12 United States Patent

Robinson et al.

US009594918B1

US 9,594,918 B1
Mar. 14, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(51)

(52)

(58)

(56)

COMPUTER DATA PROTECTION USING
TUNABLE KEY DERIVATION FUNCTION

Applicant: EMC Corporation, Hopkinton, MA

(US)

Inventors: Peter Alan Robinson, Enoggera
Reservoir (AU); Sean Parkinson,
Indooroopilly (AU); Eric Young,
Annerley (AU)

Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 48 days.

Appl. No.: 14/572,027

Filed: Dec. 16, 2014

Int. CL

GO6l’ 11/30 (2006.01)

GO6Il’ 21/62 (2013.01)

HO4L 9/08 (2006.01)

U.S. CL

CPC GO6F 21/62 (2013.01); GO6I 21/6209

(2013.01); HO4L 9/0863 (2013.01)

Field of Classification Search

CPC ... GO6F 21/62; HO4L 2209/80; HO4L 9/0838;
HO4L 9/0861; HO4L 9/0863; HO4L
9/0869

USPC

See application file for complete search history.

8,254,571 BI1*

8,788,842 B2 *

References Cited

U.S. PATENT DOCUMENTS

8/2012 Boyen

7/2014 Brouwer

ttttttttttt

ttttttt

713/193

8,897,450 B2 * 11/2014 Scarisbrick HO41. 9/0863
380/277

9,288,047 B2* 3/2016 Brouwer HO4L 9/0838
2011/0252243 Al* 10/2011 Brouwer HO4L 9/0838
713/189

2014/0281574 Al1* 9/2014 Webb GO6F 21/74
713/189

2015/0006907 Al1* 1/2015 Brouwer HO4L 9/0838
713/189

(Continued)

OTHER PUBLICATTONS

“PBKDEF2”, (https://en.wikipedia.org/w/index.php?title=PBKDF2
&oldid=633787627) Nov. 14, 2014, Wikipedia, Retrieved Oct. 26,
2015, 4 pages.

(Continued)

Primary Examiner — Samson Lemma
(74) Attorney, Agent, or Firm — BainwoodHuang,

(57) ABSTRACT

A computer-implemented method of protecting digital data
includes applying a key derivation function to a first value
to generate a first derived key, the first value being equal to
or derived from a first input password. The first derived key
1s combined with the digital data to generate a protected
record stored in the computer. Subsequently, the key deri-
vation function 1s applied to a second value to generate a
second dertved key, the second value being equal to or
derived from a second input password. The protected record
1s processed using the second derived key to permit access
to the digital data when the second derived key matches the
first dernived key. The key derivation function includes
iterations of a two-stage hashing operation creating and
using an array of memory blocks whose size 1s specified
independently of the number of iterations to decouple pro-

******** HO4L 9/0863 cessing and memory requirements.
380/252
........ HO4I., 9/0838
380/44 19 Claims, 8 Drawing Sheets
FASSWORD PRE-PROCESS
_h" Eg
FUNCTION _ CORE J—
INPUT &1 e /,— INPUT III,-‘
’ v CORE 60-1
¥
-<: BLOCK 72-1
BLOCK 72-2
e || et Moo [H e
PERT1 HASH AND —<: SELEGT AND
SAVE PER M) HASH FER T2)
q BLOCK 72-0
¥~ CORE
OUTPUT
¥ CORE &(0-2
I
v
v 4 CORE 6071
|
FUNCTION ,,f-f"""fi
OUTPUT B3 ST,
PROCESS
k. 54

30 —

v

DERIVED KEY

US 9,594,918 Bl

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2015/0324789 Al* 11/2015 Dvorak G06Q 20/3678
705/67

OTHER PUBLICATIONS

“Scrypt” (https://en.wikipedia.org/w/index.php?title=Scrypt&old-
1d=629101244) Oct. 10, 2014, Wikipedia, Retrieved Oct. 26, 2015,
5 pages.

* cited by examiner

U.S. Patent Mar. 14, 2017 Sheet 1 of 8 US 9,594,918 B1

PROTECTED
DATA 12
COMPUTER
SYSTEM 10

IE-KDF BASED

PROTECTION FN 14

USERS 16

IE-KDF BASED
PROT PROG

(P/O 14)

PROCESSOR(S) 20

MEMORY 22

PROT
DATA 12

/O INTERFACE ~ NETWORK &
CIRCUITRY 24 OTHER I/O DEVICES

P/O 10 —

U.S. Patent Mar. 14, 2017 Sheet 2 of 8 US 9,594,918 B1

DATA 38
PASSWORD DERIVED KEY
(PW1, PW2) IE-KDF 30
(DK2) | (DK1) -
COMBINE 32
>~ CREATE

PROTECTED
RECORD 36

~ ACCESS

PROCESS 34

PERMIT/DENY

14 /

Fig. 3

U.S. Patent Mar. 14, 2017 Sheet 3 of 8 US 9.594,918 B1

DATA 38

PASSWORD DERIVED KEY
(PW1, PW2) IE-KDF 30

(DK2) (DK1)

ENCRYPT 42

CREATE

ENCRYPTED
FILE 40

. J K

}» ACCESS

DECRYPT 44

DATA 38

Fig. 4

U.S. Patent Mar. 14, 2017 Sheet 4 of 8 US 9,594,918 B1

ACCOUNT
DATA 52

PASSWORD DERIVED KEY
(PW1, PW2) IE-KDF 30

B

)
(DK2) (DK1) |

|
f CREATE

—

ACCOUNT
RECORD 30

ACCOUNT
NAME - SELECT 56
AUTH
PROCESS 54

PERMIT/DENY

>~ ACCESS

U.S. Patent Mar. 14, 2017

Sheet 5 of 8

PRE-PROCESS
62

PASSWORD

FUNCTION

INPUT 61 70

1°T STAGE 66

ITERATE (RECURSIVE

PER T1

HASH AND
SAVE PER M)

