US009575738B1

12 United States Patent

(10) Patent No.: US 9,575,738 B1

Chopra et al. 45) Date of Patent: Feb. 21, 2017
(54) METHOD AND SYSTEM FOR DEPLOYING 7,779,406 B2* 8/2010 Blanding GO6F 8/61
SOFTWARE TO A CLUSTER 717/172
7,865,889 Bl* 1/2011 Budoooooeiiiiiinin. GO6F 8/60
(71) Applicant: EMC Corporation, Hopkinton, MA 717/168
(US) 7,903,543 B2* 3/2011 Kashyap HO41. 45/586
370/217
2
(72) Inventors: Shelesh Chopra, Bangalore (IN): 8,135,775 Bl 3/2012 'Anderson etal. ... 709/203
Vladimir Mandic, San Jose, CA (US); (Continued)
Sudha Narayanan, Bangalore (IN);
Preeti Varma, Bangalore (IN) OTHER PUBLICATIONS
' - ; Jeflrey S. Chasel; Dynamic Virtual Clusters 1in a Grid Site Manager;
(73) Assignee: EMC IP Holding Company LLC, 4 Y g
Hopkinton, MA (US) 2003 IEEE; 11 pages; <http://1eeexplore.ieee.org/stamp/stamp.
jsp?arnumber=1210019>*
(*) Notice: Subject to any disclaimer, the term of this (Continued)

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 120 days.

Primary Examiner — Thuy Dao

(21) Appl. No.: 13/792,992 Assistant Examiner — Cuong V Luu

- 14) Attorney, Agent, or Firm — Dergosits & Noah LLP;
22) TFiled: Mar. 11, 2013 (Y, Agent, 2 ﬂ
(22) File a Todd A. Noah
(51) Imt. CL
GO6F 9/445 (2006.01)
GOGF 9/44 (2006.01) (57) ABSTRACT
GO0k 11/20 (2006.01) Disclosed are systems and methods relating to the deploy-
(52) US. ClL ment of an application. A plurality of nodes in one or more
CPC e GO6F 8/60 (2013.01); GO6F 11/2023 clusters of nodes may be identified. Inventory information
_ _ _ (2013.01) for each of the plurality of nodes may be retrieved. The
(58) Field of Classification Search i inventory information may provide configuration and state
CPC s HO4L 41/0893; HO4L 67/1029; HO4L information associated with each node. For example, the
67/1034; HO4L 67/327; HO4L inventory information retrieved from the plurality of nodes

4'7/125; HO4L, 49/354; GOOF may 1include an internet protocol address or a hostname
11/2023; GO6F 11/2025; GO6F associated with each the plurality of nodes, and a version of
8/61; GO6F 8/65; GO6F 3/60; GOOF 8/71; soltware stalled on each of the plurality of nodes. An order
GO6F 17/30356; GO6L 11/3433 for deploying the software application may be determined
See application file for complete search history. based on the retrieved inventory information. The order may
_ identily a sequence i which the software application 1s
(56) References Cited deployed to at least one of the plurality of nodes. The
US. PATENT DOCUMENTS softw:-;?re application may be deployed to at least one of the
plurality of nodes based on the determined order.

6,529,784 B1* 3/2003 Cantosetal. 700/79
7,681,193 B2* 3/2010 Opreaccooeenn... GO6F 8/61
717/168 20 Claims, 8 Drawing Sheets
T
(Appiimtﬁ;ﬁ?:gfwmant)

_ FEBE
Trigger an Ihwentary process far one or more |/
clusters

i

Retrieve inventory information froma | ~— 804
tdatabase system

l

Generate a graphical represantation of one or a08
more clusiers based on the retreved imventory 4
information

¥
Retrigve one or more rules from a rules | —608
angine

Determina an order for deploying the | — 610
applitation based on the ratriaved one o
Mone rules

!

B12
Deploey the application basead o the /_
determined arger

l

£14
Undata a database system based on the /F
deployment of the application

US 9,575,738 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,589,727 B1* 11/2013 Fletcher et al. 714/13
8,627,311 B2* 1/2014 Auerccoooevvvvvviinnnnnn, 717/176
8,782,632 B1* 7/2014 Chigurapati GO6F 8/65
717/168

8,806,475 B2* 82014 Xie ...cooooiiiiiiiiiiiinninn, GO6F 8/60
717/172

2004/0073903 Al* 4/2004 Melchione GO6F 8/60
717/172

2005/0022202 Al* 1/2005 Sannapa Reddy et al. .. 718/105
2006/0200818 Al* 9/2006 Opreaccooeeeennn, GO6F 8/61
717/174

2009/0073875 Al* 3/2009 Kashyap HO4L 45/586
370/228

2009/0313630 AL* 12/2009 HoOrl ..cooooeeevviiiiiiininnnnnn, 718/102
2011/0283138 Al1l™* 11/2011 Sangubhatla et al. 714/15
2012/0059864 Al* 3/2012 Bandyopadhyay et al. .. 707/827
2012/0066674 Al* 3/2012 XI€ .oooiiiriiiiiiiineennnn, GO6F 8/60
717/174

2012/0198438 ALl* 82012 Auercccccviivieennnnnn, 717/176
2013/0179876 Al* 7/2013 Aliminati HO4L 41/0893
717/177

2014/0096125 Al* 4/2014 Kimmetc.......... GOO6F 8/65
717/172
2014/0245279 Al* 8/2014 Ohtakec.cco..nt, GOO6F 9/445
717/170

OTHER PUBLICATTONS

Geoflroy Vallee; System Management Software for Virtual Envi-
ronments; 2007 ACM; pp. 153-160; <http://dl.acm.org/citation.
cim?1d=1242555>*

Areski Flissi; A Generic Deployment Framework for Grid Com-
puting and Distributed Applications; 2006 Springer; pp. 1402-1411;
<http://link.springer.com/chapter/10.1007/11914952_ 26>.*

Justin Cappos; Seattle A Platform for Educational Cloud Comput-
ing; 2009 ACM; pp. 111-115; <http://dl.acm.org/citation.

cfm?1d=1508905>.*
Gideon Juve; Automating Application Deployment 1n Infrastructure
Clouds; 2011 IEEE; pp. 658-665; <http://1eecexplore.ieeec.org/stamp/

stamp.jsp?arnumber=6133211>.*

George Suciu; Cloud Consulting ERP and Communication Appli-
cation Integration 1n Open Source Cloud Systems; 2011 IEEE: pp.
578-581; <http://1eeexplore.1ieee.org/stamp/stamp.

jsp?arnumber=6143614>.*

* cited by examiner

US 9,575,738 B1

Sheet 1 of 8

Feb. 21, 2017

U.S. Patent

oLl

WiaIsAg Jual) |

8Cl

L @Inbi4

~ WaIsSAQ Jual
aLL ISAS JUSID

8Tl
vzl

-~ T

MIOMISN UOIIB2IUNWWOYD

) -
P e

TN

~ WoISAQ JuUal
oLl ISAS JUSIID

{

8¢l

WalsAg JaAIeg

ccl

U.S. Patent Feb. 21, 2017 Sheet 2 of 8 US 9,575,738 B1

e 201
205 " 203
\\\ /
—

y 213
[11
O) L\
S WWWW\)

3 s e -1

! 217
207 —

A

i

US 9,575,738 B1

Sheet 3 of 8

Feb. 21, 2017

U.S. Patent

¢ 2inPiy

wwmm tm @omN N_‘mm mowmm
w_wwwzmmﬁ_ mmwmﬂm pieogAsy HOd [eires 10JIUON]
laydepy
Aeldsi
\'\,
80¢ H
Y ¥
2ze—2v
Y \ ¥
0S It
Jexeads J _mwwwwa Ewmm_\w,_ 19]j013U0D O/

{

cOt

14012

{

90¢

US 9,575,738 B1

Sheet 4 of 8

Feb. 21, 2017

U.S. Patent

I
Ao,

A

=il .-;5.-

-

B

.=
it

W

.:: ':

3

BT

pE

ri:

LIt

wen

Lyt e b
L P -

o

ap el

N S

PELF T)

