12 United States Patent

Mishra et al.

US009589088B1

US 9,589,088 B1
Mar. 7, 2017

(10) Patent No.:
45) Date of Patent:

(54) PARTITIONING MEMORY IN
PROGRAMMABLE INTEGRATED CIRCUITS

(71) Applicant: Xilinx, Inc., San Jose, CA (US)

(72) Inventors: Pradeep Kumar Mishra, Hyderabad
(IN); Gangadhar Budde, Maharashtra

(IN); Somdutt Javre, Seoni (IN);
Siddharth Rele, Maharashtra (IN)

(73) Assignee: XILINX, INC., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/746,646

(22) Filed: Jun. 22, 2015
(51) Int. CL
GO6F 17/50 (2006.01)
(52) U.S. CL
CPC GO6F 17/505 (2013.01); GO6F 17/5054

(2013.01)

(58) Field of Classification Search

CPC GO6F 1/1632; GO6F 12/0661; GO6F
12/0684; GO6F 12/0804; GO6F 12/0897;
GO6F 12/1441; GO6F 13/1636; GO6F
13/1694; GO6F 1/1616; GO6F 11/267;
GO6F 13/4217; GO6F 13/4243; GO6F
17/5031; GO6F 17/5072; GO6F 17/5068;
GO6F 17/5077; GO6F 17/5045
USPC e 716/100-106

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9/1998 Kean
3/2012 Lindop GO6F 17/5045

703/15

5,801,547 A
8,146,027 BI1*

Provide a U o user

Secatch
Sundararajan et al.

Sundararajan et al.
Sundararajan GO6F 17/5045

8,350,125 Bl 1/201
8,408,510 Bl 6/201
8,473,904 Bl 6/201
8,650,517 B1* 2/201

B e

716/101
8,677,306 B1* 3/2014 Andreev GOO6F 11/267
714/30
8,745,561 Bl1* 6/2014 Gargc...... GO6F 17/5031
703/16

(Continued)

OTHER PUBLICATTONS

U.S. Appl. No. 14/464,654, filed Aug. 20, 2014, Ansar et al., San
Jose, CA USA.

(Continued)

Primary Examiner — Binh Tat

(74) Attorney, Agent, or Firm — LeRoy D. Maunu;
Jonathan B. Soike

(57) ABSTRACT

Various example implementations are directed to circuits
and methods for partitioning a memory for a circuit design
in a programmable IC. A user interface 1s provided for a user
to define subsystems, master circuits, memory segments,
and permaissions for accessing the memory segments by the
master circuits. For each defined memory segment, a respec-
tive access control entry 1s generated that includes data for
determining master circuits that are permitted access to the
memory segment by the user-defined permissions. A first
portion of configuration data 1s generated that 1s configured
to cause a memory management circuit in the programmable
IC to enforce access to address ranges, corresponding to the
respective memory segments, 1n a memory of the program-
mable IC according to the respective access control entries.
A second portion of configuration data 1s generated that 1s
configured to cause programmable resources of the pro-
grammable IC to implement the circuit design.

18 Claims, 9 Drawing Sheets

12

R S

1 L} 1 L] 1 __.'-..-.
Define sunsystemns ana subsystem mastars far & circuit design in responsz o 1 -
[
1

use input via the GLUI

l 103

__

Defing mamory segments and cermissions for the subsystems in response to

useyr input via tha GUI

___________________________ R

- 108

1

Generate respective accass control entries for the memaory segments. each |
socoss control entry including daia for detormining 105 of master circuits that acs |
1 ' ' 1
normittcd access to the memory sepment by tha user-defined permissions;

Genavate a first pertion of configuraren data canfigured to, when inputto a

B

programmable 1€, cause a memony managemeant cireli in the pregrammable IC
I meslrel aucess o the memony segmanls i each subsyslem by the rraster
circuts in the subsyslem aceording (o ihe defined permissions

........................... l 112

Gererate A second porlion of corfgurabion data configured to when inouttoa |
programrable 1O, caese progearmmabla resourses 0 the programmable (G to
form circuitry specified by the cirsuit design !

| r

store first and second podions of configusation data n ron-volatile memory :
coupled (o the prograrmablz G '

US 9,589,088 Bl

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,378,005 Bl 6/2016 Sundararajan et al.
2014/0282312 Al1* 9/2014 Stamness GOG6F 17/505
716/106

OTHER PUBLICATIONS

U.S. Appl. No. 14/638,692, filed Mar. 4, 2015, Ahmad et al., San
Jose, CA USA.

* cited by examiner

U.S. Patent Mar. 7, 2017 Sheet 1 of 9 US 9.589.088 B1

102

i e e e e i e e e i i e e e i e e e e e e e e i e e e e s i e i i S

104

--

Define subsystems and subsystem masters for a circuit design in response to
user input via the GUI

P T T T e e T T T T T T T T T T T T T T e T T e T T T e T T e T T e e T T e e T T T T T e T T T e T T e T T e e e e e e e T e T T T e e T T T T e e T e e T e e e T e T e T e e T T e e T e e e e e e e e e e e e T T T e T T e e T e e T e e e e e e e T e T T T e T T e e T e e e e e e e e T T T T T T T T T T T T T T T e T T T T T T e T T T

Define memory segments and permissions for the subsystems in respanse 1o
user input via the GUI

~ Generate respective access control entries for the memory segments, each /
- access control entry including data for determining IDs of master circuits that are |
~permitted access to the memory segment by the user-defined permissions;

 Generate a first portion of configuration data configured to, when inputtoa =~

programmable IC, cause a memory management circuit in the programmable IC |

 to restrict access to the memory segments in each subsystem by the master
circuits in the subsystem according to the defined permissions

112
Generate a second portion of configuration data configured to, when input to a /
programmable 1C, cause programmable resources in the programmable IC{o |
form circuitry specified by the circuit design

Store first and second portions of configuration data in non-volatile memory #,/
coupled to the programmable IC f

FIG. 1

U.S. Patent Mar. 7, 2017 Sheet 2 of 9 US 9.589.088 B1

-/ .
Define new processor subsystem
l 204
Define masters for subsystem
. L 206
)— Define memory segment to subsystem 4 User
Define permissions and security settings for .~ of subsystem
e SEQMONE
210
Yes Define more
segments?
No 212 /
~ Generate data mapping aliowed access to
~ memory segments by the defined masters,
S, i(... ./ 214
? Compute mask-value (MV) pairs 4
! 216
> For each MV pair
""""""""""""""""""""""""" Vo o8
— For each memory segment /
,L ' 220
- - Aufomated
/ e
Create access control enfry —— memory
l - partiioning
Yes
Yes
No 226 f
"""""""" Add access control entries to setof |/
configuration data /

FIG. 2

U.S. Patent

Mar. 7, 2017 Sheet 3 of 9

Allowed Disallowed
1D list D list

US 9,589,088 B1

310

Create MV solution having 1Ds validated by the f y
: MV pair and add fo initial list of solutions

More pairs?

