12 United States Patent

Nauze et al.

US009582493B2

US 9,582,493 B2
Feb. 28, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

(58)

LEMMA MAPPING TO UNIVERSAL
ONTOLOGIES IN COMPUTER NATURAL
LANGUAGE PROCESSING

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Fabrice Nauze, Amsterdam (NL);
Geert Kloosterman, Amstelveen (NL);
Albert Derk Eduard Vedelaar,
Sleidrecht (NL)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/793,658

Filed: Jul. 7, 2015

Prior Publication Data

US 2016/0132487 Al May 12, 2016
Related U.S. Application Data

Provisional application No. 62/077,868, filed on Nov.
10, 2014, provisional application No. 62/077,887,

filed on Nov. 10, 2014.

Int. CI.

Go6lt 17727 (2006.01)

GO6F 17/28 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC GO6F 17277 (2013.01); GO6F 17/2735

(2013.01); GO6F 17/2755 (2013.01);

(Continued)

Field of Classification Search
CPC .o GO6F 17/504; GO6F 17/2818; GO6F
17/2881; GO6F 17/30864; GO6F 12/0607

(Continued)

1186

~

Move

/

Drive

2
N

it Ride -

(56) References Cited

U.S. PATENT DOCUMENTS

GOO6F 17/30654
707/708

7,797,303 B2* 9/2010 Roulland

tttttttttt

6/2012 Di Fabbrizio et al.
(Continued)

8,204,751 Bl

FOREIGN PATENT DOCUMENTS

7/1999
5/2016
5/2016

EP
WO
WO

927939 Al
2016077015
2016077016

OTHER PUBLICATTIONS

Bretschneider, et al. “Corpus-based Translation of Ontologies for
Improved Multilingual Semantic Annotation”, Proceedings of the
third workshop on semantic web and information extraction, Aug.

24, 2014, pp. 1-8.
(Continued)

Primary Examiner — Charlotte M Baker

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A method of mapping ontologies between languages may
include receiving a first ontology 1n a first language, where
the first ontology includes a first plurality of lemmas and a
plurality of relationships between the plurality of lemmas.
The method may also include receiving a second plurality of
lemmas 1n a second language, and mapping each of the
second plurality of lemmas in the second language to a
respective lemma 1n the first plurality of lemmas 1n the first
language. The method may additionally include generating
a second ontology in the second language by using the
plurality of relationships in the first ontology to create
relationships between the second plurality of lemmas 1n the
second language.

20 Claims, 12 Drawing Sheets

100

102 Transport

o Conveyance
Vehicle Transil
Carrier
Mover

104

et
| NouN

Bicycle

Coast
Cycle

Cycle
Two-Wheelar

Aircraft

Criise

106

Dirt Bike

108

-

\.

/\

Biplane

110

Jet

Touring

Tandem

US 9,582,493 B2
Page 2

(52) U.S. CL

CPC ...

....... GO6F 17/2775 (2013.01); GO6F 17/28
(2013.01); GOGF 17/30734 (2013.01)

(58) Field of Classification Search
................. 704/4, 9; 7077/708, 713, 707, 724
See application file for complete search history.

USPC

(56)

8,423,350
2006/0122834
2007/0130194
2011/0087670
2013/0260358
2014/0278362
2015/0309992

2015/0347543

2016/0132482

References Cited

U.S. PATENT DOCUMENTS

4/2013
6/2006
6/2007
4/2011
10/2013
9/2014
1% 10/2015

AR A

Al* 12/2015

Al 5/2016

Chandra et al.

Bennett

Kaiser

Jorstad et al.

Lorge et al.

Gerken, III et al.

Visel oooviviiinn, GO6F 17/2785

704/9

Smhau.l, GO6F 17/3053

707/707

Salome et al.

2016/0132484 Al 5/2016 Nauze et al.
2016/0163312 Al 6/2016 Henton et al.
2016/0188570 Al 6/2016 Lobez Comeras et al.

OTHER PUBLICAITONS

Espinoza, et al. “Ontology Localization”, Proceedings of the Fifth

International Conference on Knowledge Capture, K-Cap-09, Sep. 4,

2009, p. 33.

Vossen, et al. “KYOTO: an open platform for mining facts™ In:
“Handbook of Research on Culturally-Aware Information Technol-
ogy”, Aug. 31, 2010, IGI Global, 1-10.

International Search Report and Written Opinion of PCT/US2015/
055490 mailed on Jan. 21, 2016, all pages.

International Search Report and Written Opinion of PCT/US2015/
055489 mailed on Jan. 25, 2016, all pages.

U.S. Appl. No. 14/793,677, Non-Final Office Action mailed on Sep.
20, 2016, 5 pages.

U.S. Appl. No. 14/793,701, Non-Final Oflice Action mailed on Aug.
5, 2016, 7 pages.

* cited by examiner

US 9,582,493 B2

)

Yo

Sol

=

— eIy

!

s

=P

=

75

r~

Yo

—

)

ol 1OAOW
o 18iiien
= usuei|
= 8oUuBABAUOD

podsuel|

001

U.S. Patent

18188UAN-OM |
9J0AD)
Qo\n&m

g M

asInIn
ofoAN
1SE0D

apI
CREL

A%

H

gil

V¢ Ol

UOHEPHOSUOD
| /buusyji4

| JusWiBUYSY
| juoleZI[BNSIA
| diysuopesy

JUSLUDISSY
diysuonejay

WIS

US 9,582,493 B2

A AT

¢80C

o

o

f .

N m

e~y sdiysuonesy |

H .

-

=

75

™~

\m

—

o

)

e

> L~ 1L.E

.=
=

QL | usLIBUSY) uswubissy | UOf1epijosuo)
- | [UORBZIENSIA (— suoneoy | BuLiey 4
Dnm \Q | diysuoneioy LD BLIWOT
e 2007
4]
-

LONRISUDL)

BUILLIST

¢90¢

HelIIIETIETS!
WIS

sisAjeuy
SNdiog

¢ VOC

SiSAjeuy
sSndio)

1-20Z

ysiibu3

Ol

uonepHosuon
/Buniayi4
BLILLIOT

US 9,582,493 B2

¢-80¢

- sdiysuoijejoy
Qo
M Buiddep
= Buiddein BWWST
2 diysuone|ay obenbue
7% -SS0JN)
™~
y—
—
gl
. Z-vie
v o
gl
.m sdiysuoijejoy
&=
~
-
3 c
S \\ ADOTOLNO
- [ESISATUN
. 4002
) 712
-

uoneIauan)

BLILLIST

2~90¢

SisAjeuy
sndion

¢ 10C

sndion
youa.d

¢-cQc¢

J¢ Ol

US 9,582,493 B2

sdiysuonejoy

. buiddeyy uonejsue |
= diysuoineoy BULILLIDT
-
3
7 ADOTOINO 27
TLIEYE
r~ Y12
Yo
&
% sdiysuonejoy
|
=
=?
e
\\ ADOTOLNO
[eSISAIUN
J00¢

vl d

U.S. Patent

US 9,582,493 B2

Sheet 5 of 12

Feb. 28, 2017

U.S. Patent

e00C

SR A

1453%

| (unon) axyig |

POT

gOE

US 9,582,493 B2

e bPce

01L¢ AR

gl

— 80¢

=t 0Z¢ 90¢

&

\&

>

P

7 .

ensjoAalg (UNON) a)ig

0]2 4

~ NNON 91¢€ p0E

Y

—

« 31€

v o

gl

Fie 70¢

d00¢ ¢ %

U.S. Patent
Y

ABojou |
lesiaaiun) @

US 9,582,493 B2

|
o
fm ABOJOILID
g oio8dS Duiddeny duiddey uoneleusg
- -abenbue diysuoneoy BLUUIDT
S
—— Y e]] l————————— ettt
75
o 187 Q0+ - auledid sisAjeuy abenbue

e ——
= DB LI} 07
a GeM/idY
-3
|
o
=?
e

asegeleq

19SUAG
Qi

8iv
Bl 1ONDPIOAA

U.S. Patent
Ty

- 0¥

dav Ol

ADCIOIUD
|ESIOAIUN

US 9,582,493 B2

CU T el eee——————
— AGOICIID _ _
Sl m m
> JTREES Duddey | Buiddepy | _ | uogeseudn
o,_m -afenfuen diysuoneiay BUIUST B _
>
_—
by v 8oy] SRR SRRV BUEEEEE L
W aoeLIaU] -
) QMY
-3
N
) 9OINIBS m
S uone|sues] | ooV
3 _ m

UM

400¥

U.S. Patent
Y

¢Ov

U.S. Patent Feb. 28, 2017 Sheet 9 of 12 US 9.582.493 B2

500

o502 A)

recetving a first ontology in a first
language with lemmas and
relationships between the lemmas

recetving a second set of lemmas 1n
a second language

506

mapping each of the lemmas in the
second language to the lemmas in
the first language

503

generating a second ontology in the
second language by using the

relationships n the first ontology to
create relationships between the
lemmas 1n the second language

FIG. 5

U.S. Patent Feb. 28, 2017 Sheet 10 of 12 US 9.582.493 B2

600

DATABASE
016 -

DATABASE
014

COMPONENT) COMPONENT
618 620
z
COMPONENT
622
SERVER
612

NETWORK(S)
61y

FIG. 6

US 9,582,493 B2

Sheet 11 of 12

Feb. 28, 2017

U.S. Patent

00L

L Ol

cel

SADAHIS CIHVHS TYNHILN]

0¢cl

SAMNOSIAY AN LONH LSV AN

821

INFNTOVYNVIA ALIINIA]

tadl

44

02/
INIWNIOVNYN H3ICHO

NOILYH1STHOHD |w|'v
HIAAHO

9c¢/

ONIHOLINON ANV
ININFOVYNVIN 43CH0O

474
ADIANTG

(=3CHIAOS

ONINOISINCGd 4 2d3H0

vel

81/

‘J ISVAVIV(Q 30850
.. i

807
A0IAIQ

INTITD

6/ 1S3INDINM
IDIAEIAS

0tZ
(S)MHOMLIN

vv/
IDIAYIS

A=20INOdd

~/ 8¢l
9¢/
917 ¥iZ 4]
TaXeigionie’ N anoty | 1N anoid

0.

