US009569218B2

a2y United States Patent (10) Patent No.: US 9.569.218 B2

Krig 45) Date of Patent: Feb. 14, 2017
(54) DECOMPOSING OPERATIONS IN MORE (358) Field of Classification Search
THAN ONE DIMENSION INTO ONE CPC oot G06Q 30/02
DIMENSIONAL POINT OPERATIONS See application file for complete search history.
(75) Inventor: Scott A. Krig, Santa Clara, CA (US) (56) References Cited
(73) Assignee: R]]tse)l Corporation, Santa Clara, CA U.S PATENT DOCUMENTS
4,787,057 A * 11/1988 Hammond GO6F 17/16
(*) Notice: Subject to any disclaimer, the term of this 708/607
patent is extended or adjusted under 35 4,922,544 A 5/1990 Stansfield
U.S.C. 154(b) by 602 days. 5,841,890 A 11/1998 Kraske
6,130,967 A 10/2000 Lee
_ 7,043,618 B2* 5/2006 Barlow GO6F 9/30098
(21) Appl. No.: 13/992,279 11170
(22) PCT Filed: Dec. 30, 2011 7,844,123 B2 11/2010 Takakura
(86) PCT No.: PCT/US2011/068067 OTHER PUBLICATIONS
§ 371 (c)(1), PCT International Search Report and Written Opinion issued 1n
(2), (4) Date: Jun. 7, 2013 corresponding PCT/US2011/068067 dated Sep. 17, 2012, (9 pages).

(87) PCT Pub. No.: WO02013/101173
PCT Pub. Date: Jul. 4, 2013

* cited by examiner

Primary Examiner — Cheng-Yuan Tseng
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Trop Pruner & Hu, P.C.

US 2013/0297908 Al Nov. 7, 2013

(37) ABSTRACT
(51) Int. CL A processing architecture uses stationary operands and
GO6F 15/16 (2006.01) opcodes common on a plurality of processors. Only data
GO6F 9/30 (2006-05-) moves through the processors. The same opcode and oper-
Goor 9/38 (20006.01) and 1s used by each processor assigned to operate, for
(52) U.S. CL example, on one row of pixels, one row of numbers, or one
CPC GO6I 9/30181 (2013.01); GO6GF 9/3001 row of points in space.
(2013.01); GO6F 9/38 (2013.01); GO6F
9/3887 (2013.01) 20 Claims, 10 Drawing Sheets
HOST CONTROLLER
12
P 162
50— DATA BUS INTERFACE CACHE MEMORY (1/0) DATA BUS INTERFACE CACHE NEMOR - 182
READ /WRITE MEMORY BUFFER) 20z
22— WORKING MEMORY REGISTERS 223
24 WORKING MEMORY REGISTERS 2FAD /WRITE RECISTERS '
READ /WRITE REGISTERS J s
6 CONTROL INTERFACE e i 26
28— - OPERAND | | OPCODE -
CPERAND REGISTER | OPCODE REGISTER JRZ° 30
39 NANO- NANC- 37
NANQ-PROCESSURS 30 gOCESSODRS %UCESS%S
34

NANO- NANO-
PROCESSORS PROCESSORS

34 O Ol |0 O

T

US 9,569,218 B2

Sheet 1 of 10

Feb. 14, 2017

U.S. Patent

Il

0553008 | | sHossaoue ve
—ONYN —ONYN
7E
9Ol T O L | L] [o oo o] [[]
76 SH0SSID0Y¢ S40SSF0Nd Ot CH0SSIN0HA-ONYN 7
43151938 300340 4315193 ONYH3d0 .
0t
2000 TOVA43INT T08INOD [3¢
97 V443 LINI T04LNO? ¢
e 7 — SEICHETRETTVAGTER SHA1SID4Y AL1dM/ (Y3 o
27z “ SU3LS92 FU0IN INDEOM SERLSIER ASOMEN NVEOM 7
€0 - AOWIWN TLIM/ QN H344N9 AHOWAWN LM/ QY34 . 07
BRI AMONIN JHOYY 10v443INI Sng YLva (0/1) AJOW3IWN FHOVD 30V443LNI Sn8 V1NC ' o

-t
—

43 T10a1NOJ LSOH

US 9,569,218 B2

Sheet 2 of 10

Feb. 14, 2017

U.S. Patent

DATA STREAM
1920 x 1080 IMAGE
4K DMA
WRITE
4k RECEIVE BUFFER

20

4k WORKING BUFFER

40

24

20

2

CONTROLLER

OPCODE
30

-~
| O
=R
|
Ll
>|=
<O
—d
S|z
" |
o0
Ol
21 .
C -
L1 | 90
| —
o |=

—

OPERAND

44

42

28

MEMORY CELLS
HEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEE
HEEEEEEEEEEEEEEEEEEEE

4
.P.

HEEEEEL'EEEEEEEEEE
EEEEEEEENEEEEEEN
HEEEEEEEEEEEEEEENE
EEEEEEEEEEEEEN
HEENEEEEEEEEEEE
EEEEEEEEEEEEN
HEEEEEEEEEEERN
EEEEEEEEERER
EEEEEEEEEEER
HEEEEEEEEEEEN
EEEEEEEEEEER
HEENEEEEEEEEEEE
EEEEEEEEEEEER
EEEEEEEEEEEEN
HEENEEEEEEEEEEE
EEEEEEEEEEEEN
HEENEEEEEEEEEEE
HEENEEEEEEEEEEE
HEENEEEEEEEEEEE
EEEEEEEEEEEEN
HEENEEEEEEEEEEE
EEEEEEEEEEEER
EEEEEEEEEEEEN
HEENEEEEEEEEEEE