FUNCTION
OUTPUT 63

30 —

US 9,594,918 B1

CORE 60-1

NP STAGE 68
(RECURSIVE
SELECT AND
HASH PER T2)

~ CORE
OUTPUT

CORE 80-2

e,

CORE 60-T1

POST-
PROCESS

84

DERIVED KEY

U.S. Patent

Mar. 14, 2017

SHOW INIT WITH
CORE INPUT?

Sheet 6 of 8

BLOCK 72-1

BLOCK HASH
AND SAVE

80-1

BLOCK 72-2

BLOCK HASH
AND SAVE

80-2

BLOCK 72-M

US 9,594,918 B1

U.S. Patent Mar. 14, 2017 Sheet 7 of 8

BLOCK 72-M

EXTRACT
INDEX, SELECT
NEXT ARRAY
BLOCK 90

BLOCK
COMBINE, HASH
AND SAVE
92

RESULT 94

CORE OUTPUT

US 9,594,918 B1

REPEAT
T2

U.S. Patent

Mar. 14, 2017

Sheet 8 of 8

P1-PROTECTED
RECORD 50-1

P1: T1-1
P1
[— — = - = 1
| RECOVER |
———h 104 |
!
ADD’L
ITERATIONS
102
=2, [—— ————n1
| REGENERATE |
- 106 |

.

P2-PROTECTED
RECORD 50-2

US 9,594,918 B1

US 9,594,918 Bl

1

COMPUTER DATA PROTECTION USING
TUNABLE KEY DERIVATION FUNCTION

BACKGROUND

The 1mvention 1s related to the field of computer security.

Computers employ a technique called “password hash-
ing”” in their security mechanisms that protect the computer
and the data it stores from proper access and use. At 1ts most
basic, password hashing involved applying a hash function
to a user’s password or other secret value to generate a hash
value that 1s stored and used 1n the computer rather than the
user’s password. The hash function has a “one-way” char-
acteristic, in the sense that there 1s no corresponding discrete
inverse function that can be applied to the hash value to
recover the password. Thus, use of password hashing in a
computer can enhance security, because of the reduced risk
of a user password being compromised and used for an
improper purpose, such as unauthorized access to stored
data.

SUMMARY

One of the challenges of protecting passwords by pass-
word hashing 1s that in a given context there may be a quite
limited number of passwords that could possibly be used. It
may be relatively easy for an attacker to use a “brute force”
technique of executing the password hashing function for all
potential passwords until the password that yields the known
hash value 1s encountered. This computation 1s susceptible
of parallel processing, so attackers can decrease the time
required for an attack by deploying more processing
resources.

Password-based key derivation functions have been
developed that intentionally require high amounts of
memory and processing, both increasing the cost of a brute
force attack and decreasing 1ts chance of succeeding. In one
technique, a password 1s used to 1nitiate a repeated hashing,
operation that generates a large array ol memory blocks
containing pseudo random data based on the password, and
then additional hashing operations are performed using the
memory blocks to arrive at the hash output value, which 1s
referred to as a “derived key”. The additional hashing begins
with the last-created memory block in the array, so that it 1s
required that the entire array be created and be present in the
memory throughout operation, yielding the desired con-
sumption of memory and processing resources (1.€., CPU
time). As the required memory and/or processing resources
are increased, the resources required by an attacker to be
successiul are also increased.

Known password-based key dertvation functions have
certain undesirable shortcomings. One 1s that they are
parameterized 1n a way that the memory consumption and
processing time are dependent on each other. In particular,
the number of hashing operations performed on the memory
array 1s generally about equal to the number of blocks 1n the
memory array. If in a given application it 1s desired that the
function be calculated quickly for normal system pertor-
mance reasons, then less memory 1s also used, and the
strength of the protection provided by the function 1s dimin-
ished. Another significant 1ssue 1s the nability to upgrade
protection without having access to the original password.
When a system 1s first deployed, acceptable protection may
be provided by using a certain amount of memory and/or
processing, but over time this protection diminishes as
memory density and processing power grow—a determined
attacker can economically deploy enough computing power

10

15

20

25

30

35

40

45

50

55

60

65

2

to make a brute force attack successtul. It would be 1deal to
be able to generate new hash output values by increasing the
memory and processing requirements for the hashing opera-
tion. However, 1n general this would require access to the
source passwords from which the existing derived keys were
derived, and this may not be feasible or practical in many
applications.

Methods and apparatus are disclosed that address the
above and other shortcomings in the use of password-based
key derivation functions for computer security. In particular,
a disclosed technique provides for decoupling processing
time from memory requirements, so that better tradeoils can
be made to balance performance of normal use against
protection strength as provided by high memory require-
ments. Also, the disclosed technique enables a later increas-
ing of protection strength by executing additional hashing
operations on existing hash values created at an earlier time
from source passwords. This feature gives flexibility to
system administrators to tune the protection strength over
time without requiring access to the source passwords.