WILISAS FENLONGLISYEHANI GNO1TYH

801
J0IA3(Q

INTTD

v..m" 2 1S3N0IY

ADIAMIAS

a4
ADINYIS

(Jz30GIADdHd

$0L

33N

Z 9
1S3N03IM
J0IAMIS

INTTD

8 Ol

RS
WILSASENS 39VHOLS

US 9,582,493 B2

FAS)
5T VIQIW FOVHOLS

_ o NILSAS ONILYHIAO 2 18VUV3Y

(0E8 828 -H3LN3N0D
) S31Vadn | fsnvanig 510
o
o AN3AS INAAG ViV WYE50Hd
= i e 028
u 43" H¥3IAVIN YIGIN
_ SNVHOOM A NOLLY I IddY IOVHOLS
3 L oLe 3avVavIy
= ves HILNDNOD
2 “ NTLSASENS SNOILYIINNAINOD AHONIN WILSAS
I~
o
=
& 208 — m— m—
<) 008 7ER A%
“ 2098 HINA HIND 1INN
o WILSASENS O/ NOILYHITIODY ONISS300dHd ans ONISS3D0Ud 8NS
o
ey

INISSID0UI
S IHOY) FHOVD IHOYD)
— FHON “ SHOD) — =200

008 708
LINM ONISS300¥d

U.S. Patent

US 9,582,493 B2

1

LEMMA MAPPING TO UNIVERSAL
ONTOLOGIES IN COMPUTER NATURAL
LANGUAGE PROCESSING

CROSS REFERENCES

This application claims the benefit of U.S. Provisional
Application No. 62/077,868 filed on Nov. 10, 2014 entitled
“Automatic Batch Generation ol Concept Relations from
N-Grams from Linguistic Input Data.” This application also
claims the benefit of U.S. Provisional Application No.
62/077,887 filed on Nov. 10, 2014 entitled “Lemma Map-
ping to Universal Ontologies.” Each of these applications 1s
hereby incorporated herein by reference for all purposes.

The following three applications are related to each other
and are filed on the same date of Jul. 6, 2015: U.S. Ser. No.
14/7793,677 filed on Jul. 7, 2015 entitled “Automatic Gen-
cration of N-Grams and Concept Relations From Linguistic
Input Data” to Fabrice Nauze et al.; U.S. Ser. No. 14/793,
701 filed on Jul. 7, 2015 entitled “Automatic Ontology
Generation for Natural-Language Processing Applications™
to Margaret Salome et al.; and U.S. Ser. No. 14/793,638 filed
on Jul. 7, 2015 entitled “Lemma Mapping to Universal
Ontologies 1n Computer Natural-Language Processing” to
Fabrice Nauze et al. Each of these applications are hereby
incorporated by reference.

BACKGROUND

In a general sense, an ontology 1s the philosophical study
ol basic concepts and their relations to each other. Ontolo-
oy’s deal with questions concerning what entities can be said
to exist, how such entities can be logically grouped together
in a hierarchy, and what similarities and/or differences can
be used to segregate ontological concept groups from each
other. In computer and information science, the general
ontology translates into a naming and definition of types,
properties, and relationships that fundamentally exist 1n a
particular computing domain. For example, an ontology can
compartmentalize variables needed for a set of computations
and establish relationships between those variables.

BRIEF SUMMARY

In one embodiment, a method of mapping ontologies
between languages may include receiving a first ontology in
a first language, where the first ontology includes a first
plurality of lemmas and a plurality of relationships between
the plurality of lemmas. The method may also include
receiving a second plurality of lemmas 1n a second language,
and mapping each of the second plurality of lemmas 1n the
second language to a respective lemma 1n the first plurality
of lemmas in the first language. The method may addition-
ally include generating a second ontology in the second
language by using the plurality of relationships in the first
ontology to create relationships between the second plurality
of lemmas 1n the second language.

In another embodiment, a non-transitory computer-read-
able medium may be presented. The computer-readable
memory may comprise a sequence ol instructions which,
when executed by one or more processors, causes the one or
more processors to perform operations including receiving a
first ontology 1n a first language, where the first ontology 1s
comprised of a first plurality of lemmas and a plurality of
relationships between the plurality of lemmas. The opera-
tions may also include receiving a second plurality of
lemmas 1n a second language, and mapping each of the

10

15

20

25

30

35

40

45

50

55

60

65

2

second plurality of lemmas in the second language to a
respective lemma 1n the first plurality of lemmas 1n the first

language. The operations may additionally include generat-
ing a second ontology 1n the second language by using the
plurality of relationships in the first ontology to create
relationships between the second plurality of lemmas 1n the
second language.

In yet another embodiment, a system may be presented.
The system may include one or more processors and a
memory communicatively coupled with and readable by the
one or more processors. The memory may comprise a
sequence of instructions which, when executed by the one or
more processors, cause the one or more processors to
perform operations 1including recerving a first ontology 1n a
first language, where the first ontology 1s comprised of a first
plurality of lemmas and a plurality of relationships between
the plurality of lemmas. The operations may also include
receiving a second plurality of lemmas 1n a second language,
and mapping each of the second plurality of lemmas 1n the
second language to a respective lemma 1n the first plurality
of lemmas 1n the first language. The operations may addi-
tionally include generating a second ontology 1n the second
language by using the plurality of relationships in the first
ontology to create relationships between the second plurality
of lemmas 1n the second language.

BRIEF DESCRIPTION OF THE DRAWINGS

A further understanding of the nature and advantages of
the present invention may be realized by reference to the
remaining portions ol the specification and the drawings,
wherein like reference numerals are used throughout the
several drawings to refer to similar components. In some
istances, a sub-label 1s associated with a reference numeral
to denote one of multiple similar components. When refer-
ence 1s made to a reference numeral without specification to
an existing sub-label, it 1s mtended to refer to all such
multiple similar components.

FIG. 1 1llustrates a diagram of an ontology for use in
natural language processing, according to some embodi-
ments.

FIG. 2 A 1llustrates parallel language analysis pipelines for
generating two different ontologies, according to some
embodiments.

FIG. 2B illustrates a language analysis pipeline using a
umversal ontology, according to some embodiments.

FIG. 2C illustrates a language analysis pipeline using
lemma translation, according to some embodiments.

FIG. 3A illustrates a diagram of an ontology during
lemma mapping, according to some embodiments.

FIG. 3B illustrates a diagram of an ontology during
relationship mapping, according to some embodiments.

FIG. 4A 1illustrates a system for generating an ontology
using a synonymous word database, according to some
embodiments.

FIG. 4B 1llustrates a system for generating an ontology
using a language translation service database, according to
some embodiments.

FIG. § 1illustrates a flowchart of a method for generating
ontologies for use 1n natural language processing, according
to some embodiments.

FIG. 6 illustrates a simplified block diagram of a distrib-
uted system for implementing some of the embodiments.

FIG. 7 1illustrates a simplified block diagram of compo-
nents of a system environment by which services provided
by the components of an embodiment system may be offered
as cloud services.

US 9,582,493 B2

3

FIG. 8 illustrates an exemplary computer system, in
which various embodiments may be implemented.

DETAILED DESCRIPTION

Ontologies, hierarchies, and taxonomies are often used in
search systems and information retrieval systems in general
to 1mprove recall. Knowing for instance that “BMW” 1s a
“car brand” can improve recall in search tasks, increase
precision in classification tasks, and so forth. Ontologies are
usually built as language-specific modules, first linking
word forms to lemmas, and then linking lemmas to other
lemmas with ontological/hierarchical relationships. How-
ever, as described herein, the relationships linking lemmas
together 1n an ontology can be abstracted into a largely
language-independent module. In the embodiments
described herein, a method to achieve this abstraction 1s
presented such that an ontology can be formed in a second
language based on an existing ontology 1n a first language.

In some embodiments, a process may begin by selecting
or defining a first ontology. This first ontology, referred to as
a “ground truth,” or “universal” ontology can be formed 1n
a lingua franca, such as English. This first ontology may
describe relationships between concepts coded as lemmas.
The process may then utilize a linguistic analysis pipeline
that 1s triggered after the segmentation/tokenization of an
input corpus, a part-of-speech analysis, and a lemmatization
of 1ts tokens. This process can then define a mapping
between lemmas (and optionally their part-of-speech) in the
first ontology to a lemma 1n the second ontology. By using
the universal ontology to map lemmas and relationships for
cach language, the time needed to implement a new lan-
guage ontology 1s minimized, and the overall quality across
languages can be mmproved because the quality of the
ontology 1s not tied to the work of the person coding
relationships 1 a particular language.