F1G. 2

U.S. Patent Feb. 14, 2017 Sheet 3 of 10 US 9,569,218 B2

46
HOST WRITES OPCODE AND OPERAND TO CONTROLLER REGISTERS

48
HOST DMA WRITE INTO CELL MEMORY ADDRESS

50
CONTROLLER COPIES DMA DATA TO WORKING BUFFER

52
CONTROLLER READS AFFECTED MEMORY CELLS FOR CALCULATION

o4
CONTROLLER PERFORMS OPERATION AS PER OPCODE

b6
CONTROLLER WRITES RESULTS INTO AFFECTED MEMORY CELLS

F1G. 3

U.S. Patent Feb. 14, 2017 Sheet 4 of 10 US 9,569,218 B2

DATA STREAM
4K DMA
READ

4k RECEIVE BUFFER

Lk WORKING BUFFER 21

40
1 26

CONTROLLER PRECISION CONVERTER
OPCODE OPERAND — INT(8..128) [FLOAT(32..64)

30 28 42 44
VIEMORY CELLS —I

20

34

HEEEEEEEEEEN
EEEEEEEEEEN
HEEEEEEEEEEN
ENEEEEEEEEN
EEEEEEEEEEN
EEEEEENEEEN
EEEEEEEEEN
HEEEEEREEN
HEEEEEREEN
EEEEEEEEN
HEEEEEREEN
B
B
B
B
HEEEEEREEN
EEEEEEEEEN
EEEEEENEEEN
EEEEEEEEEN
HEEENEEEEREN
EEEEYTEEEEN

F1G. 4

U.S. Patent Feb. 14, 2017 Sheet 5 of 10 US 9,569,218 B2

b8
HOST WRITES OPCODE AND OPERAND TO CONTROLLER REGISTERS

60
ROST DMA READ OF CELL MEMORY ADDRESSES

02

CONTROLLER COPIES MEMORY CELL DATA THROUGH
PRECISION CONVERTER INTO WORKING BUFFER

o4
CONTROLLER COPIES WORKING BUFFER INTQ RECEIVE BUFFER

66

HOST RECEIVES RECEIVE BUFFER DMA PAGE

F1G. 9

INPUT IMAGE CONVOLUTION

1)

alx-1, y-1) +blx, y-1)+cx+1, y-1)+
dix—=1, y)+ex, y)+fx+1, y)+
gx-1, y+1)+hix, y+1)+ilx+1,y+1)=
NEW OUTPUT PIXEL VALUE FOR X,y

FlG. 6

U.S. Patent

b]
L

Feb. 14, 2017

TR RTE]AB

ey !
X

FEE Y L
1
¥ ' 4
L] -
P ¢ +

Sheet 6 of 10

US 9,569,218 B2

235 RS 0 S N M ™

5 B N O O O
BN NSRE
-1
ERESNERES
HEEASEERS
i A O B N S N
NN ERNE
o LI LT-Ei-1

U.S. Patent Feb. 14, 2017 Sheet 7 of 10 US 9,569,218 B2

/0

CONVOLUTION

INITIATLIZE ARRAY BY /2
WRITING IMAGE INTO ARRAY

INITIALIZE OPCODE REGISTER /4
WITH MULTIPLY-ADD

INITIALIZE OPERAND REGISTER /6
WITH CURRENT KERNEL VALUE

WRITE IMAGE INTO ARRAY AT /8

THE OFFSET FOR EACH KERNEL

80

NO ITERATION

n X m
?

YES

END

FIG. 8

0 =125y 2beuw|
(6 Ag|axd ydes apiaip) 6

US 9,569,218 B2

paubisun s)g-g = uolsiaaid ‘uoaniisul QA

(ONYH3 4O YmTI3D Aowaw ydea qQavi) 64 =323540 abew|
ms_ eA U m_uE J02 mv_

(ANVYI 40 Yum 13D Aowsw yoes Javn) 8d =12540 abewl
mg PA 1U m_u_,__._ 302 QY

~
. (ANVY34O YwmTI3D Aowsw y3ea Qi) £d =13540 20ew
= 9N A JU3IIIY 30D /Y
v o
= (ANVY340 YumT13) Alowaw ysea gayw) 94 =13s40 abeuw
W mz_m>ycm_uEm0u @g
7>
(ANVYI 40 yumTI3D Aowsw ydes gay) 5d =13540 sbew
m:.: A 1U m_u_._.._ 302 Y
~ [ONVY340 yumTI3D Aowaw yoea qavly) bd =312s40 20eul
m N[BA JU3IIIY02 HY
>, (NVY3d0 yumTI3) Aowaw yaes qQvi) £d =123540 2bew
— m:_m>ycm_u_tm0umx
M (ANVY3d0 yum 13D Mowaw yaes gayv) Zd =13540 abeuw

o] BA LUSIDI) 900 ¢y

(ONYHIJO YyumTI3D Aowaw ysea qayw)) L4 =13s40 abew
m_s_ eA U m_uE 200 —v_

paubisun syg-9| = uoisi>aid ‘uodnIIsul QYN

T13D Ul ynsal IYOLS ‘ANYYId0 A9 T13D yoea apiag

JIHSINIF NOLLNTOANGD

FOVIAI JdlIN4 3114/
L EINDEL U EEONER

44151944 340240 L4S

FOVIAl J41LN S 118
4315934 ANVd4dO0 L3S

FOVIAL JILNS 1M
43151934 ANVH4d0 L3S

FOVIAL JuILNS 1M
431 5(934 ANVd4d0 L4S

FOVIAl JUlLNT J1/aM
4315934 ANVI4d0 L35

FOVIAL JdILNT 113 M
431 5(934 ANVd4d0 L4S

FOVIAL JUILNS 1M
431 5(934 ANVd3d0 L3S

FOVIAI JdlIN4 J11d/M
43151934 ANVd4d0 L3S

FOVIAL JdILNS 113 M
43151934 ANVH4d0 L3S

FOVIAl JalLN S J1/aM
4315934 ANVd4d0 L3S

T13D Ul 3YOLS T13D 03 AQY ‘ONYHI4O/M Y344Ng ONINYOM Adiyniy

a1151944 340240 135

U.S. Patent

JUSIPLID) |BIUO0ZIIOH |9q0S "9|d W X3 UONNOAUOY) £XE :WIOJSURI| UOINSOdWOd 9 aly
(adwiexa €X€) UoiNOAUOD) bulwieal S

