12 United States Patent

US009571849B2

(10) Patent No.: US 9.571.849 B2

He et al. 45) Date of Patent: Feb. 14, 2017
(54) CODING OF RESIDUAL DATA IN (56) References Cited
PREDICTIVE COMPRESSION |
U.S. PATENT DOCUMENTS
(75) Inventors: Dake He, Waterloo (CA); Jin Meng,
Waterloo (CA) 8,768,080 BZ 7/2014 He et al._
2003/0081850 Al 5/2003 Karczewicz et al.
2006/0232454 Al 10/2006 Cha et al.
(73) Assignee: BlackBerry Limited, Waterloo, Ontario 2006/0257037 Al* 11/2006 Samadanioovoin... 382/251
(CA) 2007/0280350 Al 12/2007 Mathew et al.
2008/0013633 Al 1/2008 Ye et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 454 days. FOREIGN PATENT DOCUMENTS
: EP 1515446 3/2005
(21) Appl. No.: 13/334,330 WO 2004034330 4/2004
(22) TFiled: Dec. 22. 2011 WO WO02010091503 8/2010
(65) Prior Publication Data OTHER PUBLICATIONS
US 2012/01706477 Al Jul. 5, 2012 International Search Report and Written Opinion of the Interna-
tional Searching Authority i1ssued in International Application PCT/
Related U.S. Application Data CA2011/050803 on Mar. 23, 2012; 8 pages.
(60) Provisional application No. 61/429,633, filed on Jan. (Continued)
4, 2011.
Primary Examiner — Jorge L Ortiz Crniado
(51) }}1(5:151.19/91 20140 Assistant Examiner — Albert Kir
HOAN 19/13 52014'02"; (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
HO4N 19/48 (2014.01)
HO4N 19/61 (2014.01) (37) ABSTRACT
HO4N 19/136 (2014.01) o _ _ _ |
HO04N 10/18 (2014.01) Encodll}g input f:lata including one or more frames 1ncludes:
(52) U.S. Cl generating a residual block based on a difference between a
CPC ' HO4N 19/48 (2014.11); HO4N 19/13 first block of data for multiple pixels in a first frame and a
(201 4.11); HO4N 19/13 6.(2051 4.11): HO4N second block of data derived from information in the input
19 /1.8 (2’01 4.11); HO4N 19 /61. (261 4.11), data; generating a first block of coeflicients based on a
7 HO4N 1991 (201 4 11)’ transform performed on the residual block; generating ref-
(58) Field of Classification Search ' erence information based on the second block of data; and

determining portions of a code value representing respective
portions of the first block of coetlicients based on at least one
value derived from at least a portion of the reference

CPC HO4N 7/26; HO4N 19/105; HO4N 19/91;
HO4N 19/13; HO4N 11/02; HO4N 7/32;
GO6K 9/00; GO6K 9/36

information.
USPC 375/240.02, 240, 240.12, 240.23, 240.24,
375/240.26; 382/251, 233, 239, 247
See application file for complete search history. 38 Claims, 9 Drawing Sheets
A v
B0 - L
e I S AR SRR A —
- t :._._._._._.E:_. ___________ L‘T‘-rﬁﬁ‘-'{-vﬁ‘rﬁﬁ‘i::;rﬁﬁ%l:‘:ﬁﬁﬁ
"""""""" e et - oy ~, H h o .
30 I S £ B
; Y ! SR SRR T
-n-—*- i o : .‘ y s o E T - : 1-:-‘.:% _',-_-:
ARIas SARLLL SMASE SERES
" + : 5y O ~ %1 " n 7 .:;'léq.g._ -
- vl ettt St S SR S S
....... - v AL FAD
R .
'"""""""'""','i"""' 12 q T -f-'f:‘f
ORI TR ;
b ', t y
/ S S R SRS S DR
] -]
/ E P & ?‘:',H
a ! - '
- R ‘
L oL
; :____. __;____.’{f::_/ _____ mpmmmmm b e e e e e g
EEERENOE S AV U
SRETHE TN % / A
LS W 'LI ';*:-':;r"" """" e T
: ;,:'r/l."'r -
N A
. 205 /“' ******** P i
AN NEC > i ety | :
.......... FERL O Lsil
e ENECHNG
A N X¢ b ENGINE oo DU00GI00GT 10 1R O0S
243

US 9,571,849 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0232706 Al* 9/2008 Lee ...ccoooevvviivinnnnn, HOAN 19/13
382/239

2008/0310504 Al* 12/2008 Yeetal. 375/240.02

2009/0161759 Al 6/2009 Seo et al.

2009/0324112 A1 12/2009 Park

2010/0284462 Al 11/2010 Ye et al.

2011/0200104 Al 8/2011 Korodi et al.

2011/0206117 Al1* 8/2011 Bivolarsky HO4N 19/105
375/240.12

2012/0063691 Al* 3/2012 Yuetal.ccoooeeeennin, 382/233

2012/0121010 Al 5/2012 Bordes et al.

2014/0307778 Al 10/2014 He et al.

OTHER PUBLICATIONS

Office Action 1ssued in U.S. Appl. No. 13/334,345 on Aug. 21, 2013,
7 pages.

Elias, Peter, “Predicitive Coding—Part 1,” IRE Transactions—
Information Theory, Mar. 1955, pp. 16-24.

Marpe, Detlev, “Context-Based Adaptive Binary Arithmetic Coding
in the H.264/AVC Video Compression Standard,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 13, No. 7,
Jul. 2003, pp. 620-636.

Mrak, Marta, et al., “A Context Modeling Algorithm and Its
Application in Video Compression,” ICIP 2003, Sep. 14-17, pp. 1-4.
Office Action 1ssued in U.S. Appl. No. 13/334,330 on Nov. 26, 2013;
6 pages.

Notice of Allowance 1ssued in U.S. Appl. No. 13/334,345 on Feb.
18, 2014, 7 pages.

International Preliminary Report on Patentability 1ssued in PCT/
CA2011/050803 on Jul. 18, 2013.

International Preliminary Report on Patentability issued in Interna-
tional Application PCT/CA2011/050805 on Jul. 18, 2013.

International Preliminary Report on Patentability 1n International
Application No. PCT/CA2011/050803, dated Jul. 18, 2013.

International Preliminary Report on Patentability 1n International

Application No. PCT/CA2011/050805, dated Jul. 18, 2013.
United States Office Action 1n U.S. Appl. No. 13/334,330, dated
Nov. 26, 2013, 6 pages.

United States Notice of Allowance in U.S. Appl. No. 13/334,345,
dated Feb. 18, 2014, 7 pages.

Canadian Oflice Action 1n Canadian Application No. 2,822,929,
dated Feb. 17, 2015, 5 pages.

International Search Report and Written Opinion of the Interna-
tional Searching Authority 1ssued in International Application PCT/
CA2011/050805 on Mar. 13, 2012; 8 pages.

Mrak, M. et al: “Comparison of context-based adaptive binary
arithmetic coders 1n video compression”, Video/Image Processing
and Multimedia Communications, Jul. 2-5, 2003, pp. 277-286,
XP010650143.

Heising: “CABAC and ABT,” 4th JVT Meeting, Joint Video Team
(JVT) of ISO/IEC MPEG & I'TU-T VCEG (ISO/IEC JTC1/SC29/
WGI1 and ITU-T SG16 Q.6), No. JVI-D021-L, Jul. 26, 2002,
Klagenfurt, Austria; 13 pages.

Marpe: “Slice initialization of CABAC”, 5th JVT Meeting, Joint
Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WGI11 and I'TU-T SG16 Q.6), No. JVI-E154, Oct. 17,
2002, Geneva, Switzerland; 17 pages.

Extended European Search Report 1ssued by the European Patent
Office 1n European Application 11854751.2 on Feb. 16, 2016; 13
pages.

Oflice Action 1ssued 1n Canadian Application No. 2,822,925 on Sep.
30, 2016.

* cited by examiner

U.S. Patent Feb. 14, 2017 Sheet 1 of 9 US 9,571,849 B2

e e e e e e e e e T e e e e e e T i e e e T e T e L e T e T T T T e e e e T e T e e T e i T e T e e e e

r o .
TP ? Y
4 2 .)
11- h’.- ;? . - . ‘Il
g B rma, goln, Lol - W »
- r " r‘ " r 'I.
§ H 3 :
. L A .
- . 1] .
"h“‘) eyl ey e e e el ‘:
"
" Y ,.:' "
. -
e e e e e e e e w e mw e e e a e w . .
T o swssssssssnssnsnnsnnnnn¥uy 'l .
] ¥ } Ll -
. I Y & -+
| I | . -
: - o - . ']
. o 44 : B B B -.E o .
-. v: ¥ g vielvielelelvieinlelnleleinlelnlnlelelnlnnineln, *
& ". ',‘ { - R ‘.|. ..:
-
L) 3 o . »
! i ¥ .: h -
b - -
- :. :‘. K ¥ t &
. " v & .: ; o
- |
T | v t »
" ¥ E 4 : .
RO ; " 3
" N v : -
- |]
1 ; . Y
" ¥ N Y : -
T s g ::: .:
LI
" ¥ E 4 : .
:‘ :" R [t _:
] ¥ 5 '= f . -
& "- 5 Y d il. -.'
e A Y X t :
d
et - : - +
I] v F t .:
L] . -
o d t .:
L] . -
|
"
T
. g
) £
A ol
- P
R R R R N R R N R R R R R R R R N R R e e e e e e e e e e e e
.
.'i ‘l“\
. ' .
1 Fl
g R
| '\
;:-f .
',
.J
',
¥,
.J
',
‘J
¥,
',
¥,
.J
',
¥,
.J
L
',
. e R
W e e mnm e
a e e e e e e T T e e e e e e e T
. e A I W
o o R AL e e e R T, T a-
' v A e e r
4, i AR A e ."
f il i x
. B N W r
o LR a-
:g-_ N L RN AN -
. & - AL -
- ' ik
"’.F 1:"- L ' : -:l::l:x:x:x J-:
» A ML e e N
N e
.::.- : -n:a:a:x:x:x:x:x:x:x’. . '-""h;-'#
I i i
v A AL L o o T <
e L i i i s -‘-.
X i i I .
Yy AL AR o e e e e -
» A e e v
) o e o e e e e
» R R R e o
el e e e e e e
» 2o A e e e ae a T)
» A R e o R
N I I
. . N
- o e R R R R e e
. . o e e e e e
K T - :x:x’x:xxx:x*xxx”x’xxx”x*x".
T N S] iy
N Ty s
Ty T r:b
- L] [
1" 'l . R
[] []
'|'~ Tl
T~ 'I
'|-~ 'l
- 'lqb‘ lqb‘lqb‘ lqb‘lq b‘iq b‘ lqb‘lq b‘lqb‘lqb‘l qb‘ lqb‘ lq b‘lqb‘ lqb‘lqb‘iqb‘ lqb‘lq b*r
. : L] r
PR
o 2 bW B N &,
s
_-_1-1-‘_#:_1.-:_#:_*"*"
- r
. -r:~ ..":": \-:Jr: \-::r . rr::r
= T
ST e
. . o b'ra-*a-*q
-t IR
W . S]
NN N N N
. . XX R R R K
N A
. N AR
N AR AE
. X PRI)
»- XA AR R
.:- . W e
PN Y
» P)
) PN DN 0 0
P
" LU N e
S § mom - om
NN .
T
X A
Py
A v
N
Sl
LA MEN
o
N
| |
TR I IR B R R B R R B n e mn
T A A T T e A ‘xn.'
12:*## v T T :-:.1:
e e N N N
PN N N NN N NN NN NN RN RN NN RN NP RN NN U MR NN R NP N NN NN NN NN NN RN RN RN RN R RN NEF R NN N RN N N NN NN SN RNL.'.-‘.h'
I N e e N NN NN NN NN NI ",
Ry W R Wy _'h';
. .
.i"-.'l- B Y "
,.i".* -..*-‘.' r
‘. .