In particular, a method 1s disclosed of operating a com-
puter to protect digital data stored therein. The method
includes, 1n a first operation, receiving a first input password
and applying a key derivation function to a first value of a
function nput to generate a first derived key as a first value
of a function output. The first value of the function 1nput 1s
equal to or derived from the first input password. The first
derived key 1s combined with the digital data to generate a
protected record stored in the computer. Specific examples
of protected records described herein include encrypted files
and account records used to authentication users of a com-
puter system. The first password can be thought of as the
“correct” password, assuming that the user providing the
password 1s an authorized user performing an authorized
operation.

The method further includes, in a subsequent second
operation, receiving a second input password and applying
the key derivation function to a second value of the function
input to generate a second derived key as a second value of
the function output, where the second value of the function
input 1s equal to or derived from the second 1input password.
The protected record 1s processed using the second derived
key to selectively permit user access to the digital data when
the second derived key matches the first derived key. The
second password can be thought of as a “proflered” pass-
word, 1.e., a password supplied when a user 1s trying use or
access the protected record. In the normal case, the user 1s
the same authorized user and the second password is the
same as the first password. 11 the derived keys do not match,
it indicates that the attempted access may not be authorized,
so typically access 1s not granted.

Applying the key derivation function includes performing
a first predetermined number of iterations of a two-stage
core hashing operation. A first stage includes creating an
ordered array of iitialized memory blocks by recursive
block hashing and saving beginning with a first memory
block created by first hashing of a core input value, the
ordered array including a last-created memory block and
having a size equal to a second predetermined number of
memory blocks. A second state of the core hashing operation
includes creating a core output value by recursive block
selecting and block hashing beginning with the last-created
memory block, where successive recursions select from
among blocks of the ordered array of mmitialized memory
blocks according to contents of respective hashed block
results of respective immediately preceding recursions. The
iterations of the two-stage core hashing operation include (1)

US 9,594,918 Bl

3

a first iteration with the function mput being taken as the
core mput value, (2) a last iteration with the core output
value being taken as the function output, and (3) one or more
intermediate 1terations with the core mput value being the
core output value from a respective immediately preceding
iteration and the core output value being the core mnput value
to a respective immediately succeeding iteration.

The use of separate predetermined first and second num-
bers speciiying a number of iterations and a number of
memory blocks respectively effects a desired decoupling
between the amount of processing required and the amount
of memory required. One can be changed without necessar-
1ly changing the other. The technique thus provides tunabil-
ity that can be used to balance performance against protec-
tion strength and to enable system administrators to increase
protection strength over time without requiring access to
source passwords, among other benefits.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accom-
panying drawings in which like reference characters refer to
the same parts throughout the different views.

FIG. 1 1s a functional block diagram of a computer;

FIG. 2 1s a block diagram of a computer from primarily
a hardware perspective;

FIG. 3 1s a functional block diagram of a method for
protecting data using a key derivation function;

FIGS. 4 and 5 are functional block diagrams of specific
applications of the general method of FIG. 3;

FIG. 6 1s a functional block diagram depicting operation
of a key dertvation function;

FIG. 7 1s a flow diagram for operation of a first stage of
the key derivation function;

FIG. 8 1s a flow diagram for operation of a second stage
of the key derivation function;

FIG. 9 1s a functional block diagram depicting additional
execution of the key dertvation function using previously
created derived keys to increase protection strength.

DETAILED DESCRIPTION

FIG. 1 shows a computer system 10 including data
identified as protected data 12 and a protection function 14
based on an iteration-enhanced key derivation function
(IE-KDF). The IE-KDF based protection function 14 1s
interposed between the protected data 12 and a population of
users 16 of the computer system 10 1n order to ensure that
only authorized users 16 access the protected data 12.
Several example use cases are described below. The IE-KDF
based protection function 14 may be implemented using
soltware as described below. In operation, a user 16 supplies
a secret password 1n the context of a request to access the
protected data 12. The IE-KDF based protection function 14
calculates a derived key from the secret password, and uses
the derived key along with other immformation to grant or
deny access to the protected data 12. This request-time
activity will generally have been preceded by an earlier
process ol applying password-based protection to the pro-
tected data, using the same secret password. The use of the
same password at both times serves as an indicator of proper
authorization of the requesting user 16 to access the pro-
tected data 12. Additional specifics are provided below.

FIG. 2 shows an example configuration of a physical
computer, which may be all or part of the computer system

5

10

15

20

25

30

35

40

45

50

55

60

65

4

10, from primarily a computer hardware perspective. The
computer imncludes one or more processors 20, memory 22,
and interface circuitry 24 interconnected by data intercon-
nections 26 such as one or more high-speed data buses. The
interface circuitry 24 provides a hardware connection to a
network and perhaps other external devices/connections
(EX'T DEVs), which may include connections to the users
16 (FIG. 1). The processor(s) 20 with connected memory 22
may also be referred to as “processing circuitry” herein.
There may also be local storage 28 such as a local-attached
disk drive or Flash drive. In operation, the memory 22 stores
data and 1instructions of system software (e.g., operating
system) and one or more application programs which are
executed by the processor(s) 20 to cause the hardware to
function 1n a software-defined manner. Thus the computer
hardware executing instructions of a data protection appli-
cation, for example, can be referred to as a data protection
circuit or data protection component, and i1t will be under-
stood that a collection of such circuits or components can all
be realized and interact with each other as one or more sets
ol computer processing hardware executing different com-
puter programs as generally known in the art. Further, the
application software may be stored on a non-transitory
computer-readable medium such as an optical or magnetic
disk, Flash memory or other non-volatile semiconductor
memory, etc., from which 1t 1s retrieved for execution by the
processing circuitry, as also generally known 1n the art.