316

Select MV solution in initial list that validates |/

Remove IDs of selected MV solution from ¢/
remaining MV solutions in initial list
i 320
Remove IDs of selected MV solution from
allowed ID fist 5

Output the final MV solution list 4

FIG. 3

US 9,589,088 B1

Sheet 4 of 9

Mar. 7, 2017

U.S. Patent

(NdY+NdV)
¢ juswbag

(NdV)
Z Juswibag

(NdY)
L Juatubag

y Ol

N AUD |10 §5000Y

¥ ¥ ¥

g AJUS 410 $S800Y

G AUD [0 $$800Y

 ALJUD 1} SS90y

Ndd

Piv

¢ Ajua [0 $Sa00y <

(NdY)
0 uswibeg

7 Ajjus |10 $$800y [«

L AJJuS |10 $$800Y _A

AJOWBN
%%

alh

0 Aua [0 $Sa00y

SWwasAsang
0l¥

A

justusbeuey AJOWSN
0cl

GOl

US 9,589,088 B1

al xit

Jed
31U SNjeA-4SEN
” SMeA ==
° § (@1 XaL) dsei
vk 026
Qs
Qs
=
e MOIlY < ;e [
ippe pud
” < | >iPPY Xit> P
~ 1Ppe JEIS
~ 0LG
S
= |
= sippe
DUBRIBIS
Ajjue
1110 $S800Y

U.S. Patent
|

ippe X}

US 9,589,088 B1

Sheet 6 of 9

Mar. 7, 2017

U.S. Patent

Wb
NVY +-OI

553 AJOWBN
¥G9

S904N0S8)
s|qewwelbold

259

*

Bjep
uogeinbiyuon

9 Ol

M| 8jqewwieiboid
099

ejep
Alowaw uoneJnbiuon
S|IIBJOA-LION |«
0v9
0¢9

|00} ubisaep
NI
029

wojsAg bunndwon
019

bl b bl b b bl b b bl e b bl bl b bl b b bl b b bl b b bl bl b bl b b bl b b bl b b bl b b bl e b bl b gy b b

S aw o mEEmOME BEOSME 00064000

$
[EREHETDEHRRE < - S @..@m..u”.m“__mmmmmwwmmmm ma_mﬁ,ﬁmum ””m”mm__m_mwmwmﬁmﬁmﬁ”.m_”__m_”m”mn_ﬁﬁmmﬂ@mm”mmm”_m_mmmmh_..___m_

US 9,589,088 B1
I~
O
Ll

ok L Tk

!
e
e

mwmwmwmwmmwmﬂwmwﬂmmw.ﬁwmmmwmm_wm”_mm.mm ”__””m mm,&ﬁ wmmjnuﬁmmwmi e

‘E

m_mmmmummMmm_ﬁmﬁmm w,@a _mmm”mM_wwmmw_”m”_ﬁmm_mﬁmmm._mmmmﬁm_

o
T
Y

SRS G A S
. : .
a'.r-r
|]
-.l'"r
.-i-b#-i--i----.::‘_::;-

..;,E S
W
.
ALY

SRR T2 o
Yoy
|

i

mmwmwmwmw_,mm_mwﬁwmwummmuwRg_”m._m_g_m_._.._”m.___.w_”gg_”m”_mu__ﬂ_mJ.m._m___m_”gm”_”_m_”g_”x”__m»m_m.___”_”_”_”_”_”_”_”_”_”_”_”_,mﬁﬁr....um{mﬁ m..wwn

..

”.”.”.”.”.”.”.”.”_”.”_”.”_”.__N.HM:"...I.,....... = .m.n.wwmﬁm!“.wmrl.mlﬁa.mmw.mmy

Sheet 7 of 9
%:

¢04

..

...é.
i i o

S s ERESN . A u,,._ %.9%..”.”mu”.””Eﬂ@@mg_mm 400 ¢ .___.m._”m.”_,._.”.mmm...w

..
. * .

e e s . e o
. . T T T T . . T * u
. . R . . R R . . R . . R R . . R . . R R R . . R . . R . R . R . . R . . R . . . R . . R . . R . . R . . R . . riedgtipi HbimiaHi] . f. P .
" ’ H .-.r) o ..-_ | '

e e e e e e ey e e e . e e : e T I
L e P .. 1-r!..-....!....-.... r
........................... o .. H...l_-..

- e e e e e e J " . R . .

..... e e A e E e e e e R R e e e e e e e e e e e e e e e e e g .»...u..._..t.h..._...__.....k.t.....u_..*.....-.*.....t.u.t.....*.t.t.t.#.t.t.t.....*.....».........u_.. o ;....k.*.u.t.....t.t.;.t k.~.u.k.....t.t...t.t.*...».........u.t...k.t.u.k .__.....u...t.t.k.#.t.t.u.t.k.u.u..q.........uu.&.t.t.k........t..q....k.u.t..r.........k.... #.t.t.t......... g t...#......k.-._...u_..*.___..&..q.....r....q.... SRR
....L:-L.l.lb..rll.1b.l.rl.fl.r.rl..r.—. A & & r a &2 m a - = A b b b a2k Fao kA b ams s a2k s rFyr aa raa .rlll.a-ll.r1 A = = A & n a F & 8 r ra h a s a = F a2 &] A & & = & h a r A a ra s a A r = & & a B r A kA & = &=] r & & b n a2 F 2 a2 = a |] 1 a &k & m [] r &b a2 = L] I T r.r.r lllll .r....... -.
- 1])) L]

“
. .
h . "o --

. F A s s a s aaa RN RN e RN R N N N I T T O N R N N N N N h RNy ettt e e e e e Tt e I e afata s "1
T S T T T T e e T T S T T o i o agn X 2 a2 aaa 2 a a s a sk
- 2 n s e a e L a2 s s moaa 1
- I R .._.._n.._.._nn.-m
- 2 »
-
x

. fa aaaa s s s s s s s s s s s m s s s m s aams s ma s s s s s aaa s A a2 aaaa A a s aaa 4 a a s a s a a s a aaa a2 a a2 a8 a2 a8 a8 8 2 a2 28 28 28 a8 28 28 28 8 a8 28 28 28 a2 22 e e N I 4 a s a s aama aaaa s aamaam s s s a s s s moa s aamoaam .
. R e a a kA kA R Ak A Ak kA Ak Ak Ak oa h ok ok h oak ok d o om ok koamk h ok ok ok oaoa ko k ok hoamok ok h ok ok ok ok Aok ok ok ok oAk kA A oa koa ok oh ok ko h ok om k kb ok ok koA ok ok kA ok ok kA oAk kA Ak koa ok ok ok oaomkh ok koAb a ko hoakaahamoaomhaaomoamk hoaamh hoak ko hoaakoaahadoaaadoaa
Fa &2 2 & aa 4 & &2 = &2 & & a b & & &2 & a b & &2 &2 & & & = 4 & &= &2 & = 4 & & & & & & a b & & & &2 &2 & &2 &2 & &2 & & & 4 & &2 = & & & = 4 & m & & m & & & & & &2 &2 = & &2 a = 4 & 2 &2 &2 =& &2 &2 & a 4 = & & 2 & b & &2 & & &2 &2 & & &2 a 4 & &2 & & &2 & & & &2 & & &2 & & a A = & m & & & & & N & & & § & & & & & & & = &
nnnnnn b a s s M Ak ak kA sk kA sk oadhha ks omoa ks ks ks oaom koah sk hoaomos sk ok h kb k h ks oaa ks h khhoah sk oakhaosoaomomomom hoakoaosom ks oak k ks h kh kb ks ks sk koahoaak haom ks hoaahoaomom ks ks hoahaoahohakoaomoakoahoakoaah kh ks ok
nnnnn e s a ks s e sk aah e s s e a s Ak s s s s s s a sk s s a sk a k ko k Ak ko ka s sk ks am kb oa s ks oma ok om s s am s s aa s oamam sk m sk ko k k ks om h hom sk ks s s mh ks a s s s m ks am ko amkoamkh sk oaa m s ma sk ks aaaaak

b & 2 a2 a2 a a f a =2 2 &2 &2 a2 a
RN RERER B E Rk a a N L L N L L L L L L L L S L L L L L L L L L

2 a h aa 4 amaaa 4 a m m a b oamm m bk m s s m b s a s aam kaamk dahoaomaama R R N A

