executes a connect
application that recerves an 1dentifier of the application as an
argument. The application may be a game, etc., to which
remote access 1s provided to one or more client devices. The
connect application 1njects a Remoting DL L 1nto the address
space of the application, where the Remoting DLL provides
a mechamism to communicate with a server remote access
application. The server remote access application establishes
a communications session between a client application on
the client device and the application. Instructions directed by
the application to the client application are captured by the
Remoting DLL and provided to server remote access appli-
cation. Similarly, inputs from the client device are commu-
nicated to the server remote access application and captured

(Continued)




US 9,602,581 B2
Page 2

by the Remoting DLL, and then communicated to the

application.

(52) U.S. CL

CPC ...

20 Claims, 9 Drawing Sheets

A63F 2300/209 (2013.01); A63F 2300/513

(2013.01); A63F 2300/535 (2013.01); A63F

2300/538 (2013.01); A63F 2300/5533

(58) Field of Classification Search

CPC .............

USPC

(2013.01)

A63F 13/355; A63F 2300/513; A63F

2300/535; A63F 2300/5533; GO6F

0/4445; GO6F 9/4843; GO6F 9/54; GO6F
0/4443; GO6F 8/24; GO6F 9/465; GO6F

1'7/3089; HO4L 67/10; HO4L 67/02; HO4L
69/329; HO4L 67/34; HO4L 12/1818;
HO4L 65/1066; HO4L 65/1069; HO4L
29/06; HO4L 12/2602; HO4L 12/2697;
HO4L 12/2856; HO4L 41/22; HO4L 43/50;
G06Q 10/10; G0O6Q 10/06; GO6(Q)
10/0639; HO4W 4/18

709/203

See application file for complete search history.

(56)

5,555,003
5,742,778
5,844,553
5,870,759
5,920,311
5,978,842
6,045,048
0,001,689
6,075,531
0,141,698
0,145,098
0,253,228
6,343,313
0,453,334
0,453,356
6,570,563
6,601,233
6,792,607
0,918,113
6,938,096
6,970,459
6,976,077
7,065,568
7,009,227
7,073,059
7,149,761
7,167,893
7,174,504
7,181,686
7,193,985
7,240,162
7,246,063
7,320,131
7,343,310
7,350,151
7,418,711
7,451,196
7,577,751
7,620,901
7,647,370
7,650,444
7,656,799

U.S. PATENT DOCUM

P Vg g G i S e

e

References Cited

9/1996
4/1998
12/1998
2/1999
7/1999
11/1999
4/2000
5/2000
6/2000
10/2000
11/2000
6/2001
1/2002
9/2002
9/2002
5/2003
7/2003
9/2004
7/2005
8/2005
11/2005
12/2005
6/2006
6/2006
7/2006
12/2006
1/2007
2/2007
2/2007
3/2007
7/2007
7/2007
1/2008
3/2008
3/2008
8/2008
11/2008
8/2009
11/2009
1/2010
1/2010
2/2010

Montgomery et al.

Hao et al.
Hao et al.
Bauer et al.
Anthias
Noble et al.
Wilz et al.
Chang et al.
DeStefano
Krishnan et al.
Nouri et al.
Ferris et al.
Salesky et al.
Vinson et al.
Sheard et al.
Honda
Underwood
Burd et al.
Patel et al.

Greschler et al.

Meler
[.ehew et al.

Bracewell et al.
Lintel, III et al.

Worely et al.
Cooke et al.
Malone et al.
Tsao

Bahrs

[ewis et al.
de Vries
James et al.
O’Toole, Jr.
Stender
Nakajima
[.ee et al.

de Vries et al.
Vinson et al.

Carpenter et al.

Liu et al.
Dirstine et al.
Samuels et al.

EINTTS

7,706,399
7,725,331
7,802,183
7,831,919
7,921,078
7,941,488
7,966,572
8,024,523
8,201,345
8,350,252
8,359,591
8,509,230
8,527,700
8,572,178
8,600,952
8,607,158
8,627,081
8,607,054
8,832,260
8,924,512
2001/0047393
2002/0032751
2002/0032804

2002/0092029
2003/0014735
2003/0023670
2003/0065738
2003/0120324
2003/0120762
2003/0149941
2003/0163514
2003/0184584
2003/0208472
2004/0015842
2004/0029638
2004/0039742
2004/0068516
2004/0106916
2004/0117804
2004/0153525
2004/0162876
2004/0183827
2004/0236633
2004/0243919
2004/0249885
2005/0005024
2005/0010871
2005/0021687

2005/0050229
2005/0138631
2005/0188046
2005/0188313
2005/0240906
2006/0004874
2006/0026006
2006/0031377
2006/0036770
2006/0085835

2006/0101397
2006/0130069
2006/0231175
2006/0236328
2006/0258462
2006/0265689
2006/0271563
2006/0288171
2006/0294418
2007/0024645
2007/0047535
2007/0067754
2007/0079244
2007/0112880
2007/0120763

2007/0130292

2007/0136677

AN AN AAANA A AN A AAAAAAAA A A AN AN A A A A AN A A AN A A AN A A A A s

>

4/201
5/201
9/201
11/201
4/2011
5/2011
6/2011
9/2011
9/201
1/201
1/201
8/201
9/201
10/201
12/201
12/201
1/201
3/201
9/201
12/201
11/2001
3/2002
3/2002

o O OO

I AN LN LR PV R S IR U IR FS I UG I 'S I 'S I

7/2002
1/2003
1/2003
4/2003
6/2003
6/2003
8/2003
8/2003
10/2003
11/2003
1/2004
2/2004
2/2004
4/2004
6/2004
6/2004
8/2004
8/2004
9/2004
11,2004
12/2004
12/2004
1/2005
1/2005
1/2005

3/2005
6/2005
8/2005
8/2005
10/2005
1/2006
2/2006
2/2006
2/2006
4/2006

5/2006
6/2006
10/2006
10/2006
11/2006
11/2006
11/2006
12/2006
12/2006
2/2007
3/2007
3/2007
4/2007
5/2007
5/2007

6/2007

6/2007

Janczak
Schurenberg et al.
Essin

Viljoen et al.
McCuller
(GGoodman et al.
Matthews et al.
de Vries et al.
Hitomi et al.
Raman et al.
de Vries et al.
Vinson et al.
de Vries et al.
Frazzini et al.
Pasetto et al.
Molander et al.
Grimen et al.
Tahan

Raja et al.
Stoyanov et al.
Arner et al.