Y
'.'

182

]
EEEER R

s
Pt

R NN I N AR N S e
'l‘l'I‘l'l‘I'I‘I'I‘l'l‘I‘I‘I'I‘I'I‘I‘I‘I'I

.-.-.-,-_A_-_-,-.-,-_-,-_-_-_-,-_A_-_-_-.-,-.-,tit,:: A

rrrrrrrrrrrrrrrrrrrrri
e

L]

LI]

L]

LR L |

X X RN Y N A A

L]

L]

Wninlnlnlnlnininlnlnlnlninln el et i ln Tl

q

L]

£

L]

4

S T R N TN N N T N WY NN NN NN NN W NN RN NEN NEE NN NN NN
" LR R R N

“...-_aq!-!-'-'-'-'-'-!-'-'-'-'-'-!-'-'-'-'-'-!-'-'-'-'-'-!-'-'-'-'-'-!-'-'-'-J-'-!-'-'-'-J-'-!-'-'-'-J-'-!-'-'q*...

."-,;, '+""':“:lI

My hb_b_b_b_i_i_b_ﬁ_i_b_ﬁ_i-_-i-_-t-_-i-_-b_-i-_-i-_-b_-b_-i-_-i-_-b_-i-_-i-_-i-_-i-_-b_-t-_-i-_-i-_-t-_-i-_-i-_-i-_-i-_-i-_-t-_-i-_-b_-ﬁ-_-i-_-b_-b_-i-_-i-_-b_-i-_-i-_-i-_-i-_-b_-t-_-ﬁ-_-b_-t-_-i-_-i-_-b_-i-_-i-_-t-_-i-_-b_-ﬁ-_-i-_-b_-b_-i-_-i-_-b_-i-_-i-_-t-_-i-_-b_-t-_-ﬁ-_-b_-t-_-i-_-i-_-t-_-i-_-i-_i-_-i-_-b_i-_-ﬁ-_-b_-b_-ﬁ-_-ﬁ-_-b_-i-_-i-_-t-_-i-_-b_-t-_-ﬁ-_-b_-t-_i_b_i_i_b_i_i_b_i_i_#

m.mvwﬁmw.wwﬁ.w w.«,m.,wr....wwwwmm FIOIOPIOINIOD, _ ._ , ; L_‘....

tl
t‘
tl
tl
t‘
tl
tl
t‘
tl
tl
t‘
tl
%
£

US 9,571,849 B2

HEBIEL m__..m ____________________ __

RSB
SRR

..

gL

A e e e
e
o

HRHBURS T BRIBAY

-
EREE

Sheet 2 of 9

. F ﬂ.
; :
A v
: . ‘
- oy P . " A
L spanuen :
% - }ﬁﬁfr. W . %
X v
A v
3 v
5 v

w_...

F

2z

!!

Feb. 14, 2017

HMERHI 3
LRIHSURI

. s o
..q“MWWw. . taw . hMe.Mv o i R t&?
G727 &8 Tt

U.S. Patent

e e e e e,

et e tet A
w..u..“r.w.m MWWWW‘WMN\M {mﬁ AR ..mm.#m&ﬂxﬁ.mmm.wfw ﬁ.m.w W.-Mﬂm..n .m FRRRPRRRR-

Aoy

US 9,571,849 B2

KIS Y5 Ced

F o ka NH 4 ForaaaNE€$TSS +E S 44 rrsmaaasEas. 444w F 7 xvF . F. @ ¥ F . Fa .0 .

B GALE

||

JOBSE0
BRI

Sheet 3 of 9

rr

gy e e e e e e e
x
=
v
Sela
n
* -
J . . '
il
e e 0,

?iiiiiiiiﬁiiiiii]]]}]!.!!!l]}}}}}}}}}}]}]!!!! ﬁiiiii]]}]]!!W!!!!!!!l]}}}}}}}}}}}}}}}}]]!!!!:
ok .

vz 4

*

]
o A S_.
297

Feb. 14, 2017

e e e T e e e e

U.S. Patent

U.S. Patent Feb. 14, 2017 Sheet 4 of 9 US 9,571,849 B2

1y

Tt

& Vaiet

- ? - :’ el &:.;.,-:'
B .lrir'_r_'_r_"ir_r_'_l.r - ".:‘MI_ '

F Tk
aE

- el

£

. ..

LAt S Sl S S o S Al Sl S A Sl S Y Sl S S Y A o

»

11

e e e e e e e e e e e)

'
LA |
1_-!_ 'i‘i~

ek,
'I.

11110

£

0 L
3 e o, &

e A v Ty s
v E |
o £ %

LHE

¥,
4
L]

.i.f-f—f-f-f-f-f-f—f-f-f—f-f-f—flr o e T T T T T T T T T e T e T T . .

) ;: LR -'-.i-:i:.";‘ 'l:{..'.'l.
| ' L] L

u : I, v . painial, gW;;:

N . Lt) ot

*
r
%
o
P
W

P
.I-.I-I-. -

Ty

4

SO 3 1 -
i bw'] 3 o
r.‘ -.J ¥ . ﬂ. i _b
L3 . *}‘:‘:‘:‘:‘:“:"‘:“.‘.‘:‘:‘:‘:‘T‘. i (i it At i it i A ".e"_.
|]] -
-._- -.J .i- . -
3 o ¥, wt
: R : -
.. . -.:J ::- B
r e F % v Z
r") g ’ -:J :.. ‘:‘i‘ t
S e ¥) >
5 5 v o >
x L] i ;
: 3 ¥ y §
o E e e e e e e e e - k
' i) X
r._ -:J :i' t
: ¥ ¥ ;
* -
' 3 3 ;
3 A > :
L = d ‘i'
3 E X s
¥ . - :
: : 3 S L
r._' ". : -.J ' ‘i' t
[3 :: -2 U .
s > L L : ;
-.-- = d * i
¢ - ot :E: EZ) Z
3 - . X X ~ e
.. :l) ‘.J ." . -
3 M) v L :
S L | i,
"‘I‘I‘I‘I‘I‘I‘I'-I'I'I"I'-I'I‘I‘I‘I‘I‘I‘I‘I‘I‘I‘I‘I‘I'I'I'I‘I'I'I'-I'I'I‘I'I'I‘I'I'I'I'I'I‘I'I'I'I'I'I'I'I'&: . ::: :: '-‘m .
- e
. "u, L] w i. ‘? .
LS 1.J ‘i' _.g M
'_.W--."-' nd * i
’ W : kY
L ¥
g % .
‘.._ i -:J :a- i,
Ron : “
elalale N v " %,
L . = . .
. y e, : '
':-"‘-"-r‘-r"-‘-r"--Hﬁhﬁhﬁhﬁhﬁ-ﬁhﬁhﬁhﬁh‘n‘ﬂ-‘nﬁh Po'wininln'sle'sinin ninlsininisl "-r‘-r"-‘-r"-r‘-"-r‘-n"-‘-"-n‘-";‘-n 5 ilr"-n‘:-:‘-ﬂ-‘n"-ﬂ-"n‘# i RCICRCRCRCRCRCRCRC R
] ."."' %
4 L L "\
¥ : o
:— g 1
. % - ¥ e
ol % : N 3
. i e
-, *
f , e ¥ [} /R k
g : N
- 'l,._-. ot
L3 iy t .
‘ [} T o h
. ¥ * . % > .
o :
L . .-.r‘mu“.._*) . .' .. t
o . 'a - N i iug t
L . | _' " L
'.-‘?w | r P] k b Tyt -.-
7 J Sl B
[} s
7 d e : 2 w :
T o - 4 > vimmmal
Selnlelnlnlelelelnlelnlelelelels, B [} a e

[

c;f
£
£
£

fEEEEEEEEEEEEEEN

[

[

o~
s
—a -"'ip".,',-_q

%
&

':;_.é:-

;

z
¢
.?':-.

-

9
T

i
Sk
5

A
£
RS

'y
-é'

3
T3
X i

5
&
N
‘J
5
N
&
N
§
+
KN
N
&
N
§
+
KN
N
&
N
§
+
KN
%
v ¥
§
+
KN
N
&
N
§
+
KN
N
&
N
§
+
KN
N
&
N
§
+
KN
N
£
+

») _
W, . mmme TV
» i R, mjululs
1.- * *
¢ 2l Sl e 25 -
; il o o
% f!"E L -
¥ " e Sl
» L W,
», o . L
o
e ke

>

%
1:."&}

o

L

i iy,
S
et

4

L,
..11|.-.__.

o

Ml .
N
- - .l—..l—..l—..l ...—..l—..l—..l'&' '-.

FPRER R
ke e e e e e e
pE'E'E'E'E's’'n'n’'n'n'n'n

US 9,571,849 B2

-.-.-.-r.-.-.-;-.-.é ey,
L A N

-l 1'..-.‘. t
-...__ l_..__ I.J l_..__ FLTLTCTC L L N l_..__ AL LT L
. ' [

Ll o
‘l‘l‘i‘l‘l‘l‘l‘l‘l"l
‘'m's's's's's's's's"

' e ey
- - Iu-t Iu.. Iu.' Iu- l* Iu.. Iu-t Iu.. Iu.'

—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—. —.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.‘—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.'—.‘—.‘—.‘—.'—.

L
e da e el G e e

[T T T S S T T N N
(i E I EEEEEEEER

=]

&
.gﬂi.-.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-r.-r.4r.-3‘-.4r.-r.-r 3

HhhhhHHhhhhhHhhhhHHhhhhhHhhhhhhhhhhhhhhhhhhhhiﬁﬁ

w ey
ﬁtl[tqlll{l{illilllllillillillill{llillil{llilll% Pa .
: e S :
- . .ll...ll .
__.... . * . 1..].-.-. . R ___.-. d
ity k. J;v L g
v Ko 08 . - ¢
Jfﬂ‘ . -
ot vr -
g
1.Ii___..l -
-?iﬁﬂ.
.l...l-..llo_al..l
L I.Il.-l..l.—..t TP
* .I'.llllm.l....l..l_ LI
't A
- F .Irl._l.ll.il__tl.l.ll_.__l_.l_.l_.r.-.lllil_t"l.ll - -
. i L W USSR . T
- B e e e e e e e ;#tiﬁﬁﬁﬂl
R L
Jﬂf?q
-
ol ol al el ol el al ol ol ol al el el o -) ™

LOOORION BOL LLAOEELONALLG N

53

i

o,
%

L
»
wlalelely
R

b
*
¥
%

o

oA

. Pricis _}Em
wwﬂﬁﬁwmﬁ

h‘.)