- - -

Figure 4

. e,

. L
- L. . B = e
PR BN i ST D R e i e S S

e
SRR R N

b

LD

b

P

L

wrlnnw WL
ettt

0O

n

inve

e e I T VT M

-

U.S. Patent Feb. 21, 2017 Sheet 5 of 8 US 9,575,738 B1

_ /—500
Cluster Inventory Method
_ . 502
Trigger an inventory process for one or more
clusters

Retrieve an identifier associated with the one 504
or more clusters
- 506
ldentify one or more nodes within the one or
more clusters based on the retrieved identifier
Retrieve information for each of the identified o038
one or more nodes

. . 510
Store the retrieved information in a database

system

Done

Figure 5

U.S. Patent Feb. 21, 2017 Sheet 6 of 8 US 9,575,738 B1

/— 600

Appliction Deployment
Method
_ _ . . 602
Trigger an inventory process for one or more
clusters

Retrieve inventory information from a 604
database system

Generate a graphical representation of one or

606
more clusters based on the retrieved inventory
information
Retrieve one or more rules from a rules 603
engine
Determine an order for deploying the 610
application based on the retrieved one or |
more rules
612

Dploy the pp!ication based on the .
determined order
Update a database system based on the
deployment of the application

Done

Figure 6

U.S. Patent Feb. 21, 2017 Sheet 7 of 8 US 9,575,738 B1

Figure 7A

-

FCE

£

vare Vers

vl M K
13 i o

T

;E £
1S

fe

-

o

et i g

702

706
1

U.S. Patent

716

Feb. 21, 2017

Wl

A

Hink—.
.

&
- g
ol

=

e

e

I

Sheet 8 of 8

gy
fereior

—
Are ¥

US 9,575,738 B1

Figure 7B

714

"y
&

wriace

irtiialin

£
¥

%

/718

US 9,575,738 Bl

1

METHOD AND SYSTEM FOR DEPLOYING
SOFTWARE TO A CLUSTER

BACKGROUND

The present invention relates to the field of information
technology and more particularly, systems and techniques
that relate to deploying a software application 1n a network
environment.

Enterprise application software may be software used by
an organization, such as a business, to perform one or more
functions or operations associated with the organization. For
example, a business may use enterprise application software,
such as Documentum® provided by EMU), to organize or
manage content associated with the business’s operations.
Services provided by enterprise application software may be
on-demand or online tools such as online payment process-
ing, an interactive product catalogue, automated billing
systems, security, enterprise content management, nternet
technology (IT) service management, customer relationship
management, enterprise resource planning, business intelli-
gence, project management, collaboration, human resource

management, manufacturing, enterprise application integra-
tion, and enterprise forms automation.

Enterprise application soitware may be hosted by host
applications which may be implemented on one or more
servers or other network resources. Thus, an enterprise
application may be deployed to multiple host applications
which may each be used to execute an instance of the
enterprise application and provide services associated with
the enterprise application. The host applications may each be
implemented or associated with a node in a communications
network, such as the Internet. Thus, a host application may
be associated with and represented as a network node 1n a
communications network. A node may be a physical net-
work node, such as a host computer, which may be 1dentified
by an Internet protocol (IP) address.

Nodes may belong to a cluster, which may consist of a set
of loosely connected computers that work together and may
be viewed as a single system or computational entity. Thus,
a cluster of nodes may be 1dentified by a single virtual IP
address. A cluster of nodes may include a load balancer
(LBR), which may be a server configured to manage com-
putational loads placed on each node in the cluster, and
manage the transition ol functionality from one node to
another 1n the event of failure of a node. Because clusters of
resources oiten share computational workloads, nodes
within the cluster often utilize the same versions of software,
such as an enterprise application.

Conventional methods remain limited because they do not
provide an eflicacious way to deploy application software,
such as an enterprise application, to a cluster of nodes.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a block diagram of a client-server system
and network 1n which an embodiment of the invention may
be implemented.

FIG. 2 shows a more detailed diagram of an exemplary
client or computer which may be used 1n an implementation
of the invention.

FI1G. 3 shows a system block diagram of a client computer
system.

FIG. 4 shows a block diagram of an example of a system
for deploying an application to one or more clusters, imple-
mented 1n accordance with some implementations.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. § shows a flowchart of an example of a method for
performing an mventory for one or more nodes 1n a cluster,

performed 1n accordance with some implementations.

FIG. 6 shows a flowchart of an example of a method for
deploying an application to a coherency group, performed 1n
accordance with some implementations.

FIG. 7A shows an example of a diagram generated for an
Active-Passive cluster, 1n accordance with some implemen-
tations.

FIG. 7B shows an example of a diagram generated for an
Active-Active cluster, 1n accordance with some implemen-
tations.

DETAILED DESCRIPTION

Some conventional methods and systems of deploying
soltware typically mvolve an administrator manually per-
forming an 1nstallation or upgrade of software on each node.
Thus, a node may i1nclude a host application used to host an
instance of a software application, such as an enterprise
application. The administrator may have to manually install
the upgraded or new software on each host application
individually. Moreover, the administrator 1s not provided
with a unified view of the various different nodes and the
software that 1s currently installed on the nodes. Other
conventional methods provide general deployment engines
which may deploy software to various diflerent standalone
host applications. However, general deployment engines
simply deploy the software to multiple standalone host
applications. Such general deployment engines are inca-
pable of deploying software to clusters of nodes because
general deployment engines are not sensitive to the require-
ments ol load balancing and failover among nodes when
soltware 1s deployed to a cluster of resources.

Thus, conventional methods do not provide an automated
and seamless way to deploy an application to one or more
clusters, or to provide information about one or more
clusters to an administrator. Conventional methods do not
provide a complete pictorial presentation of a cluster envi-
ronment that can be seen as single unified view, and do not
provide a mechanism for an administrator to know which
version ol software 1s 1nstalled on which node to perform a
compliancy check. Moreover, conventional methods require
manual intervention to determine 1f nodes are 1n a passive or
active mode. An active node may be a node that includes
resources that are used to provide services associated with
an application deployed to that node. A passive node may be
a node that does not currently provide services, but 1is
available 1t an active node fails or becomes over-burdened,
as may be determined by a cluster resource, such as a load
balancer. Conventional methods do not provide any intelli-
gent mechanism by which active or passive nodes may be
identified and software deployed 1n a cluster environment.
Instead, conventional methods view nodes 1n a cluster as a
combination of multiple standalone hosts. Such a view
results 1n poor compatibility with load balancing and
fallover functionalities, and an administrator 1s generally
unaware 1f all nodes of a particular cluster have the same
version of the software. Often the administrator will only
know 11 a node has an incorrect version of software 1f some
failure or error occurs. Furthermore, conventional methods
do not track a history about the nodes (active or passive) or
soltware upgrades. Conventional methods also fail to pro-
vide a mechanism for upgrading software 1n a node based on
its dependency on software implemented 1n another node.

Systems and methods are disclosed herein that provide a
centralized cluster deployment engine which installs and

US 9,575,738 Bl

3

upgrades soltware seamlessly 1n a cluster environment. A
cluster environment may be an environment which includes
one or more clusters of nodes that belong to a coherency
group. A coherency group may be a single or group of
clusters that function together as a single unit or entity to
provide failover and load balancing for execution of a
solftware application, such as an enterprise application.
Thus, various implementations disclosed herein provide for
the upgrade or installation of software in one or more
coherency groups based on one or more rules which may be
user generated or system generated. A centralized deploy-
ment engine may be associated with multiple clusters in a
coherency group. In response to determining that a software
application should be deployed to the coherency group, the
centralized deployment engine may inventory each cluster in
the coherency group and retrieve information associated
with each node within each cluster. Based on one or more
rules, the centralized deployment engine may determine an
order 1n which the software application should be installed
on the nodes. The centralized deployment engine may install
the software application and maintain a record of any
changes that were made.