Bharadwa;
Hunt ............cccoeeein, GO6F 8/443

719/320

Smith
Achlioptas et al.
Walrath

Yang et al.
Osborn et al.
Yepishin et al.
Tsao
Waldschmidt
Vachuska et al.
Pham
Nanivadekar et al.
Hytcheson et al.
Barsness et al.
[.ee et al.

Quaid et al.
Scahill et al.
Borella

Kohavi
Putterman et al.
Knauerhase et al.
Muresan et al.
Petropoulakis et al.
Samuels et al.

Ruthfield et al.

Anastassopoulos .... HO4L 43/50

709/220
Comeau et al.
Bellott1 et al.
Hickman et al.
Matthews et al.
Kinderknecht et al.
Hutcheson et al.
Hindle
Ng et al.

Hosn et al.
Istvan ................ HO4N 5/44543

725/119

...... 717/136

Mercer et al.
Srinivasan et al.
Vondracek et al.
DeWitt

Cheng et al.
Kuznetsov et al.
Angelo et al.
Tsien

Fuchs

Purcell et al.
Varma

Chen et al.
Brugiolo

Yang et al.

De Paepe et al.
Tzruya ... GOO6F 9/4426

709/219
Agarwal



US 9,602,581 B2

Page 3
(56) References Cited Jp 2005/031807 2/2005
JP 2005/521946 7/2005
U.S. PATENT DOCUMENTS JP 2008-099055 4/2008
JP 2010-256972 11/2010
2007/0203944 Al  8/2007 Batra et al. RU 2295752 3/2007
2007/0208718 Al 9/2007 Javid et al. RU 2298287 4/2007
2007/0226636 Al  9/2007 Carpenter et al. RU 2305860 9/2007
2007/0244990 Al 10/2007 Wells WO 98/58478 12/1998
2007/0256073 Al  11/2007 Troung et al. WO 01/16724 3/2001
2007/0282951 Al 12/2007 Selimis et al. WO 02/09106 172002
2008/0134211 Al 6/2008 Cui WO 03/032569 4/2003
2008/0146194 Al  6/2008 Yang et al. WO 03/083684 10/2003
2008/0183190 Al 7/2008 Adcox et al. WO 2010/060206 6/2010
2008/0313282 Al  12/2008 Warila et al. WO 2010/088768 8/2010
2009/0044171 Al 2/2009 Avadhanula WO 20107127327 11/2010
2009/0080523 Al  3/2009 McDowell WO 2012/127308 9/2012
2009/0089742 Al 4/2009 Nagulu et al. WO 2013/024342 2/2013
2009/0119644 Al  5/2009 de Vries et al. WO 2013/024343 2/2013
2009/0209239 Al  8/2009 Montesdeoca WO 2013/109984 7/2013
2009/0217177 Al 82009 DeGrazia WO 2013/153439 10/2013
2010/0077058 Al 3/2010 Messer
2010/0131591 Al1* 5/2010 Thomas ................. GO,;S(;TQ%/S% OTHER PURIICATIONS
%88///81322% i 2//388 ?é;?efteﬁlﬂ‘ Fraser, N., “Differential Synchronization,” Google, Mountain View,
2010/0205147 Al 8/2010 Lee CA, Jan. 2009, 8 pages.
2010/0223566 Al 9/2010 Holmes et al. Jourdain, Sebastien, et al., “ParaViewWeb: A Web Framework for
2010/0268813 Al 10/2010 Pahlavan et al. 3D Visualization and Data Processing,” International Journal of
2011/0138283 Al 6/2011  Marston Computer Information Systems and Industrial Management Appli-
2011/0157196 A1* 6/2011 Nave ....ccccoooveenenn, GO6F 9/4445 cations, vol. 3, 2011, pp. 870-877.
2011/0162067 Al 65011 Kumar of al. 345/522 Microsoit Computer Dictionary, Microsoit Press, 5 Edition, Mar.
2011/0184993 Al 7/2011 Chawla et al 15, 2002, p. 624. | |
2011/0213830 Al 9/2011 Lopez et al. Mitchell, J. Ross, et al., A Smartphone Client-Server Teleradiology
2011/0222442 Al 9/2011 Cole et al. System for Primary Diagnosis of Acute Stroke, Journal of Medical
2011/0252152 Al 10/2011 Sherry et al. Internet Research, vol. 13, Issue 2, 2011, 12 pages.
2012/0030275 Al 2/2012" Boller et al. ParaViewWeb, KitwarePublic, retrieved on Jan. 27, 2014 from
20?’2/0084713 Al 4/20'_“2 Desal et al. http://www.paraview.org/ Wiki/ParaViewWeb, 1 page.
gggﬁg?ggggg i glgg% ﬁzlf)% well Remote Desktop Protocol (RDP), retrieved on May 4, 2014 from
2012/0154633 Al 6/2012 Rodriguez http://en.wikipedia.org/wiki/Remote_ Desktop_ Protocol, 7 pages.
2012/0221792 Al 8/2012 de Vries et al. Remote Desktop Services (RDS), Remote App, retrieved on May 4,
2012/0226742 Al 9/2012 Momchilov et al. 2014 from http://en.wikipedia.org/wiki/Remote  Desktop Ser-
2012/0245918 Al 9/2012 Overton et al. vices, 9 pages.
ggg; 8%;23%3 i lg? 383 éimire et al. Remote Desktop Services (RDS), Windows Desktop Sharing,
_ - _ retrieved on May 4, 2014 from http://en.wikipedia.org/wiki/Re-
2012/0324358 Al* 12/2012 Jooste .......oovvvvennnnn, GO’?&%@? ?Ote_DeSktOSli’_S‘fﬁ"‘I’iceSa 9583% . | )
_ _ . . : nternational Search Report, dated Feb. 19, , In connection wi
Sonyoonieal Ab L2y ditom: of al International Application No. PCT/CA2009/001704.
7013/0046815 Al 2/9013 Thomas et al. International Preliminary Report on Patentability and Written Opin-
7013/0046816 Al /2013 Thomas et al. ion, dated May 31, 2011, in connection with International Appli-
2013/0054679 Al 2/2013 Jooste cation No. PCT/CA2009/001704.
2013/0070740 Al 3/2013 Yovin International Search Report, dated May 12, 2010, in connection
2013/0117474 Al 5/2013 Ajanovic et al. with International Application No. PCT/CA2010/000154.
2013/0138791 Al 5/2013 Thomas et al. International Preliminary Report on Patentability and Written Opin-
%8;; 812;323 i g? %8; é(ti'e lflt al. ion, dated Aug. 9, 2011, in connection with International Applica-
; . o OHe tion No. PCT/CA2010/000154.
%8;?85;3222 i 18//382 égea;helfrglét ol Intemat.ional Seart.:h Report and leitten Opini.on,.dated Jul. 31,
20i:3/0290408 A_': 10/20i3 Stephure ef al: 2012, in connection with International Application No. PCT/
2013/0346482 Al 12/2013 Holmes 1820124000562‘ . .
2014/0240574 A | 27014 Tulia of al In.ternatlonal.Search Rgpmjt, dated Dec. 20, 2012, in connection
2014/0241279 Al 2/7014 Rertorelle et al with International Application No. PCT/IB2012/001589.
2014/0798420 Al 10/2014 RBarton et al. International Preliminary Report on Patentability and Written Opin-
2015/0067769 Al 3/9015 Barton et al. ion, dated Feb. 18, 2014, in connection with International Appli-
2015/0156133 Al 6/2015 Leitch et al. cation No. PCT/IB2012/001589, | |
2015/0163292 Al 6/2015 Temire et al. International Search Report, dated Dec. 28, 2012, in connection
2015/0319252 Al 11/2015 Momchilov et al. with International Application No. PCT/IB2012/001590.
2016/0054897 Al 2/2016 Holmes et al. International Preliminary Report on Patentability and Written Opin-
2016/0226970 Al %/7016 I.ancaster et al. ion, dated Feb. 18, 2014, in connection with International Appli-
cation No. PCT/IB2012/001590.
FORFIGN PATENT DOCUMENTS International Search Report and Written Opinion, dated Aug. 21,
2013, 1n connection with International Application No. PCT/
EP 1422901 5/2004 [B2013/000676.
TP 2007/084744 3/1995 International Search Report and Written Opinion, dated Jul. 31,
JP 2002/055870 2/2002 2013, i connection with International Application No. PCT/
P 2004-287758 10/2004 IB2013/000720.




