12 United States Patent

Amidi et al.

US009569209B2

US 9,569,209 B2
“Feb. 14, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHOD FOR NON-VOLATILE DATA
STORAGE AND RETRIEVAL

(71) Applicant: Xitore, Inc., Mission Viejo, CA (US)

(72) Inventors: Mike Hossein Amidi, Lake Forest, CA
(US); Hossein Hashemi, Laguna
Niguel, CA (US)

(73) Assignee: Xitore, Inc., Mission Viejo, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/144,653

(22) Filed: May 2, 2016

(65) Prior Publication Data
US 2016/0266807 Al Sep. 15, 2016

Related U.S. Application Data

(62) Daivision of application No. 14/539,776, filed on Dec.
3, 2014, now Pat. No. 9,354,872.

(Continued)
(51) Int. CL
GO6l 9/30 (2006.01)
GO6F 12/06 (2006.01)
(Continued)

(52) U.S. CL
CPC oo GOGF 9/30 (2013.01); GOGF 3/0605
(2013.01); GOGF 3/0619 (2013.01); GOG6F
3/0635 (2013.01); GOGF 3/0655 (2013.01):
GOGF 3/0659 (2013.01); GOGF 3/0661
(2013.01); GO6F 3/0673 (2013.01); GO6F

10

Norih
— . Bridge
Ple o2

TR T T T

- Storage

- N
e - 'J:I e O AT B, P
. M R R i __ P
. STyt IR
i

3/0679 (2013.01); GO6F 11/10 (2013.01);
GO6F 11/1004 (2013.01); GO6F 11/1068
(2013.01); GO6F 12/0223 (2013.01); GO6F

12/06 (2013.01); GO6F 12/0638 (2013.01);
GOGF 12/0802 (2013.01); GO6F 12/0888
(2013.01); GO6F 12/10 (2013.01); GI1C 29/52
(2013.01); GO6F 2206/1014 (2013.01):

(Continued)
(38) Field of Classification Search
CPC GO6F 9/30; GO6F 12/06; GO6F 12/0223;

GO6F 12/0638
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8/2011 Lee et al.
10/2012 Chen et al.

(Continued)

8,001,434 Bl
8,301,833 Bl

Primary Examiner — Joseph D Torres

(74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
& Bear LLP

(57) ABSTRACT

A method of storing data 1s provided. The method includes
receiving commands from a system memory controller of a
computer system. The commands include logical addresses
and are received by a computer memory device comprising
a parallel memory interface operatively coupled to the
system memory controller and operatively coupled to a
non-volatile memory. The method further includes respond-
ing to the commands by translating the received logical
addresses to corresponding physical addresses of the non-
volatile memory, receiving data from the system memory
controller by the parallel memory mterface, and storing the
data at memory locations of the non-volatile memory cor-
responding to the physical addresses.

12 Claims, 12 Drawing Sheets

100

RAM

RAM |

PARALLEL
INTERFACE AND NVM

] - K - s o= ..

R 1] et

TSR LR L E o e e B S A R

e A s vt et e W el em R g e e S DY

; HHHHS -
1

3

US 9,569,209 B2
Page 2

Related U.S. Application Data

(56)

(60) Provisional application No. 61/983,944, filed on Apr.

(1)

(52)

8,359,501
24, 2014. 3210 185
8,516,187
8,713,379
Int. CI. 2004/0266267
GOGF 12/02 (2006.01)
GO6F 3/06 (2006.01) 200510033992
GOGF 11/10 (2006.01) 2013/0042054
GOGF 12/08 (2016.01) 0130139630
GOG6F 12/10 (2016.01) 2013/0173875
G11C 29/52 (2006.01) 013/0173054
G11C 8/06 (2006.01)
G11C 29/04 (2006.01) 2013/0185268
U.S. CL 2014/0108747
CPC .. GOG6F 2212/152 (2013.01); GO6F 2212/261
2014/0372679

(2013.01); GO6F 2212/401 (2013.01); GO6F

2212/403 (2013.01); G11C 8/06 (2013.01);

G1I1C 2029/0411 (2013.01)

Bl
B2
B2
B2
Al*

Al*

Al*

Al
Al*

Al*

Al*

Al*

Al*

* cited by examiner

References Cited

1/201
8/201
8/201
4/201
12/200

3
3
3
4
4

2/2005
2/2013

5/2013
7/2013

7/2013
7/2013
4/2014

12/2014

U.S. PATENT DOCUMENTS

[.ee et al.

[.ee et al.

Chen et al.

Taketman et al.

Inaba G0O6K 7/0013
439/630

Inabe GO6F 3/03543

726/19

Jung ... GO6F 12/0246
711/103

Amidi et al.

Kim .ooovevivvininnn, GO6F 12/0246
711/160

W00 i, GO6F 11/167
714/6.13

Kim .ooovevivvininnn, HO3M 7/3084
707/693

Seol .o, GO6F 12/00
711/154

Flynn (GO6F 1/183
711/103

U.S. Patent Feb. 14, 2017 Sheet 1 of 12 US 9,569,209 B2

Figure 1A:

IO e

et e e

iw
RELIRLL
Ayt
b

L} ._
. - E .
- y [l
- § w k- o
L ' . I
.

¥

whn

US 9,569,209 B2

Sheet 2 of 12

Feb. 14, 2017

U.S. Patent

Figure 1B

Fl a_l--JJ.l.I_m o |

U.S. Patent Feb. 14, 2017 Sheet 3 of 12 US 9.569.209 B2

Figure 1C:

L
, L
3
;
r
' . A

- . - a [e R 3
a -d r r L

1 H ' . a I
- ' i 4

r
. \
1 § \rr

L Chibi]
Canual o n
LN

kRl
F

SERIAL INTERFACE

RF1 1 FY | 4 01" 1 g Fg 'Ilr ' 1 [

US 9,569,209 B2

Sheet 4 of 12

Feb. 14, 2017

U.S. Patent

Figure 2

100

PARALLEL
INTERFACE AND NVM

RAM

v

R e . T

- TEtE m wom -
- .

I —_ - == == =

Q4 m=man = s — m—— - -

10

U.S. Patent Feb. 14, 2017 Sheet 5 of 12 US 9.569.209 B2

Figure 3:

10
Computer system

| 100
| Computer memory device

140, 150
Data paths

_ _ 132
16 P;éi, | Contraller
Sygfem data
memaory portion
controller

114
Command
tion

U.S. Patent Feb. 14, 2017 Sheet 6 of 12 US 9.569.209 B2

Figure 4A:

READ OPERATION
By Bevice Driver

E' T —

! were H

- " e e, —

h—-—_,,_. H 8 e h =

3, O ‘-‘_‘I—-ﬁ:l, 1 E H !) sy ._.——‘.‘.m_‘__

4+ L Py

= N LI -“'_:‘_':‘-‘:-r-_‘-—lb
- LT e LLCII

Not RDY i _‘__*__:J'"
'\-—// i o4 BYtE $DST‘B‘TUS s

Host system Memory device

device driver R 100

A
Not Done f\\) i

Figure 4B:

WRITEOPERATION
By Device Driver

. Al

T ——
L ..-'-"‘l—-_.‘
" T
roran PP s .

,qu"’" "T-'-T—"-—---..,.___T___h_r_:__—_-—-_
Not RDY k . -

Host system

device driver Memory device

s 4 : : 100
Not Done & Y, m%mm@f_ﬁe WR Datq ff

T R
. ""'l“ 1—.11'-11..-._._‘____'_
r —-'*" M Y—y

——
L "q"-:_:--._'-l—lru__.-_.-
. T,

Not CMP

: ! q —
N | e sSOSTATUS e

U.S. Patent Feb. 14, 2017 Sheet 7 of 12 US 9.569.209 B2

Figure 4C:

- - X . a a a
1 . ¥ r . oA . a ¥
r . 1 aa - " pa " . PR Y n a . . a
e == - - - a . LT . - . B - n - - a D m
. . [PR SREL LI LL-JE R ‘t A-rdwE - -r r - r r r "Ea krE s
ol ' " - 1 - r - . roa e
- e e - " B I T R L STl R E" T LT e i *
. r - L . . -+ 4 r . ¥ . B b -rr'.'-‘.- T ""-, LT - n dnm LTI ,"- =30 . - .-' .
' e b N . - P T LI s Py .y H '\ . ‘.
. N H r . a . a . . L L i 3 . teow L r d I
N L] Lo i Tl - - - - - r
J-.I' .l
1 fr
<
'

PR RE e S R A e R

I :: :E'. :'::‘“' ’ 5:.
'
i
' EI llllllll
/ ' !-“ b
DATA | i
No Anform.CPU.. ... 8
i anth e s eenbapes g b el b L 7 y ot s ta s 8 Ll 0
e B e T e S e L AE !
1]

—-/ Transfer

U.S. Patent Feb. 14, 2017 Sheet 8 of 12 US 9.569.209 B2

130

140

150

'/ 100
124

142
152

140

150
122

/110

I T D e e e el Bkl DR e R ey kel bt Bk B
el mas Sanl Bed Sy D el S Sl S S s el S . B

Figure 5:
1
!
1
a
|
|

U.S. Patent Feb. 14, 2017 Sheet 9 of 12 US 9.569.209 B2

134

A
S

124

-]
< | o | l]
~ : -
% | u::.vl]
. ! A | = I
-
e l I
-
— e . | | I |
- O
_ ! @| i
o | N I
Nl -:1-] N I I
P o | —
- - : |
~ - N I
' L
- I ml B
X< . .
« - | |
| | ! I
!]
l]
| N I
l - !
! |
! I
]