In some embodiments, the process can build a language-
independent ontology as the first ontology. The first ontol-
ogy includes relations between concepts coded as lemmas.
For instance, a “tandem” 1s a “bicycle”, and a “bicycle” 1s a
“vehicle”. Next, the process can receive a selection of a

second language that 1s different from the first language of

the first ontology. The second language may be a desired
language for the second ontology. Next, the process can
generate a mapping between words 1n the first language and
the second language. The process can also utilize a database
that maps common meanings across languages. This map-
ping can either be generic, such that a word in the first
language 1s mapped to a corresponding word in the second
language, or can be more specific such that mappings
between parts-of-speech (PoS) are facilitated. For example,
a generic mapping may result in “lemma(second language)
—lemma(first language),” while a part-of-speech-specific
mapping may result i “PoS+lemma(second language)
—lemma(first language).”

After mapping lemmas between the first language 1n the
second language the mapped lemmas can be passed on to
the next step in the language analy51s pipeline. Specifically,
the relationships between lemmas 1n the first ontology can
then be mapped directly using the relationships between
lemmas 1n the second ontology. In essence, the relationships
defined 1n the first ontology are used to link together lemmas
in the second ontology to form corresponding relationships.
The process automatically creates word-to-word mappings
between the two ontologies, and then uses those mappings
to establish relationships 1n the second ontology. In this
manner, the first ontology 1s used as a template for the

10

15

20

25

30

35

40

45

50

55

60

65

4

second ontology, with words from the second language
filling 1n the nodes between relationships in the template.
Thus, users do not need to manually assign relationships or
determine a vocabulary for the second ontology.

This process can also be constantly updated over time.
The first ontology may be associated with a particular
corpus, such as a website or web domain. As the corpus
changes over time (e.g. the webpages are updated), the first
ontology may also change in the first language. New
vocabulary may be added, old vocabulary may be removed,
and relationships may be adjusted. When this happens, new
vocabulary in the second language can be added to the
second ontology or deprecated vocabulary can be removed
from the second ontology. Relationships can also be adjusted
in the second ontology according to adjusted relationships 1n
the first ontology. This automated process can generate a
plurality of language-specific ontologies based on the first
ontology that are automatically kept up-to-date.

FIG. 1 illustrates a diagram 100 of an ontology for use 1n
natural language processing, according to some embodi-
ments. Diagram 100 can represent the universal ontology
that groups concepts together by meaning and relates those
concepts to other concepts through relationships. For
example, a bike 114 may represent the concept of a two
wheeled, manually powered vehicle. The ontology may also
include a list of other words, or synonyms 104, that describe
the same concept of a bike 114. The bike 114 may be related
to other concepts 1n a hierarchical fashion. For example, the
bike 114 1s a vehicle 102, which also has set of synonyms
that can be used to express the concept of a vehicle 102. The
parent-child relationship in the hierarchy represents an “1s a
type of” relationship between the parent and the child. As
another example, a dirt bike 106, a tandem bike 108, and a
touring bike 110 are all types of the parent node representing
a bike 114.

The universal ontology 1s built using concepts represented
by one or more words. Is important to note, however, that
individual words—particularly in the English language—
may represent multiple concepts. In one example, the term
“bike” may represent both a noun and a verb. The ontology
illustrated by FIG. 1 also includes a second concept where
the term ““bike” 1s used as a verb, as 1n “to bike.” As with 1ts
noun counterpart, the verb bike 116 concept also includes a
set of synonyms 112 that may also be used to represent the
same concept. The verb bike 116 1s a child of—and therefore
has an “1s a type of” relationship with—the parent verb
“move” 118.

As will be discussed below, when using a universal
ontology to map concepts between languages, 1s often useful
to distinguish a concept not only by the word used in that
language, but also by the part of speech. As used herein,
these concepts are referred to as “lemmas.” Lemmas in the
umversal ontology can be mapped to lemmas 1n a language-
specific ontology by using a mapping engine that connects
concepts between various languages. Example mapping
engines are discussed below i FIG. 4A-4B. Also, the
umversal ontology illustrated 1n FIG. 1 can represent con-
cepts and relationships 1n a language-independent fashion.
While the umiversal ontology 1s displayed in English for
illustrative purposes only, the language could be used for the
umversal ontology.

FIG. 2A illustrates parallel language analysis pipelines
200a for generating two different ontologies, according to
some embodiments. A language analysis pipeline can be
used to generate a language-specific ontology from a corpus
202. A corpus may include a web domain, a set of literature,
a technmical document, and so forth. In general, a corpus 1s

US 9,582,493 B2

S

simply a subset of a particular language that 1s used 1n a
particular context. For example, a corpus may include a web
domain for an airline, where terms common to the airline
industry are used extensively. By using a particular corpus
that 1s limited to a subset of a general language, an ontology
may be derived that 1s specific to the corpus 202, that 1s more
cllicient and smaller than a general language ontology, and
that only 1ncludes definitions that are specific to the corpus
202, thus speeding up recall and look up efliciency.

Traditionally, two passes through a language-analysis
pipeline would be needed to generate to ontologies in
different languages. In this example, an English-language-
analysis pipeline and a French-language-analysis pipeline
would be needed to generate an English ontology 214-1 and
a French ontology 214-2, respectively. An English corpus
202-1 and a French corpus 202-2 would need to be provided
to the pipelines for analysis. In some cases, the English
corpus 202-1 and the French corpus 202-2 could represent
the same substantive content 1n different translations. For
example, each corpus 202 could represent the same webpage
translated into diflerent languages. To generate the separate
ontologies, each corpus needs to be run through a language-
analysis pipeline separately.

The process for generating an ontology 214 from a corpus
202 1s may proceed as follows. The corpus 202 can be
provided to a corpus analysis engine 204 that 1solates text of
interest within the corpus 202. The corpus analysis engine
204 can remove metadata, comments, display code, and/or
other non-substantive text to generate a list of single words
that may be considered for the ontology 214. For example,
for a web domain, the corpus analysis engine 204 can scrub
the HTML formatting code, the developer comments, the
metadata, the attributes, and/or the like, and the only text
that 1s displayed on screen to a user for made available to a
search engine.

Next, a lemma generation engine 206 can receive the
single words and generate lemmas. Lemmas can be made up
of single words or combinations of single words forming
n-grams. For example, for a website describing an email
service, the term “email” would be a single-word lemma,
while the term “search filter” would be a two-word lemma
referring to a single concept. The lemma generation engine
206 can receive input that defines the maximum and/or
mimmum number n for generating n-grams. For example,
the 1input could define a minimum number 1 and a maximum
number 4 for creating n-grams. The lemma generation
engine 206 would then scan the text made available by the
corpus analysis engine 204 and generate a list of possible
lemmas that occur as consecutive, single- or multi-word
combinations in the text.

A lemma filtering/consolidation engine 208 can receive
the list of possible lemmas from the lemma generation
engine 206 and subsequently pare down the candidate
lemmas to generate a final list of lemmas that will appear 1n
the ontology 214. The lemma filtering/consolidation engine
208 may include a number of parameter definitions that can
be used to filter the list of candidate lemmas. For example,
one parameter may define a usage frequency 1in the corpus
required for a candidate lemma to be retained 1n the list of
ontology lemmas. Candidate lemmas that only occur once or
twice 1n the corpus 202 may be determined to be a grouping,
of individual words that does not convey a broader meaning
or to convey meaning that 1s not useful 1n the ontology 214.
Thus, candidate lemmas that should be retained may be
required to occur at least a minimum number of times 1n the
corpus 202. Other parameters may define dictionaries or
other available lemma databases against which the candidate

10

15

20

25

30

35

40

45

50

55

60

65

6

lemmas can be compared. This allows lemmas that match
previously known lemmas to be retained and others to be
discarded or put through further processing. In some
embodiments, the lemma filtering/consolidation engine 208
can generate a display for a user interface such that a user
can 1nspect the list of candidate lemmas before or after any
automated filtering process takes place. The user can then
quickly scanned the remaining list of candidate lemmas and
climinate any that do not belong.

At this point, a mass of unprocessed text in the corpus 202
has been transformed into a final list of lemmas for the
ontology 214. The next to portions of the language-analysis
pipeline, the relationship assignment engine 210 and the
relationship visualization/refinement engine 212, are often
considered to be the most time-consuming and difficult
phases of the process. The relationship assignment engine
210 can automatically attempt to generate relationships
between the lemmas based on their relative location 1n the
corpus 202, as well as their part of speech, dictionary
definition, and known synonyms. The relationship visual-
1ization/refinement engine 212 can then be used to display
the preliminary relationship assignments to a user 1 a
graphical interface. The user can then visually manipulate
the relationships displayed 1n a graph or tree format on the
display device to generate a final set of relationships
between the lemmas. The combination of final lemmas 216
and final relationships 218 can then be exported from the
language-analysis pipeline as an ontology 214.