US 9,602,581 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Extended Furopean Search Report, dated Mar. 3, 2015, received 1n
connection with corresponding European Application No.
09828497.9.

Search Report and Written Opinion, dated Nov. 16, 2015, received
in connection with SG Application No. 2013087150.

Extended European Search Report, dated Jun. 2, 2014, received in
connection with European Patent Application No. 12760310.8.
International Search Report and Written Opinion, dated Mar. 19,
20135, recerved 1n connection with International Application No.
PCT/US2014/064243.

International Search Report and Written Opinion, dated Jun. 30,
2016, recerved 1n connection International Patent Application No.
PCT/IB2016/000277.

International Preliminary Report on Patentability and Written Opin-

1on, dated May 31, 2016, received in connection International Patent
Application No. PCT/US2014/064243.

* cited by examiner



U.S. Patent Mar. 21, 2017 Sheet 1 of 9 US 9,602,581 B2

dgltgpiiuiiaiabal

100

I

107A

T12A  114A

\ |

121A

116C



U.S. Patent Mar. 21, 2017 Sheet 2 of 9 US 9,602,581 B2

FIG. 2A
Application
200
Client
Tier Client Remote Access
220 Application
121A, 121B, 121C, 121N
Input | Output
Server Server Remote
Tier Access Application
230 111B
Connect Application
202
Application
Tier Remoting DLL 208
240

Application 107A/107B
(e.g., Game)




U.S. Patent

Remoting DLL 208
Application

Mar. 21, 2017 Sheet 3 of 9

FIG. 2B
Application
200
Client
Tier Client Remote Access

220 Application
121A, 121B, 121C, 121N

Input | Output

Server Server Remote
Tier Access Application
230 111B

Tier
240 Application 107/A/107B

(e.g., Game)

US 9,602,581 B2



U.S. Patent

Mar. 21, 2017

Application
(e.9., a game)
107A/107B

Drawing, €.g.
DX9
DX10
DX11
OGL
Direct Draw
Other

Input events, e.g.

