a2y United States Patent
Muthyala et al.

US009575974B2

US 9,575,974 B2
Feb. 21, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)

(22)

(65)

(63)

(1)

(52)

(58)

DISTRIBUTED FILE SYSTEM GATEWAY
Applicant: NetApp, Inc., Sunnyvale, CA (US)

Inventors: Kartheek Muthyala, Bangalore (IN);
Gaurav Makkar, Bangalore (IN);
Arun Suresh, Bangalore (IN);
Srinivasan Narayanamurthy,

Bangalore (IN)

Assignee: NETAPP, INC., Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 201 days.

Appl. No.: 14/137,706

Filed: Dec. 20, 2013

Prior Publication Data

US 2015/0113010 Al Apr. 23, 2015

Related U.S. Application Data

Continuation-in-part of application No. 14/061,596,
filed on Oct. 23, 2013, now Pat. No. 9,507,800.

Int. CI.
GO6F 17/30

U.S. CL
CPC ... GO6F 17/30076 (2013.01); GO6F 17/30194
(2013.01); GO6F 17/30094 (2013.01); GO6F
17/30182 (2013.01); GO6F 17/30227 (2013.01)

Field of Classification Search
CPC i, GO6F 17/30067; GO6F 17/30194;
GO6F 17/30203; GO6F 17/30156; GO6F
17/30132; GO6F 3/0613:; GO6F 11/2094;
GO6F 17/30182; GO6F 17/30094; GO6F
17/30227; HO4L 41/5041
7077758, 621, 692, 694, 822, 825, 827;

711/114, 138
See application file for complete search history.

(2006.01)

USPC

(56) References Cited
U.S. PATENT DOCUMENTS
5,893,920 A * 4/1999 Shaheen GO6F 12/0813
707/E17.01
6,032,227 A * 2/2000 Shaheen GO6F 12/0813
707/999.202
6,119,151 A * 9/2000 Cantrell GO6F 17/30132
707/E17.01
6,484,177 B1 11/2002 Van Huben et al.
6,625,604 B2* 9/2003 Muntz GO6F 17/30067
7,120,654 B2* 10/2006 Bromley GO6F 11/2066
7,143,146 B2 * 11/2006 Nakatani GO6F 17/30067
707/E17.01
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO 2008029146 A1 * 3/2008 ... GO6F 17/30194
WO 2009005577 A2 1/2009

OTHER PUBLICATTIONS

International Search Report and Written Opinion in International
Application No. PCT/US2014/062012 mailed Jan. 26, 2015.

(Continued)

Primary Examiner — Frantz Coby
(74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP

(57) ABSTRACT

Technology 1s disclosed for managing data 1n a distributed
file system (“the technology™). The technology can gather
metadata information associated with the data stored within
a first file system, store the metadata information 1n asso-
ciation with a data identifier within a second file system,
retrieve the stored metadata information using the data
identifier from within the second file system and locate and
retrieve the data associated with the metadata information
from within first file system.

20 Claims, 10 Drawing Sheets

¢

Stz

)rsua

Raceive Mock 12 of the datz block being zocessear] by a olisnt

¥

rE‘IE

Provice Input stream o aceess dalta stored within the dain blocks sarresponding o the
biock (B

WO

Retrieve the metadzsta information stored in asseciation with the Block (5

¥

630

Hegerest data associated with the black |D fiom the secondany disthibution Tile systam
using the mebrievad metadata inforsation

Y.

N

Provida the data received fom the secondary distributed file system t the cliznt
through the input stream

¥

vl g4)

Shars the received data in the data block corresponding to the block 12

v

- 645

Feamone the marker indlcating bhat the data stored n the Block [D has boarn eedcted
fiom tha primary distributed fila system

y 650

Ratrieve the data Block essodated with the block 1B from the primary disiributed file
syskem

¥

E-'E%

Provide e Saka retrieved o the primary distributs fils system (o the dient thirigh
tha input siream

w660

Clerse inpul siream acoesalng data -

¥

C

Hefurn

US 9,575,974 B2

Page 2
(56) References Cited 2012/0254215 A1* 10/2012 Miyata GO6F 17/30194
707/758
U.S. PATENT DOCUMENTS 2013/0110778 Al 5/2013 Taylor et al.
2014/0188819 Al 7/2014 Bagal et al.
8,078,575 B2* 12/2011 Mehta GOGF 11/2094 2014/0195632 Al 7/2014 Hunter et al.
707/600 2014/0281247 Al 9/2014 Loaiza et al.
8,380,666 R?2 * 2/2013 Ejlrl “““““““““ GO6F 17/30123 2015/0106345 Al 4/2015 Trimble GO6F 17/30156
707/62 1 707/692
S
8,539,174 B2* 9/2013 Hahn ...coooovvveeenn..., GOGF 3/0613 2015/0106420 AL*™ 4/2015 Warteld HOAL %;%i
710/13 .
8,788,455 B2* 7/2014 Mehta ..oovvoo........ GOGF 11/2094 20150106578 AL 422015 Warlieldcooooo.. GO‘SF?% O/fég
707/609
8,990,954 B2 * 3/2015 Cook GO6F 17/30171 2015/0112951 Al 4/2015 Narayanmnurthy et al.
713/164
9,092,451 B1* 7/2015 Djam GO6F 17/30203 OTHER PUBLICATIONS
9,189,495 B1* 11/2015 Hughes GO6F 17/30194 .
| ughes .. Co-pending U.S. Appl. No. 14/061,596, filed Oct. 23, 2013.
2005/0033749 Al 2/2005 M’Zoughi et al. Nof £ ATl dine US Anol No. 14/061 596
2007/0073990 Al 3/2007 Snaman, Jr. et al. ot Ot 4 016 PEIEIE e APPL Y *
2009/0077327 Aj‘ . 3/2009 Hara Leveraging EMC Fast Cache with Oracle OLTP Database Appli-
2009/0307329 Al 12/2009 Olston GO6F 17/30212 cations:, Oct. 2010, pP* 13 6-8. |
709/214 Non-Final Oflice Action on co-pending U.S. Appl. No. 14/061,596
2011/0295949 Al 12/2011 Calsyn et al. dated Dec. 31. 2015,
2011/0313973 A1* 12/2011 Srivas GO6F 17/30194 Final Office Action on co-pending U.S. Appl. No. 14/061,596 dated
707/634 Jul. 7, 2016.
2012/0131275 Al1* 5/2012 Huang GO6F 11/2094
711/114 * cited by examiner

US 9,575,974 B2

Sheet 1 of 10

Feb. 21, 2017

U.S. Patent

{ DdA

o4
ACQON AWYN

GEl

_ NGO AVAMZLYD
NALSAS

= Hz

AL LS
AHYONODTS LNTIIO WALSAS 314 | 021 RTIVEANANE "B B i
NILSAS T 082 0N VIVG Gzl

091 JILNGIHLSIO AMVIARG

. bl

HIOMITN

b

HADVNYIN

e OLS MNOHHO

HADYNYW JHOLS MNDHO

HADVNYIN

LUBISAS WBID

=0t GOl

UIBISAG Ul

US 9,575,974 B2

Sheet 2 of 10

Feb. 21, 2017

U.S. Patent

pOAIDUR] MUY T~y

Vi MO0 1
...................... arz A

AOON JINYN

S4C

00z -

FAOLS MNOHO

SPi g

AATVYNYIN JHOLS HMNNHD

DES0I0
A NYIN AN WEadlyy "/
ALY aHOY
OvZ~" gaoNviva SEC
-y "\ |
UIOIG IADSTUS BUIAL °C
S14M O] Weans inding ansy b - ,. .
F11 SR0U BIBD DUIDUOOSSLIOD , l"
AMBDROU BIBD O IO DUIAA D N
017 A |

S2DOU BIBD DUB (1 OO0 LLIMSNM P

S S0} HO0IT SIIAA 1 NI AYMILYD

2
-
O

U.S. Patent Feb. 21, 2017 Sheet 3 of 10 US 9,575,974 B2

305

-~

META FILE

REC T | NES/Tiel, offset, ien

NS lied, offset, len
NESD/MHed, ofiset, ien
REC 2 | NES://Tied3, offzsel, ien
NS Tiied, offset, len