In order to generate a French ontology 214-2 and an
English ontology 214-1, each step in the language-analysis
pipeline must be executed for each individual language. This
implies that users may need to manually examine the final
lemma list from the lemma filtering/consolidation engine
208, and manually establish the set of final relationships
218. This requires extensive user involvement for generating
ontologies, user mvolvement that will often require exper-
tise 1n more than one language.

FIG. 2B illustrates a language analysis pipeline 2005
using a umversal ontology, according to some embodiments.
As described above, the universal ontology 214-1 may be
language independent, although it will necessarily be rep-
resented by a particular language, such as English. The
umversal ontology 214-1 will include a set of lemmas 216-1
and a set of relationships 218-1 for the set of lemmas 216-1.
In order to generate a French ontology 214-2 from the
French corpus 202-2, the universal ontology 214-1 can be
used to eliminate the time-consuming steps ol generating
relationships between French lemmas 1n the language analy-
s1s pipeline.

As described above, the French corpus 202-2 can be
analyzed using a corpus analysis engine 204-2, from which
the set of lemmas can be generated using the lemma gen-
cration engine 206-2. After filtering and editing the candi-
date lemmas using a lemma filtering/consolidation engine
208-2, a final set of lemmas 216-2 for the French ontology
214-2 will be generated. At this point, a cross-language
lemma mapping engine 220 can receive the final set of
lemmas 216-2 for the French ontology 214-2 and map the
meanings of the final set of lemmas 216-2 to the lemmas
216-1 of the universal ontology 214-1.

Methods used by the cross-language lemma mapping
engine 220 to match the final set of lemmas 216-2 for the
French ontology 214-2 to the lemmas 216-1 of the universal
ontology 214-1 may vary according to the particular
embodiment. In some embodiments, the existing databases
can be used to link lemmas between languages by linking
language specific synsets, or sets of synonym words, to a

US 9,582,493 B2

7

shared imndex layer. For example, the Euro WordNet project
provides a database that links meanings between concepts of
different languages. In other embodiments, an automatic
language translation service (e.g., Google translate) can be
used to generate cross-language synonyms. For example, a
lemma from the final set of lemmas 216-2 can be translated
into the language of the universal ontology 214-1 and
mapped to a lemma 1n the lemmas 216-1 of the universal
ontology 214-1. In some embodiments, 1f the language 1s
already been mapped to the universal ontology, the corpus
can be used to generate lemmas for which there are parallel
data 1n the universal ontology language. For example, 1n a
parallel corpus, aligned sentences from the new language are
mapped directly to parallel sentences 1n the universal ontol-
ogy language. Words and multi-token words can be aligned
using well-known statistical methods 1n both languages.
Then, the lemmas and mapping can be generated automati-
cally.

After mapping the final set of lemmas 216-2 to lemmas
216-1 1n the umversal ontology 214-1, the relationships
218-1 1n the unmiversal ontology can be directly mapped to
the final set of lemmas 216-2 by a relationship mapping
engine 222. In many cases, the relationships 218-1 can be
directly mapped to the final set of lemmas 216-2 1n the
French ontology 214-2 1n order to generate French-language
relationships 218-2. In some cases, lemmas in the final set of
lemmas 216-2 of the French ontology 214-2 may not have
a direct analog 1 the lemmas 216-1 of the universal ontol-
ogy 214-1. This situation will be discussed 1n greater detail
below. In some embodiments, the relationship mapping
engine 222 may simply read the relationships from universal
ontology 218-1 and apply them directly to the French
ontology 214-2, such that the French-language relationships
218-2 are the same as the relationships 218-1 1n the universal
ontology. If there are any lemmas that cannot be directly
mapped between the French language and universal ontol-
ogy, then additional relationships can be manually added 1f
needed, although this should be a seldom-used operation.

FIG. 2C illustrates a language analysis pipeline 200c¢
using lemma translation, according to some embodiments.
In this embodiment, a umversal ontology 214-1 can be
developed for a specific corpus of material. For example, a
master version of a web domain appearing English may be
used to generate a umversal ontology specific to that par-
ticular web domain. As will often be the case for multina-
tional corporations, the master version of the web domain
may be translated into various other languages to serve an
international customer base. Instead of separately analyzing
the translations of the master version of the web domain
appearing 1n English, the umiversal ontology 214-1 can be
used to automatically generate ontologies 1n the various
other languages.

For each of the lemmas 216-1 appearing 1n the universal
ontology 214-1, the lemma translation engine 224 can
generate a final set of lemmas 216-2 1n another language,
such as French. In some cases, the translation of a word 1n
English can result in a set of synonyms that could be used
in French. For example, the English word for “bicycle”
could generate a set of five synonyms in the French lan-
guage. The French synonyms can be compared to the actual
corpus of the French translation of the web domain to
determine which synonym should be used in the French
ontology 214-2. After generating the final set of lemmas
216-2 for the French ontology 214-2, the relationship map-
ping engine 222 can be used to generate the relationships
218-2 for the French ontology 214-2. Note that in this

embodiment, the complete French ontology 214-2 was gen-

10

15

20

25

30

35

40

45

50

55

60

65

8

erated based on the universal ontology 214-1 without having
to process the French corpus of the web domain 1n the full
language analysis pipeline.

FIG. 3A illustrates a diagram 300a of an ontology during,
lemma mapping, according to some embodiments. At this
stage of the process, a set of lemmas for the French language
may be generated by the language analysis pipeline. For
example, a web domain dealing with bike transportation 1n
Paris may have been analyzed to generate the lemmas
appearing in FIG. 3A. By translating the language of the
French lemmas to the language of the umversal ontology
(e.g. English), the lemmas of the French language can be
mapped to lemmas 1n the universal ontology. As described
above, each lemma concept may have one or more syn-
onyms, which can be used to map concepts between lan-
guages. In FIG. 3A, the concepts for a vehicle 302, 314 are
mapped, the concepts for a bike 304, 316 are mapped, and

the specific types of bikes are mapped, such as a touring bike
306, 320, a motor bike 310, 322, and/or a tandem bike 312,

324.

Note that the concept for a dirt bike 308 does not have an
analogous word 1 the set of French lemmas from the
particular Frech corpus. In some embodiments, differences
between languages are to be anticipated, and the lemmas in
one language may not necessarily line up directly with
lemmas 1n another language.

FIG. 3B illustrates a diagram 3005 of an ontology during,
relationship mapping, according to some embodiments.
After using the mapped lemmas of FIG. 3B, the relation-
ships between lemmas from the universal ontology can be
mapped and duplicated to form the French-language ontol-
ogy. As 1llustrated 1n diagram 30056, the French ontology 1s
established using “is a type of” relationships between the
vehicle lemma 314, the bike lemma 316, and so forth.
Instead of needing a French-language expert to organize the
relationships between the lemmas found in the French
corpus, the existing relationships of the universal ontology
can be used to automatically generate the corresponding
relationships 1n the French-language ontology.

FIG. 4A 1illustrates a system 400aq for generating an
ontology using a synonymous word database, according to
some embodiments. A language analysis pipeline 404 can
accept a corpus 402—such as a web domain—as input to
generate lemmas 406. The lemma mapping engine 408 can
map the generated lemmas to concepts 1n a universal ontol-
ogy 412. The lemma mapping engine 408 may also use
additional resources to mapped to lemmas, such as a com-
mercially available or proprietary synonymous word data-
base 416 that maps concepts between languages. The lemma
mapping engine 408 can access the database 416 through an
API or web interface 420. Next, the relationship mapping
engine 410 can reuse relationships from the universal ontol-
ogy 412 to generate a final language specific ontology 414
as described above.

FIG. 4B 1illustrates a system 4005 for generating an
ontology using a language translation service database,
according to some embodiments. The embodiment of sys-
tem 4006 1s similar to that of system 400a, the difference
being that the API or web interface 424 uses a web trans-
lation service 422 for generating mappings between the
lemmas of the corpus 402 and the lemmas of the universal
ontology 412.

FIG. 5 illustrates a flowchart 500 of a method for gener-
ating ontologies for use in natural language processing,
according to some embodiments. The method may include
receiving a first ontology 1n a first language with lemmas and
relationships between the lemmas (502). The first ontology

US 9,582,493 B2

9

may be a language-independent set of lemma concepts
linked together with relationships. The first ontology may be
specific to a particular corpus, such as a web domain or a set
of documents. In some embodiments, the first ontology may
be generated using a language analysis pipeline that extracts
and filters lemmas from a corpus and receives relationships
between lemmas from a language expert.

The method may also include receiving a second set of
lemmas 1n a second language (504). The second language
may be different from the first language used to express the
first, or universal, ontology. The second set of lemmas may
be generated from a language analysis pipeline in a manner
similar to how the lemmas of the first ontology were
generated. In some embodiments, the corpus for the second
set of lemmas 1n the corpus of the first ontology may be
derived from the same corpus 1n different languages. The
method may additionally include mapping each of the
lemmas 1n the second language to the lemmas 1n the first
language (506). This step may be accomplished by trans-
lating the lemmas in the second language into a set of
synonyms 1n the first language, and then i1dentifying syn-
onyms that appear in the lemmas 1n the first ontology.
Finally, the method may further include generating a second
ontology 1n the second language by using the relationships
in the first ontology to create relationships between the
lemmas 1n the second language (508).