Direct input

Windows messages

other

Audio

Sheet 4 of 9

Remoting DLL
208

Replace drawing calls

Replace input
modules

Audio

US 9,602,581 B2



U.S. Patent Mar. 21, 2017 Sheet 5 of 9 US 9,602,581 B2

— 402
User launches client remote access application
and connects to server
404
Server remote access application executes
Connect application to inject Remoting DLL into
application of interest
400
Connect application closes after Remoting DLL is
injected into application of interest
408

Remoting DLL communicates with remote access

server to render video and/or audio commands to/
from online application

FIG. 4



U.S. Patent Mar. 21, 2017 Sheet 6 of 9 US 9,602,581 B2

T 502

Game issues render and/or audio

504

Remoting DLL captures information to relay {o
remote access server

Remote access server formats and sends data to
the client

508

Client receives data and processes data




U.S. Patent Mar. 21, 2017 Sheet 7 of 9 US 9,602,581 B2

oy 602
Client computing device communicates input
module {o remote access server
604

Remote access server receives the input module

Remote access server formats and sends data to
the Remoting DLL

608

Remoting DLL captures input module and
generates event for application




U.S. Patent Mar. 21, 2017 Sheet 8 of 9 US 9,602,581 B2

700

REPRESENTATION | |
DATA

E —— L‘ CA .: __________ :

FIG. 7



U.S. Patent Mar. 21, 2017 Sheet 9 of 9 US 9,602,581 B2

306

Removable Storage

804 608

Non-Removabie
Storage 810

System Memory

Unit 802

816

| iInput Device(s) 814
Non-Volatile

| |

| |

| |

| |

| |

| . | .
| Volatile Processing : Output Device(s)
|

| |

| |

| |

| |

| |

| |

Communication |
Connection(s) 812

————————————————_i

800

FIG. 8



US 9,602,581 B2

1

REMOTE CONTROL OF AN APPLICATION
USING DYNAMIC-LINKED LIBRARY (DLL)
INJECTION

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims prionty to U.S. Patent
Application No. 61/606,001, filed Mar. 2, 2012, entitled
“REMOTE CONTROL OF AN APPLICATION USING
DYNAMIC-LINKED LIBRARY (DLL) INJECTION,”

which 1s 1incorporated herein by reference 1n 1ts entirety.

BACKGROUND

Ubiquitous remote access to services, application pro-
grams and data has become commonplace as a result of the
growth and availability of broadband and wireless network
access. However, there exist application programs that were
not designed for remote network access over, e.g., the
Internet. These application programs range from older,
mainframe applications that have been (traditionally
accessed by terminals to single user applications designed to
be executed on a local computing device. Further, such
applications were not designed to be executed on the variety
of computing devices that exist today. For example, many
applications are developed to be executed on a specific
computing architecture, making i1t impossible for them to be
used by smart phones, tablet devices, efc.

In addition, there has been a push toward a cloud com-
puting model, 1.e., providing applications and data as *“ser-
vices” over a network. The goal of cloud computing i1s
provide end-users an experience as i the applications and
data were 1installed and accessed locally on an end-user
computing device. In the cloud computing model, end-users
access “‘cloud-based” applications through, e.g., a web
browser or other light-weight desktop or mobile app, where
the applications may be any type of application and/or data
executed and/or are stored on a remote server. Cloud com-
puting has several benefits 1n that services may be provided
quickly and easily, as computing resources can be dedicated
and removed based on needs.

However, while there are many benefits to providing
remote access to applications, there exist many applications
which cannot be remotely provided to end-users or 1mple-
mented 1n the cloud-computing model because of the com-
plexities of rewriting such applications.

SUMMARY

Systems and methods for providing remote access to an
application using Dynamic-Linked Library (DLL) injection.
In accordance with some implementations, a server remote
access application executes a connect application that
receives an identifier of the application as an argument. The
application may be a game, etc., to which remote access 1s
provided to one or more client devices. The connect appli-
cation 1njects a Remoting DLL 1nto the address space of the
application, where the Remoting DLL provides a mecha-
nism to communicate with a server remote access applica-
tion. The server remote access application establishes a
communications session between a client application on the
client device and the application. Instructions directed by the
application to the client application are captured by the
Remoting DLL and provided to server remote access appli-
cation. Similarly, inputs from the client device are commu-

10

15

20

25

30

35

40

45

50

55

60

65

2

nicated to the server remote access application and captured
by the Remoting DLL, and then communicated to the
application.

In accordance with some implementations, there 1s pro-
vided a method of communicating rendering and/or audio
information ifrom a server-based application to the client
computing device operating 1n a tiered infrastructure having
a client tier, a server tier and an application tier. The method
may 1nclude executing a server remote access application
within the server tier, the server remote access application
being a proxy to communicate data between the application
tier and the client tier; generating data at a server-based
application executing on a processor of a computing device
executing in the application tier; capturing the data using a
Remoting DLL executing on the computing device in the
server tier; relaying the data using the Remoting DLL to the
server remote access application; formatting the data at the
server remote access application; and communicating the
data from the remote access application to a client remote
access application executing in the client tier.

Other systems, methods, features and/or advantages will
be or may become apparent to one with skill 1n the art upon
examination of the following drawings and detailed descrip-
tion. It 1s intended that all such additional systems, methods,

teatures and/or advantages be included within this descrip-
tion and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to
scale relative to each other. Like reference numerals desig-
nate corresponding parts throughout the several views.

FIG. 1 1s a simplified block diagram illustrating a system
for providing remote access to an application at a remote
device via a computer network;

FIGS. 2A and 2B 1illustrate additional details of the system
of FIG. 1;

FIG. 3 illustrates operational details of a Remoting DLL
of FIG. 2B:

FIG. 4 1llustrates an operation flow diagram of processes
performed to provide remote access capabilities to a client
application, such as a gaming application;

FIG. 5 illustrates an operational flow diagram of the
processes performed when communicating rendering and/or
audio information from the server-based application to a
client computing device;

FIG. 6 1illustrates an operational flow diagram of the
processes performed when communicating input modules
from the client computing device to the server-based appli-
cation;

FIG. 7 1s a state model 1n accordance with the present
disclosure; and

FIG. 8 illustrates an exemplary computing device.

DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art. Methods and
materials similar or equivalent to those described herein can
be used 1n the practice or testing of the present disclosure.
While implementations will be described for remotely
accessing applications, 1t will become evident to those
skilled in the art that the implementations are not limited
thereto, but are applicable for remotely accessing any type
of data or service via a remote device.