Figure 6:
I
|
|
!
|
L

US 9,569,209 B2

Sheet 10 of 12

Feb. 14, 2017

U.S. Patent

0G|

0S1

OFl

0G|

Ol

Flc

9cl 0S1 Gl

-

O

v
ml
O
b T
(e
tg‘
v
—
O
O
e T

IIIIIIIIIIIIIIIIIII_‘IIII‘.IIl.Il

ccl
Pel

Ccl

0G1 0

oik Vi) \

0Ll

0%l

/ 001

Y/ 2Inbi

!
052 ._

el

US 9.569.209 B2

3

)

3
e |
: o I
: E"]
: l
' :
| |
| 1
| |
| |
|)
| !
| O |
g |,
| |
' |
| |
| I
| ﬁ1 ;
1 © 1
| |
| |
| |
' I
' EEI I
I © |
| |
| l
Iﬁ Il AN A S Sl

| 0L |)

At
0GC

9cl

Sheet 11 of 12
N

0S¢
01l

0G¢

0S¢
0S¢
0GZ -

Feb. 14, 2017

00¢c

)ffffl 00}

'/ a1nbi4

U.S. Patent

US 9,569,209 B2

Sheet 12 of 12

Feb. 14, 2017

U.S. Patent

00¢€

LA I S A DI DI Ny Gy BN GENg WS peey pymy aeew enk beuk el Sekd DU SR BN dnkl ABAE hlkk hichh deink wall el el el S DG DI I G B A D BB AW P e ey mewl el Pk S MO B B beed wimhl malb wivm e iy

Alowaw a|1}B|oA
-UOU 8y} JO suol1eo0] Alouisw e ejep 8y} 810]S

dnkbenl el e bl L

L P

0€e
~—

aoeLialul Alowsw j9||eied e AQ J8|j0.3U00

AlowisaW Wa]sAs aY] WOoJ] Blep oAlD0aY

|

0ce

AJOWBW 8|ljBjOA-UOU 8Y) JO Sossalppe [edisAyd
Puipuodsaliod 0] sassalppe |eolbo] paAleda.l

ay) buine|suel] Ag spuewillod syl 0} puodsay

1 _

Ja|jouoo Alowaw welsAs e wol) sessalppe

0L Q ieo1boj buisLIdWoD SPUBLLUWIOD BAI909Y

Nl =N I I S SSE B A S o A S Bl ok vl bl el el il mh kit Smr ek by Py S S T S o S S ST R O DY B B A e el e el M bl B B B R A T S JEEE T sy

—H"-u.“__Hﬂﬁ—uuuﬂ—_——__-_——_-—"__----____—-.___—-_“_

:Q 8Inbi4

US 9,569,209 B2

1

METHOD FOR NON-VOLATILE DATA
STORAGE AND RETRIEVAL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a divisional of U.S. patent application
Ser. No. 14/559,776, filed on Dec. 3, 2014, which 1s incor-
porated 1n 1ts entirety by reference herein and which claims
the benefit of U.S. Provisional Appl. No. 61/983,944, filed
on Apr. 24, 2014 and incorporated 1n its entirety by reference
herein.

BACKGROUND

Field

The present application 1s generally related to computer
memory, and more particularly, to apparatuses, systems, and
methods for data storage and retrieval using non-volatile
computer memory.

Description of the Related Art

Computer systems operate, 1 part, using volatile
memory. Computer memory modules using random access
memory (RAM) typically do not retain any data once the
main power source 1s lost (e.g., turned ofl or experiencing a
power failure). In contrast, non-volatile computer memory,
such as read only memory (ROM), tends to have long-term
storage capacity, but tends to be slower than RAM.

As systems become more complex and mission-critical,
the possibility of 1rreplaceable data being stored 1n volatile
memory increases. For this reason, the majority of mission-
critical data can be periodically stored in non-volatile
memory. Various options are available for such non-volatile
storage units, including but not limited to hard drive devices
(HDD), solid state drives (SSD), or solid state storage (SSS)
units. Computer systems utilizing such non-volatile memory
can transfer data from a host’s in-line volatile memory
module directly connected to a main processing unit to the
non-volatile memory operationally connected to the com-
puter system. For example, the host’s central processing unit
can fetch data blocks from volatile memory and can send
them out to the downstream controllers. Once the target
controller receives these data blocks, they can be stored 1n
the non-volatile memory.

SUMMARY

In certain embodiments, a computer memory device 1s
provided. The computer memory device 1s configured to be
operatively coupled to a computer system comprising a
computer processing unit having a storage device driver and
a system memory controller operatively coupled to the
computer processing unit. The computer memory device
comprises a parallel memory interface configured to be
operatively coupled to the system memory controller, to
receive data and commands comprising logical addresses
from the system memory controller, and to transmit data to
the system memory controller. The parallel memory inter-
face 1s configured to respond to the commands from the
storage device driver of the computer processing unit. The
computer memory device further comprises an address
translation circuit configured to receive the logical addresses
from the parallel memory interface and to translate the
received logical addresses to corresponding physical
addresses. The computer memory device further comprises
a non-volatile memory operatively coupled to the parallel
memory interface and the address translation circuit. The

10

15

20

25

30

35

40

45

50

55

60

65

2

non-volatile memory 1s configured to receive the physical
addresses and the data and to store the data at memory
locations of the non-volatile memory corresponding to the
physical addresses.

In certain embodiments, a method of storing data 1s
provided. The method comprises receiving commands from
a system memory controller of a computer system. The
commands comprise logical addresses and are received by a
computer memory device comprising a parallel memory
interface operatively coupled to the system memory con-
troller and operatively coupled to an non-volatile memory.
The method further comprises responding to the commands
by translating the received logical addresses to correspond-
ing physical addresses of the non-volatile memory. The
method further comprises receiving data from the system
memory controller by the parallel memory interface. The
method further comprises storing the data at memory loca-
tions of the non-volatile memory corresponding to the
physical addresses.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A schematically illustrates an example configura-
tion of a conventional computer system including both
volatile memory and non-volatile memory.

FIG. 1B schematically illustrates another example con-
figuration of a conventional computer system including both
volatile memory and non-volatile memory.

FIG. 1C schematically illustrates still another example
confliguration of a conventional computer system including
both volatile memory and non-volatile memory.

FIG. 2 schematically illustrates an example computer
system operatively coupled to an example computer
memory device in accordance with certain embodiments
described herein.

FIG. 3 schematically illustrates an example computer
memory device in accordance with certain embodiments
described herein.

FIGS. 4A and 4B schematically 1llustrate an example read
operation and an example write operation, respectively,
controlled by the storage device driver of the host CPU 1n
accordance with certain embodiments described herein.

FIG. 4C 1s a flow diagram corresponding to the example
read and write operations of FIGS. 4A and 4B.

FIG. 5 schematically illustrates an example computer
memory device in accordance with certain embodiments
described herein.

FIG. 6 schematically illustrates another example com-
puter memory device 1n accordance with certain embodi-
ments described herein.

FIG. 7A schematically illustrates another example com-
puter memory device in accordance with certain embodi-
ments described herein.

FIG. 7B schematically illustrates another example com-
puter memory device 1n accordance with certain embodi-
ments described herein.

FIG. 8 1s a flow diagram of an example method of storing
data 1n accordance with certain embodiments described
herein.

DETAILED DESCRIPTION

Conventional data transiers among volatile memory and
non-volatile memory can require several hardware, firm-
ware, and driver interactions using multiple hardware and
software levels within one or more units. The overall laten-
cies associated with existing non-volatile storage include the

US 9,569,209 B2

3

time required to fetch data blocks from volatile memory into
a host processing unit, transferring data blocks from the host
processing unit to a host main memory controller, sending
the data blocks from the host main memory controller to a
targeted storage controller via one or more data bridges, and
storing the data blocks from the target storage controller into
non-volatile memory media.

FIG. 1A schematically illustrates an example configura-
tion of a conventional computer system including both
volatile memory and non-volatile memory. A central pro-
cessing unit (CPU) 1s operatively coupled to a north bridge
(¢.g., a host bridge, memory controller hub) circuit and to a
south bridge (e.g., I/O controller hub) circuit. The north
bridge circuit and the south bridge circuit can collectively be
referred to as the chipset. The north bridge circuit 1s opera-
tively coupled to volatile random access memory (RAM)
(e.g., one or more volatile RAM modules in one or more
DIMM slots) serving as the main memory of the computer
system. The south bridge circuit 1s operatively coupled via
one or more serial mput/output bus interfaces (e.g., PCI
express or PCle bus) to a storage controller (e.g., serial ATA
or SATA, serial attached SCSI or SAS, fiber channel or FC,
etc.) which 1s operatively coupled to one or more non-
volatile memory devices (e.g., solid state devices, hard drive
devices, solid state storage devices, tape devices).

The CPU can comprise a host device driver that requests
that a memory controller of the north bridge circuit read
from or write to data sectors of the non-volatile memory
devices. In this example, to execute READ commands to
read data from the non-volatile memory devices, the fol-
lowing operations can occur:

The memory controller of the north bridge circuit sends

data read requests to the south bridge circuit.

The south bridge circuit translates the data read requests
to PCle packets and sends the PCle packets to the
storage controller via the PCle bus.

The storage controller translates the PCle packets to

READ storage commands and sends them to the appro-
priate non-volatile storage device.

The storage device interprets the READ storage com-
mands, fetches the data, and responds back to the
storage controller when the data being read 1s ready.

The storage controller reads and converts the data to PCle
packets and sends the PCle packets to the south bridge
circuit. The status 1s also appended to the end of the
READ data.

The PCle bus translates the PCle packets back to raw data
and sends the data via the south bridge circuit to the
memory controller of the north bridge circuit.

The memory controller places the data into volatile RAM.

The host device driver examines the status of the com-
mand at the end of the READ data and informs the CPU
that the data 1s ready.