L] b & & .r.r.r.r.r.r.r.r.r.r.r.r.r.r.T.r.r.r.r.l.r.r.r.r.TI.r.rI.r.r.r.T.r.r.r.r.r.T.r.r.r.T.r.r.rI.Tl.r.T.rI.Tl.r.r
LR N R L | AL LRI R R

'r-.‘l_l“?ﬂ"
%f
- ey
i:ﬂ:-
I

.g.:

_ :

L
‘_‘Ji'l

..1lbbbbbbbbbb:bbbbbbbbbbbbbbbbbbbbbbIbbbbb*b.r.T.rl.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.T.r.r.r.r.r.r.r.r.r.r.r.r.T.r.r.r.r.rbbbbbbbbbbbbbbbbbbbbbbbbbbblbb:blbbbbbbbbbbbb L]
.Taaa.ar--.-ﬂ-hﬂaaaaaa1lnlanl- rFA T § 8N R L R F § 8§ 4 L § F R E % F § K § K F L § § £ ® B R r Cc § 8 Cc § C Q8N F C R C A = § §B %N 8 § B F N _§Q FC F § R C § B C § C L B T = c §ECc L F § Ly FF L L T L

i e e

r
r

...... - __.rrn.__i R
._.
o

E]
-
o
-
E]
k)
o
-
a
-
-
I
&
E]

e

LI rFrE g B LB L L F LY §C F R D § L T § § R B B §C§ F L § § 8 B T F § T § J C § F

...........................

Mar. 7, 2017

\\\\\ B N N T N N I e N I N
-kbbbbb###kbbr.__.__.__h-__.__.__.____hh.__.__.____.__.__.__hh.__.__.__.__.____h.__h.____.____h.__r.__.-..r.______.__.__.r.__.__.__.__.r.__.__.__.__.__.__.__.r.r.__.__.__.-........__.__.__.-..r.rh.__.r.rr.__.__.__h.__.__.__h.r.__.__.__.rh.__-.h.__h-brhhhhbbbkkL

-

7) 022 ol 0}/ bl 7}4 0}

U.S. Patent

US 9,589,088 B1

Sheet 8 of 9

Mar. 7, 2017

U.S. Patent

8 Ol

el s s e sl b s e sl e S e el e S e sl

i

™ =l "W " ") W " " e "= T

e

gy Mmooy gy B age

L Y

] m aorliaiu
1 90811 898
| SYITVEs0
298 l\\“,.......:..u...mum
m 998
| 5o
| o
048 “ [ToTeTs
o99—
| Oe® | OvE
1 8298 | 898
1 V298 | Vo8
798 —~zooiooaiooiioic
m 092
™ m V098
gog — T
on
048

#E8

$82UN0S8.
ajqeLuLeiboid

Ce8

LwaysAsgns
21007 ajgeiuLeIboid

0t

UAHMG
210y —{ S

9¢8

19[|0hu0d
AJCLUBIN

178

NN
028

USUMS
33
siejsifey
shiels (840858001
NN T
e aLu-jee
e gl -feay

8

Wig)sAsqns Jubi Ayejes Jo/pue lemod

0F8

oo
—
oo
o
1-"'-"
o0

ﬂ_.
o,
cO
(|
-
o0

LIBISASONS JOSSE20)d
018

I s|qeLlwRIb0l4
208

Aowaly

L [BUISIXE

0l

US 9,589,088 B1

Sheet 9 of 9

Mar. 7, 2017

U.S. Patent

006

o Ol

CLO

104JU09 VISP
0l BIpOW 8|gepes!
oTE ESQEmmw%EQw
806
SNq S0y
Aowaw MOO0|D (S)i08S800u0
906 06 ¢06

US 9,589,088 Bl

1

PARTITIONING MEMORY IN
PROGRAMMABLE INTEGRATED CIRCUITS

TECHNICAL FIELD

The disclosure generally relates to programmable inte-
grated circuits (I1C).

BACKGROUND

Programmable ICs are devices that can be programmed to
perform specified logic functions. One type of program-
mable IC, the field programmable gate array (FPGA), typi-
cally includes an array of programmable tiles. These pro-
grammable tiles comprise various types of logic blocks,
which can include, for example, input/output blocks (I0Bs),
configurable logic blocks (CLBs), dedicated random access
memory blocks (BRAM), multipliers, digital signal process-
ing blocks (DSPs), processors, clock managers, delay lock
loops (DLLs), bus or network interfaces such as Peripheral
Component Interconnect Express (PCle) and Fthernet and
so forth.

Each programmable tile typically includes both program-
mable interconnect and programmable logic. The program-
mable interconnect typically includes a large number of
interconnect lines of varying lengths interconnected by
programmable interconnect points (PIPs). The program-
mable logic implements the logic of a circuit design using,
programmable elements that can include, for example, func-
tion generators, registers, arithmetic logic, and so forth.

The programmable interconnect and programmable logic
are typically programmed by loading a stream of configu-
ration data imto internal configuration memory cells that
define how the programmable elements are configured. The
configuration data can be read from memory (e.g., from an
external PROM) or written into the FPGA by an external
device. The collective states of the individual memory cells
then determine the function of the FPGA.

Some programmable ICs include one or more embedded
processors that are capable of executing program code. A
processor can be fabricated as part of the same die that
includes the programmable logic circuitry and the program-
mable interconnect circuitry, also referred to collectively as
the “programmable circuitry” of the IC. It should be appre-
ciated that execution of program code within a processor 1s
distinguishable from “programming” or “configuring”’ the
programmable circuitry that may be available on an IC. The
act of programming or configuring the programmable cir-
cuitry of an IC results 1n the implementation of different
physical circuitry as specified by the configuration data
within the programmable circuitry.

SUMMARY

Various example implementations are directed to circuits
and methods for partitioning a memory for a circuit design
implemented 1n a programmable IC. In an example imple-
mentation, a system includes a processor and a memory
coupled to the processor. The memory includes a set of
instructions that, when executed by the processor, cause the
processor to provide a user interface. The user interface
includes a mechanism for a user to define one or more
subsystems ol a circuit design, one or more master circuits
of the circuit design for each subsystem, memory segments
for each subsystem, and permissions for accessing the
memory segments 1n each subsystem by the master circuits
in the subsystem. Each master circuit has a respective

10

15

20

25

30

35

40

45

50

55

60

65

2

identifier (ID). The instructions further cause the processor
to generate respective access control entries for each of the

memory segments i response to definition of one or more
subsystems, master circuits, memory segments, and permis-
s1ons by the user. Each access control entry includes data for
determining IDs of master circuits that are permitted access
to the memory segment by the user-defined permissions. The
instructions further cause the processor to generate a set of
configuration data. The set of configuration data includes a
first portion configured to, when nput to a programmable
IC, cause a memory management circuit in the programs-
mable IC to enforce access to address ranges, corresponding
to the respective memory segments, 1n a memory of the
programmable IC according to the respective access control
entries. The set of configuration data also includes a second
portion configured to, when input to the programmable IC,
cause programmable resources of the programmable IC to
implement circuitry specified by the circuit design.