Sheet 5 of 9

-L-.-Lt.qt.-tt.ﬁi-%-mﬁtqtqtﬁq

Al el

amms

‘I-'ﬂ h"l-
.-i"'-

S,

Wt S :
g e e o e e Wn & ...4......____. :

St

.. i
g TRV :
M._ ,.W qu.M ..-...- . _...M M.a_.___%& m - ifiltl{ﬁ..-{.__J._.-...._-.l_\-....-_.-.n._-.-..-._-_......_.ni ot e
s - k,
.Al “ Hxh -hMWW“W H MrumlmmﬁFMM

s MO
AN i

hhhhﬂ*
u

-

.,

Feb. 14, 2017

'
¥
¥
¥
t
¥
t
¥
K
¥
t
¥
t

o

e e e e e A .-....W- S

.f..*.*.*.*.*.*.*.-:!,*.*.*. ;
"

i
'
K
_4

.h_
T
&
¥
¥
K
¥

b
hﬁﬁhﬂhﬁhﬁhﬂhﬁv{hﬁhﬁhhhhh

NN NN NN R “t“i“i“t“in._“t“i“!!i“!t : Al ol ol & * s‘.

w
"m'n'w ' 'n'n'y

L]
L

JJ

Ll I

JJJJJJJJJJJJ

4
4
4
4
4
4
4
4
4
4
4
4
4
T e S B T e e S e S S e A e T S S N e S B e S B B S
Iy
4
4
4
4
4
4
4
4
4
4
4
i

U.S. Patent

U.S. Patent Feb. 14, 2017 Sheet 6 of 9 US 9,571,849 B2

400

"

sz, | U
MRS IAL BEOOK

4hg 1 CENERATE FIREY
o BLOHK OF
- DOEFFICIENTS

Y

406 7 yse | ENCODE FIRST BLOCK |

S e g g B < T
T CONTEXTSR? WITHOUT CONTEXTS
e, o

'.1-..'!_.'

s

416 | DETERMINE

llllllllllllll

e, A, A, A, o

CODE VALUE

0 0 0 0 000,000 000,00, 00,0, 0, 00,0, 0, 0,00, 0,00, 00,0, 0, 0,0, O, 0, 00,0, O, 0, 0,0, 0, 0, 0,

U.S. Patent Feb. 14, 2017 Sheet 7 of 9 US 9,571,849 B2

ff
!!

DECODE 458
CODE VALUES e’
WITHOUT CONTEXTS

& 510 o A '
"3‘\2{ - ____:.-_-:-"-‘:"'-. ug&
'h“f'- | i, e 8, g S

LL

454 GENERATE
%"’”"""""""" b B b b b I e
IR R TION

"-»f-.»,,.._._.,.,..; g::k{}%‘»«-;"? -QMh f’-”?’ o'z
: TN E LUK

o e e o o o o o o o

'''

A5 § r i oo i 5 g
w0, GENERATE
H& E % é-::; Uﬁﬁi ﬁ %...5::}{; %’;

III

GEMERATE
e LMD BLIMK

. Patent Feb. 14, 2017 Sheet 8 of 9 US 9,571.849 B2

200

Tl Tl
-
L]
-
-
L]
-
-
L]
-
-
L]
. -
-
L]
-
-
L]
-
-
L]
4 & -
L]
- -
L]
-
L]
-
-
L]
- -
& -
L]]
- -
- &
- L]
-
-
L]
L] -
-
L]
- -
-
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
L. d - -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
" .
- -
L] L]
- -
EEEEE T TR
- -
L] L]
- -
- -
L] L]
- -
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
. d - -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
- . . "
- -
-
L] L]
-
- -
L]
. - -
. LN B B UL B B B B UL D DL DL B D D B DN D B B B DL D DL O D DL D D DL BB L] L]
- -
L]
- -
-
L] L]
-
d - -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
L]
- -
-
L] L]
-
- -
* - -
- L I I I I R R R R RN R E R R R RN I .
- -
- -
L]
- -
- -
L] L]
- -
-
L]
-
-
- L]
- -
L] -
* -
LR N B N N N N B N B B B B B B N B B N B N N N N N N N N N O B O B B R B D B O N O O B O B O N B B B N N N B N O N N O N O R O B B B O B L R R | .
-
- -
L]
- & -
LI
L} L]
-
-
L]
-
-
LI]
4 &
-
L]
-

FI1G. S5A

. Patent Feb. 14, 2017 Sheet 9 of 9 US 9,571.849 B2

250

-
-
-
-
L
-
-
L
-
-
L
-
-
L
-
-
-
-
-
L
-
- A -
L
- -
L
- - -
- -
& -
-
L
-
-
L
-
-
L
-
-
L -
& -
-
- L
- -
-
L
- -
-
. L L
r - -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
L d - -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
" .
- -
L L
- -
L4 3 4 3 4 3 4 b 4 b 4]
- -
L L
- -
- -
L L
- -
- -
-
L L
-
- -
L
- -
-
L L
-
- d - -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
. . . "
- -
-
L L
-
- -
L
. - -
. 4 b h h kb ok hh h kb bk hh h ok h hhhh ok hhhhh ok hd ok hh A L L
- -
L
- -
-
L L
-
d - -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L
- -
-
L L
-
- -
L . . .
- 4 h ok oh ok hoh ok ok ohoh ohochohohohohohohoh ok hohohohohohohohochohohohohohochohohohohohochohochohohohochohohohohohochchochoh oA .
- -
- -
L L
- -
- -
- L
- -
d -
L 4
& -
- -
) - L
- -
- -
N ii iii -
4 h ok h h h h h ok h ok h ok h ok h h ko h h ok h h bk ok ok h h h ok h ok h ok h ok h ok hoh ch ok h ok h h ch ok h ok ko h ok h ok ko ch ok h ok h ok ch ok h ok hh ok ok h ok hohhhh ok hhhdh 4k h ok ok ok ohoh ok ok ohohohoh ok ok och ok ohoh ok ok ok ok ohohochoh ok ok ohochochohochohohohochohochohohohochohochochohochochohochohochchochchchchchoch kA .
-
- -
+
L] -
4+ 4
L L
-
-
L
-
-
4 4
L]
-
-
-

FlG. 5B

US 9,571,849 B2

1

CODING OF RESIDUAL DATA IN
PREDICTIVE COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Application Ser.
No. 61/429,633, filed on Jan. 4, 2011, incorporated herein by
reference.

FIELD

The present application generally relates to coding and
decoding media data (e.g., video and image coding and
decoding), and in particular to techniques for coding of
residual data in predictive compression.

BACKGROUND

Some standards for encoding and decoding videos (e.g.,
ITU-T H.264/AVC video coding standard) use block-based

coding processes. In these processes, to compress a video

sequence, which consists of several frames of pictures, a
frame 1s divided into blocks (e.g., 4x4, 8x8, 16x16, 32x32,

or 64x64 blocks of pixel data). In this way, the task of coding

the whole video sequence 1s broken down into coding each
block, where blocks within a frame are coded 1n a certain
order (e.g., raster order). The process of coding a block
includes performing a transform (e.g., the discrete cosine
transform (DCT)). In many cases, the data being trans-
formed 1s not the actual pixel data, but 1s residual data
following a prediction operation. For example, to code a
particular block of pixels (called the “current block™), a
prediction of the same size (called the “reference block™) 1s
derived based on reconstruction of a block that was already
coded according to the coding order. The reference block
can come from a diflerent frame (called “inter prediction™)
or the same frame (called “intra prediction”). A residual
block 1s obtained by subtracting the reference block from
current block. Each residual block 1s transformed into a
block of transtorm coeflicients, the transtorm coetlicients are
optionally quantized, and the (possibly quantized) transform
coellicients are entropy encoded, yielding a bitstream.
Decoding 1s performed using an inverse procedure including
entropy decoding the bitstream, and de-quantizing and
iverse transforming to recover the residual block. The
reference block that was used to generate the residual block
at the encoder can also be recovered at the decoder using
previously decoded data. Then the current block 1s recon-
structed by adding the residual block to the reference block.

The overall encoding/decoding procedure may result in
lossy compression/decompression of the video data (e.g., 1f
quantization 1s involved), however, the entropy encoding/
decoding portion of the overall procedure 1s lossless. In the
AV standard, two entropy coding methods are employed in
the block-wise prediction coding architecture described

above: one 1s called context-adaptive binary arithmetic
coding (CABAC) and the other one 1s called context-
adaptive vaniable length coding (CAVLC).

DESCRIPTION OF DRAWINGS

FI1G. 1 1s a block diagram of an exemplary communication
system.

FIG. 2A 1s a block diagram of an exemplary video
encoder.

10

20

25

30

35

40

45

50

55

60

65

2

FIG. 2B 1s a block diagram of an exemplary video
decoder.

FIG. 3A 15 a schematic diagram of an exemplary encoding,
procedure.

FIG. 3B 1s a schematic diagram of an exemplary decoding
procedure.

FIG. 4A 1s a flowchart of an exemplary encoding proce-
dure.

FIG. 4B 1s a flowchart of an exemplary decoding proce-
dure.

FIG. 5SA 1s a block diagram of an exemplary encoder
apparatus.

FIG. 5B 1s a block diagram of an exemplary decoder
apparatus.

DESCRIPTION

The term “comprising” and varniations thereol as used
herein are used synonymously with the term “including” and
variations thereof and are open, non-limiting terms.

FIG. 1 shows an exemplary system 100 for communicat-
ing data, including image, video, or other media data,
between one or more nodes 101, 1024-102¢ connected over
a network 104. In this example, a node 101 receives a
sequence ol frames 106 from one or more sources (not
shown) such as a video camera or a video stored 1n a storage
medium, or any other source that can detect, derive, capture,
store or record visual imnformation such as video or images.
In some implementations, the sources may be 1n communi-
cation with the node 101, or may be a part of the node 101.
The node 101 includes an encoder module 108 that encodes
the frames 106 to generate a stream or file of encoded video
data. In thus example, the encoded video data 1s provided to
a node 102a coupled to the network 104. Alternatively, the
node 101 may itself be coupled to the network 104, or the
encoded video data may also or alternatively be stored
locally for later transmission or output, such as 1n a non-
volatile memory or other storage medium.

The node 1024 transmits the encoded video data (e.g., as
a stream or a file) to any of a variety of other nodes
10256-102¢ (e.g., a mobile device, a television, a computer,
etc.) coupled to the network 104. The node 1024a can include
a transmitter configured to optionally perform additional
encoding (e.g., channel coding such as forward error-cor-
rection coding) and to modulate the data onto signals to be
transmitted over the network 104. The node 1025 receives
and demodulates the signals from the network 104 to
recover the encoded video data. The node 10256 1ncludes a
decoder module 110 that decodes the encoded video data
and generates a sequence ol reconstructed frames 112. In
some 1mplementations, the node 1026 may include a display
for rendering the reconstructed frames 112. The node 1025
may include a storage medium to store the encoded video
data for later decoding including at a time when the node
1025 1s not coupled to the network 104.

The network 104 may include any number of networks
interconnected with each other. The network 104 may
include any type and/or form of network(s) including any of
the following: a wide area network (such as the Internet), a
local area network, a telecommunications network, a data
communication network, a computer network, a wireless
network, a wireline network, a point-to-point network, and
a broadcast network. The network may include any number
of repeaters, appliances, devices, servers, storage media and
queues.

In the description that follows, example embodiments are
described with reference to two-dimensional video coding/

US 9,571,849 B2

3

decoding, however, the techniques may also be applicable to
image coding/decoding, video coding/decoding that
includes additional views or dimensions, including multiv-
iew video coding (MVC) and three-dimensional (3D) video,
extensions of video coding/decoding schemes such as scal-
able video coding (SVC), and other media coding/decoding
schemes that use entropy coding/decoding with different
contexts associated with different portions of the data. For
example, for any type of residual data predicted from
reference data, the techniques for determining a reference
data dependent context for entropy coding/decoding of a
portion of the residual data can be applied for a variety of
different uses of the context in the entropy coding process.
In the description that follows, the terms frame and slice
are used somewhat interchangeably. For example, 1n the
case of the H.264 standard, a {frame may contain one or more
slices. It will also be appreciated that certain encoding/
decoding operations are performed on a Iframe-by-frame
basis and some are performed on a slice-by-slice basis,
depending on the particular requirements of the applicable
video coding standard. In any particular embodiment, the
applicable video coding standard may determine whether the
operations described below are performed 1n connection
with frames and/or slices, as the case may be.

Reference 1s now made to FIG. 2A, which shows a block
diagram of an encoder 200 for encoding video. Reference 1s
also made to FIG. 2B, which shows a block diagram of a
decoder 250 for decoding video. It will be appreciated that
the encoder 200 and decoder 250 described herein may each
be implemented on an application-specific or general pur-
pose computing device, containing one or more processing,
clements and memory. The operations performed by the
encoder 200 or decoder 250, as the case may be, may be
implemented by way of application-specific mtegrated cir-
cuit, for example, or by way of stored program instructions
executable by a general purpose processor. The device may
include additional software, including, for example, an oper-
ating system for controlling basic device functions.