(3HSINIH NOLYTI

(ONY§340 WM TI3) lowaw yoea (QYQNY) 7d =13540 30w 31 JHILNA UM
oll| e JUeDIe0) &) 4315034 QN0 L35

(NY§340 WIMTI) Mowaw ydea QQYQNY) €4 =130 30w JOI FHILNA T
oll| EAJUsLHo0)) 4315038 INvd1d0 L1
(NY§340 WM TI3) Mlowauw yaes QQYONY) 7d=19540 302w 30 JuIN3 TLiem
oll| €A JUsDIe0) 7) J315038 INvedd0 LIS

(ANY§360 WMD) Mowaw ypes QQYONY)) Ld=18840 30w 31 FHILNA Uk
oll| eA JUeDIe0) () 4315038 INve140 LIS

TI3) W3YOLS T3 Pue ONYYId0/M Y314ng ONINHOM ONY
03UBISUN SYC-§= 0is31d"UoRINASY GQYANY 411509344 300040 L35

US 9,569,218 B2

Sheet 9 of 10

'S13 0JUI G PUR Oy by "7y 2lm 0} paau Ao 3m 05 uonezwndo
U 1§13 'ST]3) 03U UBYIIM 30 0} pAaU JOU O (0) 048Z 01 BNOB[AY ™ [Y) SIUAYB0I 1RY] ‘T

= 3y pue

0= 4220 43y 'sj3xd 3uymg g Auo yum sbew Aeuiq e se paedaid 51 abewn 33n0s ayi1ey] |

Feb. 14, 2017

SauNSse adwexa Sy 0N

o|0WLX3 U0IS0T UONBI] §XE :WHOJSUBI] UoSodWodaq ealy

(idwiexa ¢xg) Abojoydiop A1euig jednewayiep buweang

U.S. Patent

US 9,569,218 B2

CEIMERENERY])
TI) < T13) PUe §344nG ONDIHOMIO CIOYNIN 64 =13540 30w J0WAI FULINT LM
TI) < T13) PUe §344nG ONDIHOMJO CIQYNIN 84=13540 300w I0WAI JULINT LM E
- 13D <T13) PUe Y344nG ONDIOMIO OQWNIN =13s40 3bewl I0WAI 3ULINT LM
= TI) < T13) PUe §344NG ONDIHOMIO QNI 94 =13540 30wl J0WAI 3ULINT LM)
. TI) < T3 PUe Y344NG ONIHOMIO OQWNIN=13s40 3ewl J0WAI 3ULINT LM =X
z TI) < T3 PUe ¥344NG ONDIHOMJO OCWNIN =13s40 30ew IOl FULINT LM
TI) < TI3) PUe 4344 ONYHOMJO QYN €4 =13%40 3Bew 3l JINT LM | |
- TIE) <TH3) PURK3HNG ONMIOMJO OOHNIN =19540 2Bew 0Vl 3413 2L A L
G TI) < T13) PU §344NG ONDIHOMIO COYNIN 1 d=13540 30w J0WAI 3ULINT LM
e 34 LNOG YO ANVIA0LIS | hern | o | thex
- T13) < T13) PUe 434409 ONHOM JO 3njer uinuluyy =9d | =4 | =vd
aUDISUN iq-g = uarsd3id "uondNASU GAYNIA 43151934 300240 135

(TR ‘T+X]| [1-A 'X]
=¢d =2d

dWex 3 NIV EXS :WhojSuBI] Uomsodwodaq ealy
(gdwiexa £X€) 1a)y NIN bulweans

U.S. Patent

US 9,569,218 B2

1

DECOMPOSING OPERATIONS IN MORE
THAN ONE DIMENSION INTO ONE
DIMENSIONAL POINT OPERATIONS

BACKGROUND

This relates generally to processing architectures and
particularly to processing architectures adapted for parallel
operations on a large amount of data.

In many processing applications, including those mvolv-
ing graphics and those involving complex mathematical
calculations, a large number of simple operations must be
done a large number of times. As a result, many of these
operations can be done in parallel.

In a typical Von Neumann architecture, a processing
pipeline 1s executed by a processor. In that pipeline, there are
number of stages. Both data to be operated on and code to
operate on that data, move through the pipeline 1n parallel.
That 1s, both the instructions and the data move from stage
to stage through the pipeline 1n the same way.

In 1image processing, there are a number of operations that
are considered to be point operations. These operations are
generally performed only on one pixel and only using that
pixel’s value. Thus, point operations can also be called one
dimensional operations.

There are also operations that involve not only a pixel of
interest but its immediate neighbors as well. These opera-
tions use the values of the pixel of iterest and 1ts neighbors.
Thus, such 1mage processing may be called group process-
ing, area processing, or two-dimensional processing.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments are described with respect to the
tollowing figures:

FIG. 1 1s a hardware depiction of one embodiment;

FIG. 2 1s a sequential depiction of a write operation
according to one embodiment;

FIG. 3 1s a flow chart for the write operation 1n one
embodiment;

FIG. 4 1s a sequential depiction of a read operation
according to one embodiment;

FIG. § 1s a flow chart for a read operation 1 one
embodiment;

FIG. 6 1s an 1illustration of a spatial convolution;

FIG. 7 1s a functional depiction of one embodiment;

FIG. 8 1s a flow chart for one embodiment;

FIG. 9 1s an example of a transformation of a streaming,
convolution 1n one embodiment;

FIG. 10 1s an example of a transformation of streaming
mathematical morphology into one embodiment; and

FIG. 11 1s an example of a transformation of a streaming,
MIN filter in one embodiment.