Furthermore, the centralized deployment engine may gen-
erate a clear visual representation of the one or more clusters
of nodes within the coherency group. The representation
may be rendered and presented to one or more users at a user
interface. The visual representation may show information
about the coherency group, such as which nodes are
included 1n a cluster, and which nodes are active and passive.
The visual representation may also show additional infor-
mation about the deployment process, such as a software
install/upgrade path. The visual representation may help an
administrator monitor a deployment process and determine
whether all nodes 1n a cluster are 1n the same state and have
a similar version of software installed.

Thus, various systems and methods disclosed herein
provide a clear visual presentation of all nodes 1n a cluster
environment that may be easily interpreted by a system
administrator. Moreover, a user may be notified 11 a cluster
1s an active-active or an active-passive cluster. The user may
also be provided with a list of active and passive nodes. The
user may provide an input which configures deployment of
a soltware application to the cluster. Furthermore, a warning
may be generated 11 all nodes 1n the cluster do not have the
same software version. Non-compliant nodes may be
upgraded automatically to avoid failures or errors. Further-
more, a complete history 1s stored and maintaimned in a
database system for all the nodes. The stored information
may relate to active/passive history, failover history, and
installations of software versions. Furthermore, software
may be deployed or upgraded based on i1dentified software
dependencies associated with the software application. The
upgrades and/or 1nstallations may take place 1n a preferential
order that does not 1nterfere with failover or load balancing
capabilities within the coherency group.

Prior to describing the subject matter in detail, an exem-
plary computer network in which the subject matter may be
implemented shall first be described. Those of ordinary skill
in the art will appreciate that the elements 1llustrated 1n FIG.
1 may vary depending on the system implementation. With
reference to FIG. 1, FIG. 1 1s a simplified block diagram of
a distributed computer network 100. Computer network 100
includes a number of client systems 113, 116, and 119, and
a server system 122 coupled to a communication network
124 via a plurality of communication links 128. There may
be any number of clients and servers in a system. Commu-
nication network 124 provides a mechanism for allowing the

5

10

15

20

25

30

35

40

45

50

55

60

65

4

various components of distributed network 100 to commu-
nicate and exchange information with each other.

Communication network 124 may 1tself be comprised of
many interconnected computer systems and communication
links. Communication links 128 may be hardwire links,
optical links, satellite or other wireless communications
links, wave propagation links, or any other mechanisms for
communication of information. Various communication pro-
tocols may be used to facilitate communication between the
various systems shown in FIG. 1. These communication
protocols may include TCP/IP, HITP protocols, wireless
application protocol (WAP), vendor-specific protocols, cus-
tomized protocols, and others. While in one embodiment,
communication network 124 1s the Internet, in other
embodiments, communication network 124 may be any
suitable communication network including a local area
network (LAN), a wide area network (WAN), a wireless
network, a intranet, a private network, a public network, a
switched network, and combinations of these, and the like.

Distributed computer network 100 i FIG. 1 1s merely
illustrative of an embodiment and 1s not intended to limit the
scope of the mvention as recited in the claims. One of
ordinary skill 1n the art would recognize other variations,
modifications, and alternatives. For example, more than one
server system 122 may be connected to communication
network 124. As another example, a number of client
systems 113, 116, and 119 may be coupled to communica-
tion network 124 via an access provider (not shown) or via
some other server system.

Client systems 113, 116, and 119 typically request infor-
mation from a server system which provides the informa-
tion. For this reason, server systems typically have more
computing and storage capacity than client systems. How-
ever, a particular computer system may act as both a client
or a server depending on whether the computer system 1s
requesting or providing information. Additionally, although
aspects of the invention have been described using a client-
server environment, it should be apparent that the invention
may also be embodied 1n a stand-alone computer system.
Aspects of the invention may be embodied using a client-
server environment or a cloud-computing environment.

Server 122 1s responsible for receiving information
requests from client systems 113, 116, and 119, performing
processing required to satisty the requests, and for forward-
ing the results corresponding to the requests back to the
requesting client system. The processing required to satisiy
the request may be performed by server system 122 or may
alternatively be delegated to other servers connected to
communication network 124.

Client systems 113, 116, and 119 enable users to access
and query information stored by server system 122. In a
specific embodiment, a “Web browser” application execut-
ing on a client system enables users to select, access,
retrieve, or query information stored by server system 122.
Examples of web browsers include the Internet Explorer®
browser program provided by Microsoft® Corporation, and
the Firelox® browser provided by Mozilla® Foundation,
and others.

FIG. 2 shows an exemplary client or server system. In an
embodiment, a user iterfaces with the system through a
computer workstation system, such as shown in FIG. 2. FIG.
2 shows a computer system 201 that includes a monitor 203,
screen 205, cabinet 207, keyboard 209, and mouse 211.
Mouse 211 may have one or more buttons such as mouse
buttons 213. Cabinet 207 houses familiar computer compo-
nents, some ol which are not shown, such as a processor,
memory, mass storage devices 217, and the like.

US 9,575,738 Bl

S

Mass storage devices 217 may include mass disk drives,
floppy disks, magnetic disks, optical disks, magneto-optical
disks, fixed disks, hard disks, CD-ROMs, recordable CDs,
DVDs, recordable DVDs (e.g., DVD-R, DVD+R, DVD-
RW, DVD+RW, HD-DVD, or Blu-ray Disc®), flash and
other nonvolatile solid-state storage (e.g., USB flash drive),
battery-backed-up volatile memory, tape storage, reader, and
other similar media, and combinations of these.

A computer-implemented or computer-executable version
of the invention may be embodied using, stored on, or
associated with computer-readable medium or non-transi-
tory computer-readable medium. A computer-readable
medium may include any medium that participates 1n pro-
viding instructions to one or more processors for execution.
Such a medium may take many forms including, but not
limited to, nonvolatile, volatile, and transmission media.
Nonvolatile media includes, for example, flash memory, or
optical or magnetic disks. Volatile media includes static or
dynamic memory, such as cache memory or RAM. Trans-
mission media icludes coaxial cables, copper wire, fiber
optic lines, and wires arranged 1n a bus. Transmission media
can also take the form of electromagnetic, radio frequency,
acoustic, or light waves, such as those generated during
radio wave and infrared data communications.

For example, a binary, machine-executable version, of the
soltware of the present invention may be stored or reside 1n
RAM or cache memory, or on mass storage device 217. The
source code of the software may also be stored or reside on
mass storage device 217 (e.g., hard disk, magnetic disk,
tape, or CD-ROM). As a further example, code may be
transmitted via wires, radio waves, or through a network
such as the Internet.

FIG. 3 shows a system block diagram of computer system
201. As in FIG. 2, computer system 201 includes monitor
203, keyboard 209, and mass storage devices 217. Computer
system 201 further includes subsystems such as central
processor 302, system memory 304, imnput/output (I/0) con-
troller 306, display adapter 308, serial or universal serial bus
(USB) port 312, network interface 318, and speaker 320. In
an embodiment, a computer system includes additional or
fewer subsystems. For example, a computer system could
include more than one processor 302 (1.e., a multiprocessor
system) or a system may include a cache memory.

Arrows such as 322 represent the system bus architecture
of computer system 201. However, these arrows are 1llus-
trative of any interconnection scheme serving to link the
subsystems. For example, speaker 320 could be connected to
the other subsystems through a port or have an 1internal direct
connection to central processor 302. The processor may
include multiple processors or a multicore processor, which
may permit parallel processing of information. Computer
system 201 shown in FIG. 2 1s but an example of a suitable
computer system. Other configurations of subsystems suit-
able for use will be readily apparent to one of ordinary skill
in the art.

Computer software products may be written 1n any of
various suitable programming languages, such as C, C++,
C#, Pascal, Fortran, Perl, Matlab® (from MathWorks), SAS,
SPSS, JavaScript®, AJAX, Java®, SQL, and XQuery (a
query language that 1s designed to process data from XML
files or any data source that can be viewed as XML, HTML,
or both). The computer software product may be an 1nde-
pendent application with data mput and data display mod-
ules. Alternatively, the computer software products may be
classes that may be instantiated as distributed objects. The
computer software products may also be component soit-
ware such as Java Beans® (from Oracle Corporation) or

10

15

20

25

30

35

40

45

50

55

60

65

6

Enterprise Java Beans® (EJB from Oracle Corporation). In
a specific embodiment, the present invention provides a
computer program product which stores instructions such as
computer code to program a computer to perform any of the
processes or techmques described.