It should be appreciated that the specific steps 1llustrated
in FIG. 5 provide particular methods of generating ontolo-
gies from a universal ontology according to various embodi-
ments of the present mvention. Other sequences of steps
may also be performed according to alternative embodi-
ments. For example, alternative embodiments of the present
invention may perform the steps outlined above in a different
order. Moreover, the individual steps illustrated in FIG. 5
may 1nclude multiple sub-steps that may be performed in
various sequences as appropriate to the individual step.
Furthermore, additional steps may be added or removed
depending on the particular applications. One of ordinary
skill 1n the art would recognize many variations, modifica-
tions, and alternatives.

Each of the methods described herein may be imple-
mented by a computer system. Each step of these methods
may be executed automatically by the computer system,
and/or may be provided with inputs/outputs involving a user.
For example, a user may provide mputs for each step 1n a
method, and each of these mputs may be 1n response to a
specific output requesting such an input, wherein the output
1s generated by the computer system. Each mput may be
received 1n response to a corresponding requesting output.
Furthermore, mputs may be recerved from a user, from
another computer system as a data stream, retrieved from a
memory location, retrieved over a network, requested from
a web service, and/or the like. Likewise, outputs may be
provided to a user, to another computer system as a data
stream, saved 1n a memory location, sent over a network,
provided to a web service, and/or the like. In short, each step
of the methods described herein may be performed by a
computer system, and may involve any number of inputs,
outputs, and/or requests to and from the computer system
which may or may not ivolve a user. Those steps not
involving a user may be said to be performed automatically
by the computer system without human intervention. There-
fore, 1t will be understood 1n light of this disclosure, that
cach step of each method described herein may be altered to
include an input and output to and from a user, or may be
done automatically by a computer system without human
intervention where any determinations are made by a pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

cessor. Furthermore, some embodiments of each of the
methods described herein may be implemented as a set of
istructions stored on a tangible, non-transitory storage
medium to form a tangible software product.

FIG. 6 depicts a simplified diagram of a distributed
system 600 for implementing one of the embodiments. In the
illustrated embodiment, distributed system 600 includes one
or more client computing devices 602, 604, 606, and 608,
which are configured to execute and operate a client appli-
cation such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 610. Server
612 may be communicatively coupled with remote client
computing devices 602, 604, 606, and 608 via network 610.

In various embodiments, server 612 may be adapted to
run one or more services or soltware applications provided
by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or
cloud services or under a Software as a Service (SaaS)
model to the users of client computing devices 602, 604,
606, and/or 608. Users operating client computing devices
602, 604, 606, and/or 608 may 1n turn utilize one or more
client applications to interact with server 612 to utilize the
services provided by these components.

In the configuration depicted in the figure, the software
components 618, 620 and 622 of system 600 are shown as
being implemented on server 612. In other embodiments,
one or more of the components of system 600 and/or the
services provided by these components may also be imple-
mented by one or more of the client computing devices 602,
604, 606, and/or 608. Users operating the client computing
devices may then utilize one or more client applications to
use the services provided by these components. These
components may be implemented in hardware, firmware,
soltware, or combinations thereof. It should be appreciated
that various different system configurations are possible,
which may be different from distributed system 600. The
embodiment shown in the figure 1s thus one example of a
distributed system for implementing an embodiment system
and 1s not intended to be limiting.

Client computing devices 602, 604, 606, and/or 608 may
be portable handheld devices (e.g., an 1Phone®, cellular
telephone, an 1Pad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoft
Windows Mobile®, and/or a variety of mobile operating
systems such as 10S, Windows Phone, Android, BlackBerry
10, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. The client computing devices can
be general purpose personal computers including, by way of
example, personal computers and/or laptop computers run-
ning various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running
any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation
the variety of GNU/Linux operating systems, such as for
example, Google Chrome OS. Alternatively, or in addition,
client computing devices 602, 604, 606, and 608 may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsolt Xbox
gaming console with or without a Kinect® gesture iput
device), and/or a personal messaging device, capable of
communicating over network(s) 610.

Although exemplary distributed system 600 i1s shown
with four client computing devices, any number of client

US 9,582,493 B2

11

computing devices may be supported. Other devices, such as
devices with sensors, etc., may interact with server 612.

Network(s) 610 1n distributed system 600 may be any
type of network familiar to those skilled in the art that can
support data communications using any ol a variety of
commercially-available protocols, including without limita-
tion TCP/IP (transmission control protocol/Internet proto-
col), SNA (systems network architecture), IPX (Internet
packet exchange), AppleTalk, and the like. Merely by way of
example, network(s) 610 can be a local area network (LAN),
such as one based on Ethernet, Token-Ring and/or the like.
Network(s) 610 can be a wide-area network and the Internet.
It can 1nclude a virtual network, including without limitation
a virtual private network (VPN), an intranet, an extranet, a
public switched telephone network (PSTN), an infra-red
network, a wireless network (e.g., a network operating under
any of the Institute of Electrical and Electronics (IEEE)
802.11 suite of protocols, Bluetooth®, and/or any other
wireless protocol); and/or any combination of these and/or
other networks.

Server 612 may be composed of one or more general
purpose computers, specialized server computers (including,
by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers,
rack-mounted servers, etc.), server farms, server clusters, or
any other appropriate arrangement and/or combination. In
various embodiments, server 612 may be adapted to run one
or more services or soltware applications described 1n the
foregoing disclosure. For example, server 612 may corre-
spond to a server for performing processing described above
according to an embodiment of the present disclosure.

Server 612 may run an operating system including any of
those discussed above, as well as any commercially avail-
able server operating system. Server 612 may also run any
of a variety of additional server applications and/or mid-tier
applications, including HI'TP (hypertext transport protocol)
servers, FTP (file transfer protocol) servers, CGI (common
gateway interface) servers, JAVA® servers, database serv-
ers, and the like. Exemplary database servers include with-
out limitation those commercially available from Oracle,
Microsott, Sybase, IBM (International Business Machines),
and the like.

In some implementations, server 612 may include one or
more applications to analyze and consolidate data feeds
and/or event updates recerved from users of client comput-
ing devices 602, 604, 606, and 608. As an example, data
teeds and/or event updates may 1nclude, but are not limited
to, Twitter® feeds, Facebook® updates or real-time updates
received from one or more third party information sources
and continuous data streams, which may include real-time
events related to sensor data applications, financial tickers,
network performance measuring tools (e.g., network moni-
toring and trathic management applications), clickstream
analysis tools, automobile traflic monitoring, and the like.
Server 612 may also include one or more applications to
display the data feeds and/or real-time events via one or
more display devices of client computing devices 602, 604,
606, and 608.

Distributed system 600 may also include one or more
databases 614 and 616. Databases 614 and 616 may reside
in a variety of locations. By way of example, one or more of
databases 614 and 616 may reside on a non-transitory
storage medium local to (and/or resident in) server 612.
Alternatively, databases 614 and 616 may be remote from
server 612 and 1n communication with server 612 via a
network-based or dedicated connection. In one set of
embodiments, databases 614 and 616 may reside 1 a

5

10

15

20

25

30

35

40

45

50

55

60

65

12

storage-area network (SAN). Similarly, any necessary files
for performing the functions attributed to server 612 may be
stored locally on server 612 and/or remotely, as appropriate.
In one set of embodiments, databases 614 and 616 may
include relational databases, such as databases provided by
Oracle, that are adapted to store, update, and retrieve data 1n
response to SQL-formatted commands.

FIG. 7 1s a simplified block diagram of one or more
components of a system environment 700 by which services
provided by one or more components of an embodiment
system may be offered as cloud services, 1n accordance with
an embodiment of the present disclosure. In the 1llustrated
embodiment, system environment 700 includes one or more
client computing devices 704, 706, and 708 that may be used
by users to interact with a cloud infrastructure system 702
that provides cloud services. The client computing devices
may be configured to operate a client application such as a
web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a
user of the client computing device to interact with cloud
infrastructure system 702 to use services provided by cloud
infrastructure system 702.

It should be appreciated that cloud infrastructure system
702 depicted in the figure may have other components than
those depicted. Further, the embodiment shown 1n the figure
1s only one example of a cloud mfrastructure system that
may incorporate an embodiment of the invention. In some
other embodiments, cloud infrastructure system 702 may
have more or fewer components than shown in the figure,
may combine two or more components, or may have a
different configuration or arrangement of components.

Client computing devices 704, 706, and 708 may be
devices similar to those described above for 602, 604, 606,
and 608.

Although exemplary system environment 700 1s shown
with three client computing devices, any number of client
computing devices may be supported. Other devices such as
devices with sensors, etc. may interact with cloud infrastruc-
ture system 702.

Network(s) 710 may {facilitate communications and
exchange of data between clients 704, 706, and 708 and
cloud infrastructure system 702. Each network may be any
type of network familiar to those skilled in the art that can
support data communications using any of a varnety of
commercially-available protocols, including those described
above for network(s) 610.

Cloud infrastructure system 702 may comprise one or
more computers and/or servers that may include those
described above for server 612.