REC 3 | NRES:/iles, offset, ien

FiG. 3A

U.S. Patent

Feb. 21, 2017 Sheet 4 of 10

US 9,575,974 B2

310

BLOCK ID# METADATA INFORMATION
NES:Tilel, offset, ien
12 NS/ ie?, offset, len
NES:THed, offset, len
13 NS THe S, offset, ien
18 NS/ THed, oitset, len
22 NS /Tilet1(, ofiset, len

FiG. 386

US 9,575,974 B2

Sheet 5 of 10

Feb. 21, 2017

U.S. Patent

NDLSAS
=
O3 1N81d LS50

R
2180 UINes '

(I AS0I

M MOGIG RIED M
DSEINOSSE 212D

y oA

FHOLS HNAHD
YT “

AAVINOIDES &

mww\m

dViN AD0 1Y

FUAON NN

31p -
ooy

HEDM TG

HADYNVIA JdOLS MNOIHD

HIOUNYN | | HIDYNYIA

(i

AVMILYD | IHOVD
0£Y-" 3goNvivag SEY
¥
ozp .

weans indur wioireiep pe

pest O Wesns Inaino sl

WOOIT JOL 1SINDa) DESS weans ¢

4 8ji5 JOj (1} OPON

Rl Rl Rl

E.mmw (I (31 A0 ﬁc_jﬂ.mmmiww

=4 S K MI0IY BeEYy

LIBOAS
IS0 "¢

ANALSAS LNANTD

GUY

U.S. Patent Feb. 21, 2017 Sheet 6 of 10 US 9,575,974 B2

S - BOE 500
C Start } S B

~510
Receaive block 1D of the data block o store data in
Provide ouipul stream to write data [0 slore within the dala block corresponding o the
biook H
. 52
I Raceive data o store within data block corresponding to ine biock 1L
525
Does the raceivad
-~ data include metadata
N ~. Information associated
. with a "special” 7
~gata biock 2~
L eS 535
Store the metadata informalion in association with the bigck 10
Siore ndicator in assaciation with the block {L 1o indicale thal the data o be stored in the data
plock with the Block 1D has been evictad from the primary distribution file system
530}
otore the recaived data in the data biock corresponding 1o the recaived block b

545
Send confirmalion ndicating thal the data o be stored in the dala block with the block
) has been received
, , , , et
-

Close output stream

-y
L
ot |

Return

o’

FiG. 5

U.S. Patent Feb. 21, 2017 Sheet 7 of 10 US 9,575,974 B2

C Start)F,-ma@ﬁ g GO

610
Receive biock 1D of the dala block being accessed by a cliend
| _ | w615
Mrovide input stream 0 access dala stored within the dala blocKks corresponding to the
biock 1D ‘
/ e 620
s the data N
| DOCK cofresponding
N . forecenved Nock D marked 7
‘ as evictedl?
Retrieve the metadata information siored in association with the biock
5 630
Request date associated with the block 1D from the secondary distriibubion file sysiem
using the retneved metadata information
' ¥ ' B35
Provige the data received from the secondary distributed file sysiem to the ciient
through the input stream
‘ 040
Store the received data in the data block corresponding (o (he blogk D
645

Remove the marker Edicating tha thedaa stored in the block ID has been evieted
from the primary distributed file systeim

e~ B 5
Refrigve the dala block associated with the block 1D from the primary distributad fiie
sysiam

. PR . . PR i Far S P W . . PR FAraa . PR . .

o D00
Provide the data retrieved from the primary distributed file system © the chent through
the input stream

~ 660

(lose input stream accessing data

FiG. 6

U.S. Patent Feb. 21, 2017 Sheet 8 of 10 US 9,575,974 B2

705

r?m
Retrieve request (0 copy a portion of data stored in a secondary distributed file system ("DFST)
(o 8 primary DFES

718

Scan namespace maintained by fle system of secondary DFS o gather metadata information
associated with portion of dafa dbeing copied to primary DES

s
Determine siza of data blocks used by primary LES for sionng dala
735
Lietermine size porlion of data being copiad from secondary DES to primary DES

Allocate the portion of data being copled across one of more data blocks, whers each DIoCK's
aliocated portion of data being copied eguals the defermined size of data biocks used by
nrimary DES

W?@{)
From the scanned metadata, gather the metadata information associated with the allocalsd
poriion of dala being copied inio each of the one OF mors data Hocks

o {40

Generate metafis thal inciudes the gathered meladata information divided into one or mors

records, where each record contains the metadata information of the dala being copied info a
corresponding data block

A
e £ AD

For each of the one or more records in the metahie, request the primary DES (o aliocale a data
BIOCK

e i

~or sach of the allocaled data biock, copy ihe meladata formation fromt e correspanding
record and story the metadata information in association with a biock 1D of the allocated data
biock within the primary DRS

] 755
2GR

FiG. 7

§ DIA

US 9,575,974 B2

DONY NI

> | T3 T | 518
—] vEWY] | VAVOVLIW | - LNIWO3S
- L AHIAODE | | L OINMHD | - VivU
% :
7 | GCo e | | 518
| ~ , T , = T I P LNZNDHES
. MY WAV LN g YENIE
w_ | AHAADTEY ANTTH MINNHD =0V S w w\ -
™~ 2 5
y—
— % ®
& @ , e T T T T n
— T e e e T] w . m
P r = s | T w | awoas |
=2 SR PN YAVOV LT | P NSNS
=P : : i : 7
e | AYFACD T HNEHS MNAHO | T o HILSVAL
- S EEEEESEEEEES 7T
. T ATIOA
NOAYTIMOCTE | MIAVIH UILSWA

U.S. Patent

US 9,575,974 B2

Sheet 10 of 10

Feb. 21, 2017

U.S. Patent

e
-

1210BDY YIOMIBN |

6 DA

S40 076

AJOUUBIA

16

{S)I0S3300I

L —
GOG

{S180IAB(]
abrioig

US 9,575,974 B2

1
DISTRIBUTED FILE SYSTEM GATEWAY

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation-in-part of U.S. patent

application Ser. No. 14/061,596, filed Oct. 23, 2013, entitled
“DATA MANAGEMENT IN DISTRIBUTED FILE SYS-

TEMS,” which 1s incorporated herein by reference for all
purposes 1n 1ts entirety.

TECHNICAL FIELD

Various of the disclosed embodiments relate to data
management in distributed file systems.

BACKGROUND

Distributed data processing systems may be used to
process and analyze large datasets. One such framework
used to efliciently process and analyze large datasets 1s
Hadoop, which provides data storage services to clients
using a Hadoop Distributed File System (HDFS) and data
processing services though a cluster of commodity comput-
ers or nodes. The HDFS executes on the cluster of computers
(also called as compute nodes or processing nodes) to enable
client access to the data in the form of logical constructs
organized as blocks, e.g., HDFS blocks. The compute nodes
operate mostly independently, to achieve or provide results
toward a common goal.

In many enterprise data networks, a mix of diflerent
distributed {file systems are being used to manage the data
stored within the networks. For instance, many enterprise
data networks use Network File System (NFS) to provide
data storage services to clients while using HDFS with
Hadoop to provide data processing services for the stored
data. In such networks, to perform data analytics on the
stored data using Hadoop, a new HDFS cluster needs to be
created by copying (or moving) data stored within NFS 1nto
the new HDFS cluster. The newly created HDFS cluster
requires not only dedicated infrastructure (e.g., compute
nodes, storage devices, etc.), but also explicit copy manage-
ment to ensure all the copies of a given data within the
network remain same. Further, in such networks, any data
analytics on the data stored within NFS can only be per-
tformed after the copying (or moving) completes and the data
1s fully available at the new HDFS cluster.

Thus, prior distributed file systems lack eflicient data
management techniques. There exists a need for eflicient
data management techniques that addresses at least some of
the 1ssues raised above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating a distributed pro-
cessing environment 1n which the technology can operate 1n
various embodiments.

FIG. 2 1s a block diagram illustrating writing data from
one distributed file system into another distributed file
system 1n the distributed processing environment, consistent
with various embodiments.

FIG. 3A illustrates an example of a metafile generated by
a scanner module within the distributed processing environ-
ment, consistent with various embodiments.