DETAILED DESCRIPTION

In some embodiments an 1nstruction stream does not need
to be fetched in contrast to the Von Neuman architecture.
Instead, mstructions and operands are preset into the control
and operand registers, and only the data stream needs to be
fetched. In some cases this 1s advantageous for speed of
calculations and reduction of memory bandwidth require-
ments.

Referring to FI1G. 1, 1n accordance with one embodiment,
a host controller 12 may be coupled to an orthogonal
processor 14 and an orthogonal processor 16a. The differ-
ence between the two processors 14 and 16a 1s that one

10

15

20

25

30

35

40

45

50

55

60

65

2

works on a smaller sized word than the other. Specifically,
the orthogonal processor 14 1n one embodiment works on 4
k words while the orthogonal processor 16a 1n one embodi-
ment works on 16 k words. Other arrangements are also
possible. Thus, there may be additional orthogonal proces-
sors, each adapted to diflerent word sizes, and there 1s no
limitation on the particular word sizes that any particular
processor may be designed to operate on.

As used herein, an orthogonal processor refers to the fact
that the data and instructions do not move through the
processor along the same path. Instead, a given word of
work 1s broken 1nto a given number of bits to form a data
word. A nanoprocessor 1s provided to operate on each of the
groups of bits (data words) in parallel. Thus to operate on a
4 k word, there would be 4 k nanoprocessors i one
embodiment. Each nanoprocessor may use a common oOr
shared operating register 28 and a common opcode register
30 because each nanoprocessor 1s doing the same operation
using the same operand as all the other nanoprocessors in a
given orthogonal processor.

The output of each nanoprocessor 32 is stored 1n a row 1n
the cell array 34 which 1s a two-dimensional memory with
rows and columns. A nanoprocessor 1s any relatively small
limited function or dedicated processor.

The way that these operations are implemented 1s equiva-
lent to a direct memory access (DMA). Thus the operations
occur at memory write speeds 1n some embodiments, and
faster or slower 1n other embodiments.

Opcode register 30 stores an opcode that 1s then used by
cach nanoprocessor to operate on the input data. In some
embodiments there may be more than one opcode that is
applied to the data. Thus, 1n some embodiments more than
one opcode register may be included. This results in the
same data being operated on by more than one opcode. In
some embodiments the opcode register 30 may store com-
pound opcodes such as fused multiply add opcodes. In such
cases, more than one opcode occurs together in the same
instruction. Thus, the opcode register may include opcodes
fused together to perform both a multiply and an add in the
same 1nstruction. Other fused operations include multiply
and clip 1n the same 1nstruction, and add and clip in the same
instruction using a plurality of opcode registers. Other
compound opcodes may also be used.

Retferring to FIG. 2, in an orthogonal processor, data
moves 1n the vertical direction and operands and opcodes are
moving or set into one or more operand and opcode registers
in the horizontal direction 1n each nanoprocessor. The oper-
ands and opcodes are stored before the data flow begins.

Thus the sequence may be, 1n one embodiment, to provide
a word of data having a number of bits equal to the number
of nanoprocessors. Each nanoprocessor has access to the
particular operands and the particular opcodes to be
executed any given number of times. Thus a two-dimen-
sional array of data may include a number of horizontal rows
of data. Each row may be processed senally, one after the
other. Therefore the nanoprocessors do not need to receive
new opcodes or operandsuntil after the entire two-dimen-
sional array has been processed.

Once each nanoprocessor has access to the correct oper-
ands and the correct opcodes and has the data ready to
operate on, the operation 1s implemented. For example 11 the
operation 1s a multiply, each nanoprocessor does the multi-
plication and loads the data into a row of the cell array 34.
Thus the operations are done eflectively at write speeds
corresponding to direct memory accesses. Each cell in the
array stores the result of the operation performed on one bit
or data word, such as one pixel in a graphics application.

US 9,569,218 B2

3

The host controller feeds the data to each orthogonal
processor 14 or 16a as the case may be. Thus 1f a given set
of operations uses words ol one size, the data may be
provided to the processor 14, and 1f the data 1s of a different
s1ze 1t may be provided to a processor 16a adapted to that
particular size.

Typically, embodiments of the present invention operate
on point operations which are basically one-dimensional. A
multiply or an add 1s an example of a point operation. Area
operations mvolve two or more dimensions and correspond
to things like kernel operations, convolutions, and binary
morphology, and one skilled 1n the art will recognize that
this invention may be embodied in multiple dimensions.

Applications for two-dimensional operations include dis-
crete convolution and kernel operations include media post-
processing, camera pipeline processing, video analytics,
machine vision and general 1mage processing. Key opera-
tions may include edge detection and enhancement, color
and luminance enhancement, sharpening, blurring, and noise
removal.

Applications of binary morphology and gray scale mor-
phology as two-dimensional area operations 1nclude video
analytics, object recognition, object tracking and machine
vision. Key operations performed 1n the orthogonal proces-
sor may include a erode, dilate, opening and closing.

Applications for numeric area and point operations
include any type of image processing including those
described above 1n connection with discrete convolution,
kernel operations, and binary morphology. Key operations
include math operators, Boolean operators applied to each
point or pixel and numeric precision data type conversions.