In this example, to execute WRITE commands to write
data to the non-volatile memory devices, the following
operations can OCCur:

The memory controller of the north bridge circuit sends

data write requests to the south bridge circuat.

The south bridge circuit translates the data write requests
to PCle packets and sends the PCle packets to the
storage controller via the PCle bus.

The storage controller translates the PCle packets to
WRITE storage commands and sends them to the
appropriate non-volatile storage device.

The storage device interprets the WRITE storage com-
mands, and responds back to the storage controller
when 1t 1s ready to accept the data to be written. (Some

5

10

15

20

25

30

35

40

45

50

55

60

65

4

storage devices accept limited WRITE data with the
WRITE storage commands).

The memory controller of the north bridge circuit trans-
fers the data to be written from volatile RAM to the
south bridge circuit.

The south bridge circuit translates the data to be written
to PCle packets and sends the PCle packets to the
storage controller via the PCle bus.

The storage controller translates the PCle packets to
storage format and sends them to the appropriate non-
volatile storage device.

The non-volatile storage device saves the data and
responds back to the storage controller reporting the
status that the data has been stored.

The storage controller transfers the status to the north
bridge circuit via PCle packets and the south bridge
circuit.

The host device driver informs the CPU that the data has
been stored. As a result of the multiple interveming
clements and steps between the north bridge circuit and
the non-volatile memory of this multi-drop configura-
tion, the overall latencies and bandwidth can be
adversely aflected.

FIG. 1B schematically illustrates another example con-
figuration of a conventional computer system including both
volatile memory and non-volatile memory. In FIG. 1B, the
south bridge circuit 1s eliminated from the CPU chipset. The
north bridge circuit 1s operatively coupled to the volatile
RAM and via the one or more serial iput/output bus
interfaces (e.g., PCle bus) to a storage controller operatively
coupled to one or more non-volatile memory devices. By
climinating the south bridge circuit, such configurations can
reduce the number of steps for reading or writing data. For
high-performance solid state devices, the storage controller
can also be eliminated, as shown in the right-hand side of
FIG. 1B. However, although the storage controller may have
been eliminated by using the high-performance solid state
device, the high-performance solid state device still has to
perform translations between raw data and the serial PCle
packets to be able to read and write data.

FIG. 1C schematically illustrates still another example
configuration of a conventional computer system including
both volatile memory and non-volatile memory. In FIG. 1C,
instead of being coupled to a volatile RAM module, a
DIMM slot 1s operatively coupled to a serial interface which
1s operatively coupled to a corresponding non-volatile
memory device (e.g., SSD) via a corresponding storage
controller. The serial interface 1s used to transier data and to
convert raw data to or from the storage controller protocol
(e.g., SATA). An example of such a configuration 1s
described by U.S. Pat. No. 8,713,379.

FIG. 2 schematically illustrates an example computer
system 10 operatively coupled to an example computer
memory device 100 1n accordance with certain embodiments
described herein. The computer memory device 100 can be
operatively coupled to a DIMM slot of the computer system
10, thereby advantageously moving the non-volatile
memory significantly closer to the CPU than in conventional
configurations. By operatively coupling the computer
memory device 100 to the DIMM slot, the computer
memory device 100 of certain embodiments can advanta-
geously be placed among the volatile RAM modules of the
main memory and can operate at the speed of the volatile
RAM modules. The computer memory device 100 of certain
embodiments advantageously does not require translation of
data between various parts of the computer system 10, so
data can flow between the volatile RAM modules of the

US 9,569,209 B2

S

main memory and the non-volatile memory of the computer
memory device 100 without the intervention of host pro-
cessing units. By not using a storage controller as done 1n
conventional systems, certain embodiments described
herein can advantageously use data 1n parallel format to be 5
stored 1n the non-volatile memory of the computer memory
device 100. The computer memory device 100 of certain
embodiments can advantageously drastically improve inner
host system communication, data transfer rates, and avail-
able data bandwidth, while reducing latencies related to 10
volatile to non-volatile data transfers.

FIG. 3 schematically illustrates an example computer
memory device 100 1n accordance with certain embodiments
described herein. The computer memory device 100 1is
configured to be operatively coupled to a computer system 15
10 comprising a computer processing unit (CPU) 12 having
a storage device driver 14 and a system memory controller
16 operatively coupled to the CPU 12. The computer
memory device 100 comprises a parallel memory interface
(PMI) 110 configured to be operatively coupled to the 20
system memory controller 16, to recerve data and commands
comprising logical addresses from the system memory con-
troller 16, and to transmit data to the system memory
controller 16. The PMI 110 1s configured to respond to the
commands from the storage device driver 14 of the CPU 12. 25
The computer memory device 100 further comprises an
address translation circuit (ATC) 120 configured to receive
the logical addresses from the PMI 110 and to translate the
received logical addresses to corresponding physical
addresses. The computer memory device 100 further com- 30
prises a non-volatile memory (NVM) 130 operatively
coupled to the PMI 110 and the ATC 120. The NVM 130 1s
configured to receive the physical addresses and the data and
to store the data at memory locations of the NVM 130
corresponding to the physical addresses. 35

In certain embodiments, the computer system 10 can
comprise a host computer, examples of which include but
are not limited to: a server (e.g., blade server, 1U server,
database server, web server, gaming server, application
server), personal computer (PC), data storage system. The 40
CPU 12, the storage device dniver 14, and the system
memory controller 16 can be mounted on a system board of
the host computer. The computer system 10 can further
comprise a host system memory controller bus 18 opera-
tively coupled to at least one host main memory interface, 45
such as one or more host main memory module slots (e.g.,
one or more standard dual 1m-line memory module (DIMM)
slots). The computer system 10 can further comprise one or
more volatile RAM modules (not shown) operatively
coupled to the one or more memory module slots. As 50
described more fully below, at least one of the one or more
memory module slots can be operatively coupled to the
computer memory device 100 1n accordance with certain
embodiments described herein.

In certain embodiments, two or more of the CPU 12, the 55
storage device driver 14, and the system memory controller
16 can be manifested, in whole or in part, in the same
integrated circuit. For example, the storage device driver 14
can comprise a portion of the circuitry of the CPU 12 and/or
can be a software module programmed 1nto the CPU 12 and 60
which resides in the memory of the CPU 12 of the host
computer. The storage device driver 14 can be a dedicated
hardware drniver or software driver of the CPU 12 that
communicates with the computer memory device 100 and
that translates transactions from the CPU 12 for communi- 65
cation to the computer memory device 100. The system
memory controller 16 can be a portion of a north bridge

6

circuit that 1s operatively coupled to the CPU 12. The system
memory controller 16 can be operatively coupled to the host
system memory controller bus 18 and, via the memory
controller bus 18, to a host main memory interface (e.g., a
DIMM slot) that 1s configured to be operatively coupled to
the computer memory device 100.

The PMI 110 of certain embodiments i1s configured to be
operatively coupled to the host system memory controller
bus 18. For example, the PMI 110 can be configured to be
operatively coupled to a host main memory interface (e.g.,
a DIMM slot) that 1s operatively coupled to the memory
controller bus 18, can receive data from the system memory
controller 16, and can receive commands comprising logical
addresses from the storage device driver 14 via the host main
memory interface. The PMI 110 of certain embodiments can
comprise a unidirectional interface which can be character-
1zed as “dumb” 1n that the PMI 110 1s configured to receive
commands from the storage device driver 14 but can only
transmit data, not other signals, to the storage device driver
14. The PMI 110 of certain such embodiments can present
information (e.g., status) 1n a manner that can be read by the
storage device driver 14, as described more fully below.

The PMI 110 can comprise a parallel data portion 112
configured to recerve data 1n parallel from the computer
system 10 and to transmit data in parallel to the computer
system 10. The PMI 110 can further comprise a command
portion 114 configured to recerve commands from the com-
puter system 10, the commands comprising logical
addresses. The command portion 114 can comprise at least
one command queue that 1s configured to store the com-
mands received by the command portion 114 of the PMI 110
and at least one command status circuit that 1s configured to
present status information regarding the commands 1n the at
least one command queue 1n a manner that 1s accessible to
the computer system 10. As described herein, the command
portion 114 can be configured to receive a series of com-
mands from the system memory controller 16 in a first order,
and the computer memory device 100 (e.g., the at least one
command queue) can be configured to execute the com-
mands 1n a second order different from the first order (e.g.,
the second order can be based on relative priorities of the
commands rather than the order in which the commands
were received). Thus, the computer memory device 100 can
be configured to execute a series of out-of-order commands
on the at least one command queue (e.g., to improve internal
bus utilization). Furthermore, the PMI 110 1s configured to
respond to commands from the storage device driver 14 of
the CPU 12, as described herein.

The ATC 120 of certain embodiments 1s configured to
receive logical addresses extracted from the commands
received by the command portion 114 of the PMI 110 and to
translate the received logical addresses to corresponding
physical addresses corresponding to physical locations
within the NVM 130 at which data received from the
computer system 10 1s to be stored within the NVM 130 and
to physical locations within the NVM 130 at which data
requested by the computer system 10 was previously stored
within the NVM 130. As described more fully below 1n the
vartous examples, 1n certain embodiments, the computer
memory device 100 comprises volatile memory, and the
ATC 120 1s further configured to translate the recerved
logical addresses to corresponding internal volatile memory
addresses corresponding to physical locations within the
volatile memory at which data received from the computer
system 10 1s to be stored within the volatile memory and to
physical locations within the volatile memory at which data
requested by the computer system 10 was previously stored

US 9,569,209 B2

7

within the volatile memory. In certain embodiments, the
ATC 120 comprises an internal address cache which can be
implemented using one of the following schemes: least
recently used (LRU), least frequently used (LFU), most
recently used (MRU), and the internal address cache can be
utilize one or multiple way set associative architecture, in
either write-through, write-back, read-through, or read-back
policies.