The encoder 200 receives input data 212 from a source
(e.g., a video source) and produces an encoded bitstream
214. The decoder 250 receives the encoded bitstream 214 (as
input data for the decoder 250) and outputs a decoded video
frame 216. The encoder 200 and decoder 250 may be
configured to operate 1n conformance with a number of
video compression standards. For example, the encoder 200
and decoder 250 may be H.264/AVC compliant. In other
embodiments, the encoder 200 and decoder 250 may con-

form to other video compression standards, including evo-

lutions of the H.264/AVC standard such as the High Eihi-
ciency Video Coding (HEVC) standard.

The encoder 200 includes a transform processor 222, a
quantizer 224, and an entropy encoder 226. The iput data
212 includes frames of spatial domain data where each
frame 1s organized, for example, as blocks of pixel data,
which may further be organized as “macroblocks™ or “cod-
ing units” that are made up of multiple blocks of pixel data.
The blocks of pixel data each comprise a two-dimensional
array ol pixel data where each pixel represents a value (e.g.,
a luminance value that represents an overall intensity, or a
chrominance value that includes color information). The
transform processor 222 performs a transform upon the
spatial domain data. In particular, the transform processor
222 applies a block-based transform to convert spatial
domain data (in a spatial domain with dimensions x and y)
to spectral components 1n a transform domain (with dimen-
sions 1. and I, that represent spatial frequencies). For

YV
example, in many embodiments a discrete cosine transform

10

15

20

25

30

35

40

45

50

55

60

65

4

(DCT) 1s used. Other transforms, such as a discrete sine
transform or others may be used in some instances. The
block-based transform 1s performed on a macroblock or
sub-block basis, depending on the size of the macroblocks.
In the H.264 standard, for example, a typical 16x16 mac-
roblock contains sixteen 4x4 transform blocks and the DCT
process 1s performed on the 4x4 blocks. In some cases, the
transform blocks may be 8x8, meamng there are four
transform blocks per macroblock. In yet other cases, the
transiform blocks may be other sizes (e.g., 16x16, 32x32, or
64x64 blocks, or rectangular blocks having different num-
bers of pixels i the x and y dimensions in the spatial
domain, and different numbers of coeflicients in the {_and {,
dimensions 1n the transform domain).

Applying the block-based transform to a block of pixel
data results 1n a set of transform domain coeflicients. A “set”
in this context 1s an ordered set in which the coeflicients
have coetlicient positions (in the transform domain with
dimensions f, and £,). In some instances the set of transtorm
domain coeflicients may be considered a “block™ or matrix
of coeflicients. In the description herein the phrases a “set of
transform domain coetlicients” or a “block of transform
domain coetlicients” are used interchangeably and are meant
to 1ndicate an ordered set of transform domain coeflicients.

The block of transform domain coeflicients 1s quantized
by the quantizer 224. The quantized coellicients and asso-
ciated information are then encoded by the entropy encoder
226.

A predictor 236 provides a reference block for performing
prediction by subtracting the reference block from a current
block of the input data 212 being encoded. The predictor 236
includes a module to determine the appropriate coding
mode, for example, whether the frame/slice being encoded
1s of I, P, or B type. Intra-coded frames/slices (1.e., type I) are
encoded without reference to other frames/slices. In other
words, they do not employ temporal prediction. However
intra-coded frames do rely upon spatial prediction within the
frame/slice. That 1s, when encoding a particular block the
data 1n the block may be compared to the data of nearby
pixels within blocks already encoded for that frame/slice to
find a similar reference block. Using a diflerence processor
237 (e.g., subtraction of respective pixel values), the pixel
data of the reference block 1s subtracted from the pixel data
of the current block to generate a block of residual data. The
transform processor 222 then converts the residual data into
coellicients 1n the transform domain. H.264, for example,
prescribes nine spatial prediction modes for 4x4 transform
blocks, and HEVC prescribes additional spatial prediction
modes. In some embodiments, multiple of the modes may be
used to independently process a block, and then rate-distor-
tion optimization 1s used to select the best mode.

Motion prediction/compensation enables the encoder 200
to take advantage of temporal prediction. Accordingly, the
encoder 200 has a feedback loop that includes a de-quantizer
228, an 1nverse transform processor 230, and a post-proces-
sor 232. These elements mirror the decoding process imple-
mented by the decoder 250 to reproduce the frame/slice. A
frame store 234 1s used to store the reproduced frames. In
this manner, the motion prediction 1s based on what will be
the reconstructed frames at the decoder 250 and not on the
original frames, which may differ from the reconstructed
frames due to the lossy compression mvolved 1n encoding/
decoding. When performing motion prediction/compensa-
tion, the predictor 236 uses the frames/slices stored in the
frame store 234 as source frames/slices for comparison to a
current frame for the purpose of 1dentitying similar blocks.
Accordingly, for blocks to which motion prediction 1s

US 9,571,849 B2

S

applied, the “source data” which the transform processor
222 encodes 1s the residual data that comes out of the motion
prediction process. For example, 1t may include information
regarding the reference frame, a spatial displacement or
“motion vector,” and residual pixel data that represents the
differences (1f any) between the reference block and the
current block. Information regarding the reference frame
and/or motion vector 1s not necessarily processed by the
transform processor 222 and/or quantizer 224, but instead
may be supplied to the entropy encoder 226 for encoding as
part of the bitstream along with the quantized coetlicients.

The encoder 200 also includes a reference processor 238
that aids the entropy encoder 226 in generating a bitstream
214 that 1s more ethiciently compressed than 1t would be
without 1t. For example, in some implementations, the
reference processor 238 processes the reference block that
was used to generate a particular residual block and provides
reference information that the entropy encoder 226 uses to
categorize different contexts 1n a context model according to
spectral properties of the reference block (e.g., in addition to
a spectral position within a transform of the residual block),
as described in more detail below with reference to FIGS.
3A and 3B. By providing multiple contexts for a given
residual block spectral position, the entropy encoding can be
performed more efliciently. For example, in the case of an
arithmetic code, the estimated probabilities provided by
different contexts can be estimated more accurately by
accounting for different characteristics that are evident from
the reference block. In the case of a Hullman code, the
different sets of codewords (called *“codes™) provided by
different contexts can be selected 1n a more customized way
to account for different characteristics that are evident from
the reference block.

The decoder 250 includes an entropy decoder 252,
dequantizer 254, inverse transform processor 256, and post-
processor 260. A frame bufler 258 supplies reconstructed
frames for use by a predictor 262 1n applying spatial
prediction and motion compensation. The addition processor
266 represents the operation of recovering the video data for
a particular reconstructed block to be supplied to the post-
processor 260 from a previously decoded reterence block
from the predictor 262 and a decoded residual block from
the inverse transform processor 256.

The bitstream 214 1s received and decoded by the entropy
decoder 252 to recover the quantized coeflicients. Side
information may also be recovered during the entropy
decoding process, some of which may be supplied to the
motion compensation loop for use 1n motion compensation,
il applicable. For example, the entropy decoder 252 may
recover motion vectors and/or reference frame information
for inter-coded macroblocks. In the process of performing
entropy decoding, the decoder 250 also uses information
from a reference processor 264 to provide the same refer-
ence information that was used in the encoder 200, which
cnables the entropy decoder 252 to assign contexts in the
same way as the encoder 200, for example, to adaptively
estimate the same probabilities that were used to encode
symbols 1n the encoder 1n the case of arithmetic coding, or
to apply the same code in the case of Hullman coding.

The quantized coeflicients are then dequantized by the
dequantizer 254 to produce the transform domain coetl-
cients, which are then subjected to an 1mnverse transform by
the inverse transform processor 256 to recreate the “video
data.” In some cases, such as with an intra-coded macrob-
lock, the recreated *““video data” 1s the residual data for use
in spatial compensation relative to a previously decoded
block within the frame. The decoder 250 generates the video

10

15

20

25

30

35

40

45

50

55

60

65

6

data from the residual data and pixel data from a previously
decoded block. In other cases, such as inter-coded macrob-
locks, the recreated “video data” from the inverse transform
processor 256 1s the residual data for use in motion com-
pensation relative to a reference block from a different
frame.

When performing motion compensation, the predictor
262 locates a reference block within the frame builer 258
specified for a particular inter-coded macroblock. It does so
based on the reference frame information and motion vector
specified for the inter-coded macroblock. It then supplies the
reference block pixel data for combination with the residual
data to arrive at the recreated video data for that macroblock.

Post-processing may then be applied to a reconstructed
frame/slice, as indicated by the post-processor 260. For
example, the post-processing can include deblocking. Cer-
tain types of post-processing are optional and in some cases
the post-processor operates 1 a bypass mode to provide
reconstructed data without any post-processing (e.g.,
deblocking may not be necessary after spatial compensa-
tion). After post-processing, the frame/slice 1s output as the
decoded wvideo frame 216, for example for display on a
display device. It will be understood that the video playback
machine, such as a computer, set-top box, DVD or Blu-Ray
player, and/or mobile handheld device, may bufller decoded
frames 1n a memory prior to display on an output device.

Reference 1s now made to FIG. 3A, which shows a
schematic diagram of an exemplary encoding procedure
performed by an encoder (e.g., encoder 200) that uses
entropy encoding (using any of a variety of types of lossless
coding, such as arithmetic coding or Huflman coding) with
context modeling based on information from reference
blocks (e.g., from the reference processor 238) for encoding
symbols generated from residual blocks. Alternatively,
instead of entropy encoding, other exemplary encoding
procedures could use lossy coding of coeflicients of a
symbols generated from residual blocks based on a corre-
sponding reference blocks. A sequence of frames 300 1s to
be encoded. In some frames, such as frame 302, blocks of
pixels are encoded based on similar reference blocks. In this
example, a current block 304 1s being encoded with respect
to a reference block 306. The reference block 306 1s 1n the
same frame 302 as the current block 304, however, 1n other
examples, the reference block 306 may be 1n a different
frame from the frame 302 containing the current clock 304.

The encoder generates a residual block 308 by computing
differences between pixel values 1n the current block 304
and respective pixel values 1n the reference block 306. The
residual block 308 has the same spatial dimensions (along
the x and y axes) as the current and reference blocks. In this
example, these blocks are 4x4 blocks, so the encoder per-
forms 16 subtraction operations to generate the residual
block 308. Other block sizes may be used, but the sizes of
the current and reference blocks are generally the same (1.¢.,
they include the same total number of pixels and have the
same number of pixels along the x and y dimensions). Thus,
in the examples below, 1t other block sizes were used, the
s1ze of the residual block and corresponding blocks would
be different (e.g., 8x8 blocks would yield 64 pixels i the
residual block and 64 coeflicients 1n the coeflicient blocks
described below).

The encoder performs a transform operation on the
residual block 308 to generate a block of transform domain
coellicients. The values of the transform coeflicients are
quantized (such that the values are rounded to the closest
step size of a set of quantization step sizes) to yield a block
ol quantized transform coeflicients 310. In some implemen-

US 9,571,849 B2

7

tations, the quantizatien step size for each coellicient 1s
selected dynamleally, using a quantizer that 1s able to apply
different step sizes to different coeflicients. In the transform
domain, the transform coetlicients represent points along the
dimensions 1, and f, corresponding to dith
corresponding spatial “basis patterns,” and the f and f{,
positions of those weights can be interpreted as spatial
frequencies associated with those basis patterns. The
encoder arranges the values in the block of coeflicients 310
in a particular one-dimensional ordering according to a
predetermined scanning pattern over the two dimensions of
the 4x4 array of coeflicients 310. FIG. 3A shows an exem-
plary zig-zag scanning order that can be used to generate a
series of 16 coeflicient values x[0], x[15]. Thus, the
position mdex 1 of a given coetlicient value x[1] within the
(two-dimensional) block of coeflicients represents a position
in a one-dimensional ordering of the coeflicients.