In some embodiments area operations are converted nto
point operations, where area operations may be two or three
cubic, or higher dimensions, and the reduction of said area
operations into one-dimensional point operations 1s advan-
tageous 1n some embodiments reducing the computational
and memory bandwidth overhead for all point operations.
For example, a convolution 1s an area operation that can be
converted mto a series of successively shifted multiplica-
tions with accumulation, which are simple one-dimensional
point operations that are accelerated. Then in the first
passthrough an orthogonal processor, a shiit in the dataset
origin 1s implemented and in the second pass, a multiplica-
tion may be implemented with accumulation on a shifted
version of the source dataset.

By decomposing the computation mto a set of point
operations implemented as a set of DMA or other memory
writes, the data set may be kept 1in a local cache portion of
the memory hierarchy and thus be much more eflicient in
terms of memory bandwidth, system performance, and
lower power in some embodiments.

In a more specific example, the operation may be accu-
mulation or summing. Each orthogonal processor cell 1s an
accumulator that sums the results of each memory write into
itself by combining the write value or operand according to
an opcode. Only a write into memory 1s needed for the
memory cell to perform the computation. At page writes and
corresponding vectorization of computations such as 4,096
page writes and 4,096 vectorized operations may occur a
direct memory access speeds. In this example, the memory
cell 1s the accumulator for a set of sequential operands, and
the cumulative result of a set of operations 1s accumulated in
the memory cell, for example, a set of nine (9) MULTIPLY-
ADD instructions used to implement a convolution kernel
where the result 1s accumulated into the memory cell.

The memory cell may also used as an operand for some
operations or opcodes. An opcode may take as an mput a

10

15

20

25

30

35

40

45

50

55

60

65

4

memory cell and an operand from a register, where the result
1s stored into the memory cell, for example, as may be the
core with a MULTIPLY-ADD instruction.

Each nanoprocessor may operate as follows in one
embodiment. For each opcode, the operation bit precision
and numeric conversion 1s defined. Assuming a 32-bit
opcode embodiment, there are zero to fifteen bits to define
the opcode and sixteen to twenty-one bits to define the
precision and conversion of the operation. The decoding of
the instructions may occur 1n an orthogonal path to the data
path.

Accumulation may eflectively be done 1n the cell array
34. Opcodes may be implemented 1n the nanoprocessors 32
and numeric conversions may occur on read or write to each
memory cell. Each memory cell applies a data format
conversion operation as follows. For read operations, the
cell numeric format 1s converted on memory read using a
convert operator. Numeric conversions can be specified
using opcodes to set up the nanoprocessors prior to the
memory reads or writes to enforce the desired data conver-
sion and numeric precision. The numeric conversions are
implicit and stay 1n effect until a new opcode 1s sent to the
nano processors. For write operations, a final value 1s
converted to a desired numeric format according to the
convert operator. This allows any sort of common operation
to be implemented such as area convolution, other types of
mathematical area operations, point operations, binary mor-
phology and gray scale morphology, with options available
to be set ito control or opcode registers to specity the
numeric conversions between float, double, and nteger. In
some embodiments precision may be fixed or limited to save
s1licon real estate and to reduce power consumption.

The cell array 1s an array of memory cells or registers with
attached compute capabilities 1n the form of the nanopro-
cessors shown i FIG. 1. Fach memory cell 1s also an
accumulator storing results with varying precision calcu-
lated by the nanoprocessors. Cell array processing occurs at
the speed of memory writes eliminating memory reads for
kernels and source pixels and providing vectorized process-
ing at the speed of direct memory access writes into the cell
array 1n some embodiments.

The array can be used simply for data conversions instead
of calculations, since data conversions are very common,
and the array can accelerate them.

An array can also be used for memory read operations
simply for numeric conversions via DMA reads, since the
numeric conversions are fast and occur at DMA rates with
no need for processing the data. The numeric conversions
may be between integer and floating point, various integer
lengths, and various floating point lengths using sign exten-
sion, rounding, truncation, and other methods as may be
desired and set using opcodes.

The cell array operation 1s similar to a hardware raster
operation 1n a display system. In a display system, the raster
operations are applied for each pixel written into a display
memory cell or pixel.

Standard area operations like convolution may be broken
down 1nto point operations, allowing the computations to be
performed as a series of DMA writes at very high perfor-
mance 1n some embodiments.

For example in connection with a convolution, a series of
pixel offset writes can occur into the orthogonal processor
memory cells where the desired operation for each pixel
may occur within the nanoprocessors that act on the indi-
vidual cells. Each kermel value 1s preset into the cell array
operand register prior to the pixel blit. The cell array
operates by simply writing the entire image which causes the

US 9,569,218 B2

S

nanoprocessors to perform convolution operations for each
pixel. This arrangement transiers pixel by pixel area con-
volution 1nto a vectorized write operation, eliminating ker-
nel and pixel reads and performing a fused multiply-add
accumulation 1n each cell. In an embodiment, 11 the memory
system employs cache memory levels and the data set
resides 1in the cache at all times or even most of the time, this
method will exploit cache memory and thus provide addi-
tional power & performance advantages.

Referring to FI1G. 6, spatial convolution 1s performed as a
summation of elements multiplied by constants. In the case
ol an 1image processing application, the elements are pixel
brightnesses of a kernel. A kernel 1s the 1nput pixel plus its
immediate neighbors. The number of immediate neighbors
1s variable. For example 3x3, 5x3, or any odd numbered
array ol pixels around the pixel of interest may be chosen.
The constants are weights or convolution coeflicients. A
convolution mask 1s an array of convolution coeflicients.

Thus, 1 FIG. 6, a 3x3 array of pixels 1s illustrated. In this
case a 3x3 convolution will be done of the central pixel x,
y as an example. Convolution coeflicients a through 1 make
up a convolution mask. Thus each of the convolution
coellicients 1s used 1n a multiply and accumulate operation
with 1ts corresponding pixel location. That 1s, as an example,
the convolution coeflicient a corresponds to the pixel posi-
tion x-1, y—1 1n this example. Then the convolution 1s the
sum of the multiplications of each convolution coeflicients
times 1ts corresponding mput image pixel. The result 1s a
new output pixel value for the pixel x, y. The specific
multiplication and accumulation operations for this example
are also shown 1n FIG. 6.