In addition to translating host logical addresses to non-
volatile memory physical addresses (and possibly to internal
volatile memory addresses), 1n certain embodiments, the
ATC 120 can be further configured to provide indications of
the validity of data within the non-volatile memory physical
addresses (and/or the internal volatile memory addresses).
For example, for a computer memory device 100 comprising
volatile memory, upon decoding a command received from
the computer system 10, a logical address 1s transmitted to
the ATC 120, and the ATC 120 can check the validity of the
data either in the corresponding internal volatile memory
address or the corresponding non-volatile memory physical
address. For example, the ATC 120 can comprise dedicated
validity flags for memory entries per each logical address for
the non-volatile memory, for the volatile memory, or for
both. Write data can be transierred to the internal volatile
memory location i1dentified by the ATC 120. Read data can
be fetched from the internal volatile memory location if
valid, or from the non-volatile memory physical location
and placed 1n the internal volatile memory prior to transier
to the computer system 10. In certain embodiments, the ATC
120 can be configured to generate physical addresses that
correspond to the logical addresses to reflect data transiers
that are performed due to non-volatile memory management
(e.g., avoidance of bad blocks).

The NVM 130 of certain embodiments 1s operatively
coupled to the PMI 110 to receive data (e.g., via a write data
path 140) that had been recerved by the PMI 110 from the
computer system 100 (e.g., from the memory controller bus
18) and to provide data (e.g., via a read data path 150) to the
PMI 110 that had been requested by the computer system
100. The NVM 130 of certain embodiments 1s also opera-
tively coupled to the ATC 120 and configured to receive the
physical addresses that correspond to the physical locations
within the NVM 130 at which the data received from the
PMI 110 1s to be stored within the NVM 130 and the
physical locations within the NVM 130 at which the data to
be provided to the PMI 110 was previously stored within the
NVM 130. Examples of NVM 130 that are compatible with
certain embodiments described herein include, but are not
limited to, hard drive devices (HDD), solid state drives
(SSD), or solid state storage (SSS) units. In certain embodi-
ments, the NVM 130 comprises a controller 132 (e.g., a
non-volatile memory interface) and an array 134 of non-
volatile memory locations operatively coupled to the con-
troller 132 (e.g., via a parallel data bus 136 comprising a
plurality of channels). The controller 132 can emulate a
redundant array of independent disk (RAID) configuration.
For example, the controller 132 of the NVM 130 can support
one or more dedicated channels to non-volatile storage
clements of the array 134.

In certain embodiments, the computer memory device
100 1s controlled by the storage device driver 14 which can
reside 1n the host CPU 12. For example, the PMI 110, the
ATC 120, and the NVM 130 can be responsive to control
signals from the storage device driver 14 to store data in the
NVM 130 and to retrieve data that had been previously
stored 1n the NVM 130. In this way, certain embodiments
described herein can use minimal host CPU time to com-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

municate (e.g., read and write data) between the computer
memory device 100 and the computer system 10. In certain
embodiments, the computer memory device 100 comprises
one or more processors which receive control signals from
the storage device driver 14 and which transmit correspond-
ing control signals to the PMI 110, the ATC 120, the NVM
130, and other components of the computer memory device
100 to store and retrieve data using the NVM 130 while
using mimmal host CPU time to communicate (e.g., read
and write data) between the computer memory device 100
and the computer system 10.

FIGS. 4A and 4B schematically 1llustrate an example read
operation and an example write operation, respectively,
controlled by the storage device driver 14 of the host CPU
12 1n accordance with certain embodiments described
herein. FIG. 4C 1s a flow diagram corresponding to the
example read and write operations of FIGS. 4A and 4B.

For the example read operation, the storage device drniver
14 transmits a read command to the computer memory
device 100. For example, a read command can be placed 1n
a command queue of the PMI 110 to obtain data from a
solid-state drive (SSD) of the NVM 130. The storage device
driver 14 then repeatedly checks for the status of the read
command (shown schematically in FIG. 4A by the “Not
RDY” arrow) until the computer memory device 100 indi-
cates that the status of the read command has changed to
“data transfer ready.” The host CPU 12 can then read the
data from the computer memory device 100 (e.g., from the
PMI 110) in as many data bursts as are needed to provide the
data (shown schematically in FIG. 4A by the “Not Done”
arrow), and the host CPU 12 can place the received data 1n
the host main memory. The storage device driver 14 can then
check the completion status of the read command (shown
schematically mn FIG. 4A by the “Not CMP” arrow), and
once the computer memory device 100 indicates that the
status of the read command 1s completed, the storage device
driver 14 can inform the host CPU 12 that the read command
has been completed.

For the example write operation, the storage device driver
14 transmits a write command to the computer memory
device 100. For example, a write command can be placed 1n
a command queue of the PMI 110 to store data in a
solid-state drive (SSD) of the NVM 130. The storage device
driver 14 then repeatedly checks for the status of the write
command (shown schematically in FIG. 4B by the “Not
RDY” arrow) until the computer memory device 100 indi-
cates that the status of the write command has changed to
“data transier ready.” The host CPU 12 can then write the
data to the computer memory device 100 (e.g., provide the
data to the PMI 110) 1n as many data bursts as are needed to
provide the data (shown schematically in FIG. 4B by the
“Not Done” arrow), and the computer memory device 100
can place the provided data in the NVM 130. The storage
device driver 14 can then check the completion status of the
write command (shown schematically in FIG. 4B by the
“Not CMP” arrow), and once the computer memory device
100 1indicates that the status of the write command 1s
completed, the storage device driver 14 can inform the host
CPU 12 that the write command has been completed.

In certain embodiments, the storage device driver 14 can
transmit commands (e.g., read or write commands) to the
computer memory device 100 at any time, and both the
storage device driver 14 and the computer memory device
100 can have a copy of the command queue. For example,
a master command queue can be 1n the storage device driver
14 and a slave copy of the command queue can be in the PMI
110, and the two command queues can be kept up-to-date by

US 9,569,209 B2

9

appropriate status reporting information being presented by
the PMI 110 1n a manner that 1s accessible to the storage
device driver 14. The command queue can have a capacity
limited to holding a predetermined number of active com-
mands at any one time. Once a command has been com-
pleted, 1ts position within the command queue can be
replaced by another command (e.g., a new command or
another command from within the command queue). The
operation of replacing one command with another in the
command queue can be an indication to the computer
memory device 100 that the previous command has been
completed in the host CPU 12.

In certain embodiments, each status read from the com-
puter memory device 100 can include the statuses of some
or all the commands 1n the command queue. For certain
embodiments 1n which commands can be executed out of
order (e.g., transmitted from the storage device driver 14 to
the computer memory device 100 i1n a first order, but
executed by the computer memory device 100 1n a second
order different from the first order), more than one command
can have a “data transfer ready” status.

In certain embodiments, the storage device driver 14 can
transmit multiple data transfer commands for which the
transierred data for the commands are interleaved with one
another prior to reading completion statuses of the com-
mands. In certain other embodiments, the storage device
driver 14 can transmit multiple data transfer commands for
which the transferred data for the commands are transmitted
sequential to one another prior to reading the completion
statuses of the commands. The steps of the commands can
be executed 1n sequence with one another per command
(e.g., one command 1s completed before a subsequent com-
mand 1s begun), resulting 1n the slowest execution of com-
mands. However, 1n certain other embodiments, execution
of the steps of the commands can be interleaved with one
another or can be combined with one another. For example,
the reading of the “data transfer ready” status and the
completion status can be combined into one status check.
Upon reading the completion status for a command, the
storage device driver 14 can also check whether other
commands are “data transfer ready” and/or if any other
previous commands are also completed, thereby avoiding
the use of a separate status check.

In certain embodiments 1n which the computer memory
device 100 1s operatively coupled to a DIMM slot of the
computer system 10, the PMI 110 can be configured to
respond to commands from the storage device driver 14 of
the CPU 12 in a manner that utilizes the DIMM slot
protocol. The storage device driver 14 can indicate to the
system memory controller 16 how to operate the computer
memory device 100 plugged ito the DIMM slot. For
example, a DIMM slot protocol for operating a DDR-3
volatile memory module can comprise activating a ROW
address (e.g., page) followed by a read or write command
and a COLUMN address. The data transfer phase can then
start with a data burst (e.g., eight words of eight bytes each,
totaling 64 bytes). The data transfer phase can continue by
the storage device driver 14 1ssuing more commands during
the data transier phase until the boundary of the ROW (e.g.,
page) 1s reached.

Various combinations of ROW addresses, COLUMN
addresses, BANK addresses, and Commands can be used to
define specific operations of the computer memory device
100 1 accordance with certain embodiments described
herein. For example, Table 1 defines one example having
four types of operations of the computer memory device 100
that can be performed. While Table 1 refers to an example

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiment 1n which a COLUMN address 1s indicated by a
number from 0 to 1023 (e.g., by 10 bits), certamn other
embodiments can utilize COLUMN addresses that are indi-
cated by a number from O to 2047 (e.g., by 11 bits as used
for certain DDR-x configurations) or by other numbers or
numbers of bits. In addition, while the example read and
write operations are described as using data bursts of 64
bytes, other sizes of data bursts are also compatible with
certain embodiments described herein.

TABLE 1
Type of Command on DIMM Address
operation DIMM slot BANK ROW COLUMN
Commands (all) WRITE 0 0 0-1023
Response READ 0 0 0-1023
Write Data WRITE 1 0 0-1023
Read Data READ 1 0 0-1023

For this example, a READ operation can be performed as
follows:

The computer system 10 (e.g., the storage device drniver
14) transmits an ACTIVATE command with BANK

address of 0 and ROW address of 0 to the DIMM slot
and the command i1s detected by the computer memory
device 100.