A method 1s also disclosed for partitioning a memory for
a circuit design implemented 1 a programmable IC. Pro-
gram code 1s executed that implements a user interface on a
processor. The user interface includes mechanisms for a user
to define subsystems, master circuits, memory segments,
and permissions for accessing the memory segments by the
master circuits. For each defined memory segment, a respec-
tive access control entry 1s generated that includes data for
determining master circuits that are permitted access to the
memory segment by the user-defined permissions. A first
portion of configuration data 1s generated that 1s configured
to cause a memory management circuit 1in the programmable
IC to enforce access to address ranges, corresponding to the
respective memory segments, 1n a memory ol the program-
mable IC according to the respective access control entries.
A second portion of configuration data i1s generated that 1s
configured to cause programmable resources of the pro-
grammable IC to implement the circuit design.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the disclosed circuits and
methods will become apparent upon review of the following
detailed description and upon reference to the drawings in
which:

FIG. 1 shows an example process for partitioning memory
for a circuit design in a programmable IC;

FIG. 2 shows a process for automatically generating
configuration data configured to cause a memory manage-
ment circuit in the programmable IC to enforce access to
user-defined memory segments by user-defined master cir-
cuits according to user specified permissions;

FIG. 3 shows an example process for generating mask-
value pairs;

FIG. 4 shows an example device, configured in accor-
dance with one or more implementations;

FIG. 5 shows an example circuit for controlling access to
a memory segment, 1n accordance with one or more 1imple-
mentations;

FIG. 6 shows an example system having a software-based
circuit design tool configured to partition memory of a
programmable IC for subsystems of a circuit design, con-
sistent with one or more implementations;

FIG. 7 shows an example graphical user interface (GUI),
consistent with one or more implementations;

FIG. 8 shows an example computing system for imple-
menting the disclosed processes; and

FIG. 9 shows an example programmable IC having a
memory management circuit that may be configured to

US 9,589,088 Bl

3

restrict access to user-defined memory segments by user-
defined master circuits according to user-defined permis-
S101S.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to describe specific examples presented herein. It
should be apparent, however, to one skilled 1n the art, that
one or more other examples and/or variations ol these
examples may be practiced without all the specific details
given below. In other istances, well known features have
not been described i1n detaill so as not to obscure the
description of the examples herein.

Some programmable ICs include a memory circuit that
may be used by logic circuits of multiple subsystems for data
storage or for commumnicating data between the logic cir-
cuits. However, conflicts may occur when multiple logic
circuits access a shared memory. For example, data written
to the memory by one logic circuit may be mistakenly
overwritten by another processor before the data can be read
by the mtended recipient. In some approaches, imndividual
circuits or subsystems may be manually configured by a
designer to only access designated portions of a shared
memory. However, as the number of circuits or subsystems
in a system that access a shared memory increases, it
becomes 1ncreasingly difficult for a designer to manually
design and/or configure circuits to avoid memory conflict.
Furthermore, malicious software may cause a processor or
other logic circuit to violate memory access permissions
intended by a designer.

Circuits and methods are disclosed for partitioning a
shared memory between two or more subsystems of a circuit
design. In some implementations, a software-based design
tool includes a user interface for a user to define subsystems,
memory segments, circuits that may initiate data transac-
tions with the memory segments, and permissions for
accessing the memory segments by the master circuits. For
case of reference, the defined circuits that may initiate data
transactions that reference the memory segment may be
referred to as master circuits. Data transactions may include,
for example, a request to read data from a memory address
or a request to write data to a memory address. Each defined
memory segment specifies a respective address range of a
memory. The defined permissions include information that
indicates which ones of the defined master circuits may
access each memory segment. The defined permissions may
also 1ndicate the type of access the master circuits should
have to the memory segments. The specified type of access
may include, for example, read/write access, read only
access, and/or no access. The design tool 1s configured to
automatically generate and/or configure circuits to restrict
access to user-defined memory segments according to the
user-defined permissions.

In some 1mplementations, the design tool may automati-
cally generate configuration data to configure a memory
management circuit to restrict access to one or more
memory segments according to the user-defined permis-
sions. Additionally or alternatively, the design tool may
automatically supplement a circuit design to include one or
more circuits configured to restrict access to one or more
memory segments according to the user-defined permis-
sions. For ease of explanation, examples may be primarily
described with reference to a design tool that automatically
generates configuration data that causes a memory manage-
ment circuit of a programmable IC to restrict access to
memory segments according to the user-defined permis-

10

15

20

25

30

35

40

45

50

55

60

65

4

sions. Such examples may be adapted to mstead automati-
cally generate configuration data to cause programmable
resources to implement the memory management circuit.

Turning now to the figures, FIG. 1 shows an example
process for partitioning memory for a circuit design in a
programmable IC. Using a circuit design tool, a graphical
user 1terface (GUI) 1s provided to a user at block 102. The
GUI includes a user interface for a user to define subsystems
of the circuit design, memory segments of a memory of the
programmable IC, master circuits in the subsystem, and
permissions for accessing the memory segments by the
master circuits. At block 104, subsystems and subsystem
master circuits are defined for the circuit design 1n response
to user mput via the GUI. In some implementations, a
subsystem and master circuits of the subsystem may be
defined by selecting existing circuits of the circuit design
from a graphical circuit design layout, for example. Alter-
natively or additionally, a user may define subsystems or
master circuits by selecting template subsystems and/or
master circuits to be added to a circuit design from a library
of pre-defined subsystems and/or circuits. At block 106,
memory segments and access permissions are defined for the
subsystems 1n response to user input via the GUI. Memory
segments may be defined, for example, by specilying
address ranges of one or more user-selected memories
included 1 a target programmable IC architecture. An
example GUI 1s discussed in more detail with reference to
FIG. 7.

At block 108, a first portion of configuration data 1is
generated. The first portion of configuration data 1s config-
ured to, when mput to a programmable IC, cause a memory
management circuit in the programmable IC to restrict
access to the memory segments 1n each subsystem by the
master circuits according to the defined permissions.
Example processes for generating the first portion of con-
figuration data are discussed with reference to FIGS. 2-4.

At block 110, a first portion of configuration data 1is
generated. The first portion of configuration data 1s config-
ured to, when mput to a programmable IC, cause a memory
management circuit i the programmable IC to restrict
access to the memory segments 1n each subsystem by the
master circuits according to the access control entries.
Example processes for generating the first portion of con-
figuration data are discussed with reference to FIGS. 2-4. At
block 112, a second portion of configuration data 1s gener-
ated. The second portion of configuration data 1s configured
to, when mnput to a programmable IC, cause programmable
resources 1n the programmable IC to implement circuitry
specified by the circuit design. Generating the second por-
tion of configuration data may include, for example, com-
pilation and synthesis of HDL code, placement and routing
of the synthesized circuit design, optimization of the placed
and routed design, and generating configuration data to
implement the optimized design. At block 114, the first and
second portions of configuration data are stored 1mn a non-
volatile memory coupled to the programmable IC.

FIG. 2 shows a process for automatically generating
configuration data that may be used to configure a memory
management circuit in the programmable IC to enforce
access to user-defined memory segments by user-defined
master circuits according to user specified permissions. At
block 202, a new subsystem 1s created in response to user
input via a GUI. At block 204, master circuits are defined for
the subsystem 1n response to user mput via the GUI. At block
206, a memory segment 1s defined for the subsystem 1n
response to user mput via the GUI. At block 208, access
permissions and/or security settings are defined for the

US 9,589,088 Bl

S

segment 1n response to user input via the GUI. If more
segments are to be defined, decision block 210 directs the
process back to block 206. When a user 1s done defiming
memory segments, decision block 210 directs the process to
block 212. At block 212, data i1s created to indicate a
mapping of permitted access to memory segments by master
circuits.

At block 214, mask-value pairs are computed for restrict-
ing access to each segment based on identifiers (IDs) of the
defined master circuits. A mask-value pair includes an 1D
value of a master circuit and a mask that indicates one or
more bits of the ID value as don’t care bits. For ease of
reference the ID value for a master circuit may be referred
to as a master ID. After masking of the ID value, the masked
value may match multiple master IDs. As an illustrative
example, a 4-bit mask-value pair may include the binary
value ‘1010’ and a mask ‘XOO0X’. X’s 1n the mask indicate
don’t care bits which are masked, and O’s in the mask
indicate bits of interest. Masking of the value *1010° with the
mask ‘XOOX’ produces the result ‘X01X’. This result
matches the values ‘0010°, ‘0011°, ‘1010, and ‘1011°. In
some 1mplementations, a mask-value pair may be stored as
a separate mask ‘1010° and value ‘XOOX’. In some other
implementations, a mask-value pair may be stored as a
single value ‘X01X".