FIG. 3B illustrates an example of a mapping table con-
taining the block ID of a data block and the corresponding,
metadata information associated with the data to be stored in

10

15

20

25

30

35

40

45

50

55

60

65

2

the data block within the distributed file environment, con-
sistent with various embodiments.

FIG. 4 1s a block diagram illustrating accessing data
stored within one distributed file system using another
distributed file system 1n the distributed processing environ-
ment, consistent with various embodiments.

FIG. 5 1s a flow diagram 1illustrating a method for storing
“special” data block 1n a distributed file system, consistent
with various embodiments.

FIG. 6 1s a flow diagram 1illustrating a method for access-
ing the data of a “special” data block stored 1n a distributed
file system, consistent with various embodiments.

FIG. 7 1s a flow diagram 1llustrating a method for gath-
ering and storing the metadata information used for access-
ing data stored within one distributed file system using
another distributed file system 1n the distributed processing
environment, consistent with various embodiments

FIG. 8 1s a block diagram of an on-disk layout of a
chunkstore of a distributed file system, consistent with
various embodiments.

FIG. 9 1s a block diagram of a computer system as may
be used to implement features of some embodiments of the
disclosed technology.

DETAILED DESCRIPTION

Technology 1s disclosed for managing data 1n a distributed
processing environment (“the technology”). The technology
reduces the infrastructure and time required to copy (or
move) data between diflerent distributed file systems in the
distributed processing environment. The technology facili-
tates this process by gathering metadata information asso-
ciated with the data stored within a secondary distributed file
system, storing the metadata information in association with
a data identifier within a primary distributed file system, and
indicating a completion of data transfer between the difler-
ent distributed {file systems.

Upon recerving a request by the primary distributed file
system for the copied data, the technology facilitates retriev-
ing the stored metadata mmformation from within the primary
distributed file system using the data identifier associated
with the copied data, locating and retrieving the data asso-
ciated with the metadata information from within secondary
distributed file system, and providing the retrieved data to
the requesting entity. In various embodiments, the retrieved
data 1s further stored within the primary distributed file
system, allowing the primary distributed file system to use
its stored copy to respond to future data access requests.
Thus, by fetching and storing only the requested data, the
technology ensures that the space on the primary distributed
file system 1s managed ethciently.

Several embodiments of the described technology are
described 1n more detail in reference to the Figures. Turning
now to Figures, FIG. 1 1s a block diagram illustrating a
distributed processing environment 100 1n which the tech-
nology can operate in various embodiments. The distributed
processing environment 100 includes several client systems
105, a primary distributed file system 115 (where a distrib-
uted file system 1s also simply referred to as a file system),
a secondary distributed file system 160, and a network 110
connecting the client systems 105 and the distributed file
systems 115, 160. As illustrated in FIG. 1, the primary
distributed file system 115 (“primary DFS”) includes a data
node server 120 that stores data received from the client
systems 1035 and facilitates read/write access to the stored
data, and a name node server 145 that manages the
namespace of the file system of the primary DFS 115.

US 9,575,974 B2

3

The primary DFS 113 further includes a file system client
150 that provides an intertace for the client system 105 to
access the primary DFS 115; and a gateway client 155 that
interfaces between the file system client 150 and the sec-
ondary DFS 160 to facilitate copying of data stored in the
secondary DFS 160 to the primary DFS 115. In some
embodiments, the gateway client 155 facilitates data copy-
ing by collecting metadata information associated with the
data stored in the secondary DFS 160 by scanning the file
system namespace of the secondary DFS 160 and providing
the collected metadata information in a form understandable
to the file system client 150. The functionalities of the
gateway client 155 1s described 1n greater detail with refer-
ence to FIGS. 2-4.

Further, the distributed processing environment 100
includes the secondary DFS 160 that stores a set of data
received from the client systems 105. The secondary DFS
160 can be a remote storage system that can be connected to
the primary DFS 115 over NFS, Hypertext Transier Protocol
(HTTP), or another proprietary access protocol. The sec-
ondary DFS 160 can be a storage system of various types,
e.g., NFS, Network attached storage (INAS), Redundant
Array of Independent Nodes (RAIN), a “$/GB” storage, or
any other storage type from a third party. It should be noted
that both the primary DFS 1135 and the secondary DFS 160
allow the client systems 105 to store and manage their data
and that the modifiers “primary” and “secondary” do not
imply any client systems’ 1035 preference in DFS 115, 160
when storing their data. The “primary” designation and
“secondary” designation, used 1n conjunction with the DFSs,
are used for the purpose of drawing a distinction between the
DFS 115 used by the client systems 105 to access data
through and the DFS 160 the client systems 105 used to store
the data within, respectively.

In some embodiments, the primary DFS 1135 can be a

Hadoop Distributed File System (HDFS). The file system
client 150 can be a HDFS client and the blocks of data
received through the file system client 150 can be HDFS
data blocks. For simplicity of discussion, the primary DFS
1135 1s considered to be HDFS, the file system client 150 to
be HDFS clients, and the blocks of data received from and
transmitted to the client systems 105 to be HDFS data
blocks. However, it should be noted that the embodiments
are not restricted to HDFS. In some embodiments, the
secondary DFS 160 can be a Native File System (NFS),
where data 1s stored as one or more data files. For simplicity
of discussion, the secondary DFS 160 1s considered to be
NES and the data received from and transmitted to the client
systems 105 are 1n the form of data files. However, it should
be noted that the embodiments are not restricted to NFS.
The data node 120 coordinates functions relating to
managing data stored imn the HDFS 115. This coordination
function may include servicing a read/write request from the
client systems 105. In FIG. 1, the data node 120 1s illustrated
as a standalone element. However, the data node 120 can be
implemented as a separate computing device or 1n a device
which performs other functions. The data node 120 includes
a gateway manager 130 that monitors the data being stored
and accessed on the data node 120. When metadata infor-
mation 1s received from the gateway client 155, the gateway
manager 130 stores the metadata information 1n the chunk-
store 140, where the metadata information 1s stored in
association with corresponding blocks IDs of one or more
data blocks. The block IDs stored in association with the
metadata information are those of data blocks i1n the data
node 120 1n which the data associated with the metadata
information from NFS 160 are to be stored in.

10

15

20

25

30

35

40

45

50

55

60

65

4

In some embodiments, the gateway client 155 works 1n
coordination with a cache manager 1235 to mark as evicted
the block IDs of data blocks that have metadata information,
gathered from NFS 160, stored 1n the chunkstore 140 while
the data associated with the metadata information 1s stored
in NFS 160. Further, when an access request for a data block
1s received from the client system 105, the gateway manager
130 checks if the block IDs of the requested data blocks are
marked as evicted. If the requested data blocks are marked
as evicted, the gateway manager 130 retrieves the metadata
information stored in association with the block IDs of the
requested data blocks from the chunkstore 140 and generates
data requests from the NFS 160 based on the retrieved
metadata information. When the data node 120 receives the
requested data from the NFS 160, the gateway manager 130
gathers the received data and provides the client system 105
with the requested access to the received data.

In some embodiments, the gateway manager 130 stores
the received data 1n the corresponding data blocks 1n HDFS
115. Further, the gateway manager 130 works 1n coordina-
tion with the cache manager 125 to mark as not evicted the
block IDs of data blocks the received data was stored 1n. The
functionalities of the gateway manager 155 1s described 1n
greater detail with reference to FIGS. 2-4. The cache man-
ager 125 1n the data node 120 facilitates storing the blocks
of data received from the client systems 105 as chunks 1n the
chunkstore 140. In some embodiments, the chunkstore 140
stores the data as “chunks.” A chunk of data 1s, for example,
of smaller size compared to the size of a block of data
received from the client. In HDFS 115, the HDFS data
blocks received from the client systems 105 can typically be
in the order of Gigabytes (GB). However, a chunk, in some
embodiments, 1s typically in the order of Megabytes (MB),
for example, four (4) MB. In some embodiments, a chunk 1s
a unit of storage within the chunkstore 140. A chunk
manager 135 1n the data node 120 converts a block of data
into chunks of data and stores the chunks 1n the chunkstore
140. However, the client systems 105 are agnostic of the
conversion between HDFS blocks and the chunks. The client
systems 1035 provide data to and receive data from the
distributed file system 115 as HDFS blocks.