The computer system 10 (e.g., the storage device dniver
14) transmits a WRITE command with COLUMN
address of x (e.g., where x 1s a number from 0 to 1023)

to the DIMM slot and the command 1s detected by the

computer memory device 100. The COLUMN address
of x designates a location within the command queue.

The computer system 10 (e.g., the storage device drniver

14) transmits a data burst (e.g., 64 bytes) to the DIMM
slot. The data burst denotes an encoded data read

command including a logical address corresponding to
the data being requested to be read from the NVM 130.
The computer memory device 100 recerves the data
burst and places the encoded data read command 1n the
command queue at the location designated by x.

The computer memory device 100 decodes the command
at location x of the command queue as a data read
command and extracts the logical address of the data
that 1s being requested.

The computer memory device 100 internally requests the

data (e.g., including translating the logical address to a
physical address to be read) and places the data read
from the correspondmg physical location of the NVM
130 1n a read bufler of the read data path 1n preparation
of transmitting the data to the computer system 10.

The computer memory device 100 prepares a Response
word corresponding to the data read command that
requested the data in the read bufler. For example, a
“data transter ready” or “RDY for Transier” Response
word (e.g., 64 bytes) can be prepared that identifies the
location within the command queue of the command to
which the “data transfer ready” Response word corre-
sponds.

The computer system 10 (e.g., the storage device drniver
14) can transmit a READ command and a COLUMN
address ol y (e.g., where y 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
y designates the location within the command queue of
the command to which the status 1s queried.

US 9,569,209 B2

11

The computer memory device 100 can update its com-
mand status circuit to note that this read command 1s
ready (e.g., a “data transier ready” Response word).

The computer system 10 (e.g., the storage device driver
14) detects the Response word indicating that the data
corresponding to the data read command 1s ready for
transier from the computer memory device 100.

The computer system 10 (e.g., the storage device driver
14) transmits an ACTIVATE command with BANK

address of 1 and ROW address of 0 to the DIMM slot
and the command 1s detected by the computer memory
device 100. Note that 1f the ROW and BANK had
previously been opened, the ACTIVATE command
may not be needed.

The computer system 10 (e.g., the storage device driver
14) transmits a READ command with a COLUMN
address of z (e.g., where z 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
of z designates a location 1n the command queue of the
data read command corresponding to the data to be
transmuitted.

The computer memory device 100 transmits the requested
data from the read bufler (e.g., 1n one or more data
bursts with a data burst comprising 64 bytes) to the
computer system 10 (e.g., via the system memory
controller bus 18). The data bursts can continue (e.g.,
by incrementing the COLUMN address to sequentially
correspond to the multiple data bursts of 64 bytes each).
If additional requested data 1s to be transmitted, the
computer system 10 can transmit additional READ
commands until the requested data 1s exhausted or a
page boundary 1s reached. If the requested data 1s not
completed when the page boundary 1s reached, the
computer system 10 can transmit additional ACTI-
VATE commands and subsequent READ commands to
get the computer memory device 100 to transmit addi-
tional data bursts. The computer memory device 100
can update 1ts command status circuit to note that this
read command 1s complete (e.g., a “read complete”
Response word).

The computer system 10 (e.g., the storage device driver

14) transmits an ACTIVATE command with BANK
address 0 and ROW address 0 to the DIMM slot and the
command 1s detected by the computer memory device
100.

The computer system 10 (e.g., the storage device driver
14) transmits a READ command with COLUMN
address of w (e.g., where w 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
of w designates a location in the command queue of the
data read command for which status i1s being requested.

The computer system 10 (e.g., the storage device driver
14) detects the “read complete” Response word and
informs the CPU 12 that the read operation 1s com-
pleted.

For this example, a WRITE operation can be performed as

follows:

The computer system 10 (e.g., the storage device driver
14) transmits an ACTIVATE command with BANK

address of 0 and ROW address of 0 to the DIMM slot
and the command 1s detected by the computer memory

device 100.
The computer system 10 (e.g., the storage device driver
14) transmits a WRITE command with COLUMN

address of x (e.g., where x 1s a number from O to 1023)

10

15

20

25

30

35

40

45

50

55

60

65

12

to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
of x designates a location within the command queue.

The computer system 10 (e.g., the storage device driver
14) transmits a data burst (e.g., 64 bytes) to the DIMM
slot. The data burst denotes an encoded data write
command including a logical address corresponding to
the data to be written to the NVM 130. The computer
memory device 100 recerves the data burst and places
the encoded data write command in the command
queue at the location designated by x.

The computer memory device 100 decodes the command
at location x of the command queue as a data write
command and extracts the logical address of the physi-
cal locations to which the data 1s to be written.

The computer memory device 100 internally requests
memory space of the NVM 130 at which the data 1s to
be written (e.g., including translating the logical
address to a physical address to which the data is to be
written).

The computer memory device 100 prepares a Response
word corresponding to the data write command. For
example, a “data transfer ready” or “RDY {for Transter”
Response word (e.g., 64 bytes) can be prepared that
identifies the location within the command queue of the
command to which the “data transfer ready” Response
word corresponds.

The computer system 10 (e.g., the storage device driver
14) can transmit a READ command and a COLUMN
address ol y (e.g., where y 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
of y designates the location within the command queue
of the command to which the status 1s queried.

The computer memory device 100 can update 1ts com-
mand status circuit to note that this write command 1s
ready (e.g., a “data transier ready” Response word).

The computer system 10 (e.g., the storage device driver
14) detects the Response word indicating that the NVM
space corresponding to the data write command 1s
ready for transier of the data from the computer system
10.

The computer system 10 (e.g., the storage device driver
14) transmits an ACTIVATE command with BANK
address of 1 and ROW address of 0 to the DIMM slot
and the command i1s detected by the computer memory
device 100. Note that 1f the ROW and BANK had
previously been opened, the ACTIVATE command
may not be needed.

The computer system 10 (e.g., the storage device drniver
14) transmits a WRITE command with a COLUMN
address of z (e.g., where z 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the
computer memory device 100. The COLUMN address
of z designates a location i the command queue of the
data write command corresponding to the data to be
written.

The computer system 10 (e.g., the storage device driver
14) transmits the data to be written to the computer
memory device 100 (e.g., in one or more data bursts
with a data burst comprlsmg 64 bytes) The computer
memory device 100 places the data in a write builer.
The data bursts can continue (e.g., by incrementing the
COLUMN address to sequentially correspond to the
multlple data bursts of 64 bytes each). If additional data
1s to be written, the computer system 10 can transmit
additional WRITE commands until the data to be

US 9,569,209 B2

13

written 1s exhausted or a page boundary 1s reached. I
the data to be written 1s not completed when the page
boundary 1s reached, the computer system 10 can
transmit additional ACTIVATE commands and subse-
quent WRITE commands to get the computer memory
device 100 to write additional data bursts.

The computer memory device 100 can write the data from
the write bufler to the NVM 130.

The computer system 10 (e.g., the storage device driver

14) transmits an ACTIVATE command with BANK
address 0 and ROW address 0 to the DIMM slot and the
command 1s detected by the computer memory device
100.

The computer system 10 (e.g., the storage device driver

14) transmits a READ command with COLUMN

address of w (e.g., where w 1s a number from 0 to 1023)
to the DIMM slot and the command 1s detected by the

computer memory device 100. The COLUMN address

of w designates a location 1n the command queue of the
data write command for which status 1s being
requested.

The computer memory device 100 can update 1ts com-
mand status circuit to note that this write command 1s
complete (e.g., a “write complete” Response word).

The computer system 10 (e.g., the storage device driver
14) detects the “write complete” Response word and
informs the CPU 12 that the write operation 1s com-
pleted.

In the various examples of the computer memory device
100 described below, the computer memory device 100
comprises various components, circuitry, and {features.
While these components, circuitry, and features are
described with regard to particular example configurations,
people of ordinary skill i the art understand that the
described components, circuitry, and features can be com-
bined with one another, or with other components, circuitry,
and features, 1n other combinations besides the specific
combinations described in the particular example configu-
rations and that a selected one or more of the described
components, circuitry, and features can be omitted from
other configurations which are still compatible with certain
embodiments described herein. For instance, particular
example configurations are described below in which the
computer memory device 100 comprises one or more pro-
cessors that are responsive to commands from the storage
device driver 14 to control various components, circuitry, or
teatures of the computer memory device 100. People skilled
in the art understand that the functionality of these one or
more processors can be combined together 1n a single
processor or can be parsed differently among the one or
more processors (€.g., into a different number of processors,
organized among the one or more processors in different
combinations).

FIG. 5 schematically illustrates an example computer
memory device 100 1n accordance with certain embodiments
described herein. The parallel data portion 112 of the PMI
110 1s configured to receive data 1n parallel from the
computer system 10 and to transmit the received data in
parallel to the NVM 130 via a write data path 140. The write
data path 140 can comprise at least one write buller 142
configured to facilitate proper data transier from the PMI
110 to the NVM 130. The parallel data portion 112 of the
PMI 110 1s further configured to receive data in parallel from
the NVM 130 via a read data path 150 and to transmit the
received data 1n parallel to the memory control bus 18 of the
computer system 10. The read data path 150 can comprise at

10

15

20

25

30

35

40

45

50

55

60

65

14

least one read butler 152 configured to facilitate proper data
transfer from the NVM 130 to the PMI 110.