In the illustrated example, the memory 22 stores computer
program 1nstructions executed by the processor(s) 20 to
realize the IE-KDF based protection function 14. The pro-
tected data 12 resides 1n the storage 28. It will be appreciated
that the protected data 12 may be stored in any of a variety
ol locations, including for example the memory 22 or other
storage accessible via the 1/0 interface circuitry 24, such as
a network-attached storage (NAS) device for example.

FIG. 3 illustrates the IE-KDF based protection function
14. It includes an 1iteration-enhanced key derivation function
(IE-KDF) 30, a combining function (COMBINE) 32, and
record-processing function (PROCESS) 34. The IE-KDF
function 30 generates a derived key from a corresponding
input password. In an example operation described below, a
protected record 36 1s created, stored, and later accessed, and
derived keys DK1, DK2 are generated by the IE-KDF 30
from corresponding passwords PW1, PW2.

More specifically, during creation of the protected record
36 the IE-KDF 30 generates a first derived key DK1 from a
first password PW1 that has been supplied as the password
for password-protecting the protected record 36. The com-
bining function 32 combines the first derived key DK1 with
data 38 to be protected, and the result of this combining is
saved as the protected record 36. At a later time when a user
1s attempting to access the protected record 36, the user
again supplies a password, 1dentified as the second password
PW2. In the usual benign case, the second password PW2 1s
the same as the first password PW1, and thus the second
derived key DK2 1s the same as the first derived key DK2.
In this case, the record-processing function 34 permits
access to, and/or use of, the data 38 which 1s stored as part
of the protected record 36. If the second password PW2 1s
not the same as the first password PWI1, which 1s an
indication that the attempted access 1s not by the authorized
user, then the second derived key DK2 will not be the same
as the first derived key DK1 (to a statistical certainty, as
generally known in the art). Thus upon finding that DK1 and
DK?2 do not match, the record-processing function 34 pre-
vents access to the data 38 which 1s stored as part of the
protected record 36.

US 9,594,918 Bl

S

FIGS. 4 and § illustrate two specific versions of the
general scheme of FIG. 3. These are described 1n turn.

FIG. 4 shows use of the technique in encrypting and
decrypting a file, shown as encrypted file 40. In this use, the
combining function 32 of FIG. 3 i1s an encryption function
(ENCRYPT) 42 using the first derived key DKI1, and the
record-processing function 34 of FIG. 3 1s a decryption
tunction (DECRYPT) 44 using the second derived key DK2.
The original data 38 1s protected in the sense that its
encrypted form 1in the file 40 1s unintelligible to anybody
lacking the correct password. Access 1s in the form of
re-generating the original data 38 by successtully decrypting,
the encrypted file 40, which occurs when the second pass-
word PW2 matches the first password PW1, as described
above.

FIG. § shows use of the technique 1n authenticating a user
as an authorized user permitted to access resources of the
computer system 10. In this case the protected record 36 of
FIG. 3 1s an account record 30 that includes a combination
of a first dertved key DK1 and other account data 52 for this
authorized user, such as a username, personal 1dentifying
information (name, address, etc.), system privileges infor-
mation, etc. In this case the account data 352 1s protected in
the sense that 1t does not serve as a credential or provide
system access to anybody lacking the correct password. The
first derived key DKI1 1s generated from a first password
PW1 that may be created when a user account 1s {irst created
or during an authorized password-change operation. The
record-processing 34 of FIG. 3 1s 1n the form of an authen-
tication processing function 54 operating upon a second
derived key DK2 and contents of the account record 50
(including stored derived key DK1), as selected by a selector
56 based on user mput of a username or account name
identifying an account that the user 1s trying to access. The
second derived key DK2 i1s generated from a second pass-
word PW2 also presented by the user at the time of access.
I1 the correct account 1s 1dentified and the correct password
PW2=PW1 is presented, then the second derived key DK?2
matches the first derived key DK1 obtained from the account
record 50. The authentication processing 54 compares these
values, and upon finding a match deems the user authenti-
cated and permits user access to the account and other
system resources that the user 1s authorized to access (e.g.,
transaction data, financial data, etc.). If the values do not
match, then the user 1s not so authenticated and i1s not
permitted such access.

FIG. 6 1llustrates structure and operation of the IE-KDF
30. It mncludes sequential iterations ol a core operation 60
(60-1, 60-2, . . .), also referred to as a “core”, with the
number of iterations being specified by a first parameter T1.
As shown, a core output generated by a given core 60-i 1s
taken as the core input for a next succeeding core 60-(i+1).
The mput to the first core 60-1 1s i1dentified as a function
input 61, and the output from the last core 60-T1 1s identified
as a function output 63. In typical use, an input password has
pre-processing 62 applied to generate the function input 61,
and the function output 63 may have post-processing 64
applied to generate the derived key serving as the overall
output.

The core 60 includes first and second stages 66, 68 of
processing. The first stage 66 produces an array 70 of
memory blocks 72 (72-1, 72-2, . . .) containing pseudoran-
dom data by 1iterated block hashing operations, as described
more below. The blocks 72 are of a fixed size generally a
multiple of a “sub-block™ size of an underlying hash method,
as also described more below. It may be convenient for the
block size to be the same as a memory page size. In one

5

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiment the blocks 72 have a size of 4K bytes. The size
of the blocks 72 1s referred to below by the name “Block-
S1ze”.