In order to perferm entropy encoding on the coeflicient
values x[0], . . ., x[15], a mapper 312 maps the values onto
one or more series of symbols. Each symbol can take on any
of a predetermined set of values. For example, 1n some cases
the symbols represent the lengths of zero runs and the
terminating nonzero values, and in some cases (when the
mapper 312 performs “binarization”) the symbols are binary
symbols (called “bins™) that take on one of two possible
values (e.g., “0” or “1”). When generating a series of bm
values from coeflicient values x[0], . . . x[1] . x[135], 1
some cases there 1s a correspondence between bins and
coellicients such that a given bin value bin[i] 1s related to a
corresponding coeflicient value x[1] with the same position
index 1 1n a predetermined manner. However, the correspon-
dence 1s not necessarily a one-to-one correspondence. For
example, for some values of 1 there may not be a corre-
sponding bin value, and some bin values bin|[1] may also
depend on other coetlicients 1n addition to x]1].

An entropy encoder (e.g., entropy encoder 226) then uses
an encoding engine 314 to perform entropy encoding on
cach series of symbols. The encoding engine 314 accepts a
series ol symbols from the mapper 312 and accepts an
estimated probability for each symbol from the reference
processor 238. The encoding engine 314 1s able to encode a
series of symbols collectively as a unique binary value 1n a
way that 1s reversible, such that the original symbols can be
recovered exactly from that binary value. An example of
such an encoding engine 314 1s an arithmetic coder. By
using an estimate of the probability that a particular one of
the symbols will take on a particular value 1n the coding
process, an arithmetic coder i1s able to represent the entire
series of symbols with fewer bits than would be necessary to
represent each symbol individually as a binary value. This
compression 1s achieved, generally speaking, because more
probable symbols correspond to shorter bit sequences within
the binary value and less probable symbols correspond to
longer bit sequences within the binary value. The more
accurate the probability estimate 1s, the more eflicient the
compression 1s.

The encoding engine 314 operates 1n cooperation with the
reference processor 238 to provide accurate probability
estimates. At the start of encoding (and at the start of
decoding), initial probability estimates are stored 1n storage
locations (called “contexts™) of a context data structure 316.
The reference processor 238 retrieves a probability estimate
p(1) stored at a location 1n the data structure 316 given by a
context index j. The reference processor 238 determines the
context index j for a given bin value bin[1] corresponding to
a position 1ndex 1 as a function of a prediction pred based on
reference mnformation and the coeflicient position 1, such that

10

15

20

25

30

35

40

45

50

55

60

65

8

the context index j=c(1, pred) has multiple possible values
for a given value of 1. Therefore, there are multiple possible
probability estimates p(7) stored for a given value of 1. In this
example shown 1 FIG. 3A, there are four possible values of

erent weights of 5 j for each value of 1. Therefore, the reference processor 238

can retrieve any one of four possible values of a previously
updated probability estimate for a given value of 1, depend-
ing on the prediction pred. The reference information used
to determine the prediction pred 1s based on the reference
block 306 that was used to generate the residual block 308
for the current block of coeflicients 310 being encoded, as
described 1n more detail below.

Different probability estimates stored at different context
indices are separately updated for successive residual blocks
to provide more accurate estimates as based on past history
as more residual blocks of a frame or series of frames are
encoded. The encoding engine 314 overwrites the previous
probability estimate p(j) with an updated probability esti-
mate p'(j) computed based on the current bin value being
encoded and the previous probability estimate p(y) (reflect-
ing any past bin values). Because the context index j
depends on reference block prediction information, the
updated probability estimate also depends on reference
block prediction information. The next time a particular
updated probability 1s used, 1t represents an estimated prob-
ability that 1s conditioned on both information about previ-
ously coded bin values and reference iformation. Option-
ally, different values of j can be computed for different
values of other auxiliary information (e.g., the type of frame
or block or bin value being encoded) by providing an offset
that 1s added to the context index j that depends on that
auxiliary information. An exemplary procedure for updating
the probability estimates i1s described 1 more detail in
Marpe et al. “Context-Based Adaptive Binary Arithmetic
Coding 1 the H.264/AVC Video Compression Standard,”
IEEE Transactions on Circuits and Systems for Video Tech-
nology, Vol. 13, No. 7, July, 2003, incorporated herein by
reference. For other types of coding (e.g., lossless coding
schemes such as Huflman coding or other entropy coding
schemes, or lossy coding schemes) the coding information
stored at various locations 1n the context data structure 316
does not necessarily need to be updated to take into account
past history of previously encoded (or decoded) symbols.

In some 1mplementations, the encoding engine 314 can
use binary arithmetic coding (BAC) along with a binariza-
tion process performed by the mapper 312 in which the
coellicient values x[0], . . ., x[15] are mapped into multiple
different series of bins, including a “significance map”
representing the non-zero coeflicient values, a “last map”™
representing the position of the last non-zero coeflicient, and
a Unary/kth order Exp-Golomb binarization of absolute
values of non-zero coeflicients. To code each series of bins
provided by the mapper 312, the encoding engine 314 can
use a binary arithmetic code to generate a bitstream repre-
senting the bins, and a probability estimator to update
probability estimates stored 1n the context data structure
316. As described above, each particular bin value 1s used by
the encoding engine 314 (or a corresponding decoder) based
on an a priori estimate of the probability of a particular bin
taking on that particular value, where an adaptive arithmetic
code allows this probability to be estimated on the fly. A
probability estimator can be mmplemented as a Laplace
estimator, a Kirchevsky-Trofimov estimator, or a finite-state
machine, for example. For a finite-state implementation of a
probability estimator, the probability 1s quantized to be one
of a finite set of possible values (e.g., 64 possible values) and

indexed by a state s, and probability estimation 1s performed

US 9,571,849 B2

9

based on state transitions. The state determines the prob-
ability estimates of the two possible symbols (in the case of
binary bin values) and the next state depends on the value of
the symbol most recently encoded (or decoded). In the
following example, there are 64 possible states enumerated
by s=0 . . . 63, each associated with a corresponding
probability value p, . . . psy, Where p,=0.5, p.=op._,, and o
1s a number close to but less than one (e.g., 0=~0.95). The
probability of the least probable symbol (LPS) (e.g., either
“0” or “1” for a binary bin value) 1s p. and the probability of
the most probable symbol (MPS) 1s 1-p.. In this example,
the probability p. gets closer to 0 as s gets closer to the
largest value (63), and p_, gets closer to 0.5 as s gets closer
to the smallest value (0). So 1n the state s=0, (the “equiprob-
able state”) the two possible symbol values are equally
probable. Exemplary state transition vectors to transition to
a next state s (given by the value 1n the vector) from a
previous state s (used to index into the vector), according to
the value of the most recently encoded (or decoded) symbol,
are shown below.

It the most recently encoded (or decoded) symbol i1s the
MPS, the transition vector 1s NextStateMPS|s]:

11,2,3,4,5,6,7,8,

9,10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 277, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48,

49, 50, 51, 32, 53, 54, 35, 56,

57, 58, 59, 60, 61, 62, 62, 63}

It the most recently encoded (or decoded) symbol 1s the
LPS, the transition vector 1s NextStateL.PS[s]:

10,0, 1, 2, 2, 4, 4, 5,

6,7,8, 9,09, 11, 11, 12,

13, 13, 15, 15, 16, 16, 18, 18,

19, 19, 21, 21, 22, 22, 23, 24,

24, 25, 26, 26, 27, 27, 28, 29,

29, 30, 30, 30, 31, 32, 32, 33,

33, 33, 34, 34, 35, 35, 35, 36,

36, 36, 37, 37, 37, 38, 38, 63}

So 1n this example, 11 the MPS 1s received, the probability
estimate for receiving the MPS again increases until the last
two states (s=62 or 63) in which case the probability
estimate for receiving the MPS stays the same. I the LPS 1s
received, the probability estimate for receiving the MPS
decreases for most states except for the first and last states
(s=0 or 63). I the current state 1s the equiprobable state and
the LPS 1s received, the symbol values of the MPS and LPS
are interchanged, otherwise, the symbol values of the MPS
and LPS stay the same for all the other state transitions.
Using a probability estimation procedure such as the pro-
cedure described above enables the probability estimate to
depend on the values of past encoded (or decoded) symbols.
Storing and updating probability estimates in different con-
texts (with different context indices), enables the probability
estimates to also depend on information used to determine
the contexts associated with the past symbols. Thus, by
selecting different context indices for different values of
selected reference information, the probability estimates can
be made to depend on the selected reference mmformation.

In other implementations, the encoding engine 314 can
use other type of codes (other than an arithmetic code), such
as a Hullman code or a vanable-length-to-variable-length
code. The other types of codes also use different contexts
associated with different symbols for encoding a series of
symbols. For example, in Huflman coding, instead of storing
probability estimates, the contexts at diflerent context indi-

10

15

20

25

30

35

40

45

50

55

60

65

10

ces store mformation for applying different codes for dii-
ferent symbols. Some codes may enable more eflicient
encoding for a symbol having a certain value of the predic-
tion pred dernived from reference information associated with
that symbol.

To take advantage of the correlation between the refer-
ence block 306 and the residual block 308 (and the resulting
bin value being encoded), the encoding engine 314 can
determine coding information (e.g., the probability estimates
for arithmetic coding or the code for Huiflman coding) based
in part on reference iformation derived from the reference
block 306. Any of a variety of techniques can be used to
process the reference block 306 (e.g., using the reference
processor 238) to generate reference information that 1s used
by the encoding engine 314. For example, reference block
prediction coeflicients r[0], . . . , r[15] can be derived by
applying the same transformation and quantization on ref-
erence block 306 that was applied to the residual block 308.
In this example, there are 16 reference block prediction
coellicients since the reference block 306 has the same
number of pixels (16) as the residual block 308. The position
index 1 associated with each reference block prediction
coellicient r[1] can be determined using the same zig-zag
scanning order used to determine the coethicient values
x[0], . .., x[15]. The computed reference block prediction
coellicients r[1] can then be used 1n any of a variety of ways
in the entropy coding (and decoding) process. In examples
below, the context index j for a bin symbol 1s computed as
a function of all the encoded history and the reference
information (e.g., some function of the reference block
prediction coeflicients r[0], . . ., r[15]).

To encode a bin value bin[i] at a particular position index
1, two different examples of possible context index compu-
tations are as follows:

j=4i+min(log,(numPredSig+1),3)

j=4i+mmn(log,(rfij+1),3)

where numPredSig represents the number of non-zero coet-
ficients 1n r[0], . . ., r[15], and r[1] 1s the value of prediction
coellicient at the corresponding position index 1. The bait-
stream resulting from the encoding process 1s decodable at
a decoder that uses the same coding information stored 1n a
corresponding context data structure using the same proce-
dures for determining context indices. For example, in the
case of anithmetic coding, the decoder 1s able to use the same
initial probability estimates and the same procedure for
updating probability estimates since the same reference
block prediction coethicients r[0], . . ., r[15] can be generated
at the decoder (using the reference processor 264) by per-
forming a transform and quantization on a reference block
recovered from encoded data received at the decoder (e.g.,
a reference block generated by adding a different reference
block to a decoded residual block).