An operating system for the system may be one of the
Microsolt Windows® family of operating systems (e.g.,
Windows 95®, 98, Me, Windows NT®, Windows 2000®,
Windows XP®, Windows XP® x64 Edition, Windows
Vista®, Windows 7®, Windows CE®, Windows Mobile®),
Linux, HP-UX, UNIX, Sun OS®, Solaris®, Mac OS X®,
Alpha OS®, AIX, IRIX32, or IRIX64. Other operating
systems may be used. Microsoft Windows® 1s a trademark
of Microsolt® Corporation.

Furthermore, the computer may be connected to a net-
work and may interface to other computers using this
network. The network may be an intranet, internet, or the
Internet, among others. The network may be a wired net-
work (e.g., using copper), telephone network, packet net-
work, an optical network (e.g., using optical fiber), or a
wireless network, or any combination of these. For example,
data and other imformation may be passed between the
computer and components (or steps) of the system using a
wireless network using a protocol such as Wi-Fi1 (IEEE
standards 802.11, 802.11a, 802.11b, 802.11e, 802.11g,
802.111, and 802.11n, just to name a few examples). For
example, signals from a computer may be transferred, at
least 1 part, wirelessly to components or other computers.

In an embodiment, with a Web browser executing on a
computer workstation system, a user accesses a system on
the World Wide Web (WW W) through a network such as the
Internet. The Web browser 1s used to download web pages
or other content 1n various formats including HTML, XML
text, PDF, and postscript, and may be used to upload
information to other parts of the system. The Web browser
may use uniform resource identifiers (URLs) to identify
resources on the Web and hypertext transier protocol
(HT'TP) 1n transferring files on the Web.

In the description that follows, the subject matter will be
described with reference to acts and symbolic representa-
tions of operations that are performed by one or more
devices, unless indicated otherwise. As such, it will be
understood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of data in a structured form.
This manipulation transforms the data or maintains 1t at
locations in the memory system of the computer, which
reconiigures or otherwise alters the operation of the device
in a manner well understood by those skilled 1n the art. The
data structures where data 1s maintained are physical loca-
tions of the memory that have particular properties defined
by the format of the data. However, while the subject matter
1s being described in the foregoing context, 1t 1s not meant
to be limiting as those of skill 1n the art will appreciate that
various ol the acts and operation described hereinafter may
also be implemented in hardware.

To {facilitate an understanding of the subject matter
described below, many aspects are described in terms of
sequences of actions. At least one of these aspects defined by
the claims 1s performed by an electronic hardware compo-
nent. For example, 1t will be recognized that the various
actions can be performed by specialized circuits or circuitry,
by program instructions being executed by one or more
processors, or by a combination of both. The description
herein of any sequence of actions 1s not intended to 1mply
that the specific order described for performing that
sequence must be followed. All methods described herein

US 9,575,738 Bl

7

can be performed in any suitable order unless otherwise
indicated herein or otherwise clearly contradicted by con-
text.

FIG. 4 shows a block diagram of an example of a system
for deploying an application to one or more clusters, imple-
mented 1n accordance with some 1implementations. System
400 may provide a centralized deployment engine which
may 1nstall or upgrade soitware 1n one or more clusters of
one or more coherency groups. The deployment of software
may be performed according to user-defined or system
defined rules. Thus, a user may configure the process of
deploying software to one or more clusters of a coherency
group. Moreover, the centralized deployment engine embod-
ied by system 400 may provide the user with imnformation
about the deployment process and about the clusters them-
selves. Thus, a user may be provided with a clear visual
representation of various clusters and an implementation of
a deployment process within those clusters.

Accordingly, system 400 may include inventory engine
402, which may retrieve and manage various information
associated with one or more nodes 1n one or more clusters
of resources. Inventory engine 402 may manage some or all
information that i1s used to deploy an application in one or
more clusters of a coherency group. Thus, mnventory engine
402 may be configured to query nodes to retrieve informa-
tion about nodes 1n a cluster 1n which an application 1s to be
deployed. Inventory engine 402 may communicate with the
nodes directly. Alternatively, inventory engine 402 may
communicate with nodes 1n clusters via core engine 408.
Thus, according to some 1mplementations, core engine 408
arbitrates communication between inventory engine 402 and
nodes 1n clusters 1n which one or more applications are to be
deployed.

In some 1mplementations, inventory engine 402 1s also
configured to commumnicate with user interface 410. Inven-
tory engine 402 may be configured to receive an iput from
a user that may i1dentity one or more clusters and/or nodes.
Thus, a user may provide an 1nput, such as an IP address or
a hostname, that may 1dentify a node or cluster to Which an
application 1s to be deploved. Inventory engine 402 may be
configured to query and retrieve information from any
associated nodes or clusters which may be relevant to the
deployment of the software application to the identified node
or cluster. For example, a user may provide an IP address for
a particular node 1n a cluster to indicate that the node should
be upgraded to new software. Inventory engine 402 may
retrieve mventory mformation associated with all nodes in
the 1dentified cluster.

Accordingly, inventory engine 402 may be a process or
application implemented 1n one or more servers and con-
figured to retrieve configuration mformation about a node
and a cluster 1n which a node resides. The configuration
information may provide information about a configuration
of clusters, nodes within clusters, and a software configu-
ration of the nodes. For example, inventory engine 402 may
retrieve virtual IP addresses and host names associated with
an 1dentified cluster. Inventory engine 402 may also retrieve
a cluster type, such as whether or not the cluster 1s an
Active-Passive cluster, which may be a cluster may be a
cluster 1n which there 1s one active node, and all other nodes
are passive, or 1f the cluster 1s an Active-Active cluster,
which may be a cluster 1n which more than one node in a
cluster 1s used to provide services associated with an appli-
cation deployed to that cluster. Furthermore, inventory
engine 402 may retrieve a list of nodes imncluded 1n a cluster.
The list of nodes may include an IP address and a hostname
for each node 1n the cluster. Inventory engine 402 may also

10

15

20

25

30

35

40

45

50

55

60

65

8

retrieve 1nformation about what software 1s currently
installed at the node. For example, imnventory engine 402
may retrieve information that identifies a version of software
installed on each node 1n a cluster. The mventory informa-
tion may also identily new nodes that have been added to a
cluster recently.

Inventory engine 402 may be configured to store the
information in one or more storage volumes. For example,
inventory engine 402 may store information about nodes and
clusters 1n a data base system, such as product database 404.
Inventory engine 402 may store information in product
database 404 automatically 1n response to retrieving infor-
mation from nodes in clusters. Inventory engine may be
further configured to retrieve information from product
database 404 when an application 1s to be deployed to one
or more clusters.

System 400 may further include rules engine 406 which
may be configured to store one or more sets of rules that may
be used to configure the deployment of applications to one
or more clusters 1n one or more coherency groups. Thus,
rules engine 406 may 1nclude or be 1n communication with
one or more storage volumes configured to store one or more
sets of rules. The rules stored and maintained by rules engine
406 may determine an order or protocol which may be used
to upgrade or install software on one or more nodes in one
or more clusters. In some implementations, rules engine 406
1s communicatively coupled to core engine 408 and 1s used
to configure the operations of core engine 408, discussed 1n
greater detail below. Thus, core engine 408 may perform one
or more operations according to an order or protocol speci-
fied by rules engine 406.

The rules stored 1n rules engine 406 may be automatically
generated or user-defined. For example, upon initial con-
figuration of system 400, default rules may be generated
based on one or more predetermined settings. Thus, a system
administrator may provide one or more default rules which
may be stored 1n rules engine 406. Rules engine 406 may
also be configured to communicate with user interface 410.
Thus, rules engine 406 may receive input from a user via
user interface 410. The user input may be used to configure
the sets of rules stored 1n rules engine 406. Accordingly, user
interface 410 may arbitrate communications between a user
and rules engine 406. In this way, rules engine 406 may
receive input from a user that may define new user-defined
rules, or configure existing rules which may be applied to the
deployment of soiftware to nodes 1 one or more clusters.