In the first stage 66, the blocks 72 are created in order
beginning with first block 72-1 and proceeding linearly
through to last block 72-M, where M 1s another specified
parameter (along with T1 as mentioned above). The second
stage 68 also performs iterated block hashing operations
using the array 70, but begins with the last block 72-M and
proceeds through additional blocks 1n a generally random
way as described more below. The number of iterations
performed by the second stage 68 1s dictated by a third
specified parameter, T2.

One of the major attributes of the IE-KDF 30 i1s 1its
“hardness”™, 1.e., resistance to cryptanalytic attack. This 1s
provided 1n part by the technique of building the memory
array 70 and beginnming operation of the second stage 68 with
the very last-created block 72-M. Thus 1t 1s required for the
entire array 70 to be created and then remain in memory
during the core operation 60. This characteristic can make 1t
diflicult for an attacker to mount a brute-force attack even 1f
using highly parallel processing, because of the large
amount of memory that would be required. Hardness 1s also
aflected by the values of the parameters T1 and T2, which
together dictate a total number of iterations (1T1*12) and
hence the amount of CPU time required for overall process-
ing. Generally 1t 1s best 1if T2 1s approximately equal to M.
T1 can be used to tune overall processing time to a desired
value while mamtaining M and T2 as high as possible,
maximizing hardness. One important feature, described
more below, 1s that the hardness of existing derived keys can
be increased by running additional iterations of the core 60,
without requiring access to the respective input passwords.
Thus as computer processing power increases over time, a
set of dertved keys previously created can be processed to
generate a new set corresponding to a new and higher value
of T1. Hardness can be increased to help offset increased
computing power available to attackers.

Preprocessing 62 may include processing of the input
password to generate a value usable as the function mnput 61
that 1s a normalized value conforming to mput requirements
of the core 60. For example, the password may be of
arbitrary length, and the preprocessing 62 converts the
password to the normalized value with fixed predetermined
length conforming to the input requirements. In another
example, the password may be character-based, and the
preprocessing 62 converts the password to the normalized
value with universal byte-oriented encoding such as UTF.

Preprocessing 62 may also include addition of a crypto-
graphic salt in generating the value for the function input 62,
where the salt includes a random component and a deter-
ministic personalization component to maintain distinction
between different applications or environments in which the
same first password 1s used. This 1s described more below.

Postprocessing 64 may include processing to generate the
derived key as a denormalized value conforming to input
requirements of the combining 32 and the record processing
34. As an example, the value of the function output 63 may
be of a normalized length greater than a key length of an
encryption key to be used 1n encrypting and decrypting steps
42, 44, and the postprocessing 64 converts the value to the
derived key having the necessary key length.

The following summarizes the above-mentioned param-
cters of the processing of FIG. 6:

1. Memory Factor MF:

A memory factor MF specifies the number of memory
blocks M=2"" to be used in creating the array 70. A

US 9,594,918 Bl

7

desirably high amount of memory should be used to execute
the algorithm. In the year 2014, a desired amount 1s 1 MByte
or more. Assuming a block size of 4K bytes, the correspond-
ing value of M 1s 256 or greater, and the corresponding
memory factor MF 1s 8 or greater.

2. Time Factor T1 (Outer Loop Parameter):

Time factor T1 1s independent of M as well as T2. Higher
values provide greater hardness. T1 can be used to increase
hardness over time as available CPU power increases,
without necessarily increasing M and/or T2. This feature can
be exploited to re-process existing derived keys to harder
values corresponding to greater values of T1, as described
more below.

3. Time Factor T2 (Inner Loop Parameter):

Typically, time factor T2 1s set equal to M. For a given
overall time T1*T2, 1t 1s generally better to use a larger value
of T2 and correspondingly smaller value of T1. For example,
if a combination were under consideration that would
require T1*12=10,000, this could be achieved in a few
different ways:

a. M=256, 12=256, 11=40
b. M=512, T2=256, T1=40
c. M=512, 12=512, 1T1=20

From a hardness perspective, the above alternatives
would be ranked (c¢), (b), (a) from best to worst. (b) 1s better
than (a) because 1t uses more memory, and (c) 1s better than
(b) because it uses a higher value of T2 closer to the value
of M (in this case equal to M).

4. Input Password:

This 1s the secret value being protected. In general 1t 1s of
variable length, and 1t may be 1n the form of a character
string. It 1s desired to apply the pre-processing 62 to convert
the vaniable length value to a fixed length, and to convert
characters to bytes. For the latter, a umiform encoding such
as UTF-8 may be employed. An example of pre-processing
with length conversion i1s given below.

5. Salt A cryptographic “salt” value 1s used to enhance
randomness in the function mmput 61 that 1s subject to the
IE-KDF processing. The purpose of the salt 1s to allow the
generation of a large set of keys corresponding to each

unique password, for fixed parameters. For a given pass-
word, the number of possible resulting distinct keys 1s
approximately 25", where sLen is the length of the salt in
bits. Therelfore, using a salt makes it diflicult for the attacker
to generate a table of resulting keys, for even a small subset
of the most-likely passwords. In one embodiment, the salt
value might include a deterministic personalization compo-
nent along with the typical random component. For
example, 1f a 128-bit random value 1s used, another value
can be appended that 1s specific to the application, session,
environment, etc. to help reduce interactions between such
components. Salting 1s also performed in the pre-processing
62.

Overall, the use of the three separate parameters MFE, T1
and T2 make the IE-KDF 30 desirably tunable so that
applications can achieve desired performance and security
(protection strength) goals.