Reference 1s now made to FIG. 3B, which shows a
schematic diagram of an exemplary decoding procedure
performed by decoder (e.g., decoder 250) that uses entropy
decoding with context modelling based on information from
reference blocks for decoding symbols used to recover
residual blocks. For example, to decode an encoded bit
sequence to recover a bin value bin[1] at a particular position
index 1, the reference processor 264 can use the same
procedure used 1n the encoder (by reference processor 238)
to determine the context for bin[1] (at the context index j=c(i,
pred)), and the coding information (e.g., estimated probabil-
ity p(j)) associated with that context. The prediction pred 1s
derived, for example, from reference information from a

US 9,571,849 B2

11

previously decoded reference block 360. An entropy
decoder (e.g., entropy decoder 252) uses a decoding engine
350 to perform entropy decoding on a bitstream to recover
a series of symbols, for example, a series of bins. The first
bin for a particular sequence of bin values representing a
residual block to be decoded 1s the bin that was first encoded

at the encoder bin[0]. In the case of arithmetic coding, at the
start of the decoding the 1nitial probability estimates are the
same 1nitial probablhty estimate that were used at the
encoder. After bin[1] 1s decoded, the probability estimate
associated with the context used 1s updated by using the
same probability estimation procedure as used 1n the
encoder, where an exemplary procedure uses the finite state
machine used for BAC described above. The decoding
engine 350 1s able to determine subsequent bin values bin|1]
in a sequence ol bin values from previously decoded bin
values bin[0] . . . bin[i1-1], the corresponding probability
estimate p(y), and the encoded bit sequence representing the
residual block being decoded. The decoder 1s able to decode
subsequent sequences of bin values bin[1] (e.g., for subse-
quent residual blocks) using the updated probability esti-
mates.

The recovered series of symbols 1s then mverse mapped
by a demapper 356 (e.g., by performing de-binarization) to
generate the coeflicient values x[0], . x[15]. The block
of quantized transform coeflicients 310 1s then recovered
according to the same scanning order used at the encoder.
After applying inverse quantization and an inverse trans-
form, the residual block 308 1s recovered. At the decoder, the
recovered residual block 308 1s added to the reference block
360 to yield the reconstructed block 362. In this example, the
reconstructed block 362 1s being decoded with respect to a
retference block 360 1n the same frame 364 as the recon-
structed block 362, however, 1n other examples, the refer-
ence block 360 may be 1n a different frame from the frame
364 containing the reconstructed block 362 (e.g., an other
previously decoded frame 1n a sequence of decoded frames
366).

In an example based on BAC, to encode the coeflicients
x[0], x[15], the mapper 312 first generates multiple
series of bins representing different characteristics of the
coellicients from which the coeflicients can be recon-
structed. For example, two of the series of bins are: a
51gn1ﬁcance map si1g[0], . sig[lS] and a last map
last[O], . . ., last[15], Where for any 1, sig[j]=(x[3] !=0) and
last[q] (] L.), where L, denotes the position of the last

non-zero coedll , X[15]. Other series of bins

icient 1 x[0], . . .
include a “greater than one map” which indicates whether a
coellicient’s absolute value 1s greater than one, and various
“level maps” that indicate whether a coetlicient’s absolute
value 1s greater than a particular level. Some of the series of
bins (not necessarily all of them) are losslessly encoded by
the encoding engine 314.

An exemplary procedure that can be used by the encoding,
engine 314 for performing arithmetic coding to encode the
significance and last maps using contexts to store adaptively
updated probability estimates 1s as follows.

for (1=0; 1 < 15; 14++)

{
assign context to estumate the probability for encoding sig|[i];
if (s1g[1] ==1)
{
assign context to estimate the probability for encoding last[i];
terminate the encoding of the significance map it (1==L_);
h

5

10

15

20

25

30

35

40

45

50

55

60

65

12

An exemplary procedure that can be used by the encoding
engine 314 for performing arithmetic coding to encode the
“oreater than one” and level maps of significant coethicients
alter the encoding of the significance and last maps 1s as
follows.

cl =1; ¢2=0;
for (1=L ;1 >= 0; 1--)
{

if (s1g[1]==1)

{

assign context to encode (abs(x[i])==1);
if (abs(x[1]) > 1)
{

cl = 0;
assign context to encode the level of x[1]-2;
C2++;

}else
1

if (¢l > 0)
cl++;
h

The steps of assigning a context for encoding a given
value are performed using the reference processor 238, and
the steps of estimating updated probabilities to be associated
with the assigned context are performed using the probabil-
ity estimator 316, as described above.

Additional examples of possible context index computa-
tions for the diflerent series of bin values, including ofisets
associated with different series of bin values, are as follows.

j=citx_s1g_oftset+4i+min(log,(rfi/+1),3) for sig[i/

j=ctx_last_offset+4i+min(log,(numPredSig+1),3)) for
last[i]

j=ctx_greone_oflset+4 min(cl.4)+min{log>(#/i/+1),3)
for (abs(x/i])=—1)

j=context_level_oflset+4 min{c2.4)+min(log>(r/i/+1),
3) for level of x/fi]/-2

The following tables show exemplary values of a quan-
tized 4x4 transform coethicient block generated from a
particular residual block, and a corresponding prediction
coellicient block generated from the reference block that
was used to generate the particular residual block. The
following example 1illustrates various operations i1n an
encoding procedure that uses some of the techniques
described herein.

Coeflicient Block

-16 -1 0 0
—4 0 0 0
0 1 0 0
-1 1 0 0
Prediction Coeflicient Block
49 0 0 0
—4 0 0 0
-1 0 0 0
-2 0 0 0

US 9,571,849 B2

13

The following table shows values of the position index,
the absolute values of the residual transform coeflicients, the
signs ol the residual transform coetlicients, and the predic-
tion coellicients.

/19730 scan

14

(0,last_p[4*2+2])—arithmetic code engine—update
last pf4%*2+2]

(0,s1g_p [4*3+0])—arithmetic code engine—update
sig p [4*3+0]

index

S1gn - - - + +
pred 49 0 4 1 O 0O O O O 2 0 0 O 0

The signs can be encoded separately without context

probability estimates. Therefore, only the absolute values of

the residual transform coethcients will be considered 1n this
example.

The following table additionally shows values of the 20

significance map and the last map 1n their corresponding
index positions.

Significance and [ast maps

15

15

(0,s1g_p f4*4+0])—arithmetic code engine—update
sig p [4*4+0]

(0,s1g_p [4*5+0])—arithmetic code engine—update
sig p[4*5+0]

(0,s1g_p f4*6+0])—=arithmetic code engine—update
sig p f4*6+0]

index
0 1 2 3 4 5 6 7 8 9 10 11 12 13
X | 16 1 4 0 0 0 0 0 1 1 1 0 0 0
pred 49 0 4 1 0O 0 0 o o0 2 0 0 0 0
sSig 1 1 1 O 0O 0 0 0 1 1 1
last 0 O 0 0 0O 1

Some index positions for these maps do not have corre-
sponding values 1f those values are not needed to fully
represent the information in the map. For example, only
those mdex positions with a value of s1ig=1 have a last map
value, since the meaning of the last map 1s whether the
corresponding value 1s the last non-zero coeflicient.

To encode the significance map, the context index j for
retrieving the probability estimate p(j)=sig_pl[j] 1s: 1=4%1+
min(floor(log,(r[1]+1)),3).

To encode the last map, the context index j for retrieving,
the probability estimate p(j)=last_p[j] 1s: 1=4*1+mun(tloor
(log,(numPredSig+1)),3).

In this example, the number of non-zero coeflicients 1n the
prediction coellicient block 1s given by numPredSi1g=4.

The significance and last maps can then be encoded using
the following sequence of operations, where each row
represents a different value of 1 for one of the maps, and
includes providing the pair of values (map[i], p(1)) to an
arithmetic code engine (e.g., implemented using the encod-
ing engine 314) and updating the probability p(1):

(1,s1g_p [4*0+3])—anthmetic code engine—update
sig_p f4*0+3]

(0,last_p[4*0+2])—arithmetic code engine—update
last_pf4*0+2]

(1,s1g_p[4*1+0])—anthmetic code engine—update
sig_p f4*1+0]

(0,last_p/f4*1+2])—arithmetic code engine—update
last_pf4*1+2]

(1,s1g_p[4*2+2])—arithmetic code engine—update
sig p f4%2+2]

35

40

45

50

55

60

65

15

(0,s1g_p f4*7+0])—=arithmetic code engine—update
sig_p f4*T7+0]

(1,s1g_p [4*8+0])—arithmetic code engine—update
sig p[4*8+0]

(0,last_p[4*8+2])—arithmetic code engine—update
last_pf4*8+2]

(1,s1g_p[f4*9+1])—=arithmetic code engine—update
sig p [4%9+1]

(0,last_p[4*9+2])—arithmetic code engine—update
last p/4%9+2]

(1,s1g_p[4*10+0])—arithmetic code engine—update
sig pf4*10+40]

(1,last_p/4*10+2])—=arithmetic code engine—update
last_p f4%10+2]

FIG. 4A shows a flowchart for an exemplary encoding
procedure 400 for encoding input data including one or more
frames, which may be part of a procedure performed by an
encoder (e.g., encoder 200) that includes additional steps not
shown. The procedure 400 includes generating (402) a
residual block based on a diflerence between a first block of
data for multiple pixels 1n a first frame and a second block
of data derived from information in the mmput data. The
procedure 400 also includes generating (404) a first block of
coellicients (e.g., x[0], . . . , x[15]) based on a transform
performed on the residual block. The encoder determines
(406) whether symbols representing the first block of coel-
ficients are to be encoded using different contexts for dii-
terent symbols based on reference information. If so, then
the encoder generates (408) reference information (e.g.,

US 9,571,849 B2

15

r[0], . . ., r[15]) based on the second block of data, and
determines (410) portions of a code value representing
respective portions of the first block of coeflicients based on
at least one value derived from at least a portion of the
reference information. If not, then the encoder encodes (412)
the first block of coethlicients without using different contexts
for diflerent symbols based on reference information.

FIG. 4B shows a flowchart for an exemplary decoding
procedure 450 for decoding encoded input data including
one or more code values, which may be part of a procedure
performed by an decoder (e.g., decoder 250) that includes
additional steps not shown. The decoder determines (452)
whether the code values are to be decoded into symbols for
a first block of coethicients (e.g., xX[0], . . ., X[13]) using
different contexts for different symbols based on reference
information. If so, then the decoder generates (454) refer-
ence information (e.g., r[0], . .., r[13]) based on a first block
of data derived from information in the mmput data, and
determines (456) portions of the first block of coeflicients
based on respective portions of a recerved code value and at
least one value derived from at least a portion of the
reference information. If not, then the decoder decodes (4358)
the code values without using different contexts for diflerent
symbols based on reference information. The procedure 450
also 1mcludes generating (460) a residual block based on an
inverse-transform performed on the first block of coetl-
cients, and generating (462) a second block of data for
multiple pixels 1n a reconstructed frame based on a sum of
the first block of data and the residual block of data.

Reference 1s now made to FIG. 5A, which shows a
simplified block diagram of an example embodiment of an
encoder 500. The encoder 500 includes a processor 502, a
memory 504 accessible by the processor 502, and an encod-
ing application 3506. The encoding application 506 may
include a computer program or application stored in the
memory 304 and containing instructions for configuring the
processor 502 to perform steps or operations such as those
described herein. The encoding application 506 may 1nclude
one or more components or modules for performing various
aspects of the techniques described herein. For example, a
reference processor 238, as described herein, can be
included as a module of the encoding application 506. The
encoding application 506, or any of 1ts modules, may be
stored 1n any combination of the memory 504 of the encoder
500, and any other accessible computer readable storage
medium, such as a compact disc, flash memory device,
random access memory, hard drive, etc. The encoder 500
also 1includes a communications interface 508 accessible by
the processor 502 to transmit a bitstream comprising
encoded video data generated by the processor 502 execut-
ing the encoding application 506.