US 9,602,581 B2

3

Referring to FIG. 1, a system 100 for providing remote
access to an application, data or other service via a computer
network. The system comprises a client computer 112A or
112B, such as a wireless handheld device such as, for
example, an IPHONE 112A or a BLACKBERRY 112B
connected via a computer network 110 such as, for example,
the Internet, to a server 102B. Similarly, the client comput-
ing devices may also mnclude a desktop/notebook personal
computer 112C or a tablet device 112N that are connected by
the communication network 110 to the server 102B. It 1s
noted that the connections to the communication network
110 may be any type of connection, for example, Wi-F1
(IEEE 802.11x), WiMax (IEEE 802.16), Ethernet, 3G, 4G,
etc.

The server 102B i1s connected, for example, via the
computer network 110 to a Local Area Network (LAN) 109
or may be directly connected to the computer network 110.
For example, the LAN 109 may be an internal computer
network. A mainirame computer 102A and a database 108
may be connected to the LAN 109. Numerous application
programs 107A may be stored mn memory 106A of the
mainframe computer 102A and executed on a processor
104A. Stmilarly, numerous application programs 107B may
be stored 1n memory 106B of the server 102B and executed
on a processor 104B. The application programs 107A and
107B may be remotely accessible by the client computing
devices 112A, 112B, 112C or 112N. The mainframe com-
puter 102A, the server 102B and the client computing
devices 112A, 112B, 112C or 112N may be implemented
using hardware such as that shown in the general purpose
computing device of FIG. 8.

A client remote access application 121A, 121B, 121C,
121N may be designed for providing user interaction for
displaying data and/or imagery in a human comprehensible
fashion and for determining user iput data in dependence
upon received user instructions for interacting with the
application program using, for example, a graphical display
with touch-screen 114A or a graphical display 114B/114N
and a keyboard 116B/116C of the client computing devices
112A, 1128, 112C, 112N, respectively. The client remote
access application 121A, 121B, 121C, 121N communicates
with a user interaction program 200 (FIGS. 2A and 2B) such
as, for example, a web browser or native application. For
example, the client remote access application 1s performed
by executing executable commands on processor 118A,
1188, 118C, 118N with the commands being stored in
memory 120A, 1208, 120C, 120N of the client computer
112A, 1128, 112C, 112N, respectively.

A server remote access application 111B interacts with the
client remote access application(s) (any of 121A, 121B,
121C, 121N, and/or one of application programs 107A/
107B) as a proxy to communicate data, commands and other
information between the application program(s) 107A/1078
and the user interaction program 200 executing on the client
computing device(s) 121A, 121B, 121C, 121N. An example
of the server remote access application 111B 1s PUREWEB,
available from Calgary Scientific Inc., Alberta, Canada.
Further details of the server remote access application 111B
are detailed below with reference to FIGS. § and 6.

FIGS. 2A and 2B 1llustrate additional details of the system
100. As shown, the system 100 may have a tiered inira-
structure, where a client tier 220 and a server tier 230
communicate information, data, messages, etc., between
cach other. The server tier 230 may communicate informa-
tion, data, messages, etc., with an application tier 240. As
illustrated, the application program(s) 107A/107B may
reside on different machine or may be accessible via a

10

15

20

25

30

35

40

45

50

55

60

65

4

different network infrastructure than the server remote
access application 111B. In FIGS. 2A and 2B, the client tier
220, the server tier 230 and the application tier 240 provide
an 1nfrastructure for communication during a session
between a client (in the client tier 220) and an application
program (e.g., 107A/107B 1n the application tier 240).

In the client tier 220, the user interaction program 200
may be a web browser, a SILVERLIGHT application, a
FLASH application, or a native application that interfaces
with the client remote access application 121A, 121B, 121C,
121N. The client remote access application 121A, 121B,
121C, 121N communicates with the server remote access
application 111B 1n the server tier 230. Data, commands, and
other information may be exchanged between the client
remote access application and the server remote access
application to enable the user interaction program 200 to
interact with one or more of application programs 107A/

107B.

With reference to FIG. 2 A, the server tier 230 includes the
server remote access application 111B, which mitially com-
municates with a “connect” application 202 1n the applica-
tion tier 240. The connect application 202 may take one or
more arguments that includes an indication of an application
(e.g. application program 107A/107B) in order to begin the
execution of the application program 107A/107B on the
server computing device. The connect application 202 may

include two components, an API hooking library (not
shown) and a Remoting DLL 208. An example of the API

hooking library 1s the Easy Hook library available at easy-
hook.codeplex.com/releases. The API hooking library oper-
ates to mject the Remoting DLL 208 code into an address
space of the application program 107A/107B. After the DLL
injection 1s complete, the connection between the applica-
tion program 107A/107B and the connect application 202 1s
closed.

Thereatter, as shown 1n FIG. 2B, the application program
107A/107B 1s able to communicate with the server remote
access application 111B via the Remoting DLL 208. Thus,
the Remoting DLL 208, when injected into the application
program 107A/107B, provides a mechanism for the appli-

cation program 107A/107B to interact with the server
remote access program 111B without a need to change the
source code of the application programs 107A/107B. The
Remoting DLL 208 will communicate commands (drawing
operations or sound) to the server remote access application
111B, which are communicated to the connected client
computing devices for output to the user in a human-
comprehensible fashion. The Remoting DLL 208 will com-
municate commands (e.g., client inputs) from the server
remote access application 111B, which are communicated to
the application programs 107A/107B.

In some implementations, the application tier 240 and
server tier 230 may be implemented within a cloud com-
puting environment to provide remote access to the appli-
cation programs 107A/107B. As described above, cloud
computing 1s a model for enabling network access to a
shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can
be provisioned and released with minimal interaction. The
cloud computing model promotes high availability, on-
demand seli-services, broad network access, resource pool-
ing and rapid elasticity. In such an environment, the appli-
cation programs 107A/107B may be accessed by the client
computing devices 112A, 1128, 112C or 112N through a

client interface, such as a client remote access application




US 9,602,581 B2

S

121A, 121B, 121C, 121N. As 1n the above, the application
programs 107A/107B may be put 1n the cloud without a need
to change the source code.