The command portion 114 of the PMI 110 1s configured
to recetve commands comprising logical addresses from the
system memory controller bus 18 of the computer system
10. In certain embodiments, the command portion 114 of the
PMI 110 can comprise at least one command status circuit
116 and at least one command queue 118 configured to store
the commands recerved by the command portion 114 of the
PMI 110. The at least one command status circuit 116 1is
configured to maintain a record of the status of each of the
active commands in the corresponding at least one command
queue 118, and to facilitate the computer memory device
100 to perform the operations corresponding to the active
commands in a proper order (e.g., by presenting status
information regarding the commands 1n the at least one
command queue 118 1n a manner accessible to the computer
system 10). For example, the command portion 114 can be
configured to receive a series ol commands from the system
memory controller 16 1n a first order, and the computer
memory device 100 can be configured to execute the com-
mands 1n a second order different from the first order (e.g.,
the second order can be based on relative priorities of the
commands).

The ATC 120 1s configured to receive logical addresses
extracted from commands received by the command portion
114 of the the PMI 110. For data received by the PMI 110
to be written to the NVM 130, the ATC 120 1s configured to
translate the received logical addresses 122 corresponding to
the received data to physical addresses 124 of physical
locations within the NVM 130 at which the received data 1s
to be written. For data requested by the computer system 10
to be read from the NVM 130, the ATC 120 1s configured to
translate the received logical addresses 122 corresponding to
the requested data to physical addresses 124 of physical
locations within the NVM 130 at which the requested data
requested by the computer system 10 can be read (e.g.,
physical locations at which the requested data was previ-
ously stored within the NVM 130).

The NVM 130 1s configured to receive data from the PMI
110 via the write data path 140 and to provide data to the
PMI 110 wvia the read data path 150. The NVM 130 is
configured to receive from the ATC 120 the physical
addresses 124 that correspond to the physical locations
within the NVM 130 at which the received data from the
PMI 110 1s to be written and the physical locations within
the NVM 130 from which the provided data 1s to be read.
The data 1s transierred between the controller 132 of the
NVM 130 and the array 134 of non-volatile memory loca-
tions of the NVM 130 via a parallel data bus 136 which
comprises a plurality of channels (e.g., CH[n:0]).

The computer memory device 100 can comprise at least
one processor 160 configured to respond to control signals
from the storage device driver 14 and to provide appropriate
control signals to the various other components of the
computer memory device 100. In this way, the computer
memory device 100 can be controlled by the storage device
driver 14 which resides 1n the host CPU 12. For example, as
shown 1n FIG. 5, the at least one processor 160 can comprise
a first processor 162 (e.g., configured to control data transfer
to and from the computer memory device 100 by providing
control signals to the PMI 110, including the status register
116 and the command queue 118) and a second processor
164 (e.g., configured to control non-volatile memory man-

agement by providing control signals to the at least one write
bufter 142, the at least one read buffer 152, and the controller

132 of the NVM 130). The first processor 162 and the

US 9,569,209 B2

15

second processor 164 can be configured to communicate
with each other (e.g., using a task scheduler system, micro-
operating system, custom firmware, or an off-the-shelf oper-
ating system) to control and schedule the various tasks to be
performed to the various data blocks.

FIG. 6 schematically illustrates another example com-
puter memory device 100 1n accordance with certain
embodiments described herein. The example computer
memory device 100 of FIG. 6 comprises the various com-
ponents as described above with regard to FIG. 5, as well as
other components of the write data path 140 and of the read
data path 150. In particular, the example computer memory
device 100 of FIG. 6 comprises one or more data processing
circuits 170 configured to facilitate use of the data being
transmitted between the computer system 10 and the NVM
130 of the computer memory device 100.

For example, the one or more data processing circuits 170
of the computer memory device 100 can provide a parallel
cyclic redundancy check (CRC) capability for detection of
errors 1n the data transmitted between the computer system
10 and the NVM 130 of the computer memory device 100.
The parallel CRC capability can be provided by a CRC
generation circuit 172 of the write data path 140 (e.g.,
between the PMI 110 and a write bufler 142; between the
PMI 110 and the NVM 130) and a CRC check circuit 174 of
the read data path 150 (e.g., between the PMI 110 and a read
bufler 152; between the PMI 110 and the NVM 130). For
cach data block being transmitted along the write data path
140 to the NVM 130, the CRC generation circuit 172 can
calculate a check value corresponding to the data 1n the data
block (e.g., a CRC checksum) and to append the check value
to the data block. For example, for a 16-bit CRC (CR(C-16),
the check value can be calculated using a polynomial of the
form (X'°+X"?+X°+1). Other parallel CRC schemes can
also be used 1n accordance with certain embodiments
described herein.

The check value remains with the data block during
subsequent transiers and operations within the computer
memory device 100 (e.g., being written to the NVM 130).
For each data block later read from the NVM 130 and
transmitted along the read data path 150, the CRC check
circuit 174 can compare the check value that was previously
appended to the data block with a current value correspond-
ing to the current data of the data block, and can remove the
previously-appended check value from the data block. A
discrepancy between the previously-appended check value
and the current value corresponding to the current data of the
data block 1s indicative of an error which occurred 1n the
data block. In certain such embodiments, the computer
memory device 100 can be configured to flag such errors for
appropriate action by the computer system 10 (e.g., by the
host CPU 12, the system memory controller 16, and/or the
computer memory device 100).

The one or more data processing circuits 170 can further
provide other capabilities for facilitating the use (e.g., secu-
rity, quality) of the data transmitted between the computer
system 10 and the NVM 130 of the computer memory
device 100. For example, the other data processing capabil-
ity can comprise one or more of the following: data scram-
bling/descrambling, data compression/decompression, and
other data error detection and correction. The one or more
data processing circuits 170 of the computer memory device
100 can comprise at least one first data processing circuit
176 of the write path 140 (e.g., between two write builers
142; between the PMI 110 and the NVM 130) and at least
one second data processing circuit 178 of the read data path
(e.g., between two read buflers 152; between the NVM 130

10

15

20

25

30

35

40

45

50

55

60

65

16

and the PMI 110). The at least one {first data processing
circuit 176 can receive data from one write buller 142 and
can transmit processed data to another write bufler 142 along
(e.g., “downstream”) the write data path 140. The at least
one second data processing circuit 178 can receive data from
one read bufler 152 and can transmit processed data (e.g.,
processed to reverse the process of the at least one first data
processing circuit 176) to another read bufler 152 along
(e.g., “downstream”) the read data path 150.

For data security, the at least one first data processing
circuit 176 can comprise a data scrambler circuit that is
configured to apply a predetermined scrambling operation to
the data blocks to be written to the NVM 130 and the at least
one second data processing circuit 178 can comprise a data
descrambler circuit that 1s configured to apply a predeter-
mined descrambling operation, complementary to the
scrambling operation of the data scrambler circuit, to the
data blocks read from the NVM 130. Various algorithms
may be used to perform both security (e.g., encoding) and

scrambling of incoming data, along with secunity (e.g.,
decoding) and descrambling of outgoing data, 1n accordance
with certain embodiments described herein (e.g., an AES
128-bit, or 192-bit, or 256-bit engine). Other algorithms for
scrambling and descrambling can be used i1n accordance
with certain embodiments described herein (e.g., ARC4) to
cypher and decipher incoming and outgoing data. For data
compression, the at least one first data processing circuit 176
can comprise a data compression circuit that 1s configured to
apply a predetermined compression operation to the data
blocks to be written to the NVM 130 and the at least one
second data processing circuit 178 can comprise a data
decompression circuit that 1s configured to apply a prede-
termined decompression operation, complementary to the
compression operation of the data compression circuit, to
the data blocks read from the NVM 130. Various algorithms
may be used to perform both compression of incoming data
and decompression of outgoing data in accordance with
certain embodiments described herein (e.g., LZRW3 lossless
based on Lempel-Ziv (LZ) compression method algorithm).
For error correction, the at least one {first data processing
circuit 176 can comprise a error check generation circuit that
1s configured to calculate error check values for the data
blocks to be written to the NVM 130 and the at least one
second data processing circuit 178 can comprise a error
check comparison circuit that 1s configured to compare a
previously-calculated error check value with a current error
check value for the data blocks read from the NVM 130 to
detect errors that occurred between writing the data block to
the NVM 130 and reading the data block from the NVM
130. Examples of error correction schemes that may be
utilized by the data processing circuits 176, 178 include but
are not limited to: Reed-Solomon encoder and decoder error
detection and correction, low-density parity check (LDPC)
encoder and decoder error detection and correction, BCH
(Bose, Chaudhun) algorithms, and Viterbi algorithms. For
example, error correction code can be applied to data being
stored at the memory locations of the NVM 130 (e.g., data
being transmitted along the write data path 140) and error
correction can be applied to data subsequently read from the
memory locations of the NVM 130 (e.g., data being trans-
mitted along the read data path 150).

After having traversed the various components of the
write data path 140, the data can be written by the controller
132 to the array 134 of non-volatile memory locations (via
the parallel data bus 136 comprising the plurality of chan-
nels) at a physical location that corresponds to the physical

address 124 provided by the ATC 120. In addition, the data

US 9,569,209 B2

17

requested by the computer system 10 can be read from the
NVM 130 at a physical location corresponding to the
physical address 124 provided by the ATC 120 and trans-
mitted to the PMI 110 via the various components of the read
data path 150. The NVM 130 1s configured to receive from
the ATC 120 the physical addresses 124 corresponding to the
physical locations within the NVM 130 from which the
provided data 1s to be read. The data 1s transferred between
the controller 132 of the NVM 130 and the array 134 of

non-volatile memory locations of the NVM 130 via a
parallel data bus 136 which comprises a plurality of chan-
nels (e.g., CH[n:0]).