The chunkstore 140 can include various storage devices,
¢.g., disks, flash memory, solid-state drives (SSDs), tape
storage, E-series storage system products available from
NetApp®, Inc etc. Further, the chunkstore 140 can be
implemented in a RAID configuration to improve reliability,
availability, performance and/or capacity. The NFS 160 can
also include various storage devices, e.g., disks, flash
memory, solid-state drives (SSDs), tape storage.

Turmning now to FIG. 2, FIG. 2 1s a block diagram
illustrating a method for ingesting/writing data files from the
NES 160 into the data node 225 of the HDFS 115 1n the
distributed processing environment 200, consistent with
various embodiments. In some embodiments, the gateway
client 205 can be similar to the gateway client 155 of FIG.
1, the data node 225 can be similar to the data node 120 of
FIG. 1, and the name node 215 can be similar to the name
node 145 of FIG. 1. The gateway client 205 intends to
facilitate copying of data from one distributed file system,
¢.g., NFS 160 of FIG. 1, to another distributed file system,
c.g., HDFS 115 of FIG. 1, 1 the distributed processing
environment 200. In some embodiments, the gateway client
2035 could be iitiated to facilitate copying of one or more
data files by a client system, e.g., client systems 103 of FIG.
1, intending to analyze the data stored within the NFS 160
using the HDFS 115. In some embodiments, the gateway
client 205 could be mitiated to facilitate copying of one or

US 9,575,974 B2

S

more data files by a user intending to analyze the data stored
within the NFS 160 using the HDFS 115.

The gateway client 205 utilizes a scanner 210 to scan the
namespace of NFS 160 and generate a metafile containing
the metadata information associated with the data files being
copied from NFS 160 to HDFS 115. In some embodiments,
in the metafile, the gateway client 205 groups the metadata
information associated with the data files into one or more
records, where each record corresponds to a data block in
HDEFS 115. In some embodiments, the total size of the data
files 1included in a record 1s approximately equal to the size
of a data block 1n HDFS 115. For example, 11 the HDFS 115
1s configured to handle data blocks of size 1 GB, the gateway
client 205 groups the metadata information of one or more
copied data files such that the total size of the data files
corresponding to the metadata information 1s approximately
equal to 1 gigabyte (GB).

Turning briefly to FIG. 3A, FIG. 3A illustrates an example
of a metafile generated by scanner 210, where a sequence of
multiple records, each corresponding to a HDFS 115 data
block 1n size, are created for the data files “filel” through
“file5” being copied from NFS 160 to HDFS 115. Each
record contains the metadata information of the files being
copied, for e.g., the pathname of the files, the portion of the
file corresponding to the record, etc. For example, mn FIG.
3A, the “Recl” and “Rec2” each contain a portion of the
data file “file3”, where the portion of the data file corre-
sponding to each record 1s indicated by an ofiset from which
to start copying and the length of data to copy from the
offset. In some embodiments, the metadata information can
also be interpreted, used, understood, or decoded by the NFS
160. In various embodiments, the metadata information can
be part of metadata of the data files stored 1n NFS 160. In
some embodiments, the metadata information enables NFS
160 to locate and read the requested data files, as described
with reference to FIG. 4.

Returming now to FIG. 2, in some embodiments, the
gateway client 205, working in coordination with the HDFS
client (not shown 1n FIG. 2), similar to the HDFS client 150
of FIG. 1, requests the name node 2135 to allocate one or

more data blocks to store the data from the data files being
copied from NFES 160 to HDFS 115. In some embodiments,

the HDFS client 150 utilizes an API from the Hadoop API
library to request the name node 213 for allocation of the one
or more data blocks. In some embodiments, the HDFS client
150 utilizes the DFSOuputStream API from the Hadoop API
library to request the name node 2135 to allocate the one or

more data blocks for storing the data being copied from NFS
160 to HDFS 115.

The DFSOutputStream API allows the HDFS client 150
to cache the data being written to HDES 115 1nto a tempo-
rary local file. The DFSOutputStream API transparently
redirects the data being written to a temporary local file.
When the local file accumulates data worth at least one
HDEFES block size, DFSOutputStream API contacts the name
node 215 to allocate a block for writing the accumulated data
to a data node 225. In some embodiments, the HDFS client
150 utilizes a modified DFSOutputStream API to allocate
data blocks based on the metadata information of the data
being copied from NFS 160 to HDFS 115.

In some embodiments, the DFSOutputStream API utilizes
the metadata information, gathered by the scanner 210,
corresponding to the data being copied from NFS 160 to
HDFS 1135 to determine the size of the data being copied.
The DFSOutputStream API utilizes the determined size to
request the name node 215 to allocate one or more data
blocks for storing the data being copied from NFS 160 to

10

15

20

25

30

35

40

45

50

55

60

65

6

HDEFES 115. The DFSOutputStream API does not require the
data to be copied and cached by the HDFS client 150 belore
requesting the name node 2135 to allocate the data blocks for
storing the data being copied.

In some embodiments, in response to data block alloca-
tion request, the name node 215 utilizes a block map 220 to
identify the data node 225 and the data blocks within the
data node 225 to allocate for storing the data from the copied
data files. The block map 220 maintains a list of data nodes
within the distributed processing environment 200 and the
data blocks within each of the data nodes with their status
information indicating whether the block 1s allocated or not.

In some embodiments, the identified data node 225 1s
provided to the gateway client as a data node 1dentification
number (“data node ID”) and the data blocks determined
within the data node 223 1s provided to the gateway client
205 as a block i1dentification number (“block ID”). In some
embodiments, the name node maintains a mapping between
the names of the files being stored in the allocated data
blocks, allowing client systems 105 to retrieve the data
associated with the stored files from HDFS 1135 using the
names of the stored {iles.

In some embodiments, the gateway client 205, working 1n
coordination with the HDFS client, sends a write request
along with the received block ID to the data node 225
associated with the received data node ID. In some embodi-
ments, the data node 225, upon receiving the write request
and the block ID, generates and provides an output stream
to the gateway client 205 to allow the gateway client 205 to
copy the data to be stored within the data block correspond-
ing to the block ID.

In some embodiments, the gateway client 205, upon
receiving the output stream, gathers metadata information
corresponding to one of the records 1n the metafile generated
by the scanner 210 and writes the metadata information to
the output stream. In some embodiments, the gateway client
205 1ncludes a delineator prefix, e.g., “special data block”,
to indicate to the data node 223 that a “special” data block
1s being written and that the data being written to the output
stream contains metadata information not intended to be
stored as data within the data block (associated with the
block ID).

In some embodiments, the gateway manager 240 analyzes
the data being written to the output stream to determine 1 a
“special” data block 1s being written. In some embodiments,
the gateway manager 240 parses the data being written to the
output stream for delineators, e.g., “special data block”, to
determine that a “special” data block 1s being written and
that the data being written to the output stream contains
metadata information not imtended to be stored as data
within the data block (associated with the block ID).

In some embodiments, when the gateway manager 240
detects a “special” data block, the gate manager 240 stores
the metadata information, written to the output stream, 1n a
mapping table along with the corresponding block ID of the
data block associated with the output stream. Turning brietly
to FIG. 3B, FIG. 3B illustrates an example of a mapping
table contaiming the block ID and the corresponding meta-
data information associated with the data being stored 1n the
data block with the block ID.

Returning now to FIG. 2, in some embodiments, the
gateway manager 240, working in coordination with the
chunkstore manager 245, stores and manages the mapping
table in the chunkstore 250. In some embodiments, the
gateway manager 240, working in coordination with the
cache manager 233, stores an indicator in conjunction with
the block ID of the data block that received the metadata

US 9,575,974 B2

7

information to indicate that the data block has been evicted
from the data node 225. In some embodiments, the gateway
manager 240 utilizes the indicator to determine which data
blocks contain their associated data within HDFS 115 and
which ones do not.

When a “special” data block 1s detected, 1n some embodi-
ments, the gateway manager 240 prevents the data recerved
through the output stream to be stored within the data block
associated with the output stream. After storing the metadata
information associated with the “special” data block 1n the
mapping table, 1n some embodiments, the gateway manager
240 notifies name node 2135 that the data to be stored in the
data block associated with the block ID has been received.