In certain embodiments, services provided by the cloud
infrastructure system may include a host of services that are
made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions,
Web-based e-mail services, hosted oflice suites and docu-
ment collaboration services, database processing, managed
technical support services, and the like. Services provided
by the cloud infrastructure system can dynamically scale to
meet the needs of its users. A specific stantiation of a
service provided by cloud infrastructure system 1s referred to
herein as a “service mstance.” In general, any service made
avallable to a user via a communication network, such as the
Internet, from a cloud service provider’s system 1s referred
to as a “cloud service.” Typically, in a public cloud envi-
ronment, servers and systems that make up the cloud service
provider’s system are different from the customer’s own
on-premises servers and systems. For example, a cloud
service provider’s system may host an application, and a

US 9,582,493 B2

13

user may, via a communication network such as the Internet,
on demand, order and use the application.

In some examples, a service 1n a computer network cloud
infrastructure may include protected computer network
access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud
vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to
remote storage on the cloud through the Internet. As another
example, a service can 1clude a web service-based hosted
relational database and a script-language middleware engine
for private use by a networked developer. As another
example, a service can include access to an email software
application hosted on a cloud vendor’s web site.

In certain embodiments, cloud infrastructure system 702
may include a suite of applications, middleware, and data-
base service oflerings that are delivered to a customer 1n a
seli-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such a cloud infrastructure system 1s the Oracle Public
Cloud provided by the present assignee.

In various embodiments, cloud infrastructure system 702
may be adapted to automatically provision, manage and
track a customer’s subscription to services oflered by cloud
infrastructure system 702. Cloud infrastructure system 702
may provide the cloud services via different deployment
models. For example, services may be provided under a
public cloud model in which cloud ifrastructure system 702
1s owned by an organization selling cloud services (e.g.,
owned by Oracle) and the services are made available to the
general public or different industry enterprises. As another
example, services may be provided under a private cloud
model in which cloud infrastructure system 702 is operated
solely for a single orgamization and may provide services for
one or more entities within the organization. The cloud
services may also be provided under a commumty cloud
model 1 which cloud infrastructure system 702 and the
services provided by cloud infrastructure system 702 are
shared by several organizations 1n a related community. The
cloud services may also be provided under a hybrid cloud
model, which 1s a combination of two or more diflerent
models.

In some embodiments, the services provided by cloud
infrastructure system 702 may include one or more services
provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a
Service (laaS) category, or other categories ol services
including hybrid services. A customer, via a subscription
order, may order one or more services provided by cloud
inirastructure system 702. Cloud infrastructure system 702
then performs processing to provide the services in the
customer’s subscription order.

In some embodiments, the services provided by cloud
infrastructure system 702 may include, without limitation,
application services, platform services and inirastructure
services. In some examples, application services may be
provided by the cloud infrastructure system via a SaaS
platform. The SaaS platiorm may be configured to provide
cloud services that fall under the SaaS category. For
example, the SaaS platform may provide capabilities to
build and deliver a suite of on-demand applications on an
integrated development and deployment platform. The SaaS
platform may manage and control the underlying software
and 1nfrastructure for providing the SaaS services. By uti-
lizing the services provided by the SaaS platform, customers
can utilize applications executing on the cloud infrastructure
system. Customers can acquire the application services

10

15

20

25

30

35

40

45

50

55

60

65

14

without the need for customers to purchase separate licenses
and support. Various different SaaS services may be pro-
vided. Examples include, without limitation, services that
provide solutions for sales performance management, enter-
prise integration, and business flexibility for large organi-
zations.

In some embodiments, platform services may be provided
by the cloud infrastructure system via a PaaS platform. The
PaaS platform may be configured to provide cloud services
that fall under the PaaS category. Examples of platform
services may include without limitation services that enable
organizations (such as Oracle) to consolidate existing appli-
cations on a shared, common architecture, as well as the
ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may
manage and control the underlying software and infrastruc-
ture for providing the PaaS services. Customers can acquire
the PaaS services provided by the cloud infrastructure
system without the need for customers to purchase separate
licenses and support. Examples of platform services include,
without limitation, Oracle Java Cloud Service (JCS), Oracle
Database Cloud Service (DBCS), and others.

By utilizing the services provided by the PaaS platform,
customers can employ programming languages and tools
supported by the cloud infrastructure system and also con-
trol the deployed services. In some embodiments, platform
services provided by the cloud infrastructure system may
include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud
services. In one embodiment, database cloud services may
support shared service deployment models that enable orga-
nizations to pool database resources and offer customers a
Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform {for
customers to develop and deploy various business applica-
tions, and Java cloud services may provide a platform for
customers to deploy Java applications, in the cloud infra-
structure system.

Various different infrastructure services may be provided
by an IaaS platiorm in the cloud infrastructure system. The
infrastructure services facilitate the management and control
of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for
customers utilizing services provided by the SaaS platiorm
and the PaaS platiorm.

In certain embodiments, cloud infrastructure system 702
may also include infrastructure resources 730 for providing
the resources used to provide various services to customers
of the cloud infrastructure system. In one embodiment,
inirastructure resources 730 may include pre-integrated and
optimized combinations of hardware, such as servers, stor-
age, and networking resources to execute the services pro-
vided by the PaaS platform and the SaaS platform.

In some embodiments, resources in cloud infrastructure
system 702 may be shared by multiple users and dynami-
cally re-allocated per demand. Additionally, resources may
be allocated to users 1n different time zones. For example,
cloud infrastructure system 730 may enable a first set of
users 1n a {irst time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and
then enable the re-allocation of the same resources to
another set of users located 1n a different time zone, thereby
maximizing the utilization of resources.

In certain embodiments, a number of internal shared
services 732 may be provided that are shared by different
components or modules of cloud infrastructure system 702
and by the services provided by cloud infrastructure system

US 9,582,493 B2

15

702. These internal shared services may include, without
limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise man-
ager service, a virus scanning and white list service, a high
availability, backup and recovery service, service {for
ecnabling cloud support, an email service, a noftification
service, a file transfer service, and the like.

In certain embodiments, cloud infrastructure system 702
may provide comprehensive management of cloud services
(e.g., SaaS, PaaS, and IaaS services) in the cloud infrastruc-
ture system. In one embodiment, cloud management func-
tionality may include capabilities for provisioning, manag-
ing and tracking a customer’s subscription received by cloud
infrastructure system 702, and the like.

In one embodiment, as depicted in the figure, cloud
management functionality may be provided by one or more
modules, such as an order management module 720, an
order orchestration module 722, an order provisioning mod-
ule 724, an order management and monitoring module 726,
and an identity management module 728. These modules
may include or be provided using one or more computers
and/or servers, which may be general purpose computers,
specialized server computers, server farms, server clusters,
or any other appropriate arrangement and/or combination.

In exemplary operation 734, a customer using a client
device, such as client device 704, 706 or 708, may interact
with cloud infrastructure system 702 by requesting one or
more services provided by cloud infrastructure system 702
and placing an order for a subscription for one or more
services oflered by cloud infrastructure system 702. In

certain embodiments, the customer may access a cloud User

Interface (UI), cloud UI 712, cloud UI 714 and/or cloud UI
716 and place a subscription order via these Uls. The order
information received by cloud infrastructure system 702 1n
response to the customer placing an order may include
information identifying the customer and one or more ser-
vices ollered by the cloud infrastructure system 702 that the
customer intends to subscribe to.

After an order has been placed by the customer, the order
information 1s received via the cloud Uls, 712, 714 and/or
716.

At operation 736, the order 1s stored in order database
718. Order database 718 can be one of several databases
operated by cloud infrastructure system 718 and operated 1n
conjunction with other system elements.

At operation 738, the order information 1s forwarded to an
order management module 720. In some 1nstances, order
management module 720 may be configured to perform
billing and accounting functions related to the order, such as
verilying the order, and upon verification, booking the order.

At operation 740, information regarding the order 1s
communicated to an order orchestration module 722. Order
orchestration module 722 may utilize the order information
to orchestrate the provisioning of services and resources for
the order placed by the customer. In some 1nstances, order
orchestration module 722 may orchestrate the provisioning
of resources to support the subscribed services using the
services ol order provisioning module 724.

In certain embodiments, order orchestration module 722
ecnables the management of business processes associated
with each order and applies business logic to determine
whether an order should proceed to provisioning. At opera-
tion 742, upon receiving an order for a new subscription,
order orchestration module 722 sends a request to order
provisioning module 724 to allocate resources and configure
those resources needed to fulfill the subscription order.
Order provisioming module 724 enables the allocation of

10

15

20

25

30

35

40

45

50

55

60

65

16

resources for the services ordered by the customer. Order
provisioning module 724 provides a level of abstraction
between the cloud services provided by cloud infrastructure
system 700 and the physical implementation layer that 1s
used to provision the resources for providing the requested
services. Order orchestration module 722 may thus be
1solated from 1implementation details, such as whether or not
services and resources are actually provisioned on the tly or
pre-provisioned and only allocated/assigned upon request.
At operation 744, once the services and resources are
provisioned, a notification of the provided service may be
sent to customers on client devices 704, 706 and/or 708 by

order provisioning module 724 of cloud infrastructure sys-
tem 702.

At operation 746, the customer’s subscription order may
be managed and tracked by an order management and
monitoring module 726. In some instances, order manage-
ment and monitoring module 726 may be configured to
collect usage statistics for the services in the subscription
order, such as the amount of storage used, the amount data
transierred, the number of users, and the amount of system
up time and system down time.