The process enters an outer process loop beginning with
block 216 and ending with decision block 224. The outer
process loop performs the processes of blocks 218, 220, and
222 for each mask-value pair computed at block 214. Blocks
218, 220, and 222 define an inner process loop that is
performed for the current mask-value pair for each memory
segment defined for the subsystem. For each memory seg-
ment, block 220 creates an access control entry indicating,
access to the memory segment for master circuits indicated
by the current mask-value pair. After the outer loop has been
performed for each mask-value pair, decision block 224
directs the process to block 226. At block 226, the created
access control entries are added to a set of configuration
data.

In various implementations, the access control entries
may be used to restrict read and/or write access to the
defined memory segments. An access control entry may
include, for example, one or more mask-value solutions that
indicate IDs of master circuits to be allowed the same type
of access indicated by the access control entry. For example,
i master IDs 0100 and 0101 are each to be permitted
read/write access to a memory segment, the access control
entry for the memory segment may include 010X as a
mask-value solution. In some implementations, multiple
access control entries may be used to specily respective
groups of IDs having different types of access to the same
memory segment. For example, master IDs 0100 and 0101
may have read/write access and master IDs 0111 and 0110
may have read-only access. In some other implementations,
an access control entry may include separate sets of mask-
value pairs for different types of access to the same memory
segment. For ease of explanation, the following examples
are primarily described with reference to access control
entries having one or more mask-value pair(s) indicating I1Ds
of circuits having a designated access (e.g., read/write
access) to a respective memory segment.

FIG. 3 shows an example process for computing mask-
value pairs for a memory segment. The process may be used,
for example, to compute mask-value pairs at block 214 1n
FIG. 2. In this example, the process determines mask-value
pairs to 1dentity a group of IDs based on a first list 302 of
IDs to be allowed access and a second list 304 of IDs that

10

15

20

25

30

35

40

45

50

55

60

65

6

are not allowed access. The first and second lists may be
specified, for example, by a user as part of defining access
permissions at block 106 1n FIG. 1 and/or block 208 1n FIG.
2. Each possible mask-value pair 1s examined in a process
loop starting at block 306 and ending at decision block 314.
If a mask-value pair 1s valid, decision block 308 directs the
process to block 310. A mask-value pair 1s considered valid
if 1t matches at least one ID 1n an allowed ID list 302 and
does not match any IDs 1n disallowed ID list 304. At block
310, the process creates a mask-value solution having 1Ds
validated by the mask-value pair and adds the solution to an
initial list of solutions. If the mask-value pair 1s not valid,
decision block 308 directs the process loop to bypass block
310. After the process loop has been performed for each
mask-value pair, decision block 314 directs the process to a
second process loop starting at block 316 and ending at
decision block 326. The second process loop determines a
smallest subset of mask-value solutions that validates all the
IDs 1n the allowed ID list 302.

At block 316, the process selects the mask-value solution
in the nitial list that validates the largest number of 1Ds 1n
the allowed list 302. At block 318, IDs of the selected
mask-value solution are removed from remaining mask-
value solutions 1n the 1nitial list. At block 320, IDs of the
selected mask-value solution are removed from the allowed
ID list 302. At block 322, the selected mask-value solution
1s added to a final solution list. If the allowed ID list 1s not
empty, decision block 326 directs the process to select
another solution in the initial list that validates the largest
number of allowed IDs and the processes of blocks 318, 320,
and 322 are repeated for the selected solution. The second
process loop 1s repeated 1n this manner until the allowed 1D
list 1s empty. Once the allowed ID list 1s empty, decision
block 326 directs the process to block 328. At block 328, the
final list of mask-value solutions 1s output.

FIG. 4 shows an example system configured in accor-
dance with one or more implementations. The system
includes a plurality of defined subsystems 410, a memory
430, and a memory management circuit 420 configured to
control access to defined segments of the memory 430 by the
subsystems. In this example, the defined subsystems include
an application processing unit subsystem 412 and a real-time
processing unit subsystem 414. Each subsystem includes
one or more defined master circuits (not shown i FIG. 4)
configured to initiate data transactions with memory 430.
The defined segments of the memory 430 include four
segments (segments 0-3).

The memory management circuit 420 restricts access to
cach of the defined memory segments, by master circuits 1n
the subsystems 412 and 414, based on a respective access
control entry for the memory segment (access control entries
1-N). In an example implementation, each access control
entry used by the memory management circuit 420 specifies
a range of memory addresses of a memory segment in the
memory 430. The access control entry also specifies a
mask-value pair indicative of 1Ds of circuits to be permitted
access to the memory segment. In this example, access
control entry O restricts access to segment 0 of memory 430
to application processing umt (APU) subsystem 412. Access
control entry 1 restricts access to segment 2 of memory 430
to APU subsystem 412. Access control entry 2 restricts
access to segment 1 of memory 430 to real-time processing
unmit (RPU) subsystem 414. Access control entry 3 restricts
access to segment 3 of memory 430 to APU subsystem 412
and to RPU subsystem 414.

The memory management circuit may use various pro-
cesses and/or circuit arrangements to restrict access for each

US 9,589,088 Bl

7

defined memory segment. FIG. 5 shows an example circuit
500 for controlling access to a defined memory segment. For
example, the memory management circuit 420 i FIG. 4,
may use a respective instance of the circuit 500 for process-
ing data transactions and enforcing restrictions for a memory
segment specified by a respective access control entry. The
circuit 500 includes a first comparison circuit 310 that is
configured to compare a destination address (Trx_addr)
indicated 1n a data transaction to start and end addresses of
a memory segment specified in the corresponding access
control entry. In thus example, the comparison circuit 510
outputs a logical 1 1f the Trx_addr falls within the start and
end addresses specified i the access control entry. Other-
wise, the comparison circuit 310 outputs a logical 0. The
circuit 500 also includes a second comparison circuit 520
configured to apply a mask, indicated 1n a mask-value pair
specified for the access control entry, to an ID (Trx_ID) of
a transaction request and compare the result to a value of the
mask-value pair. If the masked Trx_ID matches the value,
the comparison circuit 520 outputs a logical 1. Otherwise,
the comparison circuit 520 outputs a logical O.

A logical AND gate 530, receives outputs of the first and
second comparison circuits 510 and 520 as first and second
inputs. In some implementations, logical AND gate 530 may
optionally also receive an enable signal for enabling/dis-
abling access to the memory segment. The enable signal
may be use useful, for example, to facilitate powering down
an 1dle subsystem. In this example, the enable signal 1s set
to a logical 1 when access to the memory segment 1s to be
enabled and 1s set to a logical 0 when access 1s to be
disabled. The logical AND gate 330 outputs a signal indi-
cating whether or not the requested transaction should be
allowed. In this example, the logical AND gate 530 outputs
a logical 1, indicating the transaction should be allowed, 1f
the outputs of comparison circuits 310 and 520 and the
enable signal are all set to logical 1’s. Otherwise, the logical
AND gate 530 outputs a logical O, indicating the transaction
should not be allowed.

FIG. 6 shows an example system having a computing
system configured to execute a circuit design tool for
partitioning memory of a programmable IC for subsystems
of a circuit design, consistent with one or more implemen-
tations. Solftware executed on computing system 610 pro-
vides a circuit design tool 620 for creation of circuit designs
to be implemented on a programmable IC 650. As described
with reference to FIG. 1, the circuit design tool 620 provides
a graphical user mterface (GUI) having interface elements
for a user to define subsystems of a circuit design, master
circuits 1n the subsystems, memory segments 1n a memory
656 of a programmable IC, and access permissions for the
memory segments.