In addition to the first processor 162 and the second
processor 164 of the at least one processor 160, as described
above with regard to FIG. 5, the at least one processor 160
of FIG. 6 can further comprise a third processor 166. The
third processor 166 can be configured to respond to control
signals from the storage device drniver 14 and to provide
appropriate control signals at appropriate times to various
components of the computer memory device 100 (e.g.,
configured to control data processing by providing control
signals to the at least one first data processing circuit 176 and
the at least one second data processing circuit 178). The first
processor 162, the second processor 164, and the third
processor 166 can be configured to communicate with each
other (e.g., using a task scheduler system, micro-operating
system, custom firmware, or an oilf-the-shelf operating sys-
tem) to control and schedule the various tasks to be per-
tormed to the various data blocks.

FIG. 7A schematically illustrates another example com-
puter memory device 100 1n accordance with certain
embodiments described herein. The example computer
memory device 100 of FIG. 7A comprises the various
components as described above with regard to FIGS. S and
6, as well as a volatile cache memory 200 and various other
components to facilitate data transier between the NVM 130
and the volatile cache memory 200. Data transfer to and
from volatile memory can be much faster than data transfer
to and from non-volatile memory (e.g., by an order of
magnitude). Certain such embodiments advantageously use
the volatile cache memory 200 as a data repository for a

portion of data stored 1n the NVM 130, from which the data
can be accessed faster than 1f the computer memory device
100 only included the NVM 130 (e.g., staging the data).
The computer memory device 100 of certain embodi-
ments can comprise at least one data path selection circuit
210. As schematically 1llustrated 1n FIG. 7A, the at least one
data path selection circuit 210 can comprise a multiplexer
212 configured to selectively transier data being transmitted
from the PMI 110 along the write data path 140 to the
volatile cache memory 200 and to selectively transier data
being transmitted from the NVM 130 along the read data
path 150 to the volatile cache memory 200. The at least one
data path selection circuit 210 can further comprise a
demultiplexer 214 configured to transfer data from the
volatile cache memory 200 to be transmitted either along the
write data path 140 to the NVM 130 or along the read data
path 150 to the PMI 110. In certain embodiments, the
multiplexer 212 and the demultiplexer 214 are conﬁgured to
be operated independently of one another. Certain such
embodiments can advantageously provide flexibility of the
data path option to be used such that the PMI 110 can write
to the volatile cache memory 200 while the volatile cache
memory 200 transfers data to the NVM 130, to provide
flexibility of the data path option to be used such that the

10

15

20

25

30

35

40

45

50

55

60

65

18
110

volatile cache memory 200 can send data to the PMI
while the NVM 130 transfers data to the volatile cache
memory 200, or both.

The volatile memory 200 can comprise a volatile memory
controller 220 and an array 230 of volatile memory locations
operatively coupled to the volatile memory controller 220.
The volatile memory controller 220 can be operatively
coupled to the ATC 120, which 1s configured to generate
internal volatile memory addresses 126 corresponding to the
logical addresses received by the PMI 110. For data pro-
vided by the computer system 10 1n conjunction with a write
command received by the PMI 110, the volatile memory
controller 220 1s further configured to receive the data from
the multiplexer 212 and write the data to a physical location
within the array 230 corresponding to the internal volatile
memory address 126 received from the ATC 120 1n con-
junction with the write command. For data requested by the
computer system 10 1n conjunction with a read command
received by the PMI 110, the volatile memory controller 220
1s further configured to read the requested data from a
physical location within the array 230 corresponding to the
internal volatile memory address 126 received from the ATC
120 1n conjunction with the read command and to transmit
the requested data from the volatile memory 200 to the
demultiplexer 214.

In addition to the processors 162, 164, 166 of the at least
one processor 160, as described above with regard to FIG.
6, the at least one processor 160 of FIG. 7A can further
comprise a fourth processor 168. The processors 162, 164,
166, 168 can be configured to respond to control signals
from the storage device driver 14 and to provide appropriate
control signals at appropriate times to control the various
components of the computer memory device 100. For
example, the first processor 162 can be configured to control
the PMI 110, including the status register 116 and the
command queue 118, as well as the CRC generation circuit
172 and the CRC check circuit 174, at least one write bufler
142 (e.g., the write bufler 142 immediately after the CRC
generation circuit 172), and the ATC 120. The second
processor 164 can be configured to control the volatile cache
memory 200, including the volatile memory controller 220,
at least one read bufler 152 (e.g., the read bufler 152
immediately before the CRC check circuit 174 and the read
buffer 152 immediately before the multiplexer 212). The
third processor 166 can be configured to control at least one
write buller 142 (e.g., the write bufler 142 immediately
following the demultiplexer 214 and the write buller 142
immediately before the NVM 130), the at least one first data
processing circuit 176, and the at least one second data
processing circuit 178. The fourth processor 168 can be
configured to control at least one read bufler 152 (e.g., the
read buffer 152 immediately after the NVM 130) and the
NVM 130, including the non-volatile controller 132 (e.g., to
perform non-volatile memory management). The processors
162, 164, 166, 168 can be configured to communicate with
cach other (e.g., using a task scheduler system, micro-
operating system, custom firmware, or an ofi-the-shell oper-
ating system) to control and schedule the various tasks to be
performed to the various data blocks.

FIG. 7B schematically illustrates another example com-
puter memory device 100 in accordance with certain
embodiments described herein. The example computer
memory device 100 of FIG. 7B 1s similar to that of FIG. 7A,
comprising the various components as described above with
regard to FIGS. 5 and 6, as well as a volatile cache memory
200 and various other components to facilitate data transter
between the NVM 130 and the volatile cache memory 200.

US 9,569,209 B2

19

While FIG. 7A shows the write data path 140 and the read
data path 150 separate from one another, FIG. 7B shows a
bi-directional data path 250. In addition, while FIG. 7A has
the at least one write buller 142 and the at least one read
bufler 152 separate from one another and the at least one
data processing circuits 170 with separate components along
the write and read data paths, FIG. 7B shows at least one
data bufler (e.g., a first data bufler 240, a second data bufler
242, and a third data bufler 244) and at least one data
processing circuit 170 (e.g., a first CRC data processing
circuit 252 and a second data processing circuit 254 for data
scrambling, compression, and error correction) that are 1n
the bi-directional data path 2350. Furthermore, the at least
one data path selection circuit 210 can comprise a multi-
plexer/demultiplexer (mux/demux) configured to selectively
transfer data being transmitted from the PMI 110 to the
volatile cache memory 200, to selectively transier data from
the volatile cache memory 200 to be written to the NVM
130, to selectively transier data read from the NVM 130 to
the volatile cache memory 200, and to selectively transier
data from the volatile cache memory 200 to be transmitted
to the PMI 110.

As shown 1n FIG. 7B, the at least one data path selection
circuit 210 1s configured to selectively transfer (1) data
blocks received by the PMI 110 via the first data processing,
circuit 252 and the first data bufler 240 to the volatile
memory 200 to be stored; (11) data blocks retrieved from the
NVM 130 via the third data bufler 244, the second data
processing circuit 254, and the second data buller 242 to the
volatile memory 200 to be stored; (111) data blocks retrieved
from the volatile memory 200 to be provided to the com-
puter system 10 via the first data bufler 240 and the first data
processing circuit 252; and (iv) data blocks retrieved from
the volatile memory 200 to be stored on the NVM 130 via
the second data bufler 242, the second data processing
circuit 254, and the third data bufler 244. In certain embodi-
ments, the at least one data path selection circuit 210 1s
controlled by the at least one processor 160 (e.g., by a finite
state machine).

In certain embodiments, the computer memory device
100 can be configured to facilitate virtualization, redun-
dancy, and/or fault tolerance. For example, to facilitate
virtualization, the computer memory device 100 can support
multiple virtual servers and their parameters. The status
register 116, the command queue 118, and the ATC 120 can
cach comprise multiple portions, each portion corresponding
to a different virtual system, and the storage device driver 14
can be copied to all the virtual servers and the computer
memory device 100 can have a command queue 118 and
responses for each virtual server. Each of the multiple status
register 116 portions and multiple command queue 118
portions can be used to keep track of commands and data
transiers corresponding to the different virtual systems, and
cach of the multiple ATC 120 portions can generate physical
addresses that correspond to portions of the NVM 130 that
correspond to the different virtual systems. In certain other
embodiments, the computer memory device 100 can com-
prise a single status register 116, a single command queue
118, and a single ATC 120 each configured to parse out the
commands, data transfers, and physical addresses to corre-
spond to different virtual systems. For another example, to
facilitate fault tolerance, data in a failing portion of the
NVM 130 can be reconstructed in other portions of the

NVM 130 or in other NVMs 130 (for computer memory
devices 100 comprising multiple NVMs 130). An off-line
non-volatile memory array 134 can be used to replace a
tailing non-volatile memory array 134 by the controller 132,

10

15

20

25

30

35

40

45

50

55

60

65

20

and data can be moved from the failing non-volatile memory
array 134 and placed 1n a different non-volatile memory
array 134.

As one example, the redundancy can be implemented by
having multiple computer memory devices 100 1n a com-
puter system with one storage device driver 14 to address
redundancy across the multiple computer memory devices
100 (e.g., analogous 1n a manner to RAID systems). As
another example, the redundancy can be implemented by
having one computer memory device 100 with one PMI 100
and multiple NVMs 130. In such examples, the storage
device driver 14 can send user data into the computer
memory device 100, and the computer memory device 100
can replicate the data or create redundancy across the
multiple NVMs 130. In this example, only one NVM 130
can be active at any given time. In certain embodiments, the
stripping of user data can be addressed by having each NVM
130 of the computer memory device 100 available. Once an
active first NVM 130 fails (or exhibits a fault), the computer
memory device 100 can activate a second NVM 130 and can
switch the activity to the second NVM 130 along with
transierring existing data from the first NVM 130 to the
second NVM 130.

