

(12) United States Patent Laroche et al.

US 9,558,755 B1 (10) Patent No.: (45) **Date of Patent: Jan. 31, 2017**

- **NOISE SUPPRESSION ASSISTED** (54)**AUTOMATIC SPEECH RECOGNITION**
- Inventors: Jean Laroche, Santa Cruz, CA (US); (75)Carlo Murgia, Sunnyvale, CA (US)
- Assignee: Knowles Electronics, LLC, Itasca, IL (73)(US)
- Subject to any disclaimer, the term of this Notice: ж

5,400,409 A	3/1995	Linhard
5,406,635 A	4/1995	Jarvinen
5,546,458 A	8/1996	Iwami
5,550,924 A	8/1996	Helf et al.
5,555,306 A	9/1996	Gerzon
5,625,697 A	4/1997	Bowen et al.
5,706,395 A	1/1998	Arslan et al.
5,715,319 A	2/1998	Chu
5,734,713 A	3/1998	Mauney et al.
	(Con	tinued)

patent is extended or adjusted under 35 U.S.C. 154(b) by 1107 days.

- Appl. No.: 12/962,519 (21)
- (22)Filed: Dec. 7, 2010

Related U.S. Application Data

- Provisional application No. 61/346,851, filed on May (60)20, 2010.
- Int. Cl. (51)G10L 21/02
 - (2013.01)G10L 21/00 (2013.01)
- U.S. Cl. (52)CPC G10L 21/02 (2013.01); G10L 21/00 (2013.01)

Field of Classification Search (58)USPC 704/200–200.1, 227–229, 500–504, 704/E19.001-E19.049, E21.001-E21.02; 381/71.1–71.14, 94.1–94.9 See application file for complete search history.

FOREIGN PATENT DOCUMENTS

0756437 A2 1/1997 1232496 A1 8/2002 (Continued)

EP

EP

OTHER PUBLICATIONS

Non-Final Office Action, Aug. 18, 2010, U.S. Appl. No. 11/825,563, filed Jul. 6, 2007.

(Continued)

Primary Examiner — Pierre-Louis Desir Assistant Examiner — David Kovacek (74) Attorney, Agent, or Firm — Foley & Lardner LLP

ABSTRACT (57)

Noise suppression information is used to optimize or improve automatic speech recognition performed for a signal. Noise suppression can be performed on a noisy speech signal using a gain value. The gain to apply to the noisy speech signal is selected to optimize speech recognition analysis of the resulting signal. The gain may be selected based on one or more features for a current sub band and time frame, as well as one or more features for other sub bands and/or time frames. Noise suppression information can be provided to a speech recognition module to improve the robustness of the speech recognition analysis. Noise suppression information can also be used to encode and identify speech.

(56)**References** Cited U.S. PATENT DOCUMENTS

4,025,724 4,630,304 4,802,227	Α	12/1986	Davidson, Jr. et al. Borth et al. Elko et al.
4,969,203 5,115,404 5,289,273	Α	11/1990 5/1992 2/1994	Lo et al.

14 Claims, 6 Drawing Sheets

US 9,558,755 B1 Page 2

(56)		Referen	ces Cited		7,171,246	B2	1/2007	Mattila et al.
					7,190,775	B2	3/2007	Rambo
	U.S. F	PATENT	DOCUMENTS		7,209,567	B1	4/2007	Kozel et al.
					7,221,622	B2	5/2007	Matsuo et al.
	5,754,665 A	5/1998	Hosoi		7,225,001	B1	5/2007	Eriksson et al.
	5,774,837 A *		Yeldener et al	/04/208	7,245,710	B1	7/2007	Hughes
	5,806,025 A		Vis et al.	•••	7,245,767	B2	7/2007	Moreno et al.
	/ /		Dobson et al	/04/230	7,254,535	B2	8/2007	Kushner et al.
	/ /		Vahatalo et al.		7,289,955	B2	10/2007	Deng et al.
	/ /		Mokbel G10L	15/065	7,327,985	B2	2/2008	Morfitt, III et al.
	-,			/04/201	7,359,520	B2	4/2008	Brennan et al.
	5,917,921 A	6/1999	Sasaki et al.	01/201	7,376,558	B2	5/2008	Gemello et al.
	5,943,429 A		Handel		7,383,179	B2	6/2008	Alves et al.
	/ /	11/1999			7,447,631	B2	11/2008	Truman et al.
	/ /		Dunn et al.		7,469,208	B1	12/2008	Kincaid
	/ /		Koski et al.		7,516,067		4/2009	Seltzer et al.
	6,035,177 A		Moses et al.		7,548,791	B1	6/2009	Johnston
	6,065,883 A		Herring et al.		7,562,140	B2	7/2009	Clemm et al.
	6,084,916 A	7/2000			7,574,352	B2	8/2009	Quatieri, Jr.
	6,098,038 A		Hermansky et al.		7,617,282		11/2009	Han
	6,122,384 A	9/2000	-		7,657,038			Doclo et al.
	6,122,610 A		Isabelle		7,664,495			Bonner et al.
	/ /		Ali 7	/04/233	7,664,640			Webber
	6,188,769 B1				7,685,132			Hyman
	6,205,421 B1	3/2001			7,725,314			Wu et al.
	6,219,408 B1	4/2001			7,773,741			LeBlanc et al.
	6,263,307 B1	_	Arslan et al.		7,791,508			Wegener
	6,266,633 B1		Higgins et al.		7,796,978			Jones et al.
	6,281,749 B1		Klayman et al.		7,895,036			Hetherington et al.
	6,327,370 B1		Killion et al.		7,899,565			Johnston
	6,339,706 B1	1/2002	Tillgren et al.		7,925,502			Droppo et al.
	6,339,758 B1		Kanazawa et al.		7,970,123			Beaucoup
	6,343,267 B1	1/2002	Kuhn et al.		8,032,364		10/2011	
	6,381,284 B1	4/2002	Strizhevskiy		8,036,767			Soulodre
	6,381,469 B1	4/2002	Wojick		8,046,219			Zurek et al.
	6,389,142 B1	5/2002	Hagen et al.		8,081,878			Zhang et al.
	6,411,930 B1	6/2002	Burges		8,107,656			Dre β ler et al.
	6,424,938 B1		Johansson et al.		8,126,159			Goose et al.
	6,449,586 B1	9/2002	Hoshuyama		8,140,331		3/2012	
	6,453,284 B1	9/2002	Paschall		8,143,620			Malinowski et al.
	6.480.610 B1 *	11/2002	Fang et al 3	81/321	8,155,953	B 2	4/2012	Park et al.