Then 1n order to perform the convolution of the next pixel,
the convolution mask can simply be shifted by one to the left
or the right or up or down successively until all the pixels 1n
the mput 1mage have their convolution determined. The shiit
operation can be eflectively accomplished with the memory
array and associated nanoprocessors. Particularly, the mul-
tiply and add and shift can all be done 1n this example using,
nine pixel writes to the memory array. This 1s a considerable
simplification relative to existing techniques.

The shifting operation 1s also shown i FIG. 7. The
convolution mask 1s B and the kernel 1s A 1n FIG. 7. A larger
portion of the array 1s shown because more neighboring
pixels, than what 1s shown 1n FIG. 6, are involved. As can
be seen, the entire group of pixels shown 1n FIG. 6, nine in
number, can be subjected to convolution by nine shifts each
with nine multiply and addition operations.

Finally referring to FIG. 8, a convolution sequence 70
may be implemented 1n software, firmware and/or hardware.
In software and firmware embodiments 1t may be imple-
mented by computer executed instructions stored 1n a non-
transitory computer readable medium such as a semicon-
ductor, magnetic, or optical storage.

Initially, as stated in block 72, the array 1s itialized by
writing the 1mage pixels into the array. Then the opcode
register 1s mitialized as multiply as indicated in block 74.
The operand register 1s initialized with the current kernel
value as indicated in block 76. Next the entire 1mage 1s
written into the array at the oflset for each kernel as
indicated 1n block 78. A check at diamond 80 determines
whether all the necessary iterations have been done. The
number of iterations 1s determined by the size of the array.
Thus 1n the example given in FIG. 6, nine iterations would
be needed.

The orthogonal processor may perform 3x3 convolution
with mine pixel writes of the image frame onto 1tself and
oflsets according to the kernel size, eliminating explicit read

10

15

20

25

30

35

40

45

50

55

60

65

6

operations. In contrast a normal 3x3 convolution mvolves
nine kernel reads, nine pixel reads and nine fused multiply-
add 1nstructions for each pixel 1n addition to a final pixel
write. Thus the orthogonal processor may provide a signifi-
cant speed-up 1n some embodiments. The pseudo code for
3x3 convolution using nine 1mage frame writes plus kernel

set-up 1s as follows:

sobel

|

3][3] =

_1: _2: _1:}
0, 0, 0,}
1,2, 1}

2

// Imitialize cells by writing entire image mto XCELLARRAY
writelmage(source__1mage, &xcellarrray.memory, /*X OFFSET®*/ 0,
/Y OFFSET */ 0);

// Initialize opcode register with MULTIPLY

Xcellarray.opcode = OP_ MULTIPLY;

// Iterate 9 times to write the entire 1mage, one line at a time, mnto
the memory array

// and for each write, use a different kernel value

XSIZE = 3;

YSIZE = 3;

XOFFSET = (XSIZE / 2);

YOFFSET = (YSIZE / 2);

for (x=0; x < XSIZE; x++)

{

e Tt e

for (y=0, y < YSIZE; y++)

{

// Initialize operand register with the current kernel value [x.,¥]
Xcellarray.operand[O] = sobel[x,y];

// Write source 1mage into cell array at the offset for each
kernel element

// This Write performs a MADD instruction —> CELL +=
(CELL * operand)

writelmage(source_ 1mage, &xcellarrray.memory, X —
XOFFSET, v - YOFFSET);

h

A pictorial illustration of the transformation of a streaming
convolution 1s shown in FIG. 9.

The example below shows pseudo-code for a 3x3 mor-
phological DILATE operation illustrating the cell array
optimization method according to one embodiment.

dilate[3][3] =

i

{0, 1, 0,}

{1, 0, 1,}

{0, 1, 0}

3

// Imtialize cells by writing entire image into

writelmage(source 1mage, &xcellarrray.memory, /*X OFFSET*/ 0, /*Y
OFFSET */ 0);

// Initialize opcode register with MULTIPLY

Xcellarray.opcode = OP__OR; // Boolean OR

// Iterate 9 times to write the entire image mmto the memory array
// and for each write, use a different kernel value

XSIZE = 3;

YSIZE = 3;

XOFFSET = (XSIZE / 2);

YOFFSET = (YSIZE / 2);

for (x=0; x < XSIZE; x++)

1

for (y=0, y < YSIZE; y++)
1
/1 OPTMIIZATION: for DILATE, we only use truth values of 1
(ignore 0) if (dilate[x,y] != 0)
{
// Initialize operand register with the current kernel value
[X,y] Xcellarray.operand[0] = dilate[x,y];
// Write source 1mage into memory array at the offset for

cach kernel element
// This Write performs a MADD instruction —> CELL +=

US 9,569,218 B2

7

-continued

(CELL * operand)
writeImage(source__image, &xcellarrray.memory, X —
XOFFSET, v - YOFFSET);

h
h

An example of a transformation of streaming mathematic
morphology 1s shown 1 FIG. 10 and an example of the
transformation of a streaming MIN filter 1s shown 1n FIG.
11.

Each cell 1n the memory 34 contains the following three

features:
1) accumulation or summing into the cell, 2) operations or
opcodes that act on the cell and a set of operands 1in
programmable registers, and 3) numeric and data format
conversions between various mteger and floating point data
types and bit resolutions.

In an embodiment, a specific set of opcodes may be
implemented as needed to suit a specific task, including
mathematical operations, Boolean logic operations, logical
comparison operations, data conversion operations, tran-
scendental function operations, or other operations that may
be devised by one skilled 1n the art.