In some embodiments, the data node 225 utilizes an API
from the Hadoop API library to generate and provide an
output stream to the gateway client 205, where the gateway
client 205 utilizes the output stream to copy the data to the
data node 225. In some embodiments, the data node 225
utilizes the FSDataOutputStream API from the Hadoop API
library to generate and provide an output stream to the
gateway client 205. In some embodiments, the data node
225 utilizes a modified FSDataOutputStream API to deter-
mine whether a “special” data block 1s being written and to
write the “special” data block 1n the chunkstore 250. In some
embodiments, the FSDataOutputStream API 1s further modi-
fied to notily the name node 215 that the data has been
received after writing the “special” data block associated
with the data 1n the chunkstore 250. In some embodiments,
the FSDataOutputStream API utilizes the finalizeBlock API
from the Hadoop API library to send the data received
notification to the name node 213.

As discussed above, the name node 215 maintains a
mapping between the names of the files being stored in the
allocated data blocks. In some embodiments, the name node
215 generates the mapping between the names of stored files
and allocated data blocks only after receiving a confirmation
from the data node 225 that the data to be stored in the
allocated data blocks has been received. Once the transter of
metadata information 1s completed, 1n some embodiments,
the data node 225 closes the output stream. Accordingly, the
method for ingesting/writing data files from the NFS 160
into the data node 2235 of the HDFS 115 1n the distributed
processing environment 200 has been described above.

Turning now to FIG. 4, FIG. 4 1s a block diagram
illustrating a method for reading data of a data block using
metadata information ingested/stored 1n association with the
data block from NFS 160 into the data node 225 of HDFS
115 1n the distributed processing environment 200. In some
embodiments, the client system 405 can be similar to the
client system 105 of FIG. 1, the data node 420 can be similar
to the data node 225 of FIG. 2, the name node 410 can be
similar to the name node 215 of FIG. 2, and the NFS storage
system 425 can be similar to the NFS storage system 160 of
FIG. 1.

The client system 405 mtends to access (e.g., read) a file’s
data (e.g., file “F” 408) from the distributed file system, e.g.,
HDFES 115 of FIG. 1, to which the file’s data was copied
from another distributed file system, e.g., NFS 160 of FIG.
1, upon a client system’s request 405 1n the distributed
processing environment 200. In some embodiments, the
client system 405, working 1n coordination with the HDFS
client (not shown in FIG. 4), similar to the HDFS client 150
of FIG. 1, requests the name node 410 to provide the block
IDs of the one or more data blocks allocated to store the data
from the data file copied from NFS 160 to HDFS 115.

In some embodiments, 1n response to request for block
IDs allocated for a data file, the name node 410 utilizes the

10

15

20

25

30

35

40

45

50

55

60

65

8

block map 415 to determine the data node 420 and the block
IDs of data blocks within the data node 420 allocated for
storing the data file and return the determined data node 420
and block IDs to the client system 405. As discussed above,
in some embodiments, the name node 410 maintains a
mapping between the names of the stored data files and the
block IDs of data blocks allocated for storing the data files,
allowing the client system 4035 to retrieve the block IDs
associated with the files stored in HDFS 113 using the names
ol the stored files.

Upon recerving the requested information, the client sys-
tem 405, working 1n coordination with the HDFS client,
sends a read request along with the received block ID to the
data node 420 associated with a received data node ID. In
some embodiments, the data node 420, upon receiving the
read request and the block ID, generates and provides an
input stream to the client system 405 to allow the client
system 405 to read the data from data block corresponding
to the block ID. In some embodiments, the gateway manager
430 analyzes the block ID of data block being requested to
determine whether the data block associated with block 1D
has been marked as evicted from HDFS 115.

When the block ID associated with the data block 1s

marked as evicted, 1n some embodiments, the gateway
manager 430 further analyzes the block 1D of the requested
data block to determine whether the block ID 1s associated
with a “special” data block. In some embodiments, the
gateway manager 430 utilizes the mapping table, similar to
the mapping table 310 in FIG. 3B, which contains the
mapping between block IDs of data blocks and their corre-
sponding metadata information, to determine 1f a request
data block 1s a “special” data block.

In some embodiments, when the gateway manager 430
detects an access request for an evicted “special” data block,
the gate manager 430 gathers the metadata information
associated with the “special” data block from the mapping
table 310 and generates one or more read request corre-
sponding to each of the data files being read from NFS 425.
For example, using the mapping table 310 in FIG. 3B, the
gateway manager 430 can gather data for data block with

block ID “13”. The gateway manager 430 utilizes the
pathname, offset and length of NES 425 data files “file3” and
“filed” associated with the requested data block to generate
read requests for the data files “file3” and “filed” from NFS
425 using the appropriate communication protocol (e.g.,
NFES Protocol).

When the gateway manager receives the requested data
files from NFS 4235, the gateway manager 430 provides the
received data files to the client 405 through the input stream.
In some embodiments, the gateway manager 430 stores the
data from the received data files within the data block
assoclated with the block ID. In some embodiments, the
gateway manager 430, working in coordination with the
chunkstore manager 440, stores the received data files
within the data block i1n the chunkstore 445. Additional
details of how the data block 1s stored within the chunkstore
445 1s described with reference to FIG. 8.

After storing the received data files in the data block
within HDFS 115, in some embodiments, the gateway
manager 430, working in coordination with the cache man-
ager 435, removes any indicator stored in conjunction with
the block ID of the data block that indicates that the data

block has been evicted from the data node 420. After storing
the received data files 1n the data block within HDFS 115, in

some embodiments, the gateway manager 240 removes any

US 9,575,974 B2

9

entry associated with the block ID of the data block from the
mapping table 310 used to determine 11 a given data block
1s a “special” data block.

When the data node 420 receives a data access request for
a data block with a block ID that has no entry 1n the mapping
table 310, the data node 420, working in coordination with
the chunkstore manager 440, searches the chunkstore 445 of
the data node 420 to provide the requested data block. Once
the requested data block 1s read by the client system 403, in
some embodiments, the data node 420 closes the input
stream, preventing further access to the requested data block
by the client system 405. Accordingly, the method for
reading data of a data block using metadata information
ingested/stored 1n association with the data block from NES
160 1nto the data node 2235 of HDFS 115 1n the distributed
processing environment 200 has been described.

FIG. 5 1s a flow diagram 1illustrating a method 500 for
storing “‘special” data block 1 a primary DSP, consistent
with various embodiments. In various embodiments, the
method 500 may be executed 1n a distributed processing
environment, e.g., distributed processing environment 100
of FIG. 1. The method 500 starts at block 505. At block 510,
a data node of the primary DSP receives a block ID of the
data block used to store data in. At block 515, the data node
provides an output stream to write the data to be store within
the data block corresponding to the received block ID.

At block 520, the data node receives the data to be stored
within the data block, corresponding to the received block
ID, through the output stream. At decision block 3525, the
data node determines if the received data includes metadata
information associated with a “special” data block. As
discussed above with reference to FIGS. 2 and 3, 1n some
embodiments, the data node can determine if the received
data 1s associated with a “special” data block by parsing for
delineators, for e.g., string “special data block”, included
within the received data.

If the recerved data does not include metadata information
associated with a “special” data block, at block 530, the data
node stores the receirved data 1n the data block corresponding,
to the received block ID within the primary DFS. On the
other hand, 1f the received data does include metadata
information associated with a “special” data block, at block
535, the data node stores the received metadata information
in association with the block ID 1n a mapping table similar
to that described with reference to FIG. 3B.

At block 540, the data node stores an indicator in asso-
ciation with the block ID to indicate that the data to be stored
in the block ID has been evicted from the primary DFS. At
block 545, the data node sends a confirmation to a name
node of the primary DFS indicating that the data to be stored
within the data block associated with the received block 1D
has been received. At block 550, the data node closes the
output stream. The method returns at block 355.

Those skilled 1n the art will appreciate that the logic
illustrated 1n FIG. 5 and described above, and 1n each of the
flow diagrams discussed below, may be altered in various
ways. For example, the order of the logic may be rearranged,
substeps may be performed in parallel, 1llustrated logic may
be omitted, other logic may be included, eftc.