FIG. 7 1llustrates the processing of the first stage 66. As
shown, 1t includes a series of 1terations of a block hash and
save function 80 (80-1, 80-2, . . .) operating on successive
blocks 72-1, 72-2, Thus a first iteration 80-1 operates
on the first block 72-1 and generates a second block 72-2.
The next iteration 80-2 operates on the second block 72-2
and generates 72-3. This process 1s repeated until the last

block 72-M 1s generated.

10

15

20

25

30

35

40

45

50

55

60

65

8

This process can also be defined somewhat more formally
as follows.

1. Define K as the memory array 72, whose size 1s
BlockSize * M bytes, where BlockSize 1s the size of the
blocks 72 as described above.

2. As a first step, the first block 72-1 1s created. This can
be done 1n a variety of ways. In one embodiment, a known
KDF referred to as “PBKDF2” 1s used to create a starting
block 72-1, which 1s referred to below as X1:

X1=PBKDF2(secret, real salt, iteration count=1, output

s1ize=BlockSize)

Append X1 to K

where “secret” 1s the function mput 61 (FIG. 6).

3. Then, the remainder of the blocks 72 of the array 70 are
created. This uses the function BlockHash, which corre-
sponds to the “block hash” part of the steps 80 and 1s
described further below. In this description, each block 72-i
1s referred to as Xi:

For 1=2 to M:

X1=BlockHash (X(1-1)) /creates block 72-i from block
72-(i-1)
Append X1 to K /adds new block 72-i to array 70

FIG. 8 1llustrates the processing of the second stage 68,
which includes T2 1terations of steps 90-92. A first iteration
operates on the last block 72-M and generates a first-
iteration result 94. Each subsequent iteration 1s performed
on the result 94 of the preceding iteration.

At 90, predefined bits of the block generated in the
preceding 1teration (block 72-M 1n first iteration, result 94 in
subsequent iterations) are selected and used as an index
identifving a next block 72 within the array 70. At 92, a set
of operations 1dentified as block combine, hash and save are
performed using both the 1dentified next block 72 as well as
the block from the preceding iteration (block 72-M 1n first
iteration, result 94 1n subsequent iterations). The result of the
operations at 92 at each 1teration 1s an updated result 94, 1.¢.,
the new result value replaces the result value from the
preceding 1teration. When the last iteration 1s completed, the
result 94 1s taken as the core output of the core operation 60
(FIG. 6).

This process can also be defined somewhat more formally
as follows, again using K to refer to the array 70. This
description identifies the block being operated on in each
iteration 1 as block Yj.

Begin with the last block 72-M, which is also 1dentified as
Y1, and repeatedly access and hash blocks of K into

successive results Y:

For 1=2 to T2:
Get lowest log 2(M) bits of block Y(3—1) and convert
value to Index
Temp=K [Index] XOR Y(-1)
Y (1)=BlockHash(Temp)
The final output (core output) may be produced by
hashing from BlockSize down to the size of the underlying

hash function Hash() which 1s described further below:
core-output=Hash(Y('12))

As mentioned above, the process uses an underlying
secure hash function of a given size that 1s typically a
sub-multiple of the memory page size. At present, a good
candidate hash function 1s SHA-236, which operates on
256-byte data umnits; these are referred to as “sub-blocks”
herein. In general, a block 72 1s made up of R sub-blocks of
the size of the hash function. Thus in the case of 4K-byte
blocks 72 and SHA-256 as the hash function, a block 72

contains 16 sub-blocks.

US 9,594,918 Bl

9

The following describes the BlockHash operation used in
the core operation 60 as described above:

1. Divide block 72 1into sub-blocks the size of the under-
lying hash algonithm (for SHA256: 32 bytes)

Starting Y=last (highest ordered) sub block

For each of the R sub-blocks:

Y=sub-block XOR Y

Y=hash(Y)

/=/.append Y

Mix blocks:

Even indexed sub-blocks are moved to first half of output

Odd indexed sub-blocks are moved to last half of output

FIG. 9 1llustrates a process 100 of further hardening an
existing derived key P1 that was created using the IE-KDF
60 with a first value T1-1 of the parameter T1. In particular,
there 1s a Pl-protected record 350-1 that includes user con-
tent, the derived key P1, and the first T1 value T1-1. The user
content 1s represented as “Data”.

At 102, the value P1 1s used as mput to additional
iterations of the core 60, up to a new 11 value T1-2. As an
example, 11 T1-1 1s 20 and it 1s desired to increase the
hardening to a T1-2 of 30, then 10 additional iterations
(30-20) are performed at 102. The output at 102 1s a new
derived key P2, which along with the value T1-2 1s stored as
part ol a P2-protected record 50-2 having the same user
content (“Data”) as the Pl-protected record 50-1.

It may or may not be necessary to also update the data that
represents the user content, depending on whether the data
depends on the value of the key Px that protects 1t. Referring
to the above example of an account record 50, the data may
just be stored 1n association with P1 but not depend upon its
specific value. In that case, the data 1s just maintained or
copied over as necessary 1n creating the P2-protected record
50-2. It the data in the record 50-1 1s dependent on the value
of P1, then 1t may be necessary to recover the original data
in a recovery step 104 using P1 and use the output to
generate a new form of the data 1n a regenerate step 106
using P2. Referring to the above encryption example, the
recovering at 104 corresponds to decrypting the data in
record 50-1 using P1, and the regenerating at 106 corre-
sponds to re-encrypting using P2, with the result being saved
as the data in the record 50-2.