5,991,385 A		Dunn et al.	7,516,067 B2	4/2009	Seltzer et al.
, ,		Koski et al.	7,548,791 B1		Johnston
6,035,177 A		Moses et al.	7,562,140 B2		Clemm et al.
6,065,883 A		Herring et al.	7,574,352 B2		Quatieri, Jr.
6,084,916 A	7/2000		· · ·	11/2009	
6,098,038 A	8/2000	Hermansky et al.	· · ·		
6,122,384 A	9/2000	Mauro	· · ·		Doclo et al.
6,122,610 A	9/2000	Isabelle	7,664,495 B1		Bonner et al.
6,144,937 A *	11/2000	Ali 704/233	7,664,640 B2		Webber
6,188,769 B1	2/2001	Jot et al.	7,685,132 B2		Hyman
6,205,421 B1	3/2001	Morii	7,725,314 B2		Wu et al.
6,219,408 B1	4/2001		7,773,741 B1		LeBlanc et al.
/ /		Arslan et al.	7,791,508 B2		Wegener
6,266,633 B1		Higgins et al.	7,796,978 B2	9/2010	Jones et al.
6,281,749 B1		Klayman et al.	7,895,036 B2	2/2011	Hetherington et al.
6,327,370 B1		Killion et al.	7,899,565 B1	3/2011	Johnston
/ /		Tillgren et al.	7,925,502 B2	4/2011	Droppo et al.
6,339,758 B1		Kanazawa et al.	7,970,123 B2	6/2011	Beaucoup
6,343,267 B1			8,032,364 B1	10/2011	I
/ /		Kuhn et al. Strighouseleive			Soulodre
6,381,284 B1		Strizhevskiy Waliala	· · ·		Zurek et al.
6,381,469 B1		Wojick	· · ·		Zhang et al.
6,389,142 B1		Hagen et al.	8,107,656 B2		Dreßler et al.
6,411,930 B1		Burges	8,126,159 B2		Goose et al.
6,424,938 B1		Johansson et al.	8,140,331 B2	3/2012	
6,449,586 B1		Hoshuyama	8,143,620 B1		Malinowski et al.
6,453,284 B1		Paschall	8,155,953 B2		Park et al.
		Fang et al 381/321	8,175,291 B2*		Chan et al. $$
6,487,257 B1	11/2002	Gustafsson et al.	, ,		
6,504,926 B1	1/2003	Edelson et al.	8,189,429 B2		Chen et al.
6,526,140 B1	2/2003	Marchok et al.	8,194,880 B2		Avendano Esserat el
6,615,170 B1	9/2003	Liu et al.	8,194,882 B2		Every et al.
6,717,991 B1	4/2004	Gustafsson et al.	8,204,252 B1		Avendano
6,738,482 B1	5/2004	Jaber	8,204,253 B1		Solbach
6,745,155 B1	6/2004	Andringa et al.	8,223,988 B2		Wang et al.
6,748,095 B1	6/2004	e e	8,229,137 B2		Romesburg
6.751.588 B1*	6/2004	Menendez-Pidal G10L 15/065	8,280,731 B2	10/2012	
, ,		704/226	8,345,890 B2		Avendano et al.
6.768.979 B1*	7/2004	Menendez-Pidal F16J 15/43	8,359,195 B2	1/2013	
0,700,272 D1		704/226	8,363,823 B1		Santos
6,778,954 B1	8/2004	Kim et al.	8,363,850 B2	1/2013	Amada
6,782,363 B2			8,369,973 B2	2/2013	Risbo
, ,			8,447,596 B2	5/2013	Avendano et al.
6,804,651 B2			8,467,891 B2	6/2013	Huang et al.
6,810,273 B1			8,473,285 B2	6/2013	Every et al.
, ,		Yoshioka et al.	8,494,193 B2	7/2013	Zhang et al.
6,882,736 B2		Dickel et al.	8,531,286 B2	9/2013	Friar et al.
6,931,123 B1		e	8,538,035 B2	9/2013	Every et al.
6,980,528 B1			· · ·		Goodwin
7,006,881 Bl*	2/2006	Hoffberg G05B 15/02	· · ·		Goodwin
		700/17	, ,		Avendano et al.
7,010,134 B2	3/2006	Jensen	8,639,516 B2		
7,020,605 B2	3/2006	Gao	8,682,006 B1		Laroche et al.
RE39,080 E *	4/2006	Johnston 704/200.1	8,694,310 B2		
7.035.666 B2	4/2006	Silberfenig et al.	· · ·		$W_{-1} = \frac{1}{201}$

7,035,666	B2	4/2006	Silbertenig et al.
7,054,808	B2	5/2006	Yoshida
7,058,572	B1 *	6/2006	Nemer 704/226
7,065,486	B1	6/2006	Thyssen
7,072,834	B2	7/2006	Zhou
7,092,529	B2	8/2006	Yu et al.
7,092,882	B2	8/2006	Arrowood et al.
7,103,176	B2	9/2006	Rodriguez et al.
7,110,554	B2	9/2006	Brennan et al.
7,127,072	B2	10/2006	Rademacher et al.
7,145,710	B2	12/2006	Holmes
7,146,013	B1	12/2006	Saito et al.
7,165,026	B2	1/2007	Acero et al.

8,705,759 B2* 4	4/2014	Wolff et al 381/66
8,718,290 B2 5	5/2014	Murgia et al.
8,744,844 B2 6	5/2014	Klein
8,750,526 B1 6	5/2014	Santos et al.
8,762,144 B2 6	5/2014	Cho et al.
8,774,423 B1 7	7/2014	Solbach
8,781,137 B1 7	7/2014	Goodwin
8,798,290 B1 8	8/2014	Choi et al.
8,880,396 B1* 11	/2014	Laroche G10L 21/0232
		704/226
8,886,525 B2 11	/2014	Klein

8,903,721	B1	12/2014	Cowan
-----------	----	---------	-------

US 9,558,755 B1 Page 3

(56)	Referer	nces Cited	2006/0122832 A1*	6/2006	Takiguchi G10L 21/0208
U.S.	PATENT	DOCUMENTS	2006/0136201 A1	6/2006	204/240 Landron et al.
0.0.		DOCOMENTS	2006/0136203 A1		Ichikawa
8,949,120 B1	2/2015	Every et al.	2006/0153391 A1	7/2006	Hooley et al.
8,949,266 B2		Phillips et al.	2006/0165202 A1		Thomas et al.
9,007,416 B1		Murgia et al.	2006/0184363 A1		McCree et al. Li
9,008,329 B1 9,143,857 B2		Mandel et al. Every et al.	2000/0200320 AT	9/2000	704/226
· · ·		Solbach et al.	2006/0224382 A1	10/2006	
9,197,974 B1			2006/0282263 A1		
9,343,056 B1		Goodwin	2007/0003097 A1		Langberg et al.
9,431,023 B2 2001/0044719 A1	8/2016	Avendano et al. Casev	2007/0005351 A1 2007/0025562 A1		Sathyendra et al. Zalewski et al.
2001/0044/19 A1 2002/0002455 A1		Accardi et al.	2007/00233020 A1*		(Kelleher) Francois
2002/0041678 A1		Basburg-Ertem et al.			et al
2002/0071342 A1		Marple et al.	2007/0033032 A1		Schubert et al.
2002/0138263 A1*	9/2002	Deligne G10L 15/20 704/233	2007/0041589 A1 2007/0055508 A1*		Patel et al. Zhao G10L 21/0216
2002/0156624 A1	10/2002		2007/0055500 AI	5/2007	704/226
2002/0160751 A1			2007/0058822 A1	3/2007	Ozawa
		Buck et al.	2007/0064817 A1		Dunne et al.
2002/0177995 AI*	11/2002	Walker G01R 23/16	2007/0071206 A1 2007/0081075 A1		Gainsboro et al. Canova, Jr. et al.
2002/0194159 A1	12/2002	704/205 Kamath et al.	2007/0110263 A1	5/2007	· · · · · · · · · · · · · · · · · · ·
2003/0014248 A1		Vetter	2007/0127668 A1		
2003/0040908 A1		Yang et al.	2007/0150268 A1*	6/2007	Acero G10L 21/0208
2003/0056220 A1 2003/0063759 A1		Thornton et al. Brennan et al.	2007/0154031 A1	7/2007	Avendano et al. 704/226
2003/0093279 A1		Malah et al.	2007/0134031 AI	8/2007	_
2003/0099370 A1	_ /	Moore	2007/0195968 A1	8/2007	
2003/0101048 A1	5/2003		2007/0230712 A1		Belt et al.
2003/0103632 A1 2003/0118200 A1		Goubran et al. Beaucoup et al.	2007/0230913 A1 2007/0237339 A1		Ichimura Konchitsky
2003/0128851 A1		Furuta	2007/0253574 A1		-
2003/0147538 A1	8/2003		2007/0282604 A1		
2003/0169891 A1 2003/0177006 A1*		Ryan et al. Ichikawa G10L 21/0216	2007/0287490 A1 2007/0294263 A1		Green et al. Punj et al.
2003/01/7000 AI	9/2003	704/231	2008/0019548 A1		
2003/0179888 A1	9/2003	Burnett et al.	2008/0059163 A1	3/2008	Ding et al.
		Acero et al.	2008/0069366 A1		Soulodre Form at al
2004/0013276 A1 2004/0066940 A1	4/2004	Ellis et al. Amir	2008/0111734 A1 2008/0159507 A1		Fam et al. Virolainen et al.
2004/0076190 A1		Goel et al.	2008/0160977 A1		Ahmaniemi et al.
2004/0078199 A1		Kremer et al.	2008/0170703 A1		Zivney
2004/0102967 A1*		Furuta et al 704/226	2008/0187143 A1 2008/0192955 A1	8/2008 8/2008	Mak-Fan Merks
2004/0131178 A1 2004/0145871 A1	7/2004	Shahaf et al. Lee	2008/0192933 AT		Huang et al.
2004/0148166 A1			2008/0233934 A1	9/2008	Diethorn
2004/0172240 A1*	9/2004	Crockett G10L 25/48	2008/0247567 A1		Kjolerbakken et al.
2004/0184882 A1	0/2004	704/205	2008/0259731 A1 2008/0273476 A1		11
2004/0184882 A1 2004/0185804 A1		Cosgrove Kanamori et al.	2008/0298571 A1		
2004/0263636 A1		Cutler et al.	2008/0304677 A1		
2005/0008169 A1		Muren et al.	2008/0317259 A1*	12/2008	Zhang G10L 15/04
2005/0027520 A1 2005/0049857 A1		Mattila et al. Seltzer et al.	2008/0317261 A1	12/2008	381/92 Yoshida et al.
2005/0066279 A1		LeBarton et al.	2009/0012783 A1	1/2009	
2005/0069162 A1		Haykin et al.	2009/0034755 A1		Short et al.
2005/0075866 A1 2005/0080616 A1		Widrow Leung et al.	2009/0060222 A1 2009/0063143 A1		Jeong et al. Schmidt et al.
2005/0114123 A1*		Lukac et al. $$	2009/0089054 A1*		Wang et al
2005/0114128 A1		Hetherington et al.	2009/0116652 A1	5/2009	Kirkeby et al.
2005/0152563 A1		Amada et al.	2009/0116656 A1 2009/0134829 A1		Lee et al. Baumann et al.
2005/0213739 A1 2005/0238238 A1			2009/0134829 A1 2009/0141908 A1		Jeong et al.
		Makinen	2009/0147942 A1	6/2009	
2005/0261894 A1			2009/0150149 A1		Culter et al.
2005/0261896 A1 2005/0267369 A1		6	2009/0164905 A1 2009/0177464 A1	6/2009 7/2009	Ko Gao et al.
2005/0207509 A1 2005/0276363 A1			2009/0192791 A1		El-Maleh et al.
2005/0281410 A1	12/2005	Grosvenor et al.	2009/0192803 A1*		Nagaraja G10L 19/012
	12/2005		2000/0220107 41	0/2000	704/278
2006/0053007 A1 2006/0058998 A1		Niemisto Yamamoto et al.	2009/0220107 A1 2009/0226010 A1		Every et al. Schnell et al.
2006/0063560 A1	3/2006		2009/0228272 A1	9/2009	Herbig et al.
2006/0072768 A1		Schwartz et al.	2009/0240497 A1	9/2009	Usher et al.
2006/0092918 A1 2006/0100868 A1		Talalai Hetherington et al.	2009/0253418 A1 2009/0264114 A1		Makinen Virolainen et al.
2000/0100000 AI	572000	memorington et al.		10/2007	, nomber et al.