FIG. 6 1s a flow diagram illustrating a method 600 for
accessing the data of a “special” data block stored i a
primary DSP, consistent with various embodiments. In vari-
ous embodiments, the method 600 may be executed in a
distributed processing environment, e.g., distributed pro-
cessing environment 100 of FIG. 1. The method 600 starts
at block 605. At block 610, the data node receives a block
ID of the data block being accessed by a client. At block 615,

10

15

20

25

30

35

40

45

50

55

60

65

10

the data node provides the client with an input stream to
access the data stored within the data block corresponding to

the received block ID.

At decision block 620, the data node determines if the
data block corresponding to received block ID 1s marked as
evicted. If the data node determines that the data block
corresponding to received block 1D 1s marked as evicted, at
block 625, the data node retrieves the metadata information
stored 1n association with the block ID from a mapping table
similar to that shown i FIG. 3B. At block 630, using the
retrieved metadata information, the data node requests the

secondary distributed file system to provide the data asso-

ciated with the block ID.

At block 635, the data node provides the data received
from the secondary distributed file system to the client
through the input stream. At block 640, the data node stores
the received data in the data block corresponding to the
block ID within the primary distributed file system. At block
645, the data node removes any marker indicating that the
data associated with the block ID has been evicted from the
primary distributed file system.

Referring back to the decision block 620, 1f the data node
determines that the data block corresponding to received
block ID 1s not marked as evicted, at block 6350, the data
node retrieves the data block associated with the block 1D
from the primary distributed file system. At block 655, the
data node provides the client with the data retrieved from the
primary distributed file system through the input stream. At
block 660, the data node closes the input stream. The method
returns at block 665. The gathering and storing of metadata
information used 1n the methods 500 and 600 1s described
with reference to FIG. 7 below.

FIG. 7 1s a flow diagram illustrating a method 700 for
gathering and storing the metadata information used 1n the
methods 500 and 600, consistent with various embodiments.
In various embodiments, the method 700 may be executed
in a distributed processing environment, e.g., distributed
processing environment 100 of FIG. 1. The method 700
starts at block 705. At block 710, a gateway client receives
a request to copy a portion of data stored in a secondary
distributed file system (“DFS”) to a primary DFS. At block
715, the gateway client scans the namespace maintained by
file system of secondary DFS to gather metadata information
associated with portion of data being copied to primary DFS.

At block 720, the gateway client determines the size of
data blocks used by primary DFS for storing data. For
example, HDFS 115 uses a data block size of 1 GB to store
data. At block 725, the gateway client determines the size of
portion of data to be copied from secondary DFS to primary
DFS. At block 730, the gateway client allocates the portion
of data to be copied across one or more data blocks, where
cach block’s allocated portion of data to be copied equals the
determined size of data blocks used by primary DFS.

At block 735, using the scanned metadata, the gateway
client gathers the metadata information associated with the
allocated portion of data to be copied into each of the one or
more data blocks. At block 740, the gateway client generates
metafile that includes the gathered metadata information
divided into one or more records, where each record con-
tains the metadata information of the data being copied into
a corresponding data block.

At block 745, for each of the one or more records 1n the
metafile, the gateway client requests the primary DFS to
allocate a data block. At block 750, for each of the allocated
data blocks, the gateway client copies the metadata infor-
mation from the corresponding record and stores the meta-

US 9,575,974 B2

11

data information in association with a block ID of the
allocated data block within the primary DFS. The method
returns at block 755.

FIG. 8 1s a block diagram of an on disk layout 800 of a
chunkstore 140 of a distributed file system 115 of FIG. 1,
consistent with various embodiments. As described with
reference to FIG. 1, in some embodiments, the chunkstore
140 can include various storage devices, e.g., disks, flash
memory, solid state drives (SSDs), tape storage, E-series
storage system products available from NetApp®, Inc efc.
For simplicity it 1s considered that the chunkstore 140
includes disks.

In some embodiments, the on-disk layout 800 of the
chunkstore 140 1s implemented as multiple volumes 805. A
volume comprises a subset of disks of the chunkstore 140,
and acts as an individual data container, e.g., chunkstore
140. The volume 805 may include a plurality of segments,
wherein one segment 1s a master segment 810 and the other
segments are data segments 815. Each segment may be
formed from a range of bytes within a logical unit number
(LUN) 860 constructed from one or more disks of the
storage devices of chunkstore. In some embodiments, a
LUN 1s a logical representation of storage. The LUN appears
like a hard disk to a client. In some embodiments, a LUN
appears like a file inside of a volume. A LUN range 865 thus
defines a location of a segment within the volume 805. In
some embodiments, the LUN range 865 may be a contigu-
ous range of bytes within a LUN 860, although 1t will be
understood to those skilled 1n the art that the range of bytes
need not be contiguous. That 1s, instead of a physical range
of disk space (e.g., disk blocks) constituting LUN 860, a
virtual range of disk space could constitute the LUN,
wherein the disk blocks of the virtual range of disk space
may be written anywhere on disk (e.g., by a write-anywhere
file system) and organized as LUN range 865 by, e.g.,
linking of the blocks throughout the storage array.

Accordingly, the volume 805 may contain multiple LUN
ranges 863 for data and master segments of the volume. A
segment does not have to be contained within the same LUN
860 to form the volume 805. That 1s, different segments (i.e.,
different LUN ranges 865) of different LUNs 860 may be
organized as the volume 805. As an example, the volume
may constitute four segments formed from two LUNs 860,
wherein three of the segments may be formed from a first
LUN and one of the segments may be formed from a second
LUN. As a result, a size or capacity of the volume may be
grown or shrunk quickly and etliciently. For instance, to
grow the capacity of the volume, a system administrator
need only add more data segments 815 to the volume. The
various segments of the various LUNs 860 may then be
organized as the volume 805 using 1dentifiers, as discussed
turther herein.

In some embodiments, each data segment 8135 has an
on-disk layout organized as several fields, including a header
field 840, a chunk metadata field 845, a chunk field 850 and
a recovery area field 8335. As described above, a chunk 1s a
unit of storage within the on-disk layout of the chunkstore
140. The data segments 815 of volume 805 are provided to
allocate, store, retrieve and recover chunks, including their
data and metadata. To that end, the header ficld 840 gener-
ally contains information about the data segment, including
a size ol the segment, a size of the chunk(s) stored within the
segment, a storage location of different components/areas of
the segment (1.e., the LUN within which the segment 1s
stored) and the volume to which the segment belongs.

Each data segment 1s associated with other data segments
to form the volume using various identifiers contained in the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

header field 840. One such identifier 1s a LUN 1dentifier
(LUN 1d) that provides the association of the data segment
to a LUN. The LUN ID includes an oflfset within the LUN
and a size of the segment constituting the LUN range.
[lustratively, the LUN 1d 1s located 1n the header field 840
of data segment 815 because that LUN 1d may be different
for each segment. Another identifier 1s a volume 1dentifier
(volume 1d) that, among other things, operates to associate
the data segments collectively as volume 805.

The chunks are stored in the chunk field 850 of the data

segment 815. As used herein, allocation of a chunk denotes
adding a chunk to the chunk field 850 and de allocation of
a chunk denotes deleting or removing a chunk from the
chunk field 850. Once written and allocated, a chunk may
not be modified (written again); 1t can only be deleted/
deallocated. Therefore, a simple chaining of chunks may be
all that 1s needed. To modily its data content, the chunk 1s
deallocated (deleted) and then allocated (written); that 1s, the
chunk 1s not modified 1n place. Metadata 1s provided for
managing and tracking the allocation/deallocation of chunks
within the chunk field 850 of the data segment 815. The
chunk metadata information (1.e., allocation/deallocation
information) 1s stored in the chunk metadata field 845. In
some embodiments, chunk metadata 1s stored 1n the chunk
metadata field 845 for each corresponding chunk stored in
the chunk field 850. Each chunk metadata may specily
whether the corresponding chunk has been allocated (or
deallocated) and, 1t allocated, to which client or application
it has been allocated. Thus, the client that allocated or
deallocated the corresponding chunk may be identified by
the chunk metadata.