In certain embodiments, cloud infrastructure system 700
may include an identity management module 728. Identity
management module 728 may be configured to provide
identity services, such as access management and authori-
zation services 1n cloud infrastructure system 700. In some
embodiments, 1dentity management module 728 may con-
trol information about customers who wish to utilize the
services provided by cloud infrastructure system 702. Such
information can include information that authenticates the
identities of such customers and information that describes
which actions those customers are authorized to perform
relative to various system resources (e.g., liles, directories,
applications, communication ports, memory segments, etc.)
Identity management module 728 may also include the
management of descriptive information about each customer
and about how and by whom that descriptive information
can be accessed and modified.

FIG. 8 1llustrates an exemplary computer system 800, 1n
which various embodiments of the present invention may be
implemented. The system 800 may be used to implement
any of the computer systems described above. As shown 1n
the figure, computer system 800 includes a processing unit
804 that communicates with a number of peripheral subsys-
tems via a bus subsystem 802. These peripheral subsystems
may include a processing acceleration unit 806, an I/O
subsystem 808, a storage subsystem 818 and a communi-
cations subsystem 824. Storage subsystem 818 includes
tangible computer-readable storage media 822 and a system
memory 810.

Bus subsystem 802 provides a mechanism for letting the
various components and subsystems of computer system
800 communicate with each other as mntended. Although bus
subsystem 802 1s shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 802 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures
may include an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (IMCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus

manufactured to the IEEE P1386.1 standard.

US 9,582,493 B2

17

Processing unit 804, which can be implemented as one or
more integrated circuits (e.g., a conventional microprocessor
or microcontroller), controls the operation of computer
system 800. One or more processors may be included 1n
processing unit 804. These processors may include single
core or multicore processors. In certain embodiments, pro-
cessing unit 804 may be implemented as one or more
independent processing units 832 and/or 834 with single or
multicore processors included 1n each processing unit. In
other embodiments, processing unit 804 may also be 1mple-
mented as a quad-core processing unit formed by integrating,
two dual-core processors mto a single chip.

In various embodiments, processing unit 804 can execute
a variety of programs 1n response to program code and can
maintain multiple concurrently executing programs or pro-
cesses. At any given time, some or all of the program code
to be executed can be resident 1n processor(s) 804 and/or in
storage subsystem 818. Through suitable programming,
processor(s) 804 can provide various functionalities
described above. Computer system 800 may additionally
include a processing acceleration unit 806, which can
include a digital signal processor (DSP), a special-purpose
processor, and/or the like.

I/O subsystem 808 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen ncor-
porated 1nto a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio input devices with voice
command recognition systems, microphones, and other
types ol mput devices. User interface input devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoit Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoit Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface mput devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as input into an mput device
(e.g., Google Glass®). Additionally, user interface input
devices may 1nclude voice recognition sensing devices that
enable users to mteract with voice recognition systems (e.g.,
Sirit navigator), through voice commands.

User interface mput devices may also include, without
limitation, three dimensional (3D) mice, joysticks or point-
ing sticks, gamepads and graphic tablets, and audio/visual
devices such as speakers, digital cameras, digital camcord-
ers, portable media players, webcams, 1mage scanners, {in-
gerprint scanners, barcode reader 3D scanners, 3D printers,
laser rangefinders, and eye gaze tracking devices. Addition-
ally, user iterface mput devices may include, for example,
medical 1imaging mput devices such as computed tomogra-
phy, magnetic resonance 1imaging, position emission tomog-
raphy, medical ultrasonography devices. User interface
input devices may also include, for example, audio 1nput
devices such as MIDI keyboards, digital musical instru-
ments and the like.

User interface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liquid crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “output device” 1s mtended to include all
possible types of devices and mechanisms for outputting

10

15

20

25

30

35

40

45

50

55

60

65

18

information from computer system 800 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Computer system 800 may comprise a storage subsystem
818 that comprises soltware elements, shown as being
currently located within a system memory 810. System
memory 810 may store program instructions that are load-
able and executable on processing unit 804, as well as data
generated during the execution of these programs.

Depending on the configuration and type of computer
system 800, system memory 810 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as
read-only memory (ROM), flash memory, etc.) The RAM
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
and executed by processing unit 804. In some implementa-
tions, system memory 810 may include multiple different
types of memory, such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In
some 1mplementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer informa-
tion between elements within computer system 800, such as
during start-up, may typically be stored in the ROM. By way
of example, and not limitation, system memory 810 also
illustrates application programs 812, which may include
client applications, Web browsers, mid-tier applications,
relational database management systems (RDBMS), etc.,
program data 814, and an operating system 816. By way of
example, operating system 816 may include various ver-
sions of Microsoft Windows®, Apple Macintosh®, and/or
Linux operating systems, a variety of commercially-avail-
able UNIX® or UNIX-like operating systems (including
without limitation the variety of GNU/Linux operating sys-
tems, the Google Chrome® OS, and the like) and/or mobile
operating systems such as 10S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS oper-
ating systems.

Storage subsystem 818 may also provide a tangible com-
puter-readable storage medium for storing the basic pro-
gramming and data constructs that provide the functionality
of some embodiments. Software (programs, code modules,
instructions) that when executed by a processor provide the
functionality described above may be stored in storage
subsystem 818. These software modules or instructions may
be executed by processing unit 804. Storage subsystem 818
may also provide a repository for storing data used in
accordance with the present invention.

Storage subsystem 800 may also include a computer-
readable storage media reader 820 that can further be
connected to computer-readable storage media 822.
Together and, optionally, 1n combination with system
memory 810, computer-readable storage media 822 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
1ly and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable imnformation.

Computer-readable storage media 822 containing code, or
portions ol code, can also include any appropriate media
known or used in the art, imncluding storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage and/or
transmission of information. This can include tangible com-

US 9,582,493 B2

19

puter-readable storage media such as RAM, ROM, elec-
tronically erasable programmable ROM (EEPROM), tlash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 800.

By way of example, computer-readable storage media
822 may include a hard disk drive that reads from or writes
to non-removable, nonvolatile magnetic media, a magnetic
disk drive that reads from or writes to a removable, non-
volatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such
as a CD ROM, DVD, and Blu-Ray® disk, or other optical
media. Computer-readable storage media 822 may include,
but 1s not limited to, Zip® drives, flash memory cards,
universal serial bus (USB) flash drives, secure digital (SD)
cards, DVD disks, digital video tape, and the like. Com-
puter-readable storage media 822 may also include, solid-
state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybnd
SSDs that use a combination of DRAM and tlash memory
based SSDs. The disk drives and their associated computer-
readable media may provide non-volatile storage of com-
puter-readable instructions, data structures, program mod-
ules, and other data for computer system 800.

Communications subsystem 824 provides an interface to
other computer systems and networks. Communications
subsystem 824 serves as an interface for receiving data from
and transmitting data to other systems from computer sys-
tem 800. For example, communications subsystem 824 may
enable computer system 800 to connect to one or more
devices via the Internet. In some embodiments communi-
cations subsystem 824 can include radio frequency (RF)
transceiver components for accessing wireless voice and/or
data networks (e.g., using cellular telephone technology,
advanced data network technology, such as 3G, 4G or EDGE
(enhanced data rates for global evolution), WikF1 (IEE.
802.11 family standards, or other mobile communication
technologies, or any combination thereot), global position-
ing system (GPS) receiver components, and/or other com-
ponents. In some embodiments communications subsystem
824 can provide wired network connectivity (e.g., Ethernet)
in addition to or instead of a wireless interface.

In some embodiments, communications subsystem 824
may also receive input communication in the form of
structured and/or unstructured data feeds 826, event streams
828, event updates 830, and the like on behalf of one or more
users who may use computer system 800.

By way of example, communications subsystem 824 may
be configured to receive data feeds 826 1n real-time from
users of social networks and/or other communication ser-
vices such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or

real-time updates from one or more third party information
SOUrces.

Additionally, communications subsystem 824 may also be
configured to receive data 1n the form of continuous data
streams, which may include event streams 828 of real-time
events and/or event updates 830, that may be continuous or

0 @™

10

15

20

25

30

35

40

45

50

55

60

65

20

unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
traflic management applications), clickstream analysis tools,
automobile traflic monitoring, and the like.

Communications subsystem 824 may also be configured
to output the structured and/or unstructured data feeds 826,
event streams 828, event updates 830, and the like to one or
more databases that may be 1n communication with one or
more streaming data source computers coupled to computer
system 800.

Computer system 800 can be one of various types, includ-
ing a handheld portable device (e.g., an 1Phone® cellular
phone, an 1Pad® computing tablet, a PDA), a wearable
device (e.g., a Google Glass® head mounted display), a PC,
a workstation, a mainframe, a kiosk, a server rack, or any
other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 800 depicted in
the figure 1s intended only as a specific example. Many other
configurations having more or fewer components than the
system depicted in the figure are possible. For example,
customized hardware might also be used and/or particular
clements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill 1n the art will appreciate other ways and/or methods to
implement the various embodiments.

In the foregoing description, for the purposes of expla-
nation, numerous specific details were set forth 1n order to
provide a thorough understanding of various embodiments
of the present invention. It will be apparent, however, to one
skilled 1n the art that embodiments of the present invention
may be practiced without some of these specific details. In
other 1instances, well-known structures and devices are
shown 1n block diagram form.