In accordance with aspects of the present disclosure, the
client remote access applications 121A, 1218, 121C, 121N
may access the server remote access application 111B via a
Uniform Resource Locator (URL) using the user interaction
program 200, which may be, for example, a web browser
executing on the client computing devices 112A, 112B,
112C or 112N. A user interface may be implemented using,
for example, Hyper Text Markup Language HTML 3§ and
displayed by the user interaction program 200 on the client
computing devices 112A, 1128, 112C or 112N.

Additionally or alternatively, client computing devices
112A, 112B, 112C or 112N and/or the server 102B may
participate 1n a collaborative session by accessing the server
remote access application 111B at a predetermined URL. As
such, each of the participating client computing devices
112A, 112B, 112C . . . 112N (and/or the server 102B) may
present a synchronized view of the display of the application
program.

With reference to FIG. 3, there 1s 1llustrated operational
details of the Remoting DLL. Generally, the Remoting DLL
208 provides a communications link to the server-based
application and also consumes commands from the server-
based application or inputs from the client computing
device. For example, the Remoting DLL 208 may copy
drawing calls and data from the application program 107 A/
107B and send them to the server remote access program
111B. Similarly, audio data from the application program
107A/107B may be copied and communicated to the server
remote access program 111B. With regard to inputs from
client computing devices, the Remoting DLL may also 1nject
the input modules as appropriate input events and provide
them to the application program 107A/107B. It 1s noted,
while FIG. 3 illustrates the operation of the Remoting DLL
208 1n the MICROSOFT WINDOWS operating system
environment, it 1s contemplated that the Remoting DLL may
operate 1n other environments, such as Linux, Mac OS.

With reference to FIG. 4 there 1s illustrated an operation
flow diagram 400 of processes performed to provide remote
access capabilities to a server-based application, such as a
gaming or other interactive application. As used herein, a
server-based application may be any application that 1s
executed remotely from a client computing device (e.g.,
mainframe applications, server applications, cloud-based
applications, etc). At 402, the server remote access applica-
tion 1s launched 1n the server tier. For example, a user may
launch the server remote access application 111B at the
server 102B. At 404, the server remote access application
executes the connect application to mject the Remoting DL L
into the application. For example, the client user interaction
program 200 may contact the server remote access applica-
tion 111B, which may launch the connect application 202.
Alternatively, the server remote access application 111B
may launch the connect application 202 in accordance with
other criteria. The connect application 202 may take as an
argument an indication of the application program 107A/
1078, ¢.g., a game, and launches the API hooking library to
inject the Remoting DLL 208 into the address space of the
application. At 406, the connect application closes after the
Remoting DLL 1s injected into the application. At 408, the
Remoting DLL 1s now ready to communicate with the server
remote access application 1n order to render video and/or
audio from the application program 107A/107B, or to
receive iputs directed to the application program 107A/
107B from a client computing device 112A, 112B, 112C,

10

15

20

25

30

35

40

45

50

55

60

65

6

112N. Thus, 1n accordance with the above, DLL injection 1s
used to provide a mechanism for the application program
107A/107B to communicate with the remote access server.

FIG. § illustrates an operational flow diagram 500 of the
processes performed when communicating rendering and/or
audio information from a server-based application to the
client computing device. At 502, the server-based applica-
tion renders video and/or audio. For example the application
program 107A/107B, e.g. an online game, renders a drawing
instruction which is to be displayed by the user interaction
program 200 on a display device associated with the client
computing device.

At 504, the Remoting DLL captures information to relay
to the remote access server. In accordance with the above,
the Remoting DLL 208 consumes and copies the video
rendering commands/data and/or audio information from the
application program 107A/107B and sends 1t to the to the
remote access application 111B.

At 506, the remote access server formats and sends data
to the client device. At 508, the client recerves and processes
the data. For example the client remote access application
121A, 121B, 121C, 121N may receive data from the server
remote access application 111B and process the data for
presentation in the user interaction program 200.

Thus, 1n accordance with the operational flow 500, instead
of the application program 107A/107B drawing to the screen
of the computing device 1n communication with the appli-
cation program 107A/107B, the application draws to the
remote access application 111B and that information 1s
communicated to the client remote access application 121A,
121B, 121C, 121N 1n the client tier 220.

FIG. 6 illustrates an operational flow diagram 600 of the
processes performed when communicating inputs from the
client computing device to a server-based application. At
602, the client computing device communicates an input as
an input module to the remote access server. The mput may
be generated by a mouse movement, screen touch or key-
board entry associated with the client computing device
112A, 1128, 112C or 112N. At 604, the remote access server
receives the mput module. The server remote access appli-
cation 111B may receive the mput module from the client
remote access application 121A, 121B, 121C, 121N.

At 606, the remote access server formats and sends data
to the Remoting DLL. The server remote access application
111B may forward the input module and associated data to
the Remoting DLL 206. At 608, the Remoting DLL captures
the mput imnformation to relay to the inputs to the server-
based application. In accordance with the above, the Remot-
ing DLL 208 consumes and copies input module from user
interaction program 200 and sends 1t to the application
program 107A/107B as an appropriate input event.

Thus, 1n accordance with the operational flow 600, instead
of the user iteraction program 200 providing an input
directly to the application program 107A/107B, the nputs
are communicate to the remote access application 111B,
which 1n turn communicates the client input to the applica-
tion program 107A/107B.

In some implementations, the operation of a server remote
access application 111B with the client remote access appli-
cation (any of 121A, 121B, 121C, 121N, or one of appli-
cation programs 107A/107B) may be optionally performed
in cooperation with a state model 700, as 1llustrated in FIG.
7, which 1illustrates the state model 700 of the present
disclosure. As noted above, use of the state model 700 1s not
required to implement the systems and methods disclosed
herein; however the state model 700 may provide additional
functionalities to a remote session. For example, a chat log




US 9,602,581 B2

7

may be provided or configuration buttons on a toolbar, eftc.
These may be features that do not directly imvolve the
application program 107A/107B. When employing the state
model 700, the client remote access application updates the
state model 700 1n accordance with user input data received
from a user interface program. The remote access applica-
tion may generate control data in accordance with the
updated state model 700, and provide the same to the server
remote access application 111B running on the server 102B.