The recovery area field 855 contains recovery information
that 1dentifies any change made to the chunk metadata. In
some embodiments, the recovery information includes a
transaction identifier that uniquely identifies the recovery
information, an action (e.g. an allocation or deallocation
operation) and a checksum for use 1n error correction during
replay/recovery of checksum-related data. The allocation or
deallocation operation, including a change of state, of a
chunk 1n the data segment 815 1s written to the recovery area
ficld 855. A change of state of the chunk denotes a change
or transition to the chunk metadata of the chunk; the
allocation/deallocation of a chunk transitions through cer-
tain states, for example, partially allocated, partially filled,
not yet finalized, allocated, and deallocated.

In some embodiments, a data segment 815 1s not depen-
dent upon (and thus 1s unaware of the presence of) another
data segment within a volume; the data segments of the
volume are totally 1solated. Accordingly, the data segment
815 may be defined as a fault boundary, which means that
if a failure occurs to the segment, the failure i1s totally
contained within the segment. Such a fault boundary elimi-
nates a single recovery area (and single point of failure) for
an entire volume. Only the master segment 810 1s aware of
the presence other data segments 815 in the volume 805.

In some embodiments, the master segment 810 contains
information suilicient to organize all of the data segments
within the volume. The organization of the volume 805
ensures that each data segment 815 1s independent of other
data segments and, 11 a failure occurs on a storage device or
LUN range 863 that constitutes the particular data segment,
the failure 1s 1solated within that data segment 8135. Although
this organization advantageously obviates the destruction of
the volume in response to a failure of a data segment, the
content of the failed data segment can still be recovered
using error detection and correction techmques (e.g. RAID)
on the storage devices 1n the chunkstore 140.

US 9,575,974 B2

13

In some embodiments, the master segment 810 has an
on-disk layout that 1s generally similar to that of the data
segment 815. That 1s, the master segment 810 1s organized
as several fields, including a header field 820, a chunk
metadata field 825, a chunk field 830 and a recovery area
ficld 835. The header ficld 820 generally contains metadata
information about the master segment, including a size of
the segment, a storage location of the segment (e.g., the
LUN ID within which the segment 1s stored) and the volume
(ID) to which the segment belongs. The chunk metadata
ficld 825 1dentifies changes (e.g., allocation or deallocation)
to the master segment 810 and the recovery area field 835
logs those changes. However, the chunk field 830 of the
master segment 810 1s formatted to include a master header
sub-field 870 and a block layout sub-field 875 pertaining to
the layout of a block (e.g. a HDES data block).

In some embodiments, a block 1s a logical construct that
resides 1n volume 805 and includes a collection of chunks.
The si1ze of a block can vary, e.g., the block can include one
chunk or a substantially large number of chunks. A chunk
may be allocated to a block; otherwise, the chunk 1s freed
(e.g., deallocated). The allocation/deallocation imnformation
of a chunk 1s tracked and managed at the data segment level
and, thus, 1s not maintained 1n the master segment 810.

The chunks stored on a data segment 815 may be chained
(linked) together to form blocks of the volume 805; 1llus-
tratively, the master segment 810 contains block layout
information for the blocks contained in its volume. In some
embodiments, the chunks stored in the data segment 8135
may be organized as blocks and information (metadata)
related to the data/chunks of blocks contained within the
data segment may be represented as a block layout. Note that
the block layout contains a description of the blocks that are
stored 1n a particular data segment 815 of the volume 805,
1.¢., each data segment 8135 has 1ts own block layout. Note
turther that a block may generally span one data segment (a
block generally does not contain chunks from diflerent
segments). Thus, the block layout information may be
provided per data segment.

In some embodiments, the master header sub-field 870
contains information such as the number of data segments
815 1n the volume 805, the number of block layouts for the
data segments 815 and the oflset at which each block layout
starts. The block layout sub-field 875 contains block layout
information, including client-specific metadata, for all
blocks that are stored within a corresponding data segment
815. Assume a client requests writing of a block; the block
layout information may include an identification of the block
(block 1d), the size of the block, client (user) permissions and
checksum of the data of the block. In an embodiment, the
block layout sub-field 875 may include information (e.g.,
metadata) that specifies the linking of chunks of a block via
pointers to the chunks of the block, as well as a 64-bit block
1d that uniquely 1dentifies/names the block. The sub field 875
may also contain information as to whether the block 1s
allocated or deallocated and information about the block
layout on the segment.

In some embodiments, alignment of the various fields of
the master and data segments of a volume may provide
substantial improvement to read/write performance of the
chunkstore. The fields (e.g., header, chunk metadata, chunk,
and recovery area) ol the master and data segments are
discrete disk locations (e.g., sectors) within the LUNs 860 of
the disks. Starting oflsets of these fields may be aligned to,
¢.g., a stripe width across the disks of a RAID group, to
ensure that only required information 1s read/written when
accessing a stripe. For example, 1f the stripe width 1s a

10

15

20

25

30

35

40

45

50

55

60

65

14

multiple of the disk sector size (e.g., 512 KB), the starting
oflsets may be multiples of 512K. In particular, the starting
oflsets of one or more ficlds of the segments may be aligned
with the striped width so that all of the required information
from the field(s) may be accessed with, e.g., one read access.

FIG. 9 1s a block diagram of a computer system as may

be used to implement features of some embodiments of the
disclosed technology. The computing system 900 may
include one or more central processing units (“processors”)
905, memory 910, input/output devices 9235 (e.g., keyboard
and pointing devices, display devices), storage devices 920
(e.g., disk drives), and network adapters 930 (e.g., network
interfaces) that are connected to an interconnect 915. The
interconnect 915 1s 1llustrated as an abstraction that repre-
sents any one or more separate physical buses, point to point
connections, or both connected by appropriate bridges,
adapters, or controllers. The interconnect 915, therefore,
may include, for example, a system bus, a Peripheral Com-
ponent Interconnect (PCI) bus or PCI-Express bus, a Hyper-
Transport or industry standard architecture (ISA) bus, a
small computer system interface (SCSI) bus, a umversal
serial bus (USB), IIC (I12C) bus, or an Institute of Electrical
and Flectronics Engineers (IEE H) standard 1394 bus, also
called “Firewire”.
The memory 910 and storage devices 920 are computer-
readable storage media that may store instructions that
implement at least portions of the described technology. In
addition, the data structures and message structures may be
stored or transmitted via a data transmission medium, such
as a signal on a communications link. Various communica-
tions links may be used, such as the Internet, a local area
network, a wide area network, or a point-to-point dial-up
connection. Thus, computer readable media can include
computer-readable storage media (e.g., “non transitory”
media) and computer-readable transmission media.

The instructions stored in memory 910 can be imple-
mented as soltware and/or firmware to program the proces-
sor(s) 905 to carry out actions described above. In some
embodiments, such software or firmware may be mitially
provided to the processing system 900 by downloading 1t
from a remote system through the computing system 900
(e.g., via network adapter 930).

The technology introduced herein can be implemented by,
for example, programmable circuitry (e.g., one or more
microprocessors) programmed with software and/or firm-
ware, or entirely 1 special-purpose hardwired (non-pro-
grammable) circuitry, or 1n a combination of such forms.
Special-purpose hardwired circuitry may be in the form of,
for example, one or more ASICs, PLDs, FPGAs, etc.

Reference 1n this specification to “one embodiment™ or
“an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment 1s included 1n at least one embodiment of the disclo-
sure. The appearances of the phrase “in one embodiment™ 1n
various places 1n the specification are not necessarily all
referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described
which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which
may be requirements for some embodiments but not for
other embodiments.