The circuit design tool 620 generates a set of configura-
tion data 630 in response to the user defining subsystems,
master circuits, memory segments, and permissions. The
configuration data includes a first portion configured to
cause a memory management circuit 654 1n the program-
mable IC 650 to restrict access to the memory segments in
the memory 656 according to the defined access permis-
sions. The configuration data 630 also includes a second
portion configured to cause programmable resources 652 to
implement circuitry specified in the circuit design. The
generated set of configuration data 630 1s stored 1 a
non-volatile memory 640 coupled to the programmable IC
650. When the programmable IC 1s powered on, the con-
figuration data 630 1s retrieved from the non-volatile

10

15

20

25

30

35

40

45

50

55

60

65

8

memory 640 and used to configure the programmable
resources 652 and memory management circuit 654 as
previously described.

FIG. 7 shows an example GUI 700 for user configuration
of subsystems, master circuits, memory segments, and
access permissions, consistent with one or more implemen-
tations. In this example, the GUI includes a window con-
figured to display a hierarchical arrangement of subsystems
defined for the circuit design, and memory segments defined
for each subsystem. Dashed block 702 shows a hierarchical
arrangement of memory segments for one subsystem. In this
example, the hierarchical arrangement shown in block 702
includes memory segments defined for a double data rate
(DDR) memory, an on-chip memory (OCM), and a memory
used to bufler data communicated to or from input/output
slave devices (10 Slaves).

In this example, names of defined subsystems and avail-
able memories 1n a programmable IC are displayed in
column 710. Names of defined memory segments are dis-
played 1n column 712. Start and ending addresses for each
memory segment are displayed in columns 714 and 716.
Read and write permissions for access to the memory
segment by circuits of the subsystem are shown in column
718. In this example, the defined memory segments may be
categorized as either secure or non-secure. In some 1mple-
mentations, access to secure memory segments may be
limited to circuits that are designated as being secure. An
indicator of whether or not memory segments are secure 1s
displayed 1n column 720. An indicator 1s also displayed 1n
column 722 that indicates whether or not the subsystem has
exclusive access to the memory segment.

The GUI may utilize various mechanisms to define and
configure subsystems master circuits, and/or memory seg-
ments. As one example, the GUI may include a button 730
to add a new subsystem. When the button 730 is pressed, the
GUI may present a pop up interface for a user to specily
information for the subsystem such as name and/or a portion
of a circuit design included 1n the subsystem. As another
example, the GUI may provide pop-up selection 732 to add
a new memory segment to a subsystem 1n response to a user
right-clicking on a subsystem. In this example, the pop-up
selection 732 allows a user to select one of the available
memories to define a new segment. After a new segment 1s
added, a user may define or adjust the name, address range,
permissions, or trust and access indicators by double click-
ing on a textbox in one of the columns 712, 714, 716, 718,
720, and 722 of the segment.

FIG. 8 shows a programmable IC 802 that may be
configured in accordance with one or more implementations.
The programmable IC may also be referred to as a System
On Chip (SOC), which 1ncludes a processor subsystem 810
and a programmable logic subsystem 830. The processor
subsystem 810 may be programmed to implement a software
portion of the user design, via execution of a user program.
The program may be specified as part of a configuration data
stream or may be retrieved from an on-chip or ofl-chip data
storage device. The processor subsystem 810 may include
various circuits 812, 814, 816, and 818 for executing one or
more soltware programs. The circuits 812, 814, 816, and 818
may 1include, for example, one or more processor cores,
floating point units (FPUs), an interrupt processing unit, on
chip-memory, memory caches, and/or cache coherent inter-
connect.

The programmable logic subsystem 830 of the program-
mable IC 802 may be programmed to implement a hardware
portion of a user design. For instance, the programmable
logic subsystem may include a number of programmable

US 9,589,088 Bl

9

resources 832, which may be programmed to implement a
set of circuits specified 1n a configuration data stream. The
programmable resources 832 include programmable inter-
connect circuits, programmable logic circuits, and configu-
ration memory cells. The programmable logic implements
the logic of a user design using programmable elements that
can include, for example, function generators, registers,
arithmetic logic, and so forth. Programmable interconnect
circuits may include a large number of interconnect lines of
varying lengths interconnected by programmable 1ntercon-
nect points (PIPs).

The programmable resources 832 may be programmed by
loading a configuration data stream into the configuration
memory cells, which define how the programmable inter-
connect circuits and programmable logic circuits are con-
figured. The collective states of the individual memory cells
then determine the function of the programmable resources
832. The configuration data can be read from memory (e.g.,
from an external PROM) or written into the programmable
IC 802 by an external device. In some implementations,
configuration data may be loaded 1nto configuration memory
cells by a configuration controller 834 included in the
programmable logic subsystem 830. In some other 1mple-
mentations, the configuration data may be loaded into the
configuration memory cells by a start-up process executed
by the processor subsystem 810.

The programmable IC 802 may include various circuits to
interconnect the processor subsystem 810 with circuitry
implemented within the programmable logic subsystem 830.
In this example, the programmable IC 802 includes a core
switch 826 that can route data signals between various data
ports of the processor subsystem 810 and the programmable
logic subsystem 830. The core switch 826 may also route
data signals between either of the programmable logic or
processing subsystems 810 and 830 and various other cir-
cuits of the programmable IC, such as an internal data bus.
Alternatively or additionally, the processor subsystem 810
may include an interface to directly connect with the pro-
grammable logic subsystem—Dbypassing the core switch
826. Such an interface may be implemented, for example,
using the AMBA AXI Protocol Specification (AXI) as
published by ARM.

In some implementations, the processor subsystem 810
and the programmable logic subsystem 830 may also read or
write to memory locations of an on-chip memory 822 or
ofl-chip memory (not shown) via memory controller 821.
The memory controller 821 can be implemented to commu-
nicate with one or more diflerent types of memory circuits
including, but not limited to, Dual Data Rate (DDR) 2,
DDR3, Low Power (LP) DDR2 types of memory, whether
16-bit, 32-bit, 16-bit with ECC, etc. The list of different
memory types with which memory controller 821 1s able to
communicate 1s provided for purposes of illustration only
and 1s not intended as a limitation or to be exhaustive. As
shown 1n FIG. 8, the programmable IC 802 may include a
memory management unit 820 and translation look-aside
builer 824 to translate virtual memory addresses used by the
subsystems 810 and 830 to physical memory addresses used
by the memory controller 821 to access specific memory
locations.

The programmable IC may include an input/output (I/O)
subsystem 850 for communication of data with external
circuits. The I/O subsystem 850 may include various types
of I/O devices or interfaces including for example, flash
memory type 1/0 devices, higher performance 1/0 devices,
lower performance interfaces, debugging 1/0O devices, and/

or RAM [/O devices.

10

15

20

25

30

35

40

45

50

55

60

65

10

The I/0 subsystem 850 may include one or more tlash
memory interfaces 860 illustrated as 860A and 860B. For
example, one or more of flash memory interfaces 860 can be
implemented as a Quad-Serial Peripheral Interface (QSPI)
configured for 4-bit commumication. One or more of flash
memory interfaces 860 can be implemented as a parallel
8-bit NOR/SRAM type of mterface. One or more of flash
memory interfaces 860 can be implemented as a NAND
interface configured for 8-bit and/or 16-bit communication.
It should be appreciated that the particular interfaces
described are provided for purposes of illustration and not
limitation. Other interfaces having different bit widths can
be used.