Accordingly, system 400 may further include user inter-
face 410 which may be part of a user interface screen
presented to a user. User interface 410 may be a process that
runs locally on a client machine used by a user. Alterna-
tively, user interface 410 may be a process implemented
remotely 1n one or more servers that communicates with the
client machine via a network, such as the Internet. Thus, user
interface 410 may be a server-implemented process that
communicates with a user at a client machine via an Internet
protocol, such as hypertext transter protocol (HTTP), or an
API implemented browser-based communications method.
User interface 410 may receive input from a user and
provide the mnput to mventory engine 402 and rules engine
406. Moreover, user interface 410 may receive iformation
from mventory engine 402 and rules engine 406 and present
the mformation to a user at a user interface screen of the
user’s client machine. Thus, user interface 410 may present
a user with information about the application deployment
process. For example, user interface 410 may include a
rendering engine configured to render information stored in
product database 404 as a topographical graphical represen-

US 9,575,738 Bl

9

tation of a cluster. Alternatively, the rendering engine may be
a part of mnventory engine 402, and user interface 410 may
be used to present an 1image rendered by mventory engine
402. User mterface 410 may also display other information,
such as a software install/upgrade path. In this way, a user
may monitor, modify, and configure the process of deploy-
ing an application to nodes 1n one or more clusters of one or
more coherency groups.

In some implementations, system 400 includes core
engine 408 which may be implemented in one or more
servers and may include soiftware and hardware imple-
mented logic configured to manage the deployment process
by performing one or more operations associated with the
deployment process. For example, core engine 408 may
perform the querying of one or more nodes in a cluster to
retrieve inventory information that was requested by and
will be stored by mventory engine 402. Furthermore, core
engine 408 may perform the actual operations that accom-
plish the deployment of the application 1 a cluster. For
example, core engine 408 may upgrade or 1nstall software 1n
one or more nodes within a cluster according to an order
determined based on rules retrieved from rules engine 406.
Thus, core engine 408 may be communicatively coupled to
a data store that stores the application to be deployed to a
cluster. Core engine 408 may be configured to install soft-
ware from the data store to one or more nodes 1n a cluster.

System 400 may further include coherency group 412,
which may be a group of resources used to provide on-
demand services to one or more clients. In some 1implemen-
tations, coherency group 412 1s a group of nodes 414 that
may include one or more clusters of nodes 416 that all share
a virtual IP address. Coherency group 412 may include one
or more load balancing servers (LBRs) 418 that manage
nodes 414 within coherency group 412 to seamlessly pro-
vide load balancing and failover within coherency group
412. Thus, coherency group 412 may include one cluster of
nodes and one LBR. Alternatively, coherency group 412
may include several clusters of nodes, and several LBRs. In
some 1mplementations, core engine 408 may manage
deployment of an application only 1n coherency group 412.
Thus, each coherency group may have 1ts own 1nstance of a
core engine. Alternatively, core engine 408 may manage
deployment of an application 1n several coherency groups.
Thus, multiple coherency groups may be managed by a
single mstance of core engine 408.

FIG. 5 shows a flowchart of an example of a method for
performing an mventory for one or more nodes 1n a cluster,
performed 1n accordance with some 1mplementations. Per-
forming an mventory may retrieve information about one or
more nodes in one or more clusters. For example, 1f a
soltware application, such as an enterprise application, 1s to
be deployed to a cluster of nodes, configuration and system
information may be retrieved for each node in the cluster of
nodes. The information may provide a complete represen-
tation of each node 1n a cluster, thus enabling a user or a
system component, such as a core engine, to determine an
order 1n which the software application should be installed
on nodes in the cluster without disrupting failover or load
balancing capabilities within the cluster.

Accordingly, at step 502 an inventory process may be
triggered. In some 1implementations, the inventory process 1s
triggered 1n response to receiving a request to deploy an
application to one or more clusters. For example, a system
administrator may determine that an upgrade to a deployed
software application should be implemented 1n a cluster of
nodes. In response to receiving the request, a user interface
may send a message to an inventory engine. The imnventory

10

15

20

25

30

35

40

45

50

55

60

65

10

engine may 1nitiate the inventory process in response to
receiving the message. Alternatively the inventory process
may be triggered automatically according to a predeter-
mined schedule of operations. Thus, an administrator may
have previously established a schedule according to which
nodes 1n clusters should be inventoried and inventory infor-
mation should be retrieved.

At step 504, an identifier associated with one or more
clusters may be retrieved. According to various implemen-
tations, the identifier may be a virtual IP address or hostname
that 1s used to 1dentily a cluster. As set forth above, a cluster
ol nodes may share a virtual IP address and appear to a client
machine as a single entity. A system component, such as an
inventory engine may retrieve the identifier for the cluster 1n
which the application 1s to be deployed. Thus, 1n response to
an 1ventory process being triggered for a particular cluster
of nodes, a virtual IP address or hostname may be retrieved
for that cluster. In some implementations, the identifier 1s
received from a user. Thus, a user may provide the 1identifier
to the inventory engine via a user interface 11 the user wants
to deploy software to a cluster associated with the provided
identifier. In various implementations, the identifier 1is
retrieved from a predetermined list. Thus, a list of clusters
may have been previously generated based on previous
selections made by a user, or a previous installation or
upgrade of a software application. The predetermined list
may be stored in a database system, such as a product
database or a storage volume associated with the user
interface.

At step 506, the identifier may be used to identily one or
more nodes within the one or more clusters. Thus, a system
component, such as an mventory engine, may use an i1den-
tifier to query a cluster resource associated with the identifier
to obtain a list of nodes included 1n the cluster. For example,
the inventory engine may use a virtual IP address to query
a resource management application running in the cluster,
which may maintain a list of nodes currently included 1n a
cluster, and various information associated with the nodes.
The information may include an IP address associated with
cach node. In some implementations, a list of nodes may be
maintained by a load balancing server as part of its load
balancing operations. Thus, the load balancing server of a
cluster may be queried to obtain a list of nodes 1included 1n
the cluster. Once retrieved, the 1nventory engine may parse
information from the list of nodes to identify all nodes that
are currently included 1n the cluster.

At step 508, information may be retrieved for each of the
identified nodes. Thus, a system component, such as an
inventory engine, may use one or more 1dentifiers included
in the information retrieved at step 306 to identily and
retrieve inventory information associated with each node
included 1n a cluster. The i1dentifiers may be an IP address or
hostname for each node. Thus, the mnventory engine may use
the IP address to directly query each node and retrieve
inventory information from each node. Alternatively, infor-
mation for each node may be centrally maintained i a
cluster resource which may be queried. For example, a load
balancing server may maintain information associated with
cach node 1n a cluster 1n which the load balancing server
operates. The mventory engine may use the identifiers to
query the load balancing server and retrieve information for
cach node from the load balancing server. As set forth above
with reference to FIG. 4, the information may include
various configuration and state information associated with
nodes 1n a cluster. For example, the information may iden-
tify a current version of soitware that 1s 1nstalled on a node
and whether or not a node 1s active or passive.

US 9,575,738 Bl

11

At step 510, the retrieved information may be stored 1n a
database system. In some implementations, upon retrieving
inventory mformation for each node 1n a cluster, a system
component, such as an nventory engine, may store the
retrieved information in a database system. For example, the
retrieved information may be stored and maintained in a
product database. As discussed 1n greater detail below with
reference to FIG. 6, information may be retrieved from the
database system when an application 1s to be deployed to
one or more clusters associated with the imnformation.

FIG. 6 shows a flowchart of an example of a method for
deploying an application to a coherency group, performed 1n
accordance with some implementations. As similarly dis-
cussed above, a coherency group may be a single cluster of
nodes or a group of clusters. Some nodes within a coherency
group may be active and be used to provide services
associated with an application, while other nodes are passive
and remain available 1n case of failure or over-burdeming of
an active node. Passive nodes that are available to assume
functionality of active nodes use the same version of sofit-
ware as the active nodes. If a different version of soitware 1s
used on a passive node, an error may occur when function-
ality 1s transierred to the passive node in the event of failure
of the active node. Thus, a system component, such as a core
engine, may deploy an application to an entire coherency
group to ensure that the entire group 1s using the same
version ol a software application, and the most recent
version of a software application.