Upon receipt of application data from an application
program 107A or 1078, the server remote access application
111B updates the state model 700 in accordance with the
screen or application data, generates presentation data in
accordance with the updated state model 700, and provides
the same to the client remote access application 121 A, 121B,
121C, 121N on the client computing device. The state model
700 comprises an association of logical elements of the
application program with corresponding states of the appli-
cation program, with the logical elements being 1n a hier-
archical order. For example, the logical elements may be a
screen, a menu, a submenu, a button, etc. that make up the
application program user interface. This enables the client
device, for example, to natively display the logical elements.
As such, a menu of the application program that 1s presented
on a mobile phone will look like a native menu of the mobile
phone. Similarly, the menu of the application program that
1s presented on desktop computer will look like a native
menu of the desktop computer operating system.

The state model 700 1s determined such that each of the
logical elements 1s associated with a corresponding state of
the application program 107A or 107B. The state model 700
may be determined such that the logical elements are
associated with user interactions. For example, the logical
clements of the application program are determined such
that the logical elements comprise transition elements with
cach transition element relating a change of the state model
700 to one of control data and application representation
data associated therewith.

The state model 700 may be represented in, e.g., an
Extensible Markup Language (XML) document. Other rep-
resentations of the state model are possible. Information
regarding the application program and the measuring tool
are communicated in the state model. The state model 700
may thus contain session information about the application
itsell, an application extension, information about views,
and how to tie the functionality of the application to the
specific views.

In some 1mplementations, two or more ol the client
computing devices 112A, 112B, 112C, 112N and/or the
server 1028 may collaboratively interact with the applica-
tion program 107A or 107B. As such, by communicating
state 1mnformation between each of the client computing
devices 112A, 112B, 112C . . . 112N and/or the server 102B
and/or the mainframe computer 102A participating 1n a
collaborative session, each of the participating client com-
puting devices 112A, 112B, 112C . . . 112N may present a
synchronized view of the display of the application program
107A or 107B.

FIG. 8 shows an exemplary computing environment in
which example embodiments and aspects may be 1mple-
mented. The computing system environment 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or
functionality.

Numerous other general purpose or special purpose com-
puting system environments or configurations may be used.
Examples of well known computing systems, environments,

10

15

20

25

30

35

40

45

50

55

60

65

8

and/or configurations that may be suitable for use include,
but are not limited to, personal computers, server computers,
handheld or laptop devices, multiprocessor systems, micro-
processor-based systems, network personal computers
(PCs), minicomputers, mainframe computers, embedded
systems, distributed computing environments that include
any of the above systems or devices, and the like.

Computer-executable mnstructions, such as program mod-
ules, being executed by a computer may be used. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. Distributed com-
puting environments may be used where tasks are performed
by remote processing devices that are linked through a
communications network or other data transmission
medium. In a distributed computing environment, program
modules and other data may be located 1n both local and
remote computer storage media mncluding memory storage
devices.

With reference to FIG. 8, an exemplary system for imple-
menting aspects described herein includes a computing
device, such as computing device 800. In 1ts most basic
configuration, computing device 800 typically includes at
least one processing unit 802 and memory 804. Depending
on the exact configuration and type of computing device,
memory 804 may be volatile (such as random access
memory (RAM)), non-volatile (such as read-only memory
(ROM), flash memory, etc.), or some combination of the
two. This most basic configuration 1s 1llustrated in FIG. 8 by
dashed line 806.

Computing device 800 may have additional features/
functionality. For example, computing device 800 may
include additional storage (removable and/or non-remov-
able) including, but not limited to, magnetic or optical disks
or tape. Such additional storage 1s illustrated 1in FIG. 8 by
removable storage 808 and non-removable storage 810.

Computing device 800 typically includes a vanety of
computer readable media. Computer readable media can be
any available media that can be accessed by device 800 and
includes both volatile and non-volatile media, removable
and non-removable media.

Computer storage media include volatile and non-volatile,
and removable and non-removable media implemented 1n
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Memory 804, removable storage 808,
and non-removable storage 810 are all examples of com-
puter storage media. Computer storage media include, but
are not limited to, RAM, ROM, electrically erasable pro-
gram read-only memory (EEPROM), flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired mformation and which can be accessed by comput-
ing device 800. Any such computer storage media may be
part of computing device 800.

Computing device 800 may contain communications con-
nection(s) 812 that allow the device to communicate with
other devices. Computing device 800 may also have mput
device(s) 814 such as a keyboard, mouse, pen, voice 1mput
device, touch mput device, etc. Output device(s) 816 such as
a display, speakers, printer, etc. may also be included. All
these devices are well known 1n the art and need not be
discussed at length here.

It should be understood that the various techniques
described herein may be implemented 1n connection with