Some or all of the components of the computer memory
device 100 (e.g., the PMI 110, 112, 114, 116, 118, the ATC
120, the NVM 130, the data buflers 142, 152, the one or
more processors 160, 162, 164, 166, 168, the data processing
circuits 170, 172, 174, 176, 178, the volatile memory 200,
220, 230, and the at least one data path selection circuit 210,
212, 214 can be manifested 1n one or more of the following:
a field programmable gate array (FPGA), a complex pro-
grammable logic device (CPLD), an application speciific
integrated circuit (ASIC), an application specific standard
part (ASSP), or a system-on-a-chip (SOC) device. Some or
all of the one or more processors 160, 162, 164, 166, 168 can
communicate with one another using one or more of the
following: a scheduler, customized firmware, micro operat-
ing system (u0OS), and ofl-the-shell operating system (OS).
Some or all of the one or more processors 160, 162, 164,
166, 168 can include a finite state machine.

FIG. 8 1s a flow diagram of an example method 300 of
storing data 1 accordance with certain embodiments
described herein. In an operational block 310, the method
300 comprises receiving commands from a system memory
controller 16 of a computer system 10. The commands
comprise logical addresses and are received by a computer
memory device 100 comprising a parallel memory interface
(PMI) 110 operatively coupled to the system memory con-
troller 16 and operatively coupled to an non-volatile
memory 130. In an operational block 320, the method 300
turther comprises responding to the commands by translat-
ing the received logical addresses to corresponding physical
addresses of the non-volatile memory 130. In an operational
block 330, the method 300 turther comprises receiving data
from the system memory controller 16 by the PMI 110. In
an operational block 340, the method 300 further comprises
storing the data at memory locations of the non-volatile
memory 130 corresponding to the physical addresses. In
certain embodiments, in which the PMI 110 comprises a
command status circuit and a command queue, the method
300 further comprises updating the command status circuit
to retlect data transier readiness by the PMI 110 and updat-
ing the command status circuit to retlect data transfer
completion by the PMI 110.

Certain embodiments described herein advantageously
provide improved latency and bandwidth as compared to

previous systems that included non-volatile memory. While

US 9,569,209 B2

21

latency 1s dependent on the particular device characteristics
(e.g., chipsets) and performance of the computer system 10
itsell such that latency estimates are diflicult to provide,
certain embodiments described herein are configured to
provide latencies that are between two and ten times shorter
than latencies of conventional systems. Table 2 provides
some example symbol rate and bandwidth values for various
conventional serial interfaces as compared to values for

certain embodiments described herein which utilize a PMI
110 as described herein.

TABLE 2

Interface Technology Symbol rate Bandwidth
SATA (serial) 1.5 Gb/s 150 MB/s
SATA-2 (serial) 3.0 Gb/s 300 MB/s
SATA-3 (seral) 6.0 Gb/s 600 MB/s
SAS (serial) 3.0 Gb/s 300 MB/s
SAS-2 (serial) 6.0 Gb/s 600 MB/s
PCle (serial) 2.5 GT/s 1000 MB/s (x4)
PCle-2 (serial) 5.0 GT/s 2000 MB/s (x4)
PCle-3 (serial) 8.0 GT/s 4000 MB/s (x4)
PMI 110 (parallel) 1.6 GT/s 12800 MB/s

1.866 GT/s 14928 MB/s

2.133 GT/s 17064 MB/s

This comparison table shows advantages of certain embodi-
ments described herein.

Embodiments have been described in connection with the
accompanying drawings. However, i1t should be understood
that the figures are not drawn to scale and are merely
illustrative without representing actual dimensions or layout.
In addition, the foregoing embodiments have been described
at a level of detail to allow one of ordinary skill in the art to
make and use the devices, systems, etc. described herein. As
such, a wide variety of variation 1s possible and components,
clements, and/or steps can be altered, added, removed, or
rearranged. While certain embodiments have been explicitly
described, other embodiments will become apparent to those
of ordinary skill 1in the art based on this disclosure.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, 1s generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or states. Thus,
such conditional language 1s not generally intended to imply
that features, elements and/or states are 1n any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
user input or prompting, whether these features, elements
and/or states are included or are to be performed 1n any
particular embodiment.

Depending on the embodiment, certain acts, events, or
functions of any of the methods described herein can be
performed 1n a diflerent sequence, can be added, merged, or
left out completely (e.g., not all described acts or events are
necessary for the practice of the method). Moreover, in
certain embodiments, acts or events can be performed con-
currently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors or processor cores, rather
than sequentially.

The various 1llustrative logical blocks, modules, circuits,
and algorithm steps described 1n connection with the
embodiments disclosed herein can be implemented as elec-
tronic hardware, computer software, or combinations of
both. To clearly 1llustrate this interchangeability of hardware

and software, various 1llustrative components, blocks, mod-

4

10

15

20

25

30

35

40

45

50

55

60

65

22

ules, circuits, and steps have been described above generally
in terms of their functionality. Whether such functionality 1s
implemented as hardware or software depends upon the
particular application and design constraints imposed on the
overall system. The described functionality can be 1mple-
mented 1n varying ways for each particular application, but
such 1implementation decisions should not be interpreted as
causing a departure from the scope of the disclosure.

The wvarious illustrative logical blocks, modules, and
circuits described in connection with the embodiments dis-
closed herein can be implemented or performed with a
general purpose processor, a digital signal processor (DSP),
an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereot designed to
perform the functions described herein. A general purpose
processor can be a microprocessor, but in the alternative, the
processor can be any conventional processor, controller,
microcontroller, or state machine. A processor can also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
MICroprocessors, One or more miCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

The blocks of the methods and algorithms described 1n
connection with the embodiments disclosed herein can be
embodied directly in hardware, in a software module
executed by a processor, or 1n a combination of the two. A
soltware module can reside in RAM memory, non-volatile
memory, flash memory, ROM memory, EPROM memory,
EEPROM memory, registers, a hard disk, a removable disk,
a CD-ROM, or any other form of computer-readable storage
medium known in the art. An exemplary storage medium 1s
coupled to a processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium can be
integral to the processor. The processor and the storage
medium can reside 1 an ASIC. The ASIC can reside 1n a
user terminal. In the alternative, the processor and the
storage medium can reside as discrete components in a user
terminal.

Although certain preferred embodiments and examples
are discussed above, it 1s understood that the inventive
subject matter extends beyond the specifically disclosed
embodiments to other alternative embodiments and/or uses
of the invention and obvious modifications and equivalents
thereof. It 1s intended that the scope of the inventions
disclosed herein should not be limited by the particular
disclosed embodiments. Thus, for example, 1n any method
or process disclosed herein, the acts or operations making up
the method/process may be performed 1n any suitable
sequence and are not necessarily limited to any particular
disclosed sequence.

Various aspects and advantages of the embodiments have
been described where appropriate. It 1s to be understood that
not necessarily all such aspects or advantages may be
achieved 1n accordance with any particular embodiment.
Thus, for example, it should be recognized that the various
embodiments may be carried out in a manner that achieves
or optimizes one advantage or group of advantages as taught
herein without necessarily achieving other aspects or advan-

tages as may be taught or suggested herein.
What 1s claimed 1s:

1. A method of storing data, the method comprising:

recerving commands from a system memory controller of
a computer system, the commands comprising logical
addresses and recerved by a computer memory device

US 9,569,209 B2

23

comprising a parallel memory interface operatively
coupled to the system memory controller and opera-
tively coupled to an non-volatile memory;

responding to the commands by translating the received

logical addresses to corresponding physical addresses
of the non-volatile memory;

receiving data from the system memory controller by the

parallel memory interface;

and

storing the data at memory locations of the non-volatile

memory corresponding to the physical addresses.

2. The method of claim 1, further comprising receiving a
series of commands from the system memory controller 1n
a first order and executing the commands 1n a second order
different from the first order.

3. The method of claim 2, wherein the second order 1s
based on relative priorities of the commands.

4. The method of claim 2, wherein the non-volatile
memory comprises a controller and an array of non-volatile
memory locations operatively coupled to the controller.

5. The method of claim 2, further comprising applying
error correction code to data being stored at the memory
locations of the non-volatile memory and applying error
correction to data subsequently read from the memory
locations of the non-volatile memory.

6. The method of claim 2, further comprising applying
compression to the data stored at the memory locations of
the non-volatile memory and applying de-compression to
data subsequently read from the memory locations of the
non-volatile memory.

7. The method of claim 2, further comprising applying
security measures to the data stored at the memory locations

10

15

20

25

30

24

of the non-volatile memory and applying security measures
to data subsequently read from the memory locations of the

non-volatile memory.

8. The method of claim 2, further comprising appending,
cyclic redundancy check values to data stored at the memory
locations of the non-volatile memory, evaluating the cyclic
redundancy check values appended to data subsequently
read from the memory locations of the non-volatile memory,
and removing the cyclic redundancy check values from data
being transmitted to the computer system.

9. The method of claim 2, further comprising storing at
least a portion of the data 1n a cache memory comprising a
controller and a plurality of volatile memory locations
operatively coupled to the controller.

10. The method of claim 9, further comprising selectively
transmitting received data to the cache memory and selec-
tively transmitting data from the non-volatile memory to the
cache memory.

11. The method of claim 10, further comprising selec-
tively transmitting data read from the cache memory to the
computer system and selectively transmitting data read from
the cache memory to the non-volatile memory.

12. The method of claim 1, wherein the parallel memory
interface comprises a command status circuit and a com-
mand queue, the method further comprising updating the
command status circuit to reflect data transier readiness by
the parallel memory interface and updating the command
status circuit to reflect data transfer completion by the
parallel memory interface.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