2007/0055020	111	2/2007	
			et al 704/226
2007/0033032	A1	2/2007	Schubert et al.
2007/0041589	A1	2/2007	Patel et al.
2007/0055508			Zhao G10L 21/0216
2007/0022200	111	5/2007	
2007/0050022	4 1	2/2007	704/226
2007/0058822			Ozawa
2007/0064817	Al	3/2007	Dunne et al.
2007/0071206	A1	3/2007	Gainsboro et al.
2007/0081075	A1	4/2007	Canova, Jr. et al.
2007/0110263	A1	5/2007	Brox
2007/0127668	A1	6/2007	Ahya et al.
2007/012/000			Acero G10L 21/0208
2007/0150208	AI	0/2007	
			704/226
2007/0154031	Al	7/2007	Avendano et al.
2007/0185587	A1	8/2007	Kondo
2007/0195968	A1	8/2007	Jaber
2007/0230712	A1	10/2007	Belt et al.
2007/0230913	A1	10/2007	Ichimura
2007/0237339			Konchitsky
2007/0253574			Soulodre
2007/0282604			Gartner et al.
2007/0287490			Green et al.
2007/0294263	A1	12/2007	Punj et al.
2008/0019548	A1	1/2008	Avendano
2008/0059163	A1	3/2008	Ding et al.
2008/0069366	A1	3/2008	
2008/0111734			Fam et al.
2008/0159507			Virolainen et al.
2008/0160977			Ahmaniemi et al.
2008/0170703			Zivney
2008/0187143		8/2008	Mak-Fan
2008/0192955	A1	8/2008	Merks
2008/0228474	A1	9/2008	Huang et al.
2008/0233934	A1	9/2008	Diethorn
2008/0247567			Kjolerbakken et al.
2008/0259731			Happonen
2008/0273476			Cohen et al.
2008/0298571			
2008/0304677			Abolfathi et al.
2008/0317259	Al*	12/2008	Zhang G10L 15/04
			381/92
2008/0317261	A1	12/2008	Yoshida et al.
2009/0012783	A1	1/2009	Klein
2009/0034755			Short et al.
2009/0054755			Jeong et al.
			0
2009/0063143			Schmidt et al.
2009/0089054			Wang et al 704/233
2009/0116652			Kirkeby et al.
2009/0116656	A1	5/2009	Lee et al.
2009/0134829	A1	5/2009	Baumann et al.
2009/0141908	A1	6/2009	Jeong et al.
2000/01 470 42	<u> </u>	(2000	C_{-1}

US 9,558,755 B1 Page 4

(56)	Referen	ces Cited		098964 A1		Rosca et al.
US	DATENT	DOCUMENTS		108020 A1		Sharma et al.
0.5.	FAILINI	DOCUMENTS		112496 A1 142958 A1		Murgia et al. Sharma et al.
2009/0271187 A1*	10/2009	Yen et al 704/2	26	241702 A1		Solbach et al.
		Hetherington et al.	2014/02			Herbig et al.
2009/0303350 A1	12/2009			030163 A1		Sokolov
2009/0323655 A1		Cardona et al.		100311 A1		Kar et al.
2009/0323925 A1		Sweeney et al.		027451 A1		Solbach et al.
2009/0323981 A1 2009/0323982 A1	$\frac{12}{2009}$	Solbach et al.		063997 A1		Nemala et al.
2010/0017205 A1*		Visser et al		066089 A1	3/2016	
2010/0036659 A1*		Haulick et al 704/2				
2010/0082339 A1		Konchitsky et al.		FOREIG	N PATE	NT DOCUMENTS
2010/0092007 A1	4/2010					
2010/0094622 A1 2010/0103776 A1	4/2010	Cardillo et al. Chan	EP	1536		6/2005
2010/0105447 A1		Sibbald et al.	FI		431 A	12/2010
2010/0128123 A1	5/2010	DiPoala	FI	20125		10/2012
2010/0130198 A1		Kannappan et al.	FI FI	20135	038 716 B	4/2013 12/2014
2010/0138220 A1		Matsumoto et al.	JP		587 A	3/1993
2010/0177916 A1 2010/0215184 A1		Gerkmann et al. Buck et al.	JP	H07248		9/1995
2010/0217837 A1		Ansari et al.	$_{ m JP}$	H05300	419	12/1995
2010/0245624 A1		Beaucoup	$_{ m JP}$	2001159	899 A	6/2001
2010/0278352 A1		Petit et al.	JP	2002366		12/2002
2010/0282045 A1		Chen et al.	JP	2002542		12/2002
2010/0303298 A1 2010/0315482 A1		Marks et al. Rosenfeld et al.	JP JP	2003514 2003271		4/2003 9/2003
2011/0026734 A1		Hetherington et al.	JP	2003271		7/2003
2011/0038486 A1	2/2011	Beaucoup	JP	2006094		4/2006
2011/0060587 A1		Phillips et al.	$_{ m JP}$	2006515	490	5/2006
2011/0081024 A1 2011/0081026 A1		Soulodre Ramakrishnan et al.	$_{ m JP}$	2006337		12/2006
2011/0091020 A1		Konchitsky et al.	JP	2007006		1/2007
2011/0101654 A1	5/2011		JP ID	2008015		1/2008
2011/0129095 A1		Avendano et al.	JP JP	2008135 2008542		6/2008 11/2008
2011/0173006 A1 2011/0173542 A1		Nagel et al. Imes et al.	JP	2009037		2/2009
2011/01/3342 A1 2011/0178800 A1	7/2011		JP	2010532		10/2010
2011/0182436 A1		Murgia et al.	$_{ m JP}$	2011527	025 A	10/2011
2011/0224994 A1		Norvell et al.	JP	H07336		12/2011
2011/0261150 A1 2011/0280154 A1		Goyal et al. Silverstrim et al	JP JP	2013517 2013534		5/2013 9/2013
		Furuta et al. $381/71$			956 B2	6/2015
2011/0300806 A1		Lindahl et al.	KR	1020100041		4/2010
		Bouchard et al 381/23	8.1 KR	1020110038	024	4/2011
2012/0010881 A1 2012/0027217 A1		Avendano et al. Jun et al.	KR	1020120116		10/2012
2012/0027217 AI 2012/0027218 AI		Every et al.	KR	1020130117		10/2013
2012/0050582 A1		Seshadri et al.	KR KR	101401	141 B1 656	11/2014 4/2016
2012/0062729 A1		Hart et al.	TW		468 B	4/2003
2012/0063609 A1		Triki et al.	TW		776 B	4/2007
2012/0087514 A1 2012/0093341 A1		Williams et al. Kim et al.	$\mathbf{T}\mathbf{W}$	200910	793 A	3/2009
2012/0116758 A1		Murgia et al.	$\mathbf{T}\mathbf{W}$	201009	817 A	3/2010
2012/0116769 A1		Malah et al.	TW	201143		12/2011
2012/0133728 A1	5/2012		TW	201214		4/2012
2012/0143363 A1 2012/0179461 A1		Liu et al. Every et al.	TW		817 B	12/2014
2012/0179461 AI	7/2012	•	TW		179 B	6/2015
2012/0182429 A1		Forutanpour et al.	WO WO	WO8400 WO0137		2/1984 5/2001
2012/0197898 A1		Pandey et al.	WO	WO0157 WO0156		8/2001
2012/0202485 A1 2012/0220347 A1		Mirbaha et al. Davidson	WO	WO2006027		3/2006
2012/0220347 AI		Chen et al.	WO	WO2007001		1/2007
2012/0249785 A1		Sudo et al.	WO	WO2007049	644 A1	5/2007
2012/0250882 A1		Mohammad et al.	WO	WO2008034	221	3/2008
2013/0011111 A1 2013/0024100 A1		Abraham et al.	WO	WO2008101		8/2008
2013/0024190 A1 2013/0034243 A1*		Fairey Yermeche et al 381/94	WO	WO2009008		1/2009
2013/0054245 A1		McDysan et al.	wO	WO2010005		1/2010
2013/0182857 A1	7/2013	Namba et al.	WO WO	WO2011068		6/2011 7/2011
2013/0196715 A1		Hansson et al.	WO WO	WO2011091 WO2011129		7/2011 10/2011
2013/0231925 A1 2013/0251170 A1		Avendano et al. Every et al	WO	WO2011129 WO2012009		1/2012
2013/0251170 A1 2013/0268280 A1		Every et al. Del Galdo et al.	WO	WO2012007		7/2012
2013/0200200 AI		Avendano et al.	WO	WO2013188		12/2013
2014/0039888 A1	2/2014	Taubman et al.	WO	WO2014063	099 A1	4/2014