The nanoprocessors provide a set of mathematical and
logical operations and numeric format conversions using an
input operand and the current cell value accumulated 1n the
cell as shown below 1n equation 1, where one or more

operands may be used 1n an embodiment:

Cell=Precision(Opcode(Cell*Operandl . . .

Operands)) Equation 1:

where:
Cell=existing value of the memory cell
Operandl . . . n: values to combine with the cell value via

the opcode
Opcode: *math (+,-,*./, ||, . . .) or Boolean (AND, OR,

NOT, XOR) result accumulated in cell
Precision: numeric format conversions 1nt(8,10,12,14,16,
24,32,64), float(24,32,64), efc.

Each memory cell 1s an accumulator, and sums the results
of each memory write into itself by combining the write
value (operand) according to an opcode. Only a write into
memory 1s needed for the memory cell to perform the
computations, which allows DMA rate page writes and
corresponding vectorization of computations, such as 4096
page writes and 4096 vectorized operations.

An opcode may use one or more operands. For example,
a Write opcode operation using a single operand may

include the following instruction format:
MADD cell=(cell *1in+cell)

ADD cell=(cell+1n)
SUBTRACT cell=(cell-1n)
MULTIPLY cell=(cell*1n)
DIVIDE cell=(cell/in)
XOR cell=(cell in)
OR cell=(celllin)
AND cell=(cell*1n)
NOR cell=(!(celllin))
NAND cell=(!(cell*1n))
CONVERT (INT<->FLOAT,
ctc.—this 1s a part of opcode)
OPERAND (the incoming value being written into the
cell)
An example of an opcode using multiple operands in an
embodiment could be an ADDCLIP 1nstruction as follows:

resolution, truncation,

10

15

20

25

30

35

40

45

50

55

60

65

ADDCLIP OPERANDI OPERAND?2 CELL

Where:
OPERANDI1=value to add to the cell
OPERAND2=value to clip the addition result, so that the
result cannot be larger than OPERAND?2

CELL=the memory cell where the addition result 1s stored

And the equation or pseudo code showing this operation is:

RESULT = CELL + OPERANDI1
I[F (RESULT > OPERAND?2) RESULT = OPERAND?2 // clipped result
CELL = RESULT

Each memory cell applies a data format conversion opera-
tion using the convert operation as follows. For read opera-
tions convert cell numeric format on memory read using
convert operation. For write operations convert final value to
desired numeric format according to convert operator. This
allows any sort of common operation to be implemented
such as area convolution, point operations, binary morphol-
ogy, numeric conversions between float, double, mt, etc.

In some embodiments, multiformat read and multiformat
writes may be supported. This allows various numeric
precisions to be used and converted on the fly. Numeric
formats may include integer and float of various bit sizes. In
one embodiment, only a subset of the numeric formats may
be implemented to save silicon real estate and reduce power
consumption. For example, one embodiment may support
only integer (8, 12, 16, 32 bits) and float (24, 32 bits)
numeric formats and conversions.

Each cell may store numeric data in an appropriate
canonical numeric format to support the numeric conver-
s1ons. The canonical format may vary in some embodiments.

Each memory cell in the array may have a dedicated
nanoprocessor. However in other embodiments, a single
vector ol nanoprocessors corresponding to the memory page
width may be shared among all the cells to support direct
memory access page writes ol 4,096 words together with the
necessary processing. Thus some embodiments allow a
single vector processing unit of a given size to be shared
among vectors of memory cells rather than actually provid-
ing a dedicated nanoprocessor at each cell.

FIG. 2 shows a streaming calculation by a direct memory
access write operation. In this example, the data stream may

be a 1920x1080 image. A portion of the width of the image,
in one embodiment a 4K portion, 1s written to the receive
bufler 20 as indicated by the write arrow 1n FIG. 2. That 4K
chunk 1s then moved to the working bufler 24 and another
4K chunk may be read across the width of the data stream
to get 1t ready for subsequent operations 1n the controller. In
the controller 26, there may be 1n one embodiment be 4K
nanoprocessors each with an opcode 30 and an operand 28.
Thus, a controller may include a nanocontroller for each bit
of the chunk 1n one embodiment. It may also transfer each
bit to the precision converter which changes either the
precision or the type of data from integer to float or from
float to integer. Then the data 1s stored 1nto a row of memory
cells 1n the memory array 34.

Thus referring to FIG. 3, a sequence may be implemented
in hardware, software and/or firmware. In software and
firmware embodiments 1t may be implemented by computer
executed instructions stored i a non-transitory computer
readable medium such as an optical, magnetic or semicon-

US 9,569,218 B2

9

ductor memory. For example, the sequence of instructions
may be stored in the controller 26 in FIG. 2 1n one embodi-
ment.

The sequence begins when the host controller 12 (FI1G. 1)
writes the opcode and operand to the controller 26 registers
as indicated in block 46. The block code contains a bit
precision information. In some embodiments, there may be
multiple operands.

Then the host does a DMA write mto a cell memory
address as indicated 1n block 48. More particularly data may
be copied into a receive buller for calculations prior to going,
into the cell memory.

Next the controller 26 copies the DMA data into the
working bufller 24 in FIG. 2 as indicated 1n block 50. Next

the controller reads the effected memory cells 34 to imple-
ment the calculation (block 52). Precision conversion may
occur as set forth 1n the particular opcode.

Next the controller performs the operations specified by
the opcode as indicated 1n block 54. He uses the operands
and memory cells as specified in the opcode 1 some
embodiments. Finally the controller 26 writes the result into
the eflected memory cells as indicated 1n block 56.

The same thing can be done 1n the reverse order by using
a DMA read operation for data format conversion. Thus
looking at FIG. 4, data may be read from the memory cells
to the precision converter and passed by the controller to the
working bufler 24 to receive builer 20 and then read out to
form a data stream.