The terms used 1n this specification generally have their
ordinary meamngs in the art, within the context of the
disclosure, and 1n the specific context where each term 1s
used. Certain terms that are used to describe the disclosure
are discussed below, or elsewhere 1n the specification, to

US 9,575,974 B2

15

provide additional guidance to the practitioner regarding the
description of the disclosure. For convenience, certain terms
may be highlighted, for example using italics and/or quota-
tion marks. The use of highlighting has no intfluence on the
scope and meaning of a term; the scope and meaning of a
term 1S the same, 1n the same context, whether or not it 1s
highlighted. It will be appreciated that the same thing can be
said 1 more than one way. One will recognize that
“memory” 1s one form of a “storage” and that the terms may
on occasion be used interchangeably.
Consequently, alternative language and synonyms may be
used for any one or more of the terms discussed herein, nor
1s any special significance to be placed upon whether or not
a term 1s elaborated or discussed herein. Synonyms for
certain terms are provided. A recital of one or more syn-
onyms does not exclude the use of other synonyms. The use
of examples anywhere 1 this specification including
examples of any term discussed herein 1s illustrative only,
and 1s not intended to further limit the scope and meaning of
the disclosure or of any exemplified term. Likewise, the
disclosure 1s not limited to various embodiments given 1n
this specification.
Without intent to further limit the scope of the disclosure,
examples of instruments, apparatus, methods and their
related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may
be used 1n the examples for convenience of a reader, which
in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used
herein have the same meaning as commonly understood by
one of ordinary skill mn the art to which this disclosure
pertains. In the case of conflict, the present document,
including definitions will control.
The above description and drawings are 1illustrative and
are not to be construed as limiting. Numerous specific details
are described to provide a thorough understanding of the
disclosure. However, in certain 1instances, well-known
details are not described 1 order to avoid obscuring the
description. Further, various modifications may be made
without deviating from the scope of the technology. Accord-
ingly, the technology 1s not limited except as defined by the
appended claims.
What 1s claimed 1s:
1. A method, comprising:
receiving a request, by a data node server, to access data
through a first distributed file system, the request
including a first data 1dentifier associated with the data
for accessing the data through the first distributed file
system; wherein the recerved first data identifier 1s used
by the data node server to determine that data associ-
ated with the first identifier has been evicted from the
first distributed file system:;
identifying, utilizing the received first data identifier, a
second data identifier associated with the data identified
as being evicted from the first file system, the second
data identifier being stored within the first distributed
file system and utilized for generating a request for
accessing the data evicted from the first file system and
stored within a second distributed file system;

retrieving, utilizing the i1dentified second data identifier,
the data from within the second distributed file system:;

removing any indication that the data retrieved from the
second distributed file system has been evicted from the
first distributed file system:;

converting the retrieved data from a first format of the

second distributed file system to a second format of the
first distributed file system:;

5

10

15

20

25

30

35

40

45

50

55

60

65

16

storing, by a gateway manager in the data node server, the
converted data within the first distributed file system,
wherein the stored data 1s retrieved from within the first
distributed file system 1n response to another request
for the data; and

providing access to the converted retrieved data through
the first distributed file system.

2. The method of claim 1, further comprising:

recerving a request to store the data within the first file
system, the request to store the data including the
second data 1dentifier associated with the data;

storing the second data 1dentifier associated with the data
within the first distributed file system; and

storing information indicative of the data being evicted
from the first distributed file system.

3. The method of claim 1, wherein the first distributed file
system and the second distributed file system are different
types of file systems.

4. The method of claim 3, wherein the first distributed file
system 15 a Hadoop Distributed File System (HDEFS),
wherein the second distributed file system 1s a Network File
System (NFS).

5. The method of claim 4, wherein the NES stores the data
in the first format, wherein the first format 1s a file level
format and the HDFS stores the data in the second format,
wherein the second format 1s a block level format.

6. The method of claim 5, wherein the first data identifier
includes a data block 1dentifier (ID), wherein the second data
identifier includes a file pathname.

7. The method of claim 1, wherein the second data
identifier includes metadata information that enables the first
distributed file system to locate and retrieve the requested
data from the second distributed file system.

8. The method of claim 5, wherein the second data
identifier stored in the first distributed file system includes
one or more sub data identifiers, each of the sub data
identifiers corresponding to a portion of the data stored
within the second distributed file system.

9. A system, comprising:

a data node to receive a request to copy data from a first
distributed file system to a second distributed file
system:

a gateway client to gather metadata information associ-
ated with the data stored within the first distributed file
system, the metadata mformation including informa-
tion to locate and retrieve the requested data from
within the first distributed file system; wheremn the
gateway client marks data i1dentifiers of data blocks as
being evicted when metadata immformation 1s stored
within the first distributed file system but data associ-
ated with the data identifiers 1s stored at the second
distributed file system;

a gateway manager 10:
store the gathered metadata information 1n association

with a data identifier within the second distributed
file system, the data identifier being used to request
access to the data via the second distributed file
system:

a chunk store manager to convert the retrieved data from
a first format to a second format;

the gateway manager further to store the converted data
within the second file system, wherein the stored data
can be retrieved from within the second distributed file
system 1n response to another request for the data;
wherein the gateway manager in response to the
another request determines that data identifier in the
other request 1s marked as being evicted from the first

US 9,575,974 B2

17

distributed file system, retrieves metadata information
from the first distributed file system; and generates a
request for the data using the retrieved metadata infor-
mation to request the data from the second distributed
file system; and

the data node further to send a confirmation indicating a

completion of the data copy request; wherein the data
node stores.

10. The system of claim 9, further comprising:

the data node to receive a request to access the data

through the second distributed file system, the request
including the data i1dentifier;

the gateway manager to:

utilize the recerved data identifier to gather the meta-
data information, associated with the requested data,
from within the second distributed file system, and

provide access to the retrieved data through the second
distributed file system; and

the gateway client to utilize the gathered metadata infor-

mation to retrieve the data from within the first distrib-
uted file system.

11. The system of claim 9, wherein the first distributed file
system and the second distributed file system are different
types of file systems.

12. The system of claim 11, wherein the first distributed
file system 1s a Network File System (NFS), wherein the
second distributed file system 1s a Hadoop Distributed File
System (HDFS).

13. The system of claim 12, wherein the data identifier
includes a data block identifier (ID), wherein the metadata
information include a file pathname.

14. A non-transitory computer readable storage medium
storing computer executable instructions, comprising:

instructions for recerving a request to access data through

a first distributed file system, the request including a
first data 1dentifier associated with the data for access-
ing the data through the first distributed file system;
wherein the received first data identifier 1s used by the
data node server to determine that data associated with
the first identifier has been evicted from the first
distributed file system:;

instructions for identifying, utilizing the received first

data i1dentifier, a second data identifier associated with
the data i1dentified as being evicted from the first file
system, the second data i1dentifier being stored within
the first distributed file system and utilized for gener-
ating a request for accessing the data evicted from the
first file system and stored within a second distributed
file system;

10

15

20

25

30

35

40

45

18

instructions for retrieving, utilizing the i1dentified second
data 1dentifier, the data from within the second distrib-
uted file system:;
instructions for removing any indication that the data
retrieved from the second distributed file system has
been evicted from the first distributed file system:;

instructions for converting the retrieved data from a first
format of the second distributed file system to a second
format of the first distributed file system:;
instructions for storing the converted data within the first
distributed file system, wherein the stored data can be
retrieved from within the first distributed file system in
response to another request for the data; and

instructions for providing access to the converted data
through the first distributed file system.

15. The non-transitory computer readable storage medium
of claim 14, turther comprising;:

instructions for receiving a request to store the data within

the first distributed file system, the request to store the
data including the second data identifier associated with
the data;

instructions for storing the second data i1dentifier associ-

ated with the data within the first distributed file
system; and

instructions for storing information mdicative of the data

being evicted from the first distributed file system.

16. The non-transitory computer readable storage medium
of claim 14, wherein the first distributed file system and the
second distributed file system are different types of {ile
systems.

17. The non-transitory computer readable storage medium
of claim 16, wherein the first distributed file system 1s a
Hadoop Distributed File System (HDFS), wherein the sec-
ond distributed file system 1s a Network File System (NFS).

18. The non-transitory computer readable storage medium
of claam 17, wherein the NFS stores the datain the first
format, wherein the first format 1s a file level format, and the
HDEFS stores the data in the second format, wherein the
second format 1s a block level format.

19. The non-transitory computer readable storage medium
of claim 14, wherein the first data identifier includes a data
block i1dentifier (ID), wherein the second data identifier
includes a file pathname.

20. The non-transitory computer readable storage medium
of claim 14, wherein the second data identifier includes
metadata information that enables the first distributed file
system to locate and retrieve the requested data from the
second distributed file system.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