Page 5

(56)	References Cited	Notice of Allowance, Oct. 3, 2013, U.S. Appl. No. 13/157,238, filed
	FOREIGN PATENT DOCUMENTS	Jun. 9, 2011. Non-Final Office Action, Nov. 2013, U.S. Appl. No. 13/363,362,
WO WO	WO2014131054 A2 8/2014 WO2016033364 A1 3/2016	filed Jan. 31, 2012. Final Office Action, Sep. 12, 2014, U.S. Appl. No. 13/363,362, filed Jan. 31, 2012.
	OTHER PUBLICATIONS	Non-Final Office Action, Oct. 28, 2015, U.S. Appl. No. 13/363,362, filed Jan. 31, 2012.
	Office Action, Apr. 28, 2011, U.S. Appl. No. 11/825,563, filed	Non-Final Office Action, Dec. 4, 2013, U.S. Appl. No. 13/396,568, filed Feb. 14, 2012.
Jul. 6, Non-Fi	2007. inal Office Action, Apr. 24, 2013, U.S. Appl. No. 11/825,563,	Final Office Action, Sep. 23, 2014, U.S. Appl. No. 13/396,568, filed Feb. 14, 2012.
	11.6, 2007.	Non-Final Office Action, Nov. 5, 2015, U.S. Appl. No. 13/396,568,

Final Office Action, Dec. 30, 2013, U.S. Appl. No. 11/825,563, filed Jul. 6, 2007.

Notice of Allowance, Mar. 25, 2014, U.S. Appl. No. 11/825,563, filed Jul. 6, 2007.

Non-Final Office Action, Sep. 14, 2011, U.S. Appl. No. 12/004,897, filed Dec. 21, 2007.

Notice of Allowance, Jan. 27, 2012, U.S. Appl. No. 12/004,897, filed Dec. 21, 2007.

Non-Final Office Action, Jul. 28, 2011, U.S. Appl. No. 12/072,931, filed Feb. 29, 2008.

Notice of Allowance, Mar. 1, 2012, U.S. Appl. No. 12/072,931, filed Feb. 29, 2008.

Notice of Allowance, Mar. 1, 2012, U.S. Appl. No. 12/080,115, filed Mar. 31, 2008.

Non-Final Office Action, Nov. 14, 2011, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Final Office Action, Apr. 24, 2012, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Advisory Action, Jul. 3, 2012, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Non-Final Office Action, Mar. 11, 2014, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Final Office Action, Jul. 11, 2014, U.S. Appl. No. 12/215,980, filed

filed Feb. 14, 2012.

Non-Final Office Action, May 11, 2012, U.S. Appl. No. 13/424,189, filed Mar. 19, 2012.

Final Office Action, Sep. 4, 2012, U.S. Appl. No. 13/424,189, filed Mar. 19, 2012.

Final Office Action, Nov. 28, 2012, U.S. Appl. No. 13/424,189, filed Mar. 19, 2012.

Notice of Allowance, Mar. 7, 2013, U.S. Appl. No. 13/424,189, filed Mar. 19, 2012.

Non-Final Office Action, Jun. 7, 2012, U.S. Appl. No. 13/426,436, filed Mar. 21, 2012.

Final Office Action, Dec. 31, 2012, U.S. Appl. No. 13/426,436, filed Mar. 21, 2012.

Non-Final Office Action, Sep. 12, 2013, U.S. Appl. No. 13/426,436, filed Mar. 21, 2012.

Notice of Allowance, Jul. 16, 2014, U.S. Appl. No. 13/426,436, filed Mar. 21, 2012.

Non-Final Office Action, Nov. 7, 2012, U.S. Appl. No. 13/492,780, filed Jun. 8, 2012.

Non-Final Office Action, May 8, 2013, U.S. Appl. No. 13/492,780, filed Jun. 8, 2012.

Final Office Action, Oct. 23, 2013, U.S. Appl. No. 13/492,780, filed Jun. 8, 2012.

Jun. 30, 2008.

Non-Final Office Action, Dec. 8, 2014, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Notice of Allowance, Jul. 7, 2015, U.S. Appl. No. 12/215,980, filed Jun. 30, 2008.

Non-Final Office Action, Sep. 1, 2011, U.S. Appl. No. 12/286,909, filed Oct. 2, 2008.

Notice of Allowance, Feb. 28, 2012, U.S. Appl. No. 12/286,909, filed Oct. 2, 2008.

Non-Final Office Action, Nov. 15, 2011, U.S. Appl. No. 12/286,995, filed Oct. 2, 2008.

Final Office Action, Apr. 10, 2012, U.S. Appl. No. 12/286,995, filed Oct. 2, 2008.

Notice of Allowance, Mar. 13, 2014, U.S. Appl. No. 12/286,995, filed Oct. 2, 2008.

Non-Final Office Action, Aug. 1, 2012, U.S. Appl. No. 12/860,043, filed Aug. 20, 2010.

Notice of Allowance, Jan. 18, 2013, U.S. Appl. No. 12/860,043, filed Aug. 22, 2010.

Non-Final Office Action, Aug. 17, 2012, U.S. Appl. No. 12/868,622, filed Aug. 25, 2010.

Final Office Action, Feb. 22, 2013, U.S. Appl. No. 12/868,622, filed Aug. 25, 2010.

Notice of Allowance, Nov. 24, 2014, U.S. Appl. No. 13/492,780, filed Jun. 8, 2012.

Non-Final Office Action, May 23, 2014, U.S. Appl. No. 13/859,186, filed Apr. 9, 2013.

Final Office Action, Dec. 3, 2014, U.S. Appl. No. 13/859,186, filed Apr. 9, 2013.

Non-Final Office Action, Jul. 7, 2015, U.S. Appl. No. 13/859,186, filed Apr. 9, 2013.

Final Office Action, Feb. 2, 2016, U.S. Appl. No. 13/859,186, filed Apr. 9, 2013.

Notice of Allowance, Apr. 28, 2016, U.S. Appl. No. 13/859,186, filed Apr. 9, 2013.

Non-Final Office Action, Apr. 17, 2015, U.S. Appl. No. 13/888,796, filed May 7, 2013.

Non-Final Office Action, Jul. 14, 2015, U.S. Appl. No. 14/046,551, filed Oct. 4, 2013.

Notice of Allowance, May 20, 2015, U.S. Appl. No. 13/888,796, filed May 7, 2013.

Non-Final Office Action, Apr. 19, 2016, U.S. Appl. No. 14/046,551, filed Oct. 4, 2013.

Non-Final Office Action, May 21, 2015, U.S. Appl. No. 14/189,817, filed Feb. 25, 2014.

Final Office Action, Dec. 15, 2015, U.S. Appl. No. 14/189,817, filed Feb. 25, 2014.

Non-Final Office Action, Jul. 15, 2015, U.S. Appl. No. 14/058,059, filed Oct. 18, 2013.

Advisory Action, May 14, 2013, U.S. Appl. No. 12/868,622, filed Aug. 25, 2010.

Notice of Allowance, May 1, 2014, U.S. Appl. No. 12/868,622, filed Aug. 25, 2010.

Non-Final Office Action, Feb. 19, 2013, U.S. Appl. No. 12/944,659, filed Nov. 11, 2010.