At step 602, an 1nventory process may be triggered. In
some 1mplementations, information about all nodes 1n the
coherency group 1s collected and processed prior to deploy-
ing an application to the coherency group. As previously
discussed with reference to FIG. 5, an mventory process
may be used to retrieve mnformation about nodes included in
one or more clusters. Thus, an inventory engine may retrieve
information about one or more nodes 1n one or more clusters
of a coherency group and store the information 1n a database
system. As set forth above, the retrieved information may
include information that enables communication with and
configuration of the nodes, such as an IP address or host
name, and may further include configuration imformation
about the nodes, such as a software version installed on a
node and whether or not a node 1s currently active or passive.

In some 1mplementations, the inventory process 1s trig-
gered by a user. For example, a system administrator may
trigger the mventory process when using an application to
deploy software to one or more clusters. Thus, the applica-
tion may provide the user with a user interface which
enables the user to implement and configure the deployment
process across multiple clusters of nodes within a coherency
group. For example, the user may be presented with a list of
coherency groups, clusters, or nodes and a list of available
software applications. The user may select a software appli-
cation to deploy, and may further select one or more clusters
to which the selected application should be deployed. In
response to receiving the selection, the application may
trigger an 1nventory process to retrieve information that waill
be used during the deployment process. As set forth above
with reference to FIG. 5, an inventory process may be
performed, and inventory information may be stored in a
database system.

At step 604, inventory information associated with the
one or more clusters may be retrieved from the database
system. Thus, a system component, such as the core engine,
may retrieve information that was collected during the
inventory process triggered at step 602. Additionally, inven-
tory information may be retrieved from previous iterations

10

15

20

25

30

35

40

45

50

55

60

65

12

ol an inventory process of the same clusters. The core engine
may directly query the database system to identify and
retrieve relevant mventory information. Relevant inventory
information may be i1dentified based on an identifier asso-
ciated with clusters or nodes, such as an IP address, a virtual
IP address, or a system generated unique identifier. Alter-
natively, the core engine may command the inventory engine
to perform the query, package the result mnto a data object,
and send the data object to the core engine. Once the
inventory imformation has been retrieved, the core engine
may have access to all relevant inventory information asso-
ciated with the coherency group in which the software
application 1s to be deployed.

At step 606, a graphical representation of one or more
clusters may be generated based on the retrieved informa-
tion. Thus, one or more components of an inventory engine
may use the retrieved information to generate a graphical
representation of the one or more clusters of a coherency
group from which the information was retrieved. The
graphical representation may present a unified view of all
nodes icluded 1n one or more clusters. Thus, 1n a single user
interface screen, a user may be presented with a diagram of
a cluster, a graphical representation of all nodes in the
cluster, and retrieved information for each node, such as a
software version and whether or not the node 1s active or
passive. Furthermore, the graphical representation may be
configured to present the retrieved immformation in various
other formats. For example, the retrieved information may
be filtered to generate and display lists of information. Thus,
the graphical representation may include a first list that lists
all active nodes 1n a cluster, and a second list that lists all
passive nodes 1n a cluster. It will be appreciated that the
information retrieved from the nodes may be filtered and
displayed 1n any way that may be capable of conveying
information about one or more clusters in which an appli-
cation 1s to be deployed.

In some implementations, the graphical representation 1s
presented to a user at a user interface. As set forth above, the
user interface may be part of an application used to deploy
soltware to one or more clusters 1in a coherency group. The
user nterface may present generated graphical representa-
tions of each cluster to provide the user with a unified view
of some or all of the retrieved inventory mformation. The
user may use the information to configure or modify the
process of deploying the software. For example, the graphi-
cal representation for a cluster of nodes may indicate that
some nodes are active, while some nodes are passive. Based
on this information, the user may select an order in which the
software should be installed on the different nodes.

FIG. 7A shows an example of a graphical representation
generated for an Active-Passive cluster, 1n accordance with
some 1mplementations. As set forth above, an active node
may be a node that includes resources that are used to
provide services associated with an application deployed to
that node. A passive node may be a node that does not
currently provide services, but 1s available 1f an active node
fails or becomes over-burdened, as may be determined by a
cluster resource, such as a load balancer. An Active-Passive
cluster may be a cluster in which there 1s one active node,
and all other nodes are passive. As shown 1n FIG. 7A, node
702 1s active while all other nodes are passive. In this
example, node 702 1s 1dentified by the text “Node3”. Fur-
thermore, information has been retrieved that indicates that
node 702 currently has a software version 4.5 installed. In
contrast, node 704 1s currently passive. Moreover, node 704
has an outdated software version 4.0 installed. Thus, the
graphical representation may provide a single unified view

US 9,575,738 Bl

13

that conveys information about all nodes 1n a cluster. Fur-
thermore, relevant information may be presented for virtual
nodes associated with the cluster. For example, information
may be presented as a list associated with virtual node 706.
The mnformation may 1dentily which node 1s currently active
and what version of software 1s installed on the active node.
In this example, Node3 is active and has a software version
4.5 1nstalled.

FIG. 7B shows an example of a graphical representation
generated for an Active-Active cluster, in accordance with
some 1mplementations. An Active-Active cluster may refer
to a cluster 1n which more than one node 1n a cluster 1s used
to provide services associated with an application deployed
to that cluster. As shown 1n FIG. 7B, node 712 and node 714
are both active and used to provide services via virtual
interface 716 and virtual interface 718. Thus, a list of nodes
may be presented that identifies all active nodes in the
cluster. In this example, the list identifies node 712 and node
714 and includes the text “Node4” and “Node3”. As simi-
larly set forth above, information i1dentifying active nodes
and software installed on each node may also be filtered and
presented as list 720 associated with virtual interface 716
and virtual interface 718.

In addition to generating a graphical representation, a
warning may be generated. Thus, in response to detecting,
that one or more nodes 1s non-compliant, a system compo-
nent, such as an inventory engine or core engine, may
generate a warning that may be sent to a user as a message
or a user interface component displayed in a user interface
screen. A node may be non-compliant because 1t might not
be able to provide failover or load balancing capabailities for
other nodes 1n 1ts coherency group. For example, a non-
compliant node may have a different version of solftware
than other nodes 1n the same coherency group. The warning,
may 1nclude one or more identifiers that identily non-
compliant nodes that have obsolete or different versions of
soltware installed. The warning may also include mventory
information associated with the non-compliant nodes that
provides configuration mnformation associated with the non-
compliant nodes. The warning may be integrated into the
generated graphical representation. For example, non-com-
plhiant nodes may be rendered differently, or 1n a different
color, such as the color red. As set forth above, a user may
review the information presented 1n a user interface screen,
such as a graphical representation of the coherency group.
The user may receive the warning and use nformation
included 1n the warning to determine which nodes should
receive a software upgrade, and 1n what order. Alternatively,
one or more rules may be used to automatically select nodes
to be upgraded. For example, 1n response to detecting
non-compliant nodes, a system component, such as a core
engine, may automatically select and upgrade the non-
compliant nodes.

Returning to FIG. 6, at step 608, one or more rules may
be retrieved from a rules engine. As similarly discussed with
reference to FIG. 4, a rules engine may store and maintain
one or more rules which may be used to determine an order
in which software 1s installed or upgraded i1n nodes 1n a
cluster or coherency group. Thus, the rules engine may
determine a most eflicient or eflective order 1n which soft-
ware should be deployed to nodes within one or more
clusters of a coherency group. Moreover, the rules engine
may provide one or more rules that may be used to deter-
mine an order that is compatible with failover and load
balancing capabilities of the coherency group.