Referring to FIG. 5, the sequence for a streaming data
format conversion using a DMA read operation may be
implemented in software, firmware and/or hardware. In
software and firmware embodiments it may be implemented
by computer executed instructions stored in a non-transitory
computer readable medium such as semiconductor, optical
or magnetic storage. In some embodiments the sequence
may be part of the controller 26.

The sequence begins when the host writes opcodes and
operands to the controller registers as indicated in block 58.
Then there 1s a host DM A read of the cell memory addresses
as 1ndicated 1n block 60.

Thereafter the controller copies (block 62) memory cell
data through the precision converter 40 1nto the working
builer 24. Next the controller copies a working bufler into
the recerve buller as indicated 1n block 64. Finally the host
receives the receive buller 20 DMA page as indicated in
block 66.

While the 4K chunk 1s used in one embodiment, other
chunk sizes may of course be used. The controller then
performs the operation on each bit of the chunk in one
embodiment.

The graphics processing techniques described herein may
be mmplemented i1n various hardware architectures. For
example, graphics functionality may be integrated within a
chipset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multicore processor.

References throughout this specification to “one embodi-
ment” or “an embodiment” mean that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included i at least one implementation
encompassed within the present invention. Thus, appear-
ances of the phrase “one embodiment” or “in an embodi-
ment” are not necessarily referring to the same embodiment.
Furthermore, the particular features, structures, or charac-
teristics may be instituted 1n other suitable forms other than

10

15

20

25

30

35

40

45

50

55

60

65

10

the particular embodiment illustrated and all such forms may
be encompassed within the claims of the present application.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It 1s intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What 1s claimed 1s:

1. A method comprising:

converting processor-based operations in more than one

dimension 1nto a series of one dimensional operations;
programming a plurality of parallel processors with the
same operand and the same opcode;

performing a plurality of parallel operations using each of

said processors and said operand to generate results and
storing the results from each processor 1 one line 1n a
memory;

providing only one parallel processor for each row of

pixels 1 a frame; and

providing two processors, one to process words of a first

size and the other to process words of a second size.

2. The method of claim 1 including converting an area
operation 1nto a series of one dimensional operations.

3. The method of claim 2 including converting an area
operation into point operations implemented by memory
writes mto memory cells.

4. The method of claim 3 including combining a value of
a 1irst memory cell of said memory cells with an operand
according to a processing opcode and accumulating results
back into the first memory cell.

5. The method of claim 1 including performing a preci-
sion and numeric conversion 1n said processors.

6. The method of claim 1 wherein moving only data, and
not instructions, along a processing pipeline.

7. The method of claim 1 including providing a storage
and accumulation cell 1n said memory for each pixel.

8. The method of claim 7 including enabling each pro-
cessor to perform both a point operation and an accumula-
tion into the storage cell.

9. A non-transitory computer readable medium storing
instructions to implement a method comprising:

converting operations 1n more than one dimension into a

series of one dimensional operations;

programming a plurality of parallel processors with the

same operand and the same opcode;

performing a plurality of parallel operations using each of

said processors and said operand to generate results and
storing the results from each processor 1 one line 1n a
memory;

providing only one parallel processor for each row of

pixels 1 a frame; and

providing two processors, one to process words of a first

size and the other to process words of a second size.

10. The medium of claim 9 including converting an area
operation 1nto a series of one dimensional operations.

11. The medium of claim 10 including converting an area
operation into point operations implemented by memory
writes 1nto memory cells.

12. The medium of claim 11 including combining a value
of a first memory cell value of said memory cells with an
operand according to a processing opcode and accumulating
results back into the first memory cell.

13. An apparatus comprising:

a plurality of parallel processors, including only one

parallel processor for each row of pixels 1n a frame;

US 9,569,218 B2

11

a processor to convert operations in more than one
dimension 1nto a series ol one dimensional operations,
to program a plurality of parallel processors with the
same operand and the same opcode, and to perform a
plurality of parallel operations using each of said 3
processors and said operand to generate results and
storing the results from each processor 1n one line 1n a
memory, and convert an area operation 1nto a series of
one dimensional operations; and

a storage coupled to said processor. 10

14. The apparatus of claim 13, said processor to convert
area operations into a series of one dimensional operations.

15. The apparatus of claim 14, said processor to convert
an area operation into point operations implemented by
memory writes 1to memory cells. 15

16. The apparatus of claim 15, said processor to combine
a value of a first memory cell of said memory cells with an
operand according to a processing opcode and accumulating
results back into the first memory cell.

17. The apparatus of claim 13 including a plurality of »g
parallel processors programmed with the same operand and
the same opcode, said processors to perform a plurality of
parallel operations using each of said processors and said
operand to generate results and store the results from each
processor 1 one line 1 a memory. 75

18. The method of claim 1 including providing a proces-
sor for each memory cell in a two dimensional array of
memory cells.

12

19. A method comprising:

converting processor-based operations in more than one
dimension 1nto a series of one dimensional operations;

programming a plurality of parallel processors with the
same operand and the same opcode;

performing a plurality of parallel operations using each of
said processors and said operand to generate results and
storing the results from each processor 1n one line 1n a
memory;

providing only one parallel processor for each row of
pixels 1 a frame; and

providing a two-dimensional array of processors, one for
cach pixel in an 1mage to be processed.

20. A method comprising:

converting processor-based operations in more than one
dimension 1nto a series of one dimensional operations;

programming a plurality of parallel processors with the
same operand and the same opcode;

performing a plurality of parallel operations using each of
said processors and said operand to generate results and
storing the results from each processor 1n one line 1n a
memory;

providing only one parallel processor for each row of
pixels 1 a frame; and

providing a processor for each memory cell 1n a two
dimensional array of memory cells.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