While various embodiments of the mmvention have been
particularly shown and described, it will be understood by
those skilled 1n the art that various changes in form and
details may be made therein without departing from the
spirit and scope of the invention as defined by the appended
claims.

What 1s claimed 1s:
1. A method of operating a computer to protect digital data
stored therein, comprising:

in a first operation, recerving a first input password and
applying a key derivation function to a first value of a
function nput to generate a first derived key as a first
value of a function output, the first value of the function
input being equal to or derived from the first input
password, and combining by, a hardware processor, the
first derived key with the digital data to generate a
protected record stored 1n the computer; and

in a subsequent second operation, receiving a second
iput password and applying the key derivation func-
tion to a second value of the function 1nput to generate
a second derived key as a second value of the function
output, the second value of the function mput being
equal to or derived from the second mnput password,
and processing the protected record using the second

10

15

20

25

30

35

40

45

50

55

60

65

10

derived key to selectively permit user access to the

digital data when the second derived key matches the

first derived key;

wherein applying the key derivation function includes
performing a first predetermined number of iterations
of a two-stage core hashing operation, a first stage of
the core hashing operation including creating an
ordered array of mnitialized memory blocks by recursive
block hashing and saving beginming with a first
memory block created by first hashing of a core input
value, the ordered array including a last-created
memory block and having a size equal to a second
predetermined number of memory blocks, a second
stage of the core hashing operation including creating,

a core output value by recursive block selecting and
block hashing beginning with the last-created memory
block, successive recursions selecting from among
blocks of the ordered array of imitialized memory
blocks according to contents of respective hashed block

results of respective immediately preceding recursions,
the iterations of the two-stage core hashing operation
including (1) a first iteration with the function nput
being taken as the core mput value, (2) a last iteration
with the core output value being taken as the function
output, and (3) one or more intermediate iterations with
the core input value being the core output value from a
respective immediately preceding 1teration and the core
output value being the core input value to a respective
immediately succeeding iteration.

2. A method according to claim 1, wherein the first
predetermined number 1s a first time parameter T1 indepen-
dent of the second predetermined number, and wherein the
recursive block selecting and block hashing 1s performed a
third predetermined number of times, the third predeter-
mined number being dependent on the second predeter-
mined number.

3. A method according to claim 2, wherein the third
predetermined number 1s 1n a range from one half to three
halves of the second predetermined number.

4. A method according to claim 1, wherein (1) the
protected record 1s an encrypted file containing an encrypted
form of the digital data, (2) the combining includes encrypt-
ing the digital data using the first derived key to generate the
encrypted form of the digital data for storing in the
encrypted file, and (3) the processing of the protected record
includes decrypting the encrypted file using the second
derived key to obtain the digital data 1n non-encrypted form.

5. A method according to claim 1, wheremn (1) the
protected record 1s an account record containing account
data enabling user access to resources of the computer, (2)
the combining 1ncludes storing the first derived key 1n the
account record, and (3) the processing of the protected
record includes (a) comparing the second derived key to the
first derived key 1n the account record to determine whether
they match, and (b) only 1f the second derived key 1s
determined to match the first derived key in the account
record, then enable a user providing the second password to
access the resources of the computer according to the
account data in the account record.

6. A method according to claim 5, wherein the computer
1s located remotely from a user terminal that receives the
second password and converts it into the second dernived key
for transmission to the computer over a communications
link, and further including receiving the second derived key
from the user terminal via the communications link.

7. A method according to claim 1, wherein the first and
second operations are performed during a first period of use

US 9,594,918 Bl

11

of the first password and provide a first strength 1n obscuring
the first password by generating and using the first derived
key, the first strength associated with the first predetermined
number, and further including third and fourth operations
performed during a subsequent second period of use of the
first password to provide a second higher strength 1n obscur-
ing the first password by generating and using a third derived
key, the second strength associated with the sum of the first
predetermined number and a third predetermined number,
the third operation (1) applying the key derivation function
to a third value of the function mput to generate the third
derived key as a third value of the function output, the third
value of the function mput being equal to or derived from the
first derived key, the key dertvation function performing the
third predetermined number of iterations of the two-stage
core hashing operation, and (2) creating a new version of the
protected record using data contents of the protected record
and the third derived key, the fourth operation (3) applying
the key dertvation function to a fourth value of the function
input to generate a fourth derived key as a fourth value of the
function output, the fourth value of the function 1input being
equal to or dernived from a third mmput password, the key
derivation function performing the third predetermined
number of iterations of the two-stage core hashing opera-
tion, and (4) processing the new version of the protected
record using the fourth derived key to selectively permit user
access to the digital data when the fourth dernived key
matches the third derived key.

8. A method according to claim 1, wherein the first and
second operations include preprocessing of the first and
second mput passwords to generate the first and second
values respectively of the function mput, the preprocessing
generating the first and second values as normalized values
conforming to input requirements ol the two-stage core
hashing operation.

9. A method according to claim 8, wherein the first and
second passwords are both of arbitrary length, and the
preprocessing converts the first and second passwords to the
first and second values with fixed predetermined length
conforming to the mput requirements.

10. A method according to claim 8, wherein the first and
second passwords are character-based, and the preprocess-
ing converts the first and second passwords to the first and
second values with universal byte-oriented encoding.

11. A method according to claim 8, wherein the prepro-
cessing includes addition of a cryptographic salt in gener-
ating the first and second values of the function nput, the
salt mcluding a random component and a deterministic
personalization component to maintain distinction between
different applications or environments i which the same
first password 1s used.