Final Office Action, Jan. 12, 2016, U.S. Appl. No. 12/959,994, filed Dec. 3, 2010.

Notice of Allowance, May 25, 2011, U.S. Appl. No. 13/016,916, filed Jan. 28, 2011.

Notice of Allowance, Aug. 4, 2011, U.S. Appl. No. 13/016,916, filed Jan. 28, 2011.

Non-Final Office Action, Jun. 26, 2015, U.S. Appl. No. 14/262,489, filed Apr. 25, 2014.

Notice of Allowance, Jan. 28, 2016, U.S. Appl. No. 14/313,883, filed Jun. 24, 2014.

Non-Final Office Action, Jun. 26, 2015, U.S. Appl. No. 14/626,489, filed Apr. 25, 2014.

Non-Final Office Action, Jun. 10, 2015, U.S. Appl. No. 14/628,109, filed Feb. 20, 2015.

Final Office Action, Mar. 16, 2016, U.S. Appl. No. 14/628,109, filed Feb. 20, 2015.

Page 6

(56)**References** Cited

OTHER PUBLICATIONS

Non-Final Office Action, Apr. 8, 2016, U.S. Appl. No. 14/838,133, filed Aug. 27, 2015.

Dahl, Mattias et al., "Simultaneous Echo Cancellation and Car Noise Suppression Employing a Microphone Array", 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 21-24, pp. 239-242.

Graupe, Daniel et al., "Blind Adaptive Filtering of Speech from Noise of Unknown Spectrum Using a Virtual Feedback Configuration", IEEE Transactions on Speech and Audio Processing, Mar. 2000, vol. 8, No. 2, pp. 146-158.

Office Action mailed Apr. 15, 2014 in Japan Patent Application 2010-514871, filed Jul. 3, 2008.

Office Action mailed Jun. 27, 2014 in Korean Patent Application No. 10-2010-7000194, filed Jan. 6, 2010.

International Search Report & Written Opinion dated Jul. 15, 2014 in Patent Cooperation Treaty Application No. PCT/US2014/ 018443, filed Feb. 25, 2014.

Notice of Allowance dated Sep. 16, 2014 in Korean Application No. 10-2010-7000194, filed Jul. 3, 2008.

Notice of Allowance dated Sep. 29, 2014 in Taiwan Application No. 097125481, filed Jul. 4, 2008.

Notice of Allowance dated Oct. 10, 2014 in Finland Application No. 20100001, filed Jul. 3, 2008.

Kato et al., "Noise Suppression with High Speech Quality Based on Weighted Noise Estimation and MMSE STSA" Proc. IWAENC [Online] 2001, pp. 183-186.

Soon et al., "Low Distortion Speech Enhancement", Proc. Inst. Elect. Eng. [Online] 2000, vol. 147, pp. 247-253.

Stahl, V. et al., "Quantile Based Noise Estimation for Spectral Subtraction and Wiener Filtering," 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun. 5-9, vol. 3, pp. 1875-1878.

Tchorz, Jurgen et al., "SNR Estimation Based on Amplitude Modulation Analysis with Applications to Noise Suppression", IEEE Transactions on Speech and Audio Processing, vol. 11, No. 3, May 2003, pp. 184-192.

Yoo, Heejong et al., "Continuous-Time Audio Noise Suppression" and Real-Time Implementation", 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, May 13-17, pp. IV3980-IV3983.

International Search Report and Written Opinion dated Oct. 1, 2008 in Patent Cooperation Treaty Application No. PCT/US2008/ 008249.

International Search Report and Written Opinion dated Aug. 27, 2009 in Patent Cooperation Treaty Application No. PCT/US2009/ 003813.

Dahl, Mattias et al., "Acoustic Echo and Noise Cancelling Using Microphone Arrays", International Symposium on Signal Processing and its Applications, ISSPA, Gold coast, Australia, Aug. 25-30, 1996, pp. 379-382. International Search Report and Written Opinion dated Sep. 1, 2011 in Patent Cooperation Treaty Application No. PCT/US11/37250. Fazel et al., "An overview of statistical pattern recognition techniques for speaker verification," IEEE, May 2011. Sundaram et al., "Discriminating Two Types of Noise Sources Using Cortical Representation and Dimension Reduction Technique," IEEE, 2007. Bach et al., "Learning Spectral Clustering with application to spech separation", Journal of machine learning research, 2006. Tognieri et al., "A Comparison of the LBG, LVQ, MLP, SOM and GMM Algorithms for Vector Quantisation and Clustering Analysis," University of Western Australia, 1992. Klautau et al., "Discriminative Gaussian Mixture Models a Comparison with Kernel Classifiers," ICML, 2003. Mokbel et al., "Automatic Word Recognition in Cars," IEEE Transactions of Speech and Audio Processing, vol. 3, No. 5, Sep. 1995, pp. 346-356. Office Action mailed Oct. 14, 2013 in Taiwan Patent Application 097125481, filed Jul. 4, 2008. Office Action mailed Oct. 29, 2013 in Japan Patent Application 2011-516313, filed Jun. 26, 2009. Office Action mailed Dec. 9, 2013 in Finland Patent Application 20100431, filed Jun. 26, 2009. Office Action mailed Jan. 20, 2014 in Finland Patent Application 20100001, filed Jul. 3, 2008. International Search Report & Written Opinion dated Mar. 18, 2014 in Patent Cooperation Treaty Application No. PCT/US2013/ 065752, filed Oct. 18, 2013. Office Action mailed Oct. 17, 2013 in Taiwan Patent Application 097125481, filed Jul. 4, 2008. Allowance mailed May 21, 2014 in Finland Patent Application 20100001, filed Jan. 4, 2010. Office Action mailed May 2, 2014 in Taiwan Patent Application 098121933, filed Jun. 29, 2009.

Notice of Allowance mailed Feb. 10, 2015 in Taiwan Patent Application No. 098121933, filed Jun. 29, 2009.

Office Action mailed Mar. 24, 2015 in Japan Patent Application No. 2011-516313, filed Jun. 26, 2009.

Office Action mailed Apr. 16, 2015 in Korean Patent Application No. 10-2011-7000440, filed Jun. 26, 2009.

Notice of Allowance mailed Jun. 2, 2015 in Japan Patent Application 2011-516313, filed Jun. 26, 2009.

Kim et al., "Improving Speech Intelligibility in Noise Using Environment-Optimized Algorithms," IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 8, Nov. 2010, pp. 2080-2090.

Sharma et al., "Rotational Linear Discriminant Analysis Technique for Dimensionality Reduction," IEEE Transactions on Knowledge and Data Engineering, vol. 20, No. 10, Oct. 2008, pp. 1336-1347. Temko et al., "Classifiation of Acoustic Events Using SVM-Based Clustering Schemes," Pattern Recognition 39, No. 4, 2006, pp. 682-694.

Office Action mailed Jun. 9, 2015 in Japan Patent Application 2014-165477 filed Jul. 3, 2008.

Office Action mailed Jun. 17, 2015 in Japan Patent Application 2013-519682 filed May 19, 2011.

International Search Report & Written Opinion dated Nov. 27, 2015 in Patent Cooperation Treaty Application No. PCT/US2015/ 047263, filed Aug. 27, 2015. Notice of Allowance dated Feb. 24, 2016 in Korean Application No. 10-2011-7000440, filed Jun. 26, 2009. Hu et al., "Robust Speaker's Location Detection in a Vehicle Environment Using GMM Models," IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 36, No. 2, Apr. 2006, pp. 403-412. International Search Report and Written Opinion dated Feb. 7, 2011 in Application No. PCT/US10/58600. International Search Report dated Dec. 20, 2013 in Patent Cooperation Treaty Application No. PCT/US2013/045462, filed Jun. 12, 2013. Office Action dated Aug. 26, 2014 in Japanese Application No. 2012-542167, filed Dec. 1, 2010. Office Action mailed Oct. 31, 2014 in Finnish Patent Application No. 20125600, filed Jun. 1, 2012. Office Action mailed Jul. 21, 2015 in Japanese Patent Application 2012-542167 filed Dec. 1, 2010. Office Action mailed Sep. 29, 2015 in Finnish Patent Application 20125600, filed Dec. 1, 2010. Goodwin, Michael M. et al., "Key Click Suppression", U.S. Appl. No. 14/745,176, filed Jun. 19, 2015, 25 pages. Final Office Action, May 5, 2016, U.S. Appl. No. 13/363,362, filed Jan. 31, 2012. Non-Final Office Action, May 6, 2016, U.S. Appl. No. 14/495,550, filed Sep. 24, 2014.

Non-Final Office Action, May 31, 2016, U.S. Appl. No. 14/874,329, filed Oct. 2, 2015.

Final Office Action, Jun. 17, 2016, U.S. Appl. No. 13/396,568, filed Feb. 14, 2012.