Reference 1s now also made to FIG. 5B, which shows a
simplified block diagram of an example embodiment of a
decoder 550. The decoder 550 includes a processor 552, a
memory 354, and a decoding application 556. The decoding,
application 556 may include a computer program or appli-
cation stored 1n the memory 554 and containing instructions
for configuring the processor 552 to perform steps or opera-
tions such as those described herein. The decoding applica-
tion 556 may include one or more components or modules
for performing various aspects of the techniques described
herein. For example, a reference processor 264, as described
herein, can be included as a module of the decoding appli-
cation 556. The reference processor 264 1s configured to
perform computations corresponding to those performed by
the reference processor 238 that was used to encode the
video data that 1s being decoded. For example, the reference

10

15

20

25

30

35

40

45

50

55

60

65

16

processor 264 adaptively updates the context model includ-
ing the estimated probabilities stored in the contexts for
performing arithmetic decoding, based 1n part on informa-
tion from reference blocks, as described herein. The decod-
ing application 556, or any of its modules, may be stored 1n
any combination of the memory 554 of the decoder 550, and
any other accessible computer readable storage medium,
such as a compact disc, flash memory device, random access
memory, hard drive, etc. The decoder 550 also includes a
communications interface 560 accessible by the processor
552 to recerve a bitstream comprising encoded video data to
be decoded by the processor 552 executing the decoding
application 556.

The decoder and/or encoder may be implemented 1n a
number of computing devices, including, without limitation,
servers, suitably programmed general purpose computers,
set-top television boxes, television broadcast equipment,
and mobile devices. The decoder or encoder may be 1mple-
mented by way of software containing instructions for
confliguring a processor to carry out the functions described
herein. The soltware instructions may be stored on any
suitable computer-readable memory, mncluding CDs, RAM,
ROM, Flash memory, etc.

It will be understood that the encoder described herein
and the module, routine, process, thread, or other software
component implementing the described method/process for
configuring the encoder may be realized using standard
computer programming techniques and languages. The tech-
niques described herein are not limited to particular proces-
sors, computer languages, computer programming conven-
tions, data structures, or other such implementation details.
The described processes may be implemented as a part of
computer-executable code stored in volatile or non-volatile
memory, as part of an application-specific integrated chip
(ASIC), etc.

In one aspect, in general, encoding mmput data including
one or more frames includes: generating a residual block
based on a difference between a first block of data for
multiple pixels 1n a first frame and a second block of data
derived from mformation in the input data; generating a first
block of coeflicients based on a transform performed on the
residual block; generating reference imformation based on
the second block of data; and determining portions of a code
value representing respective portions of the first block of
coellicients based on at least one value derived from at least
a portion of the reference information.

Aspects can include one or more of the following features.

For example, determining the portions of the code value
representing respective portions of the first block of coetli-
cients based on at least one value derived from at least a
portion of the reference information may include determin-
ing the portions based on respective estimated probabilities
estimated according to one or more previously determined
code values, and the at least one value. The estimated
probability for determining a {first portion of the code value
1s based on a value stored 1n a data structure at a location
identified by an index that depends on: a position within the
first block of coeflicients, and the at least one value. The
position within the first block of coeflicients may include a
position in a one-dimensional ordering of the coeflicients in
the first block of coeflicients. A value stored at a {irst location
in the data structure may be updated based on: a value
previously stored at the first location associated with the one
or more previously determined code values, and a value of
a symbol representing a portion of the first block of coet-
ficients.

US 9,571,849 B2

17

The estimated probability for determining a {first portion
of the code value may include a conditional probability that
a symbol representing a portion of the first block of coet-
ficients has a particular symbol value given the one or more
previously determined code values and the at least one
value. The symbol representing a portion of the first block of
coellicients may include a binary symbol determined
according to a value of a coellicient in the first block of
coellicients 1n a particular position with respect to a trans-
form domain of the transform performed on the residual
block. The reference information based on the second block
of data m a second block of coeflicients based on a transform
performed on the second block of data.

The at least one value according to which a particular
probability 1s being estimated may include a value based on
a coellicient 1n the second block of coetlicients that has a
position within the second block of coeflicients that corre-
sponds to a position of a coellicient within the first block of
coellicients for which the particular probability 1s being
estimated. The at least one value may include a value based
on a number of non-zero coellicients 1n the second block of
coellicients.

Generating the first block of coeflicients based on a
transform performed on the residual block may include
quantizing values resulting from the transform. Generating
the second block of coeflicients based on a transform per-
formed on the second block of data may include quantizing
values resulting from the transform. The respective portions
of the first block of coeflicients may include a series of
symbols, with each symbol having a value determined by at
least one coeflicient of the first block of coeflicients. The
symbols are binary symbols each having one of two possible
values. The respective portions of the first block of coetli-
cients may include a series of symbols, with each symbol
having a value determined by at least one coeflicient of the
first block of coeflicients. The code value representing the
respective portions ol the first block of coeflicients may
include an arithmetic code value generated based on the
series of symbols and the respective estimated probabilities.
Each of the series of symbols has a symbol value that 1s
associated with a corresponding one of the respective esti-
mated probabilities. A set of codewords for determining a
first portion of the code value 1s based on information stored
in a data structure at a location i1dentified by an index that
depends on: a position within the first block of coetlicients,
and the at least one value.

The position within the first block of coeflicients com-
prises a position in a one-dimensional ordering of the
coeflicients in the first block of coetlicients. The second
block of data represents multiple pixels in the first frame.
The second block of data represents multiple pixels 1n a
second frame. The first block of data and the second block
of data include data for the same number of pixels.

The first block of data may represent multiple pixels in the
reconstructed frame or the first block of data may represent
multiple pixels n a frame other than the reconstructed
frame. The first block of data and the residual block of data
may include data for the same number of pixels.

In another aspect, in general, decoding encoded input data
including one or more code values includes: generating
reference information based on a first block of data derived
from information 1n the input data; determining portions of
a first block of coetlicients based on respective portions of
a rece1ved code value and at least one value derived from at
least a portion of the reference information; generating a
residual block based on an inverse-transform performed on
the first block of coetlicients; and generating a second block

1

10

15

20

25

30

35

40

45

50

55

60

65

18

of data for multiple pixels 1n a reconstructed frame based on
a sum of the first block of data and the residual block of data.

Aspects can include one or more of the following features.
For example, determining the portions of the first block of
coellicients based on respective portions of a received code
value and at least one value derived from at least a portion
of the reference information may include determining the
portions based on respective estimated probabilities esti-
mated according to: one or more previously decoded code
values, and the at least one value.

The estimated probability for determining a first portion
of the first block of coeflicients 1s based on a value stored 1n
a data structure at a location i1dentified by an index that
depends on: a position within the first block of coeflicients,
and the at least one value. The position within the first block
ol coeflicients may include a position 1n a one-dimensional
ordering of the coeflicients in the first block of coetlicients.
A value stored at a first location 1n the data structure may be
updated based on: a value previously stored at the first
location associated with the one or more previously decoded
code values, and a value of a symbol representing the {first
portion of the first block of coeflicients.

The estimated probability for determining a first portion
of the first block of coeflicients may include a conditional
probability that a symbol representing the first portion of the
first block of coellicients has a particular symbol value given
the one or more previously decoded code values and the at
least one value. The symbol representing the first portion of
the first block of coeflicients may include a binary symbol
determined according to a value of a coeflicient in the first
block of coeflicients 1n a particular position with respect to
a transform domain of the first block of coeflicients.

The reference information based on the first block of data
may include a second block of coetlicients based on a
transiform performed on the first block of data. The at least
one value according to which a particular probability 1s
being estimated may include a value based on a coelflicient
in the second block of coetlicients that has a position within
the second block of coeflicients that corresponds to a posi-
tion of a coetlicient within the first block of coellicients for
which the particular probability 1s being estimated. The at
least one value may include a value based on a number of
non-zero coetlicients 1n the second block of coethicients. A
set of codewords for determining portions of the first block
of coeflicients based on respective portions of the received
code value 1s based on information stored 1n a data structure
at a location identified by an index that depends on: a
position within the first block of coeflicients, and the at least
one value.

Aspects can have one or more of the following advan-
tages.

Betore the entropy encoding process, the quantized trans-
form coeflicients are represented as a series of symbols (e.g.,
binary symbols). A context model enables a to current
symbol to be encoded according to a probability estimated
based on contextual information derived from previously
encoded video data. The contextual information can be
stored 1n a number of contexts (e.g., each context can
correspond to a diflerent storage location 1n a data structure).
In order to achieve high compression efliciency in the
entropy encoding, 1t 1s helpfiul to use a large amount of
contextual information to estimate the probability. However,
when the number of contexts i1s large in comparison to
available data, a potential problem called “context dilution™
may significantly degrade the compression etliciency. Con-
text dilution may result, for example, from avoiding a
probability estimate of zero 1n some coding techniques. In a

US 9,571,849 B2

19

typical case of video compression, the quantized transform
coellicients may vary greatly in size and range, posing
potential challenges in designing an eflicient context model.
The techmiques described herein facilitate balancing the
number of contexts and the compression efficiency.

Other features and advantages of the mnvention are appar-
ent from the present description, and from the claims.

Certain adaptations and modifications of the described
embodiments can be made. Therefore, the above discussed
embodiments are considered to be illustrative and not
restrictive.

What 1s claimed 1is:

1. A method for encoding a first video frame or first image
using a video or image encoder, the method comprising:

receiving, at the encoder, the first video frame or first

1mage;

generating a {irst block of data from the first video frame

or first image;

generating a second block of data from the first video

frame or first 1mage or a second video Irame by
performing a second transform, a quantization, an
inverse quantization, and an inverse transiorm;

generating, by the encoder, a residual block based on a

difference between the first block of data for multiple
pixels from the first video frame or image and the
second block of data;
generating, by the encoder, a first block of coeflicients by
performing a {irst transform on the residual block to
obtain a transformed residual block and quantizing the
transformed residual block to obtain the first block of
coetflicients;
generating, by the encoder, a second block of coeflicients
by performing the first transtorm on the second block
of data to obtain a transformed second block of data and
quantizing the transformed second block of data to
obtain the second block of coeflicients, wherein the
second block of coellicients 1s generated independently
of information from the first block of data;

generating, by the encoder, reference information based
on the second block of coethicients, wherein the refer-
ence information comprises a function of the second
block of coeflicients;
determining, by the encoder, portions of a code value
representing respective portions of the first block of
coellicients based on at least one value derived from at
least a portion of the reference information, wherein
determining the portions of the code value based on the
at least one value comprises determining the portions
based on respective estimated probabilities or codes
determined according to the at least one value; and

generating, by the encoder, a bitstream including the
portions of the code value;

performing at least one of transmitting the bitstream over

a communication channel or storing the bitstream 1n a
memory.

2. The method of claim 1, wherein the estimated prob-
abilities determined according to the at least one value are
also determined according to one or more previously
decoded code values.

3. The method of claim 2, wherein the estimated prob-
ability for determining a first portion of the code value 1s
based on a value stored in a data structure at a location
identified by an index that depends on: a position within the
first block of coeflicients, and the at least one value.

10

15

20

25

30

35

40

45

50

55

60

65

20

4. The method of claim 3, wherein the position within the
first block of coetlicients comprises a position 1 a one-
dimensional ordering of the coeflicients in the first block of
coellicients.

5. The method of claim 3, further comprising updating a
value stored at a first location 1n the data structure based on:

a value previously stored at the first location associated with
the one or more previously determined code values, and a
value of a symbol representing a portion of the first block of
coellicients.

6. The method of claim 2, wherein the estimated prob-
ability for determiming a first portion of the code value
comprises a conditional probability that a symbol represent-
ing a portion of the first block of coeflicients has a particular
symbol value given the one or more previously determined
code values and the at least one value.