12. A method according to claim 1, wherein the first and
second operations include postprocessing of the first and
second values of the function output to generate the first and
second derived keys respectively, the preprocessing gener-
ating the first and second derived keys as denormalized
values conforming to mnput requirements of the combining
and the protected-record processing.

13. A method according to claim 12, wherein the first and
second values of the function output are of a normalized
length greater than a key length of an encryption key to be
used 1n the combining and protected-record processing, and
the postprocessing converts the first and second values to the
first and second derived keys having the key length.

14. A method according to claim 1, wherein the two-stage
core hashing operation employs a hash algorithm of a size
corresponding to a sub-block of the blocks of the ordered

10

15

20

25

30

35

40

45

50

55

60

65

12

array of initialized memory blocks, the hash algorithm being
repeated across the sub-blocks of the blocks 1n the iterations
of the two-stage core hashing operation.

15. A method according to claim 1, wherein the computer
includes general-purpose computing circuitry and special-
1zed computing circuitry providing for accelerated compu-
tation of the hash algorithm, the general-purpose computing
circuitry being used to perform the method except for
computation of the hash algorithm which 1s performed by
the specialized computing circuitry.

16. A method according to claim 1, wherein the hash
algorithm 1s one hash algorithm of a set of distinct hash
algorithms executable by the computer, and further includ
ing (1) receiving an input specitying the one hash algorithm
to be used 1n the method, and (2) selecting the one hash
algorithm and using 1t 1n the method based on the input.

17. A method according to claim 1, wherein the selecting
from among blocks of the ordered array of initialized
memory blocks according to contents of respective hashed
block results of respective immediately preceding recursions
includes (1) extracting bits of the respective hashed block
results to form an 1ndex, and (2) selecting a next block of the
ordered array based on the index.

18. A computer, comprising:

one or more hardware processors;

memory;

input/output nterface circuitry; and

interconnection circuitry interconnecting the processors,

memory and input/output interface circuitry together
for data transter therebetween,

the memory storing computer program instructions that,

when executed by the processors, cause the computer

to perform a method of protecting digital data stored

therein, the method including:

in a first operation, recerving a first input password and
applying a key derivation function to a first value of
a Tunction 1nput to generate a first dertved key as a
first value of a function output, the first value of the
tfunction mput being equal to or derived from the first
input password, and combining the first derived key
with the digital data to generate a protected record
stored 1n the computer; and

in a subsequent second operation, receiving a second
input password and applying the key dernivation
function to a second value of the function input to
generate a second derived key as a second value of
the function output, the second value of the function
input being equal to or derived from the second 1nput
password, and processing the protected record using
the second denived key to selectively permit user
access to the digital data when the second derived
key matches the first derived key;

wherein applying the key derivation function includes
performing a first predetermined number of itera-
tions of a two-stage core hashing operation, a first
stage of the core hashing operation including creat-
ing an ordered array of 1mnitialized memory blocks by
recursive block hashing and saving beginning with a
first memory block created by first hashing of a core
input value, the ordered array including a last-cre-
ated memory block and having a size equal to a
second predetermined number of memory blocks, a
second stage of the core hashing operation including
creating a core output value by recursive block
selecting and block hashing beginning with the last-
created memory block, successive recursions select-
ing from among blocks of the ordered array of

US 9,594,918 Bl

13

imtialized memory blocks according to contents of
respective hashed block results of respective imme-
diately preceding recursions, the iterations of the
two-stage core hashing operation including (1) a first
iteration with the function input being taken as the
core mput value, (2) a last iteration with the core
output value being taken as the function output, and
(3) one or more intermediate 1terations with the core
input value being the core output value from a
respective immediately preceding iteration and the
core output value being the core input value to a
respective immediately succeeding iteration.

19. A non-transitory computer-readable medium storing
computer program instructions, the instructions being
executable by a computer to cause the computer to perform
a method of protecting digital data stored therein, the
method including:

in a {irst operation, recerving a first input password and

applying a key dertvation function to a first value of a
function mmput to generate a first derived key as a {first
value of a function output, the first value of the function
iput bemng equal to or derived from the first mput
password, and combining the first derived key with the
digital data to generate a protected record stored 1n the
computer; and

in a subsequent second operation, receiving a second

iput password and applying the key derivation func-
tion to a second value of the function 1nput to generate
a second derived key as a second value of the function
output, the second value of the function mput being
equal to or derived from the second mnput password,

5

10

15

20

25

30

14

and processing the protected record using the second
derived key to selectively permit user access to the
digital data when the second derived key matches the
first derived key;

wherein applying the key derivation function includes

performing a first predetermined number of iterations
of a two-stage core hashing operation, a first stage of
the core hashing operation including creating an
ordered array of initialized memory blocks by recursive
block hashing and saving beginming with a first
memory block created by first hashing of a core input
value, the ordered array including a last-created
memory block and having a size equal to a second
predetermined number of memory blocks, a second
stage of the core hashing operation including creating,
a core output value by recursive block selecting and
block hashing beginning with the last-created memory
block, successive recursions selecting from among
blocks of the ordered array of imitialized memory
blocks according to contents of respective hashed block
results of respective immediately preceding recursions,
the iterations of the two-stage core hashing operation
including (1) a first iteration with the function nput
being taken as the core mput value, (2) a last iteration
with the core output value being taken as the function
output, and (3) one or more intermediate 1terations with
the core input value being the core output value from a
respective immediately preceding 1teration and the core
output value being the core input value to a respective
immediately succeeding iteration.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