Advisory Action, Jul. 29, 2016, U.S. Appl. No. 13/363,362, filed Jan. 31, 2012.

Final Office Action, Aug. 30, 2016, U.S. Appl. No. 14/838,133, filed Aug. 27, 2015.

* cited by examiner

U.S. Patent Jan. 31, 2017 Sheet 1 of 6 US 9,558,755 B1

Source 102

Microphone M1 106

U.S. Patent Jan. 31, 2017 Sheet 2 of 6 US 9,558,755 B1

.

IGURE 2

U.S. Patent Jan. 31, 2017 Sheet 3 of 6 US 9,558,755 B1

FIGURE 3

U.S. Patent Jan. 31, 2017 Sheet 4 of 6 US 9,558,755 B1

FIGURE 4

U.S. Patent Jan. 31, 2017 Sheet 5 of 6 US 9,558,755 B1

-

U.S. Patent Jan. 31, 2017 Sheet 6 of 6 US 9,558,755 B1

FIGURE 6

1

NOISE SUPPRESSION ASSISTED AUTOMATIC SPEECH RECOGNITION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Provisional Application Ser. No. 61/346,851, titled "Noise Suppression Assisted Automatic Speech Recognition," filed May 20, 2010, the disclosure of the aforementioned appli-¹⁰ cation is incorporated herein by reference.

BACKGROUND OF THE INVENTION

2

FIG. 3 is a block diagram of an exemplary audio processing system.

FIG. **4** is a flow chart of an exemplary method for performing speech recognition based on noise suppression ⁵ information.

FIG. 5 is a flow chart of an exemplary method for performing noise suppression on a sub band signal.FIG. 6 is a flow chart of an exemplary method for providing noise suppression information to a speech recog-

¹⁰ nition module.

DETAILED DESCRIPTION OF THE INVENTION

Speech recognition systems have been used to convert ¹⁵ spoken words into text. In medium and high noise environments, however, the accuracy of automatic speech recognition systems tends to degrade significantly. As a result, most speech recognition systems are used with audio captured in a noise-free environment. ²⁰

Unlike speech recognition systems, a standard noise reduction strategy consists of strongly attenuating portions of the acoustic spectrum which are dominated by noise. Spectrum portions dominated by speech are preserved.

Strong attenuation of undesired spectrum portions is a ²⁵ valid strategy from the point of view of noise reduction and perceived output signal quality, it is not necessarily a good strategy for an automatic speech recognition system. In particular, the spectral regions strongly attenuated by noise suppression may have been necessary to extract features for ³⁰ speech recognition. As a result, the attenuation resulting from noise suppression corrupts the features of the speech signal more than the original noise signal. This corruption by the noise suppression of the speech signal, which is greater than the corruption caused by the added noise signal, causes ³⁵ the noise reduction algorithm to make automatic speech recognition results unusable.

The present technology may utilize noise suppression information to optimize or improve automatic speech recognition performed for a signal. Noise suppression may be performed on a noisy speech signal using a gain value. The gain to apply to the noisy signal as part of the noise suppression is selected to optimize speech recognition analysis of the resulting signal. The gain may be selected based on one or more features for a current sub band and time frame, as well as others.

Noise suppression information may be provided to a speech recognition module to improve the robustness of the speech recognition analysis. Noise suppression information may include voice activity detection (VAD) information, such as for example noise, an indication of whether a signal includes speech, an indication of a speech to noise ration (SNR) for a signal, and other information. Noise suppression information may also be used to encode and identify speech. Resources spent on automatic speech recognition such as a bit rate of a speech codec) may be selected based on the

SUMMARY OF THE INVENTION

The present technology may utilize noise suppression information to optimize or improve automatic speech recognition performed for a signal. Noise suppression may be performed on a noisy speech signal using a gain value. The gain to apply to the noisy signal as part of the noise 45 suppression is selected to optimize speech recognition analysis of the resulting signal. The gain may be selected based on one or more features for a current sub band and time frame, as well as others. Noise suppression information may be provided to a speech recognition module to improve 50 the robustness of the speech recognition analysis. Noise suppression information may also be used to encode and identify speech. Resources spent on automatic speech recognition such as a bit rate of a speech codec) may be selected based on the SNR. 55

An embodiment may enable processing of an audio signal. Sub-band signals may be generated from a received primary acoustic signal and a secondary acoustic signal. One or more features may be determined for a sub-band signal. Noise suppression information may be determined based the ⁶⁰ one or more features to a speech recognition module.

SNR.

FIG. 1 is an illustration of an environment in which embodiments of the present technology may be used. A user may act as an audio (speech) source 102 to an audio device
104. The exemplary audio device 104 includes two microphones: a primary microphone 106 relative to the audio source 102 and a secondary microphone 108 located a distance away from the primary microphone 106. Alternatively, the audio device 104 may include a single microphone. In yet other embodiments, the audio device 104 may include more than two microphones, such as for example three, four, five, six, seven, eight, nine, ten or even more microphones.

The primary microphone **106** and secondary microphone **108** may be omni-directional microphones. Alternatively embodiments may utilize other forms of microphones or acoustic sensors, such as directional microphones.

While the microphones 106 and 108 receive sound (i.e. acoustic signals) from the audio source 102, the microphones 106 and 108 also pick up noise 112. Although the noise 110 is shown coming from a single location in FIG. 1, the noise 110 may include any sounds from one or more locations that differ from the location of audio source 102, and may include reverberations and echoes. The noise 110 may be stationary, non-stationary, and/or a combination of both stationary and non-stationary noise.
Some embodiments may utilize level differences (e.g. energy differences) between the acoustic signals received by the two microphones 106 and 108. Because the primary microphone 106 is much closer to the audio source 102 than the secondary microphone 108 in a close-talk use case, the intensity level is higher for the primary microphone 106,

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an environment in which the present 65 r technology may be utilized. t FIG. 2 is a block diagram of an exemplary audio device. i

3

resulting in a larger energy level received by the primary microphone 106 during a speech/voice segment, for example.

The level difference may then be used to discriminate speech and noise in the time-frequency domain. Further 5 embodiments may use a combination of energy level differences and time delays to discriminate speech. Based on binaural cue encoding, speech signal extraction or speech enhancement may be performed.

FIG. 2 is a block diagram of an exemplary audio device 10 104. In the illustrated embodiment, the audio device 104 includes a receiver 200, a processor 202, the primary microphone 106, an optional secondary microphone 108, an audio processing system 210, and an output device 206. The audio device 104 may include further or other components nec- 15 essary for audio device 104 operations. Similarly, the audio device 104 may include fewer components that perform similar or equivalent functions to those depicted in FIG. 2. Processor 202 may execute instructions and modules stored in a memory (not illustrated in FIG. 2) in the audio 20 device 104 to perform functionality described herein, including noise reduction for an acoustic signal, speech recognition, and other functionality. Processor 202 may include hardware and software implemented as a processing unit, which may process floating point operations and other 25 operations for the processor 202. The exemplary receiver 200 may include an acoustic sensor configured to receive and transmit a signal to and from a communications network. In some embodiments, the receiver 200 may include an antenna device. The signal 30 received may be forwarded to the audio processing system 210 to reduce noise using the techniques described herein, and provide an audio signal to the output device 206. Similarly, a signal received by one or more of primary microphone 106 and secondary microphone 108 may be 35 through frequency analysis module 302. The acoustic sigprocessed for noise suppression and ultimately transmitted to a communications network via receiver 200. Hence, the present technology may be used in one or both of the transmit and receive paths of the audio device 104. The audio processing system 210 is configured to receive 40 filter. the acoustic signals from an acoustic source via the primary microphone 106 and secondary microphone 108 (or a farend signal via receiver 200) and process the acoustic signals. Processing may include performing noise reduction within an acoustic signal and speech recognition for an acoustic 45 signal. The audio processing system 210 is discussed in more detail below. The primary and secondary microphones 106, 108 may be spaced a distance apart in order to allow for detecting an energy level difference, time difference or phase difference 50 between them. The acoustic signals received by primary microphone 106 and secondary microphone 108 may be converted into electrical signals (i.e. a primary electrical signal and a secondary electrical signal). The electrical signals may themselves be converted by an analog-to-digital 55 converter (not shown) into digital signals for processing in accordance with some embodiments. In order to differentiate the acoustic signals for clarity purposes, the acoustic signal received by the primary microphone 106 is herein referred to as the primary acoustic signal, while the acoustic signal 60 received from by the secondary microphone 108 is herein referred to as the secondary acoustic signal. The primary acoustic signal and the secondary acoustic signal may be processed by the audio processing system 210 to produce a signal with an improved signal-to-noise ratio. It should be 65 noted that embodiments of the technology described herein may be practiced utilizing only the primary microphone 106.