The foregoing description provides exemplary embodi-
ments only, and 1s not intended to limit the scope, applica-
bility, or configuration of the disclosure. Rather, the fore-
going description of the exemplary embodiments will
provide those skilled in the art with an enabling description
for implementing an exemplary embodiment. It should be
understood that various changes may be made 1n the func-
tion and arrangement of elements without departing from the
spirit and scope of the invention as set forth 1n the appended
claims.

Specific details are given 1n the foregoing description to
provide a thorough understanding of the embodiments.
However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these
specific details. For example, circuits, systems, networks,
processes, and other components may have been shown as
components 1n block diagram form in order not to obscure
the embodiments 1n unnecessary detail. In other instances,
well-known circuits, processes, algorithms, structures, and
techniques may have been shown without unnecessary detail
in order to avoid obscuring the embodiments.

Also, 1t 1s noted that individual embodiments may have
been described as a process which 1s depicted as a tlowchart,
a flow diagram, a data flow diagram, a structure diagram, or
a block diagram. Although a flowchart may have described
the operations as a sequential process, many of the opera-
tions can be performed 1n parallel or concurrently. In addi-
tion, the order of the operations may be re-arranged. A

US 9,582,493 B2

21

process 1s terminated when 1ts operations are completed, but
could have additional steps not included in a figure. A
process may correspond to a method, a function, a proce-
dure, a subroutine, a subprogram, etc. When a process
corresponds to a function, its termination can correspond to
a return of the function to the calling function or the main
function.

The term “computer-readable medium™ includes, but 1s
not limited to portable or fixed storage devices, optical
storage devices, wireless channels and various other medi-
ums capable of storing, containing, or carrying instruction(s)
and/or data. A code segment or machine-executable instruc-
tions may represent a procedure, a function, a subprogram,
a program, a roufine, a subroutine, a module, a software
package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be
coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments,
parameters, data, etc., may be passed, forwarded, or trans-
mitted via any suitable means including memory sharing,
message passing, token passing, network transmission, etc.

Furthermore, embodiments may be implemented by hard-
ware, software, firmware, middleware, microcode, hardware
description languages, or any combination thereof. When
implemented in software, firmware, middleware or micro-
code, the program code or code segments to perform the
necessary tasks may be stored in a machine readable
medium. A processor(s) may perform the necessary tasks.

In the foregoing specification, aspects of the invention are
described with reference to specific embodiments thereof,
but those skilled in the art will recognize that the invention
1s not limited thereto. Various features and aspects of the
above-described invention may be used individually or
jointly. Further, embodiments can be utilized 1n any number
of environments and applications beyond those described
herein without departing from the broader spirit and scope of
the specification. The specification and drawings are,
accordingly, to be regarded as 1llustrative rather than restric-
tive.

Additionally, for the purposes of illustration, methods
were described 1n a particular order. It should be appreciated
that in alternate embodiments, the methods may be per-
formed 1n a different order than that described. It should also
be appreciated that the methods described above may be
performed by hardware components or may be embodied in
sequences ol machine-executable instructions, which may
be used to cause a machine, such as a general-purpose or
special-purpose processor or logic circuits programmed with
the instructions to perform the methods. These machine-
executable 1nstructions may be stored on one or more
machine readable mediums, such as CD-ROMs or other type
of optical disks, tloppy diskettes, ROMs, RAMs, EPROMs,
EEPROMSs, magnetic or optical cards, flash memory, or
other types of machine-readable mediums suitable for stor-
ing electronic instructions. Alternatively, the methods may
be performed by a combination of hardware and software.

What 1s claimed 1s:
1. A method of mapping computer domain ontologies
between languages, the method comprising:

receiving, using a computer system, a first ontology in a
first language, wherein the first ontology 1s comprised
of a first plurality of lemmas and a plurality of rela-
tionships between the plurality of lemmas;

receiving, using the computer system, a second plurality
of lemmas 1n a second language;

5

10

15

20

25

30

35

40

45

50

55

60

65

22

mapping, using the computer system, each of the second
plurality of lemmas 1n the second language to a respec-
tive lemma 1n the first plurality of lemmas in the first
language; and

linking, using the computer system, the second plurality

of lemmas together using the plurality of relationships
in the first ontology as a template to create relationships
between the second plurality of lemmas in the second
language; and

generating, using the computer system, a second ontology

comprising:

the second plurality of lemmas; and

the relationships between the second plurality of lem-
mas.

2. The method of claam 1, wherein the first ontology
comprises a language independent ontology that encodes
relationships between concepts that are represented by the
first plurality of lemmas.

3. The method of claim 1, wherein the second plurality of
lemmas are generated from a version of a web domain 1n the
second language.

4. The method of claim 3, wherein the first plurality of
lemmas are generated from a version of the web domain 1n
the first language.

5. The method of claim 1, wherein the second plurality of
lemmas comprise n-grams less than a predetermined length
that occur 1n a corpus at least a predetermined number of
times.

6. The method of claam 1, wherein the plurality of
relationships of the first ontology are directly inserted into
the second ontology.

7. The method of claim 1, wherein mapping each of the
second plurality of lemmas in the second language to a
respective lemma 1n the first plurality of lemmas 1n the first
language comprises translating the second plurality of lem-
mas 1n the second language 1nto the first language.

8. A non-transitory, computer-readable medium compris-
ing 1instructions which, when executed by one or more
processors, causes the one or more processors to perform
operations comprising:

receiving a first ontology 1n a first language, wherein the

first ontology 1s comprised of a first plurality of lemmas
and a plurality of relationships between the plurality of
lemmas;

recerving a second plurality of lemmas i a second

language;

mapping each of the second plurality of lemmas 1n the

second language to a respective lemma in the first
plurality of lemmas 1n the first language; and

linking the second plurality of lemmas together using the

plurality of relationships 1n the first ontology as a
template to create relationships between the second
plurality of lemmas 1n the second language; and
generating a second ontology comprising:
the second plurality of lemmas; and
the relationships between the second plurality of lem-
mas.

9. The non-transitory, computer-readable medium of
claim 8, wherein the first ontology comprises a language
independent ontology that encodes relationships between
concepts that are represented by the first plurality of lemmas.

10. The non-transitory, computer-readable medium of
claim 8, wherein the second plurality of lemmas are gener-
ated from a version of a web domain 1n the second language.

11. The non-transitory, computer-readable medium of
claim 10, wherein the first plurality of lemmas are generated
from a version of the web domain 1n the first language.

US 9,582,493 B2

23 24
12. The non-transitory, computer-readable medium of linking the second plurality of lemmas together using
claim 8, wherein the second Pl}lf ality of lemmas comprise the plurality of relationships 1n the first ontology as
n-grams less than a predetermined length that occur 1 a a template to create relationships between the second

corpus at least a predetermined number of times.

13. The non-transitory, computer-readable medium of s
claim 8, wherein the plurality of relationships of the first
ontology are directly inserted into the second ontology.

14. The non-transitory, computer-readable medium of

plurality of lemmas in the second language; and
generating a second ontology comprising:
the second plurality of lemmas; and
the relationships between the second plurality of

claim 8, wherein mapping each of the second plurality of lemmas. | |
lemmas 1n the second language to a respective lemma in the 16. The system ot claim 13, wherein the first ontology
. . . 10 . .
first plurality of lemmas in the first language comprises comprises a language independent ontology that encodes
translating the second plurality of lemmas in the second relationships between concepts that are represented by the
language 1nto the first }3}1%“3%‘3- first plurality of lemmas.
15. A system comprising: 17. The system of claim 15, wherein the second plurality
one or more processors; and s Of lemmas are generated from a version of a web domain in

one or more memory devices comprising instructions
which, when executed by the one or more processors,
cause the one or more processors to perform operations

the second language.
18. The system of claim 17, wherein the first plurality of
- lemmas are generated from a version of the web domain 1n
comprising:

receiving a first ontology 1n a first language, wherein the first language.
the ﬁrgst ontology is c:ggmprised of a fiitgplhrality of 20 19. The system of claim 15, wherein the second plurality

lemmas and a plurality of relationships between the ?f lelllmllllas COIPIISE n—gramsl less thalcll d priadeéermu];ed
plurality of lemmas: ength that occur 1 a corpus at least a predetermined numbper

. : : f times.
d plurality of 1 d °
feii;ﬁggz. second plurality ol lemmas in a secon 20. The system of claim 15, wherein the plurality of

mapping each of the second plurality of lemmas in the 25 relationships of the first ontology are directly inserted into

second language to a respective lemma 1n the first the second ontology.
plurality of lemmas 1n the first language; and * ok ® k k

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

APPLICATION NO. : 14/793658
DATED : February 28, 2017
INVENTORC(S) . Fabrice Nauze, Geert Kloosterman and Albert Derk Eduard Vedelaar

It is certified that error appears In the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Item | 72]:
Delete “Sleidrecht”™ and replace with --Shedrecht--

In the Specification

Column 1, Line 17:
Delete “14/7793,677” and replace with --14/793,677--

Column 4, Line 37:
Delete “Is™ and replace with --It 1s--

Column 6, Line 12:
Delete “next to” and replace with --next two--

Column 8, Line 23:
Delete “Frech” and replace with --French--

Column 17, Line 45:
Delete “Sint” and replace with --Sirn®--

Signed and Sealed this
Eighteenth Day of September, 2018

Andrei Iancu
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