The I/O subsystem 850 can include one or more interfaces
862 providing a higher level of performance than flash
memory interfaces 860. Each of interfaces 862A-862C can
be coupled to a DMA controller 864A-864C respectively.
For example, one or more of interfaces 862 can be 1mple-
mented as a Universal Serial Bus (USB) type of interface.
One or more of interfaces 862 can be implemented as a
gigabit Ethernet type of iterface. One or more of interfaces
862 can be implemented as a Secure Digital (SD) type of
interface.

The I/O subsystem 8350 may also include one or more
interfaces 866 such as interfaces 866 A-866D that provide a
lower level of performance than interfaces 862. For
example, one or more of interfaces 866 can be implemented
as a General Purpose I/O (GPIO) type of interface. One or
more of iterfaces 866 can be implemented as a Universal
Asynchronous Receiver/Transmitter (UART) type of inter-
face. One or more of interfaces 866 can be implemented 1n
the form of a Serial Peripheral Interface (SPI) bus type of
interface. One or more of interfaces 866 can be implemented
in the form of a Controller-Area-Network (CAN) type of
interface and/or an I°C type of interface. One or more of
interfaces 866 also can be implemented in the form of a
timer type of interface.

The I/O subsystem 830 can include one or more debug
interfaces 868 such as processor JTAG (PITAG) interface
868 A and a trace interface 868B. PITAG interface 868A can
provide an external debug interface for the programmable IC
802. Trace interface 868B can provide a port to receive
debug, e.g., trace, information from the processor subsystem
810 or the programmable logic subsystem 830.

As shown, each of interfaces 860, 862, 866, and 868 can
be coupled to a multiplexer 870. Multiplexer 870 provides
a plurality of outputs that can be directly routed or coupled
to external pins of the programmable IC 802, e.g., balls of
the package within which the programmable IC 802 1s
disposed. For example, I/O pins of programmable 1C 802
can be shared among interfaces 860, 862, 866, and 868. A
user can configure multiplexer 870, via a configuration data
stream to select which of interfaces 860-868 are to be used
and, therefore, coupled to I/O pins of programmable IC 802
via multiplexer 870. The I/O subsystem 850, may also
include a fabric multiplexer I/O (FMIO) interface (not
shown) to connect interfaces 862-868 to programmable
logic circuits of the programmable logic subsystem. Addi-
tionally or alternatively, the programmable logic subsystem
830 can be configured to implement one or more 1/O circuits
within programmable logic. In some 1implementations, the
programmable IC 802 may also include a subsystem 840
having various circuits for power and/or salfety management.
For example, the subsystem 840 may include a power
management unit 846 configured to monitor and maintain
one or more voltage domains used to power the various
subsystems of the programmable IC 802. In some 1mple-

US 9,589,088 Bl

11

mentations, the power management unit 846 may disable
power of individual subsystems, when 1dle, to reduce power
consumption, without disabling power to subsystems in use.

The subsystem 840 may also include safety circuits to
monitor the status of the subsystems to ensure correct
operation. For istance, the subsystem 840 may include one
or more real-time processors 842 configured to monitor the
status of the various subsystems (e.g., as indicated 1n status
registers 844). The real-time processors 842 may be con-
figured to perform a number of tasks 1n response to detecting
errors. For example, for some errors, the real-time proces-
sors 842 may generate an alert 1in response to detecting an
error. As another example, the real-time processors 842 may
reset a subsystem to attempt to restore the subsystem to
correct operation. The subsystem 840 includes a switch
network 848 that may be used to interconnect various
subsystems. For example, the switch network 848 may be
configured to connect the various subsystems 810, 830, and
840 to various interfaces of the I/O subsystem 850. In some
applications, the switch network 848 may also be used to
isolate the real-time processors 842 from the subsystems that
are to be monitored. Such 1solation may be required by
certain application standards (e.g., IEC-61508 SIL3 or ISO-
26262 standards) to ensure that the real-time processors 842
are not affected by errors that occur 1n other subsystems.

FIG. 9 shows a block diagram of an example computing
arrangement that may be configured to implement the data
structures and processes described herein. It will be appre-
ciated that various alternative computing arrangements,
including one or more processors and a memory arrange-
ment configured with program code, would be suitable for
hosting the disclosed processes and data structures. The
computer code, which implements the disclosed processes,
1s encoded 1n a processor executable format and may be
stored and provided via a variety of computer-readable
storage media or delivery channels such as magnetic or
optical disks or tapes, electronic storage devices, or as
application services over a network.

Processor computing arrangement 900 includes one or
more processors 902, a clock signal generator 904, a
memory arrangement 906, a storage arrangement 908, and
an mput/output control unit 910, all coupled to a host bus
912. The arrangement 900 may be implemented with sepa-
rate components on a circuit board or may be implemented
internally within an integrated circuit. When implemented
internally within an integrated circuit, the processor coms-
puting arrangement 1s otherwise known as a microcontroller.

The architecture of the computing arrangement depends
on implementation requirements as would be recognized by
those skilled in the art. The processor(s) 902 may be one or
more general purpose processors, or a combination of one or
more general purpose processors and suitable co-processors,
or one or more specialized processors (e.g., RISC, CISC,
pipelined, etc.).

The memory arrangement 906 typically includes multiple
levels of cache memory, and a main memory. The storage
arrangement 908 may include local and/or remote persistent
storage, such as provided by magnetic disks (not shown),
flash, EPROM, or other non-volatile data storage. The
storage unit may be read or read/write capable. Further, the
memory arrangement 906 and storage arrangement 908 may
be combined 1n a single arrangement.

The processor(s) 902 executes the software in storage
arrangement 908 and/or memory arrangement 906, reads
data from and stores data to the storage arrangement 908
and/or memory arrangement 906, and communicates with
external devices through the mmput/output control arrange-

10

15

20

25

30

35

40

45

50

55

60

65

12

ment 910. These functions are synchronized by the clock
signal generator 904. The resource of the computing
arrangement may be managed by either an operating system
(not shown), or a hardware control unit (not shown).

Those skilled in the art will appreciate that various
alternative computing arrangements, including one or more
processors and a memory arrangement configured with
program code, would be suitable for hosting the processes
and data structures disclosed herein. In addition, the pro-
cesses may be provided via a variety of computer-readable
storage media or delivery channels such as magnetic or
optical disks or tapes, electronic storage devices, or as
application services over a network.

The methods and circuits are thought to be applicable to
a variety of systems and applications. Other aspects and
features will be apparent to those skilled in the art from
consideration of the specification. For example, though
aspects and features may in some cases be described 1n
individual figures, it will be appreciated that features from
one figure can be combined with features of another figure
even though the combination 1s not explicitly shown or
explicitly described as a combination. It 1s intended that the
specification and drawings be considered as examples only,
with a true scope of the invention being indicated by the
following claims.

What 1s claimed 1s:

1. A system, comprising: a computing device having a
processor and a memory coupled to the processor, the
memory including a set of istructions that when executed
by the processor cause the processor to:

provide a user interface having a mechanism for a user to

define one or more subsystems of a circuit design, one

or more master circuits of the circuit design for each

subsystem, memory segments for each subsystem, and

permissions for accessing the memory segments in

cach subsystem by the master circuits in the subsystem,

wherein each master circuit has a respective 1dentifier

(ID); and

generate 1n response to definition of one or more subsys-

tems, master circuits, memory segments, and permis-

sions by the user:

respective access control entries for each of the
memory segments, each access control entry includ-
ing data for determining IDs of master circuits that
are permitted access to the memory segment by the
user-defined permissions, and each access control
entry indicates one of the address ranges in the
memory of the programmable 1C corresponding to
the memory segment and a mask-value solution
configured to identily IDs of master circuits that are
permitted access to the memory segment by the
user-defined permissions; and

a set of configuration data including:

a first portion configured to, when mput to a pro-
grammable IC, cause a memory management Cir-
cuit in the programmable IC to allow or deny
access to address ranges, corresponding to the
respective memory segments, 1n a memory of the
programmable IC 1n response to IDs ol master
circuits matching or not matching the data of the
access control entries that identifies IDs of master
circuits that are permitted access; and

a second portion configured to, when input to the
programmable 1C, cause programmable resources
of the programmable IC to implement circuitry
specified by the circuit design.