The output device 206 is any device which provides an audio output to the user. For example, the output device 206 may include a speaker, an earpiece of a headset or handset, or a speaker on a conference device.

In various embodiments, where the primary and secondary microphones are omni-directional microphones that are closely-spaced (e.g., 1-2 cm apart), a beamforming technique may be used to simulate forwards-facing and backwards-facing directional microphones. The level difference may be used to discriminate speech and noise in the timefrequency domain which can be used in noise reduction. FIG. 3 is a block diagram of an exemplary audio processing system 210 for performing noise reduction and automatic speech recognition. In exemplary embodiments, the audio processing system 210 is embodied within a memory device within audio device 104. The audio processing system 210 may include a frequency analysis module 302, a feature extraction module 304, a source inference engine module 306, gain data store 307, mask selector module 308, noise canceller module 310, modifier module 312, reconstructor module 314, and automatic speech recognition 316. Audio processing system 210 may include more or fewer components than illustrated in FIG. 3, and the functionality of modules may be combined or expanded into fewer or additional modules. Exemplary lines of communication are illustrated between various modules of FIG. 3, and in other figures herein. The lines of communication are not intended to limit which modules are communicatively coupled with others, nor are they intended to limit the number of and type of signals communicated between modules.

In operation, acoustic signals received from the primary microphone **106** and second microphone **108** are converted to electrical signals, and the electrical signals are processed nals may be pre-processed in the time domain before being processed by frequency analysis module 302. Time domain pre-processing may include applying input limiter gains, speech time stretching, and filtering using an FIR or IIR The frequency analysis module 302 receives the acoustic signals and mimics the frequency analysis of the cochlea (e.g., cochlear domain) to generate sub-band signals, simulated by a filter bank. The frequency analysis module 302 separates each of the primary and secondary acoustic signals into two or more frequency sub-band signals. A sub-band signal is the result of a filtering operation on an input signal, where the bandwidth of the filter is narrower than the bandwidth of the signal received by the frequency analysis module **302**. The filter bank may be implemented by a series of cascaded, complex-valued, first-order IIR filters. Alternatively, other filters such as short-time Fourier transform (STFT), sub-band filter banks, modulated complex lapped transforms, cochlear models, wavelets, etc., can be used for the frequency analysis and synthesis. The samples of the frequency sub-band signals may be grouped sequentially into time frames (e.g. over a predetermined period of time). For example, the length of a frame may be 4 ms, 8 ms, or some other length of time. In some embodiments there may be no frame at all. The results may include sub-band signals in a fast cochlea transform (FCT) domain. The sub-band frame signals are provided from frequency analysis module 302 to an analysis path sub-system 320 and a signal path sub-system 330. The analysis path sub-system 320 may process the signal to identify signal features, distinguish between speech components and noise components of the sub-band signals, and determine a signal modi-

5

fier. The signal path sub-system **330** is responsible for modifying sub-band signals of the primary acoustic signal by reducing noise in the sub-band signals. Noise reduction can include applying a modifier, such as a multiplicative gain mask determined in the analysis path sub-system **320**, or by subtracting components from the sub-band signals. The noise reduction may reduce noise and preserve the desired speech components in the sub-band signals.

Signal path sub-system 330 includes noise canceller module 310 and modifier module 312. Noise canceller module **310** receives sub-band frame signals from frequency analysis module 302. Noise canceller module 310 may subtract (e.g., cancel) a noise component from one or more sub-band signals of the primary acoustic signal. As such, noise canceller module 310 may output sub-band estimates of noise components in the primary signal and sub-band estimates of speech components in the form of noise-subtracted sub-band signals. Noise canceller module **310** may provide noise cancellation, for example in systems with two-microphone configurations, based on source location by means of a subtractive algorithm. Noise canceller module 310 may also provide echo cancellation and is intrinsically robust to loudspeaker and Rx path non-linearity. By performing noise and echo²⁵ cancellation (e.g., subtracting components from a primary signal sub-band) with little or no voice quality degradation, noise canceller module 310 may increase the speech-tonoise ratio (SNR) in sub-band signals received from frequency analysis module 302 and provided to modifier module 312 and post filtering modules. The amount of noise cancellation performed may depend on the diffuseness of the noise source and the distance between microphones, both of which contribute towards the coherence of the noise between the microphones, with greater coherence resulting in better cancellation. Noise canceller module 310 may be implemented in a variety of ways. In some embodiments, noise canceller module 310 may be implemented with a single NPNS $_{40}$ module. Alternatively, Noise canceller module 310 may include two or more NPNS modules, which may be arranged for example in a cascaded fashion. An example of noise cancellation performed in some embodiments by the noise canceller module **310** is disclosed 45 in U.S. patent application Ser. No. 12/215,980, entitled "System and Method for Providing Noise Suppression Utilizing Null Processing Noise Subtraction," filed Jun. 30, 2008, U.S. application Ser. No. 12/422,917, entitled "Adaptive Noise Cancellation," filed Apr. 13, 2009, and U.S. 50 application Ser. No. 12/693,998, entitled "Adaptive Noise Reduction Using Level Cues," filed Jan. 26, 2010, the disclosures of which are each incorporated herein by reference.

6

microphone signals. The feature extraction module **304** may both provide inputs to and process outputs from NPNS module **310**.

NPNS module may provide noise cancelled sub-band
signals to the ILD block in the feature extraction module
304. Since the ILD may be determined as the ratio of the NPNS output signal energy to the secondary microphone energy, ILD is often interchangeable with Null Processing Inter-microphone Level Difference (NP-ILD). "Raw-ILD"
may be used to disambiguate a case where the ILD is computed from the "raw" primary and secondary microphone signals.

Determining energy level estimates and inter-microphone level differences is discussed in more detail in U.S. patent 15 application Ser. No. 11/343,524, entitled "System and Method for Utilizing Inter-Microphone Level Differences for Speech Enhancement", which is incorporated by reference herein. Source inference engine module 306 may process the frame energy estimations provided by feature extraction module **304** to compute noise estimates and derive models of the noise and speech in the sub-band signals. Source inference engine module 306 adaptively estimates attributes of the acoustic sources, such as their energy spectra of the output signal of the NPNS module **310**. The energy spectra attribute may be utilized to generate a multiplicative mask in mask generator module **308**. The source inference engine module **306** may receive the NP-ILD from feature extraction module **304** and track the 30 NP-ILD probability distributions or "clusters" of the target audio source 102, background noise and optionally echo. This information is then used, along with other auditory cues, to define classification boundaries between source and noise classes. The NP-ILD distributions of speech, noise and echo may vary over time due to changing environmental conditions, movement of the audio device 104, position of the hand and/or face of the user, other objects relative to the audio device 104, and other factors. The cluster tracker adapts to the time-varying NP-ILDs of the speech or noise source(s). An example of tracking clusters by a cluster tracker module is disclosed in U.S. patent application Ser. No. 12/004,897, entitled "System and method for Adaptive Classification of Audio Sources," filed on Dec. 21, 2007, the disclosure of which is incorporated herein by reference. Source inference engine module **306** may include a noise estimate module which may receive a noise/speech classification control signal from the cluster tracker module and the output of noise canceller module **310** to estimate the noise N(t,w), wherein t is a point in time and W represents a frequency or sub-band. A speech to noise ratio (SNR) can be generated by source inference engine module 306 from the noise estimate and a speech estimate, and the SNR can be provided to other modules within the audio device, such as automatic speech recognition module 316 and mask selector 308.

The feature extraction module **304** of the analysis path 55 sub-system **320** receives the sub-band frame signals derived from the primary and secondary acoustic signals provided by frequency analysis module **302** as well as the output of NPNS module **310**. Feature extraction module **304** may compute frame energy estimations of the sub-band signals, 60 inter-microphone level differences (ILD), inter-microphone time differences (ITD) and inter-microphones phase differences (IPD) between the primary acoustic signal and the secondary acoustic signal, self-noise estimates for the primary and second microphones, as well as other monaural or 65 binaural features which may be utilized by other modules, such as pitch estimates and cross-correlations between

Gain data store 307 may include one or more stored gain values and may communicate with mask selector 308. Each stored gain may be associated with a set of one or more features. An exemplary set of features may include a speech to noise ratio and a frequency (i.e., a center frequency for a sub band). Other feature data may also be stored in gain store 307. Each gain stored in gain data store 307 may, when applied to a sub-band signal, provide as close to a clean speech signal as possible. Though the gains provide a speech signal with a reduced amount of noise, they may not provide the perceptually most desirable sounding speech.