7. The method of claim 6, wherein the symbol represent-
ing a portion of the first block of coeflicients comprises a
binary symbol determined according to a value of a coetli-
cient 1n the first block of coeflicients 1n a particular position
with respect to a transform domain of the transform per-
formed on the residual block.

8. The method of claim 1, wherein the at least one value
according to which a particular probability 1s being esti-
mated comprises a value based on a coellicient 1n the second
block of coeflicients that has a position within the second
block of coeflicients that corresponds to a position of a
coellicient within the first block of coeflicients for which the
particular probability 1s being estimated.

9. The method of claim 1, wherein the at least one value
comprises a value based on a number of non-zero coetl-
cients 1 the second block of coetflicients.

10. The method of claim 1, wherein the respective por-
tions of the first block of coellicients comprise a series of
symbols, with each symbol having a value determined by at
least one coeflicient of the first block of coeflicients.

11. The method of claim 10, wherein the symbols are
binary symbols each having one of two possible values.

12. The method of claim 2, wherein the respective por-
tions of the first block of coellicients comprise a series of
symbols, with each symbol having a value determined by at
least one coellicient of the first block of coellicients.

13. The method of claim 12, wherein the code value
representing the respective portions of the first block of
coellicients comprises an arithmetic code value generated
based on the series of symbols and the respective estimated
probabilities.

14. The method of claim 12, wherein each of the series of
symbols has a symbol value that 1s associated with a
corresponding one of the respective estimated probabilities.

15. The method of claim 1, wherein a set of codewords for
determining a first portion of the code value 1s based on
information stored 1n a data structure at a location 1dentified
by an index that depends on: a position within the first block
of coethcients, and the at least one value.

16. The method of claim 15, wherein the position within
the first block of coeflicients comprises a position 1 a
one-dimensional ordering of the coeflicients 1n the first
block of coeflicients.

17. The method of claim 1, wherein the second block of
data represents multiple pixels in the first frame.

18. The method of claim 1, wherein the second block of
data represents multiple pixels 1n a second frame.

19. The method of claim 1, wherein the first block of data
and the second block of data include data for the same
number of pixels.

US 9,571,849 B2

21

20. A method for decoding a bitstream using a video or
image decoder, the method comprising:

receiving, at the decoder, the bitstream including a code

value;

generating a first block of data from the bitstream by

performing an 1nverse quantization and an 1nverse
transform;

generating, by the decoder, reference information based

on the first block of data, wherein the reference infor-
mation 1s generated by performing a first transform on
the first block of data to obtain a transformed first block
of data and quantizing the transformed first block of
data;

determining, by the decoder, portions of a first block of

coellicients based on respective portions of the received
code value and at least one value derived from at least
a portion of the reference information, wherein deter-
mining the portions of the first block of coeflicients
based on respective portions of the received code value
and the at least one value comprises determining the
portions based on respective estimated probabilities or
codes determined according to the at least one value;
generating, by the decoder, a residual block based on a
first inverse-transform performed on the first block of
coellicients, wherein the first inverse-transform inverts
the first transform performed on the first block of data;

generating, by the decoder, a second block of data for
multiple pixels 1n a reconstructed video frame or image
based on a sum of the first block of data and the residual
block of data; and

performing at least one of sending the reconstructed video

frame or i1mage to a display device or storing the
reconstructed video frame or 1image in a memory.

21. The method of claim 20, wherein the estimated
probabilities determined according to the at least one value
are also determined according to one or more previously
decoded code values.

22. The method of claim 21, wherein the estimated
probability for determining a first portion of the first block
ol coellicients 1s based on a value stored 1n a data structure
at a location identified by an index that depends on: a
position within the first block of coeflicients, and the at least
one value.

23. The method of claim 22, wherein the position within
the first block of coellicients comprises a position 1 a
one-dimensional ordering of the coeflicients 1 the {first
block of coeflicients.

24. The method of claim 22, further comprising updating,
a value stored at a first location 1n the data structure based
on: a value previously stored at the first location associated
with the one or more previously decoded code values, and
a value of a symbol representing the first portion of the first
block of coetlicients.

25. The method of claim 21, wherein the estimated
probability for determining a first portion of the first block
of coetlicients comprises a conditional probability that a
symbol representing the first portion of the first block of
coellicients has a particular symbol value given the one or
more previously decoded code values and the at least one
value.

26. The method of claim 25, wherein the symbol repre-
senting the first portion of the first block of coeflicients
comprises a binary symbol determined according to a value
ol a coellicient in the first block of coeflicients 1n a particular
position with respect to a transform domain of the first block
of coetlicients.

10

15

20

25

30

35

40

45

50

55

60

65

22

27. The method of claim 21, wherein the reference
information based on the first block of data comprises a
second block of coeflicients based on a transform performed
on the first block of data.

28. The method of claim 27, wherein the at least one value
according to which a particular probability 1s being esti-
mated comprises a value based on a coetlicient in the second
block of coetlicients that has a position within the second
block of coeflicients that corresponds to a position of a
coellicient within the first block of coeflicients for which the
particular probability 1s being estimated.

29. The method of claim 27, wherein the at least one value
comprises a value based on a number of non-zero coetli-
cients 1n the second block of coetlicients.

30. The method of claim 20, wherein a set of codewords
for determining portions of the first block of coeflicients
based on respective portions of the received code value 1s
based on information stored 1n a data structure at a location
identified by an index that depends on: a position within the
first block of coeflicients, and the at least one value.

31. The method of claim 30, wherein the position within
the first block of coellicients comprises a position 1 a
one-dimensional ordering of the coeflicients 1n the first
block of coetlicients.

32. The method of claim 1, wherein the first block of data
represents multiple pixels 1n a reconstructed frame.

33. The method of claim 1, wherein the first block of data
represents multiple pixels 1n a frame other than a recon-
structed frame.

34. The method of claim 1, wherein the first block of data
and the residual block of data include data for the same
number of pixels.

35. A computer readable non-transitory storage medium
storing a computer program for encoding a first video frame
or first image using a video or image encoder, the computer
program 1ncluding instructions for causing the encoder to:

recerve, at the encoder, the first video frame or first image;

generate a first block of data from the first video frame or
first 1mage;

generating a second block of data from the first video

frame or first image or a second video frame by
performing a second transform, a quantization, an
inverse quantization, and an inverse transiorm;

generate, by the encoder, a residual block based on a

difference between the first block of data for multiple
pixels from the first video frame or image and the
second block of data;

generate, by the encoder, a first block of coetlicients by

performing a first transform on the residual block to
obtain a transformed residual block and quantizing the
transformed residual block to obtain the first block of
coeflicients;

generate, by the encoder, a second block of coeflicients by

performing the first transform on the second block of
data to obtain a transtormed second block of data and
quantizing the transformed second block of data to
obtain the second block of coeflicients, wherein the
second block of coeflicients 1s generated independently
of information from the first block of data;

generate, by the encoder, reference information based on

the second block of coeflicients, wherein the reference
information comprises a function of the second block
of coetlicients:

determine, by the encoder, portions of a code value

representing respective portions of the first block of
coellicients based on at least one value derived from at
least a portion of the reference information, wherein

e

US 9,571,849 B2

23

determining the portions of the code value based on the
at least one value comprises determining the portions
based on respective estimated probabilities or codes
determined according to the at least one value; and

generating, by the encoder, a bitstream including the
portions of the code value;

perform at least one of transmitting the bitstream over a
communication channel or storing the bitstream 1n a
memory.

36. A computer readable non-transitory storage medium
storing a computer program for decoding a bitstream using
a video or image decoder, the computer program including
instructions for causing the decoder to:

receive, at the decoder, the bitstream including a code
value;

generate a first block of data from the bitstream by
performing an inverse quantization and an inverse
transform;

generate, by the decoder, reference information based on
the first block of data, wherein the reference informa-
tion 1s generated by performing a first transform on the
first block of data to obtain a transformed first block of
data and quantizing the transformed first block of data;

determine, by the decoder, portions of a first block of
coellicients based on respective portions of the received
code value and at least one value derived from at least
a portion of the reference information, wherein deter-
mining the portions of the first block of coeflicients
based on respective portions of the recerved code value
and the at least one value comprises determining the
portions based on respective estimated probabilities or
codes determined according to the at least one value;

generate, by the decoder, a residual block based on a first
inverse-transform performed on the first block of coet-
ficients, wherein the first inverse-transform inverts the
first transform performed on the first block of data;

generate, by the decoder, a second block of data for
multiple pixels 1n a reconstructed video frame or image
based on a sum of the first block of data and the residual
block of data; and

perform at least one of sending the reconstructed video
frame or i1mage to a display device or storing the
reconstructed video frame or 1image in a memory.

37. An apparatus for encoding a first video frame or first
image using a video or image encoder, the apparatus com-
prising;:

a memory configured to bufler the first video frame or the
first 1image; and at least one processor coupled to the
memory and configured to process the first video frame
or the first image buflered 1n the memory, the process-
ing including;:

receiving, at the encoder, the first video frame or first
1mage;

generating a {irst block of data from the first video frame
or first image;

generating a second block of data from the first video
frame or first 1mage or a second video Irame by
performing a second transform, a quantization, an
iverse quantization, and an inverse transiorm;

generating, by the encoder, a residual block based on a
difference between the first block of data for multiple
pixels from the first video frame or image and the
second block of data;

generating, by the encoder, a first block of coeflicients by
performing a {irst transform on the residual block to

"y

10

15

20

25

30

35

40

45

50

55

60

24

obtain a transformed residual block and quantizing the
transformed residual block to obtain the first block of
coellicients;

generating, by the encoder, a second block of coeflicients
by performing the first transtform on the second block
of data to obtain a transformed second block of data and
quantizing the transformed second block of data to
obtain the second block of coeflicients, wherein the
second block of coeflicients 1s generated independently
of information from the first block of data;

generating, by the encoder, reference information based
on the second block of coeflicients, wherein the refer-
ence mformation comprises a function of the second
block of coeflicients;

determining, by the encoder, portions of a code value
representing respective portions of the first block of
coellicients based on at least one value derived from at
least a portion of the reference information, wherein
determining the portions of the code value based on the
at least one value comprises determining the portions
based on respective estimated probabilities or codes
determined according to the at least one value; and

generating, by the encoder, a bitstream including the
portions of the code value;

performing at least one of transmitting the bitstream over
a communication channel or storing the bitstream 1n a
memory.

38. An apparatus for decoding a bitstream using a video

or image decoder, the apparatus comprising:

a memory configured to buller one or more frames; and at
least one processor coupled to the memory and con-
figured to process the one or more frames buflered 1n
the memory, the processing including:

receiving, at the decoder, the bitstream including a code
value;

generating a first block of data from the bitstream by
performing an inverse quantization and an inverse
transform;

generating, by the decoder, reference information based
on the first block of data, wherein the reference infor-
mation 1s generated by performing a first transform on
the first block of data to obtain a transformed first block
of data and quantizing the transformed first block of
data;

determining, by the decoder, portions of a first block of
coellicients based on respective portions of the received
code value and at least one value derived from at least
a portion of the reference information, wherein deter-
mining the portions of the first block of coeflicients
based on respective portions of the received code value
and the at least one value comprises determining the
portions based on respective estimated probabilities or
codes determined according to the at least one value;

generating, by the decoder, a residual block based on a
first inverse-transform performed on the first block of
coeflicients, wherein the first inverse-transtform inverts
the first transform performed on the first block of data;

generating, by the decoder, a second block of data for
multiple pixels 1n a reconstructed video frame or image
based on a sum of the first block of data and the residual
block of data; and

performing at least one of sending the reconstructed video
frame or image to a display device or storing the
reconstructed video frame or 1image 1n a memory.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