US 9,589,088 Bl

13

2. The system of claim 1, wherein:

the system further includes a non-volatile memory
coupled to the computing device and the programmable
IC, which 1s coupled to the non-volatile memory;

the mstructions further cause the processor to store the set
of configuration data in the non-volatile memory; and

the programmable IC 1s configured to retrieve the set of
configuration data from the non-volatile memory 1n
response to being powered on.

3. The system of claim 1, wherein the memory manage-
ment circuit 1 the programmable IC includes for each
access control entry:

a respective first circuit configured to output a {irst signal
indicating whether or not a destination address indi-
cated 1n a transaction request 1s within the address
range indicated by the access control entry; and

a respective second circuit configured to apply a mask of
the mask-value solution indicated by the access control
entry to an ID indicated in the transaction request to
produce a masked result and output a second signal
indicating whether or not the masked result 1s equal to
a value of the mask-value solution.

4. The system of claim 3, wherein the memory manage-
ment circuit 1 the programmable IC further includes for
cach access control entry, a logical AND gate having a first
input coupled to recerve the first signal and a second 1nput
coupled to receive the second signal.

5. The system of claim 1, wherein the instructions cause
the processor to generate the first portion of the set of
configuration data by:

computing mask-value pairs; and

for each combination of one of the mask-value pairs and
one of the memory segments defined for the subsystem,
creating an entry in the first portion of the set of
confliguration data for controlling access to the memory
segment by the master circuits according to the mask-
value patr.

6. The system of claim 5, wherein the processor 1is
configured to compute the mask-value pairs by, for each
mask-value combination,

determining whether or not the mask-value combination
validates at least one of the IDs included 1n an allowed
l1st and 1nvalidates IDs included 1n a disallowed list;

in response to the mask-value combination being valid,
adding a mask-value solution, indicating each master
validated by the mask-value combination, to an initial
list of mask-value combinations; and

selecting a smallest subset of the mask-value solutions 1n
the 1nitial list that indicate all of the master circuits for
the subsystem.

7. The system of claam 6, wherein the processor 1s
configured to select the smallest subset of the mask-value
solutions 1n the mnitial list by performing operations includ-
ng:

moving a mask-value solution from the initial list that
indicates the largest number of the IDs for the subset to
a final list of mask-value combinations;

removing IDs indicated by the selected mask-value solu-
tion from other mask-value solutions 1n the initial list;
and

repeating the moving and removing steps, 1n response to
the mask-value combinations 1n the final list indicating
less than all of the IDs for the subset.

8. The system of claim 1, wherein the user interface 1s
configured to display a hierarchical arrangement of subsys-
tems defined for the circuit design, and memory segments
defined for each subsystem.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

9. The system of claim 8, wherein for each memory
segment 1n the hierarchical arrangement, the user interface
displays a defined address range of the memory segment,
permissions for accessing the memory segment by defined
master circuits of the subsystem including the memory
segment 1n the hierarchical arrangement, and an indicator
whether or not access to the memory segment 1s exclusive to
the subsystem.

10. A method for partitioning a memory for a circuit
design 1n a programmable IC, comprising:

executing program code that implements a user interface

on a processor, the user interface including interface
clements for a user to define one or more subsystems of
the circuit design, one or more master circuits of the
circuit design for each subsystem, memory segments
for each subsystem, and permissions for accessing the
memory segments 1n each subsystem by the master
circuits 1n the subsystem, wherein each master circuit
has a respective i1dentifier (ID); and

generating by the processor, 1 response to definition by

the user through the user interface of one or more

subsystems, master circuits, memory segments, and

permissions:

respective access control entries for each of the
memory segments, each access control entry includ-
ing data for determining IDs of master circuits that
are permitted access to the memory segment by the
user-defined permissions, and each access control

entry indicates a respective address range 1n a

memory of the programmable I1C corresponding to

the memory segment and one or more mask-value
solutions configured to identify IDs of master cir-
cuits that are permitted access to the memory seg-
ment by the user-defined permissions; and

a set of configuration data including:

a first portion configured to, when input to the
programmable IC, cause a memory management
circuit 1n the programmable IC to allow or deny
access to address ranges, corresponding to the
respective memory segments, 1n a memory of the
programmable IC 1n response to IDs of master
circuits matching or not matching the data of the
access control entries that identifies IDs of master
circuits that are permitted access; and

a second portion configured to, when input to the
programmable IC, cause programmable resources
of the programmable IC to implement circuitry
specified by the circuit design.

11. The method of claim 10, wherein the generating of the
first portion of the set of configuration data includes:

computing mask-value pairs; and

for each combination of one of the mask-value pairs and

one of the memory segments defined for the subsystem,
generating one of the access control entries and adding,
the access control entry to the first portion of the set of
configuration data for controlling access to the memory
segment by the master circuits.

12. The method of claim 11, wherein the computing of the
mask-value pairs mcludes:

for each mask-value combination,

determining 11 the mask-value combination validates at
least one of the IDs included 1n an allowed list and
invalidates IDs included 1n a disallowed list;

in response to the mask-value combination being valid,
adding a mask-value solution, indicating each master
validated by the mask-value combination, to an
initial list of mask-value combinations; and

US 9,589,088 Bl

15

selecting a smallest subset of the mask-value solutions
in the 1ni1tial list that indicate all of the master circuits
for the subsystem.
13. The method of claim 12, wherein the selecting of the
smallest subset of the mask-value solutions 1n the 1mitial list
includes:

moving a mask-value solution from the initial list that
indicates the largest number of the IDs for the subset to

a final list of mask-value combinations;

removing IDs indicated by the selected mask-value solu-
tion from other mask-value solutions 1n the initial list;
and

repeating the moving and removing steps, 1n response to
the mask-value combinations 1n the final list indicating
less than all of the IDs for the subset.

14. The method of claim 10, further comprising:

storing the set of configuration data in a non-volatile
memory coupled to the programmable IC, wherein the
programmable IC 1s configured to retrieve the set of
confliguration data from the non-volatile memory when
powered on.

15. The method of claim 14, further comprising:

in response to the programmable IC being powered on,

retrieving the set of configuration data from the non-
volatile memory;

5

10

15

20

16

configuring the programmable resources of the program-
mable IC, using the second portion of configuration
data to implement the circuitry specified by the circuit
design; and

using the memory management circuit 1 the programs-

mable IC, restricting access to each segment of a
memory ol the programmable IC, indicated in the first
portion of the set of configuration data, to ones of the
master circuits indicated by the corresponding access
control entry corresponding to the memory segment.

16. The method of claim 10, wherein the user interface 1s
configured to display a hierarchical arrangement of subsys-
tems defined for the circuit design, and memory segments
defined for each subsystem.

17. The method of claim 16, wherein for each memory
segment 1n the hierarchical arrangement, the user interface
displays a defined address range of the memory segment and
permissions for accessing the memory segment by defined
master circuits of the subsystem including the memory
segment 1n the hierarchical arrangement.

18. The method of claim 17, wherein for each memory
segment 1 the hierarchical arrangement, the user interface
turther displays an indicator whether or not access to the
memory segment 1s exclusive to the subsystem.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