US 9,602,581 B2

9

hardware or software or, where appropriate, with a combi-
nation of both. Thus, the methods and apparatus of the
presently disclosed subject matter, or certain aspects or
portions thereof, may take the form of program code (i.e.,
istructions) embodied 1n tangible media, such as floppy
diskettes, CD-ROMs, hard drnives, or any other machine-
readable storage medium wherein, when the program code
1s loaded into and executed by a machine, such as a
computer, the machine becomes an apparatus for practicing
the presently disclosed subject matter. In the case of program
code execution on programmable computers, the computing
device generally includes a processor, a storage medium
readable by the processor (including volatile and non-
volatile memory and/or storage elements), at least one input
device, and at least one output device. One or more pro-
grams may implement or utilize the processes described 1n
connection with the presently disclosed subject matter, e.g.,
through the use of an application programming interface
(API), reusable controls, or the like. Such programs may be
implemented 1 a high level procedural or object-oriented
programming language to communicate with a computer
system. However, the program(s) can be implemented 1n
assembly or machine language, 11 desired. In any case, the
language may be a compiled or interpreted language and 1t
may be combined with hardware implementations.
Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.
What 1s claimed:
1. A method of providing remote access to an application,
comprising;
launching a server remote access application on a pro-
cessor of a server computing device, the server remote
access application being provided to proxy communi-
cation between the application and a client remote
access application;
establishing a first connection between the server remote
access application and a connect application;
passing arguments to the connect application that injects
a remoting dynamic-linked library (remoting DLL) into
an address space of the application;
closing the first connection with the connect application
when the remoting DLL 1s injected 1nto the application;
establishing a second communication connection between
the server remote access application and the remoting
DLL such that the server remote access application
provides remote access to the application by commu-
nicating with the client remote access application; and
communicating a state model during a remote access
session between the server remote access application
and the client remote access application, the state
model providing additional functionalities during the
remote access session that do not directly mnvolve the
application.
2. The method of claim 1, further comprising;:
communicating with the server remote access program
using a uniform resource locator (URL) that identifies
a network location of the server remote access appli-
cation.
3. The method of claim 1, turther comprising;:
capturing, at the dynamic-linked library, drawing com-
mands communicated by the application;
copying the drawing commands; and

10

15

20

25

30

35

40

45

50

55

60

65

10

communicating the drawing commands to the server

remote access application.

4. The method of claim 3, further comprising:

capturing, at the dynamic-linked library, input modules

communicated by a client computing device that 1s 1n
communication with the server remote access applica-
tion; and

commumnicating the input modules to the application as

iput events.

5. The method of claim 3, further comprising:

capturing, at the dynamic-linked library, audio data com-

municated by the application; and

providing the audio to the server remote access applica-

tion.

6. The method of claim 1, wherein the application 1s a
gaming application.

7. The method of claim 1, further comprising ceasing
communication between the connection application and the
server remote access application after the remoting DLL 1s
injected into the application.

8. A method of commumicating rendering and/or audio
information from a server-based application to the client
computing device operating 1n a tiered infrastructure having
a client tier, a server tier and an application tier, the method
comprising;

executing a server remote access application within the

server tier, the server remote access application being a
proxy to communicate data between the application tier
and the client tier;

establishing a first connection between the server remote

access application and a connect application in the
application tier;

passing arguments to the connect application that injects

a remoting dynamic-linked library (remoting DLL) into
an address space of the server-based application 1n the
application tier;
closing the first connection with the connect application
when the remoting DLL 1s 1njected into the server-
based application 1n the application tier; and

establishing a second communication connection between
the server remote access application and the remoting
DLL;

generating data at the server-based application executing
on a processor of a computing device executing in the
application tier;

capturing the data using a Remoting DLL executing on

the computing device in the application tier;

relaying the data using the Remoting DLL to the server

remote access application;

formatting the data at the server remote access applica-

tion;

commumnicating the data from the remote access applica-

tion to a client remote access application executing in
the client tier; and

communicating a state model from the server remote

access application to client tier to provide additional
functionalities that do not directly involve the server-
based application during a remote access session
between the client tier and the application tier.

9. The method of claim 8, further comprising injecting the
Remoting DLL into an address space of the server-based
application.

10. The method of claim 9, wherein the data comprises a
drawing instruction that i1s to be displayed by a user inter-
action application executing in the client tier.

11. The method of claim 10, wherein the Remoting DLL

consumes the drawing instruction.




US 9,602,581 B2

11

12. The method of claim 8, further comprising:

generating second data in the client tier;

communicating the second data to the server remote

access application 1n the server tier;

formatting the second data at the server remote access

application;

communicating formatted second data from the server

remote access application to the Remoting DLL.

13. The method of claim 12, wherein the second data
comprises an mput recerved at the client computing device
in the client tier.

14. The method of claim 13, wherein the mput comprises
a mouse movement.

15. The method of claim 12, further comprising;

consuming the formatted second data at the Remoting

DLL; and

forwarding the formatted second data to the server-based

application.

16. The method of claim 15, wherein the formatted second
data 1s received by the server-based application as an 1nput
event.

17. A non-transitory computer-readable medium contain-
ing computer executable mstructions that when executed by
a processor of a computing device cause the processor to
perform a method of providing remote access to an appli-
cation, comprising:

launching a server remote access application on a pro-

cessor of a server computing device, the server remote
access application being provided to proxy communi-
cation between the application and a client remote
access application;

establishing a first connection between the server remote

access application and a connect application;

passing arguments to the connect application that injects

a remoting dynamic-linked library (remoting DLL) into
an address space of the application;

closing the first connection with the connect application

when the remoting DLL 1s injected 1nto the application;

10

15

20

25

30

35

12

establishing a second communication connection between
the server remote access application—and the remoting
DLL such that the server remote access application
provides remote access to the application by commu-
nicating with the client remote access application; and
communicating a state model during a remote access
session between the server remote access application
and the client remote access application, the state
model providing additional functionalities during the
remote access session that do not directly involve the
application.
18. The non-transitory computer-readable medium of
claim 17, further comprising instructions for:
commumnicating with the server remote access program
using a uniform resource locator (URL) that identifies
a network location of the server remote access appli-
cation.
19. The non-transitory computer-readable medium of
claim 17, further comprising instructions for:
capturing, at the dynamic-linked library, drawing com-
mands communicated by the application;
copying the drawing commands;
communicating the drawing commands to the server
remote access application;
capturing, at the dynamic-linked library, imnput modules
communicated by a client computing device that 1s 1n
communication with the server remote access applica-
tion; and
commumnicating the input modules to the application as
input events.
20. The non-transitory computer-readable medium of
claam 17, further comprising ceasing communication

between the connection application and the server remote
access application after the remoting DLL 1s injected nto the

application.




	Front Page
	Drawings
	Specification
	Claims