In some 1implementations, the rules are user-defined rules.
Thus, a user may define an order in which software 1s to be

10

15

20

25

30

35

40

45

50

55

60

65

14

deployed to one or more nodes. The user may specily one or
more conditions which may be used to determine an order
associated with the one or more nodes. The user may write
or generate the entire rule. Alternatively, one or more
system-generated rules may be selected and edited based on
an input recerved from a user. Moreover, a user may specily
whether or not software should be deployed to several nodes
serially or 1n parallel. If a user indicates that software
application should be deployed in parallel, the user may be
presented with one or more options to configure the parallel
deployment of the software application. For example, the
user may provide an mput to a user interface that indicates
how many nodes should be updated in parallel, and how
many parallel threads should be provided during the deploy-
ment of the software application.

In various implementations, the rules may be system-
generated rules. Thus, one or more rules may be generated
and stored 1n a rules engine as part of a setup or configu-
ration process ol the system used to deploy the software
application to the coherency group. Examples of system-
generated rules may be default rules established by a system
administrator or a software developer. The default rules may
be one or more rules that determine an order for the
deployment of a software application based on one or more
default conditions. For example, a default rule may specity
that passive nodes 1n a cluster are updated prior to active
nodes. Thus, the default rule may specily that passive nodes
are updated first, then active nodes are taken oflline and
updated subsequently.

Furthermore, a default rule may be dynamically changed
or modified based on an mput received from a user at a user
interface. For example, 11 an active node 1s to be taken offline
during deployment of the soitware application, a user may
be prompted for an input that 1dentifies a failover node for
the active node that will be taken offline. If no faillover node
1s specified, the default rule may specily that the passive
nodes should be upgraded and a notification should be
generated that informs the user that the passive nodes have
been updated and the active nodes are pending for upgrade.
In some 1implementations, the notification 1s configured to
prompt the user for an action to be taken. Thus, after the
passive nodes have been updated and the notification has
been generated and presented at a user interface, the user
may 1dentily one or more failover nodes at that time, or take
no action at all. It will be appreciated that any portion of one
or more default rules may be configurable or modifiable.
Thus, a user may edit or modily an existing data table that
stores one or more default rules to create one or more custom
rules. The custom rules may be stored and applied globally,
or may be applied to a single node, cluster, or coherency
group.

Some examples of rules that may be stored and main-
tained by a rules engine are illustrated in Table 1 provided
below. It will be appreciated that one or more of the example
rules provided in Table 1 may be system-generated or user

defined.

TABLE 1
Rule Default
Number Rule setting Option Description
Rule 1 Preferred Inventory 1) Inventory Contains a list

list Order Order identifying an order
2) User in which the
defined list nodes should

be upgraded

US 9,575,738 Bl

15
TABLE 1-continued
Rule Default
Number Rule setting Option Description
Rule 2 Move Active Yes 1) Yes Active node will be
node to 2) No made Passive during
Passive upgrade and again
for software switched back to
deployment Active after
deployment
Rule 3 Serve first Passive 1) Passive first All Passive nodes
(Active/ first 2) Active first will be upgraded
Passive) first, then
Active nodes
Rule 4 Deployment Notify 1) Notity & Determines what
failure and Continue action should be
continue 2) Abort & taken upon
Notify software
3) Rollback deployment failure
and Notify
Rule 5 Software Upgrade/ 1) Upgrade Determines what
version Install automatically should be done if a
discrepancy auto- 2) Notity node(s) 1s found
matically with mismatched
software version
Rule 6 Software NA NA A user may specify
order the order 1n which a
software upgrade
should take place
Rule 7 Schedule NA NA Schedule of when

deployment may
take place

In some implementations, a rule, such as Rule 1 shown in
Table 1, 1s used to determine an order for deployment of
soltware based on a predetermined order stored in a list. For
example, a user may have previously defined an order for a
particular cluster in which software 1s to be installed on the
nodes. Alternatively, the order in which the nodes were
inventoried may be used. A rule, such as Rule 2, may specitly
a particular action to be taken for a node based on its current
operational state. For example, if a node 1s active, 1t may be
switched to passive, upgraded, and returned to an active
state. A rule, such as Rule 3, may determine an order in
which nodes are upgraded based on their current operational
status. For example, passive nodes may be upgraded first,
and then active nodes may be taken oflline and upgraded. As
similarly discussed above, in a cluster that implements load
balancing and failover capabailities, all nodes can’t be taken
oflline and upgraded at the same time without disrupting
functionality of software executing 1n the cluster. Therefore,
by selectively upgrading 1dentified passive nodes first and
then upgrading active nodes, all nodes 1n a cluster may be
upgraded, and functionality of solftware executing in the
cluster 1s not disrupted.

In various implementations, a rule, such as Rule 4,
generates a notification that notifies a user that a failure has
occurred during the deployment process. Thus, a system-

generated message may provide a user with information
about one or more nodes on which software has failed to be
installed, and information about the type of installation
fallure. Alternatively, the deployment process may be
aborted, or the node maybe rolled back to a previous
soltware version. A rule, such as Rule 5, may be used to
automatically upgrade software on a node 1n response to
determining that the software 1s obsolete or different than the
current version of soltware to be deployed. Alternatively, 1n
response to detecting the discrepancy, the system may
generate a message which prompts a user to take an action.
A rule, such as Rule 6, may prompt a user to specity an order
in which the software 1s deployed during the process of

5

10

15

20

25

30

35

40

45

50

55

60

65

16

deployment. Moreover, a rule, such as Rule 7, may perform
the installation or upgrade according to a predetermined
schedule. Thus, the software may be scheduled to be
deployed to the nodes at a later time.

At step 610, an order for deploying the application may be
determined based on the retrieved one or more rules.
Accordingly, the core engine may apply one or more
selected rules to a list of nodes included 1n the coherency
group. As set forth above with reference to step 604,
retrieved 1mventory information may include one or more
identifiers, such as host names or IP addresses, that identily
one or more nodes in a coherency group, and various
attributes associated with each node, such as an installed
solftware version. A system component, such as a core
engine, may retrieve one or more rules from the rules engine
and apply the rules to 1dentified nodes within a coherency
group based on the retrieved mventory information. Thus,
all nodes 1dentified by the mnventory process triggered at 602
may be arranged in an ordered list. The order may be
determined based on inventory information associated with
the identified nodes. For example, 1f a default rule 1s
selected, the default rule may generally indicate that passive
nodes should be updated prior to active nodes. The core
engine may analyze retrieved inventory information to
determine which of the 1dentified nodes are active and which
of the 1dentified nodes are passive. The passive nodes may
be positioned at the top of the list and active nodes may be
positioned at the bottom of the list.

In some i1mplementations, the rule that 1s applied 1s
selected based on an input received from a user. Thus, during
a deployment process, a user interface may be presented to
the user. The user interface may prompt the user to select a
rule to be applied to the nodes within the coherency group.
In various implementations, the user 1s presented with an
option of creating a new rule or modilying an existing rule.
Thus, various options may be provided that allow a user to
customize one or more rules to be implemented when
determining an order 1n which software 1s deployed to nodes
within the coherency group. The user interface may receive
an mnput from the user that includes a selection of one or
more rules. A system component, such as a core engine, may
apply the rule to the i1dentified nodes 1n the coherency group
to determine an order 1n which a software application should
be 1nstalled on the nodes 1n the coherency group.

In various implementations, the order may be determined
based, at least in part, on software dependencies associated
with soitware applications installed on one or more nodes in
the coherency group. For example, a first software applica-
tion to be upgraded on a node may have a second software
application installed on the node that depends on the first
soltware application. In this example, upgrading the first
software application may cause dependency related errors 1n
the execution of the second software application. Accord-
ingly, an upgraded version of the second software applica-
tion may be added to the determined order so that all
solftware applications that depend on the first software
application are upgraded as well, and no dependency related
errors occur when the updated version of the first software
application 1s implemented.

At step 612, the application may be deployed based on the
determined order. Thus, application software may be
installed on one or more nodes 1n a coherency group based
on the order determined at step 610. The nodes may be taken
oflline and software may be installed on the nodes according
to the determined order. One or more system components,
such as a core engine, may store and maintain a log of
changes made during deployment of the soiftware applica-

US 9,575,738 Bl

17

tion. Thus, the log may 1dentify which nodes had software
installed, in what order, and what software was 1nstalled.

At step 614, the database system may be updated based on
the deployment of the application. Thus, inventory informa-
tion associated with the coherency group to which the
soltware application was deployed may be updated to reflect
the most recent changes made to the nodes within the
coherency group. For example, information identiiying sys-
tem and configuration changes stored 1n the log generated at
step 612 may be stored and integrated with other inventory
information stored in the database system. Accordingly, the
most recent inventory information associated with a coher-
ency group may be stored in a database system, such as a
product database. Storing and maintaining the inventory
information in this way may mimmize redundancy within an
inventory process 1n a future iteration of a software appli-
cation deployment process.

In some 1implementations, updated mventory information
associated with a node may be stored in a separate data
object or data entry than previously stored inventory infor-
mation associated with that same node. Moreover, metadata
associated with the mventory information may be stored 1n
the database system as well. For example, a timestamp
indicating when an upgrade occurred may be stored with
inventory information identitying which node was upgraded
and to what version of a software application. By maintain-
ing older mmventory information for nodes that have been
updated, the database system may store a historical account
of all upgrades that have been performed by a centralized
deployment engine on nodes within a coherency group.
Other types of information may be logged and stored as
well, such as previous failover events and active/passive
status changes. One or more system components may be
configured to generate a report that includes the historical
data. The report may be generated 1n response to receiving
a request from a user or automatically upon completion of a
deployment process. Furthermore, the report may be pre-
sented to the user at a user interface.

In the description above and throughout, numerous spe-
cific details are set forth in order to provide a thorough
understanding of an embodiment of this disclosure. It will be
evident, however, to one of ordinary skill 1n the art, that an
embodiment may be practiced without these specific details.
In other instances, well-known structures and devices are
shown 1n block diagram form to facilitate explanation. The
description of the preferred embodiments 1s not imntended to
limit the scope of the claims appended hereto. Further, 1n the
methods disclosed herein, various steps are disclosed illus-
trating some of the functions of an embodiment. These steps
are merely examples, and are not meant to be limiting in any
way. Other steps and functions may be contemplated without
departing from this disclosure or the scope of an embodi-
ment.

What 1s claimed 1s:

1. A method for deploving a software application to a
plurality of nodes, the method comprising;

identifying the plurality of nodes in one or more clusters

ol nodes, the one or more clusters of nodes functioning
as a single unit providing failover and load balancing
for execution of a software application;

retrieving inventory information for each node of the

plurality of nodes, the mventory information providing
configuration and state information associated with
cach node, wherein the state information specifies
whether each node 1s an active node or a passive node
in a failover and load balancing cluster, wherein each
active node 1s being used to provide services associated

5

10

15

20

25

30

35

40

45

50

55

60

65

18

with the application and each passive node 1s not being
used to provide services, each passive node being
available to provide services associated with the appli-
cation 1I an active node fails or 1s overburdened:;

determining an order of the plurality of nodes for deploy-
ing the software application by applying one or more
rules associated with deploying the software applica-
tion and retrieved from a rules engine storing a plurality
of rules to the retrieved iventory information, the
order i1dentifying a sequence in which the software
application 1s deployed to the plurality of nodes; and

deploying the software application to the plurality of
nodes based on the determined order.

2. The method of claim 1, wherein the order 1s compatible
with failover and load balancing capabilities of the one or
more clusters of nodes.

3. The method of claim 1, wherein the one or more rules
are user-defined rules.

4. The method of claim 1 further comprising generating a
graphical representation of the one or more clusters of nodes
based on the mventory mformation retrieved from the plu-
rality of nodes.

5. The method of claim 4, wherein the graphical repre-
sentation displays active nodes and passive nodes in the one
or more clusters of nodes.

6. The method of claim 1 turther comprising generating a
warning that indicates that at least one node of the plurality
of nodes has a version of the software application that 1s
non-compliant with software installed on other nodes in the
one or more clusters of nodes.

7. The method of claim 1, wherein the order 1s determined
based, at least 1n part, on a dependency between the software
application that i1s being deployed and another software
application.

8. The method of claim 1, wherein the one or more nodes
are 1dentified based on a virtual internet protocol address
associated with the one or more clusters.

9. The method of claim 1, wherein the inventory infor-
mation retrieved from the plurality of nodes includes an
internet protocol address or a hostname associated with each
node of the plurality of nodes.

10. The method of claim 1, wherein a node 1s a physical
node 1 a commumnications network that has an associated
internet protocol address.

11. The method of claim 1, wherein inventory information
associated with each node of the plurality of nodes 1is
retrieved from at least one load balancer.

12. A computer program product comprising computer-
readable program code stored 1n a non-transitory computer-
readable medium to be executed by one or more processors
when retrieved from a non-transitory computer-readable
medium, the program code including instructions to:

identity a plurality of nodes 1n one or more clusters of

nodes, the one or more clusters of nodes functioning as
a single unit providing failover and load balancing for
execution of a soitware application;

retrieve mventory mformation for each node of the plu-

rality of nodes, the inventory information providing
configuration and state information associated with
cach node, wherein the state information specifies
whether each node 1s an active node or a passive node
in a failover and load balancing cluster, wherein each
active node 1s being used to provide services associated
with the application and each passive node 1s not being
used to provide services, each passive node being
available to provide services associated with the appli-
cation 1f an active node fails or 1s overburdened:

US 9,575,738 Bl

19

determine an order of the plurality of nodes for deploying
the software application by applying one or more rules
associated with deploying the software application and
retrieved from a rules engine storing a plurality of rules
to the retrieved mventory information, the order 1den-
tifying a sequence 1 which the software application 1s
deployed to the plurality of nodes; and

deploy the software application to the plurality of nodes

based on the determined order.

13. The computer program product of claim 12, wherein
the order 1s compatible with faillover and load balancing
capabilities of the one or more clusters of nodes.

14. The computer program product of claim 12, wherein
the steps further comprise:

generating a graphical representation of the one or more
clusters of nodes based on the mventory information
retrieved from the plurality of nodes, wherein the
graphical representation displays active nodes and pas-
sive nodes 1n the one or more clusters of nodes.

15. The computer program product of claim 12, wherein
the inventory information retrieved from the plurality of
nodes includes an internet protocol address or a hostname
associated with each node of the plurality of nodes.

16. The computer program product of claim 12, wherein
inventory information associated with each node of the
plurality of nodes 1s retrieved from at least one load bal-
ancer.

17. A system for deploying a software application to a
plurality of nodes comprising:

a processor; and

one or more stored sequences of imstructions which, when

executed by the processor, cause the processor to:

identify the plurality of nodes 1n one or more clusters
of nodes, the one or more clusters of nodes func-
tioning as a single unit providing failover and load
balancing for execution of a soiftware application;

10

15

20

25

30

35

20

retrieve 1nventory information for each node of the
plurality of nodes, the inventory information provid-
ing configuration and state imformation associated
with each node, wherein the state information speci-
fies whether each node 1s an active node or a passive
node 1 a failover and load balancing cluster,
wherein each active node 1s being used to provide
services associated with the application and each
passive node 1s not being used to provide services,
cach passive node being available to provide services
associated with the application 1f an active node fails
or 1s overburdened;

determine an order of the plurality of nodes for deploy-
ing the software application by applying one or more
rules associated with deploying the software appli-
cation and retrieved from a rules engine storing a
plurality of rules to the retrieved inventory informa-
tion, the order 1dentifying a sequence in which the
soltware application 1s deployed to the plurality of
nodes; and

deploy the software application to the plurality of nodes
based on the determined order.

18. The system of claim 17, wherein the order 1s com-
patible with failover and load balancing capabilities of the
one or more clusters of nodes.

19. The system of claim 17, wherein the steps further
comprise:

generating a graphical representation of the one or more

clusters of nodes based on the mventory information
retrieved from the plurality of nodes, wherein the
graphical representation displays active nodes and pas-
sive nodes 1n the one or more clusters of nodes.

20. The system of claim 17, wherein the inventory infor-
mation retrieved from the plurality of nodes includes an
internet protocol address or a hostname associated with each
node of the plurality of nodes.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