7

In some embodiments, each gain stored in gain store 307 may be optimized for a set of features, such as for example a particular frequency and speech to noise ratio. For example, to determine an optimal gain value for a particular combination of features, a known speech spectrum may be 5 combined with noise at various speech to noise ratios. Because the energy spectrum and noise are known, a gain can be determined which suppress the combined speechnoise signal into a clean speech signal which is ideal for speech recognition. In some embodiments, the gain is con-10 figured to suppress the speech-noise signal such that noise is reduced but no portion of the speech signal is attenuated or degraded. These gains derived from the combined signals for a known SNR are stored in the gain data store for different combination of frequency and speech to noise ratio. 15 Mask selector 308 may receive a set of one or more features and/or other data from source inference engine 306, query gain data store 307 for a gain associated with a particular set of features and/or other data, and provide an accessed gain to modifier **312**. For example, for a particular 20 sub band, mask selector 308 may receive a particular speech to noise ratio from source inference engine 306 for the particular sub band in the current frame. Mask selector **308** may then query data store 307 for a gain that is associated with the combination of the speech to noise ratio and the 25 current sub band center frequency. Mask selector 308 receives the corresponding gain from gain data store 307 and provides the gain to modifier **312**. The accessed gain may be applied to the estimated noise subtracted sub-band signals provided, for example as a 30 multiplicative mask, by noise canceller **310** to modifier **312**. The modifier module 312 multiplies the gain masks to the noise-subtracted sub-band signals of the primary acoustic signal output by the noise canceller module **310**. Applying the mask reduces energy levels of noise components in the 35 sub-band signals of the primary acoustic signal and results in noise reduction. Modifier module 312 receives the signal path cochlear samples from noise canceller module **310** and applies a gain mask received from mask selector 308 to the received 40 samples. The signal path cochlear samples may include the noise subtracted sub-band signals for the primary acoustic signal. The gain mask provided by mask selector 308 may vary quickly, such as from frame to frame, and noise and speech estimates may vary between frames. To help address 45 the variance, the upwards and downwards temporal slew rates of the mask may be constrained to within reasonable limits by modifier **312**. The mask may be interpolated from the frame rate to the sample rate using simple linear interpolation, and applied to the sub-band signals by multiplicative noise suppression. Modifier module 312 may output masked frequency sub-band signals.

8

be a uniform constant noise that is not usually discernable to a listener (e.g., pink noise). This comfort noise may be added to the synthesized acoustic signal to enforce a threshold of audibility and to mask low-level non-stationary output noise components. In some embodiments, the comfort noise level may be chosen to be just above a threshold of audibility and may be settable by a user. In some embodiments, the mask generator module 308 may have access to the level of comfort noise in order to generate gain masks that will suppress the noise to a level at or below the comfort noise. Automatic speech recognition module 316 may perform a speech recognition analysis on the reconstructed signal output by reconstructor 314. Automatic speech recognition module **316** may receive a voice activity detection (VAD) signal as well as a speech to noise (SNR) ratio indication or other noise suppression information from source inference engine **306**. The information received from source information engine **306**, such as the VAD and SNR, may be used to optimize the speech recognition process performed by automatic speech recognition module **316**. Speech recognition module **316** is discussed in more detail below. The system of FIG. 3 may process several types of signals received by an audio device. The system may be applied to acoustic signals received via one or more microphones. The system may also process signals, such as a digital Rx signal, received through an antenna or other connection. An exemplary system which may be used to implement at least a portion of audio processing system 210 is described in U.S. patent application Ser. No. 12/832,920, titled "Multi-Microphone Robust Noise Suppression," filed Jul. 8, 2010, the disclosure of which is incorporated herein by reference FIG. 4 is a flow chart of an exemplary method for performing speech recognition based on noise suppression information. First, a primary acoustic signal and a secondary acoustic signal are received at step 410. The signals may be received through microphones 106 and 108 of audio device 104. Sub band signals may then be generated from the primary acoustic signal and secondary acoustic signal at step 420. The received signals may be converted to sub band signals by frequency analysis module 302. A feature is determined for a sub band signal at step 430. Feature extractor **304** may extract features for each sub band in the current frame or the frame as a whole. Features may include a speech energy level for a particular sub band noise level, pitch, and other features. Noise suppression information is then generated from the features at step 440. The noise suppression information may be generated and output by source inference engine 306 from features received from feature extraction module 304. The noise suppression information may include an SNR ratio for each sub band in the current frame, a VAD signal for the current frame, ILD, and other noise suppression information. Noise suppression may be performed on a sub band signal based on noise suppression information at step 450. The noise suppression may include accessing a gain value based on one or more features and applying the gain to a sub band acoustic signal. Performing noise suppression on a sub band signal is discussed in more detail below with respect to the method of FIG. 5. Additionally, noise suppression performed on a sub band signal may include performing noise cancellation by noise canceller 310 in the audio processing system of FIG. 3.

Reconstructor module **314** may convert the masked frequency sub-band signals from the cochlea domain back into the time domain. The conversion may include adding the 55 masked frequency sub-band signals and phase shifted signals. Alternatively, the conversion may include multiplying the masked frequency sub-band signals with an inverse frequency of the cochlea channels. Once conversion to the time domain is completed, the synthesized acoustic signal 60 may be output to the user via output device **206** and/or provided to a codec for encoding. In some embodiments, additional post-processing of the synthesized time domain acoustic signal may be performed. For example, comfort noise generated by a comfort noise 65 generator may be added to the synthesized acoustic signal prior to providing the signal to the user. Comfort noise may

Noise suppression information may be provided to speech recognition module **316** at step **460**. Speech recognition module **316** may receive noise suppression information to assist with speech recognition. Providing noise suppression

9

information to speech recognition module **316** is discussed in more detail below with respect to FIG. 6.

Speech recognition is automatically performed based on the noise suppression information at step 470. The speech recognition process may be optimized based on the noise 5 suppression information. Performing speech recognition based on noise suppression information may include modulating a bit rate of a speech encoder or decoder based on a speech to noise ratio for a particular frame. In some embodiments, the bit rate is decreased when the speech to noise 10 ratio is large. In some embodiments, speech recognition based on noise suppression may include setting a node search depth level by a speech recognition module based on

10

may be provided with a VAD signal provided by source inference engine 306. The VAD signal may indicate whether or not speech is present in the signal provided to automatic speech recognition module 316. Automatic speech recognition module 316 may use the VAD signal to determine whether or not to perform speech recognition on the signal. A speech to noise ratio (SNR) signal may be provided for the current frame and/or sub band to the speech recognition module at step 640. In this case, the SNR may provide a value within a range of values indicating whether or not speech is present. This may help the automatic speech recognition module learn when to expend resources to recognize speech and when not to.

a speech to noise ratio for a current frame. The node search depth level, for example, may be decreased when the speech 15 to noise ratio is large.

FIG. 5 is a flow chart of an exemplary method for performing noise suppression on a sub band signal. The method of FIG. 5 provides more detail for step 450 in the method of FIG. 4. A speech to noise ratio (SNR) for a sub 20 band is accessed at step 510. The SNR may be received by mask selector 308 from source inference engine 306. Mask selector **308** also has access to sub band information for the sub band being considered.

A gain which corresponds to the sub band signal fre- 25 quency and the signal of the noise ratio is accessed at step **520**. The gain is accessed by mask selector **308** from gain data store 307 and may correspond to a particular sub band signal frequency and SNR. The accessed gain is then applied to one or more sub band frequencies at step 530. The 30 accessed gain may be provided to modifier 312 which then applies the gain to a sub band which may or may not be have undergone noise cancellation.

FIG. 6 is a flow chart of an exemplary method for providing noise suppression information to a speech recog- 35 nition module. The method of FIG. 6 may provide more detail for step 460 than the method of FIG. 4. A determination as to whether speech is detected in a primary acoustic signal based on one or more features is performed at step **610**. The detection may include detecting whether speech is 40 or is not present within the signal within the current frame. In some embodiments, an SNR for the current sub band or for all sub bands may be compared to a threshold level. If the SNR is above the threshold value, then speech may be detected to be present in the primary acoustic signal. If the 45 SNR is not above the threshold value, then speech may be determined to not be present in the current frame. Each of steps 620-640 describe how speech recognition may be optimized based on noise suppression or noise suppression information and may be performed in combi- 50 nation or separately. Hence, in some embodiments, only one of step 620-640 may be performed. In some embodiments, more than just one of steps 620-640 may be performed when providing noise suppression information to a speech recognition module. 55

The above described modules, including those discussed with respect to FIG. 3, may include instructions stored in a storage media such as a machine readable medium (e.g., computer readable medium). These instructions may be retrieved and executed by the processor 202 to perform the functionality discussed herein. Some examples of instructions include software, program code, and firmware. Some examples of storage media include memory devices and integrated circuits.

While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.

What is claimed is:

1. A method for processing an audio signal, comprising: generating sub-band signals from a received primary acoustic signal and a received secondary acoustic sig-

A speech recognition module is provided with a noise signal if a speech is not detected in a current frame of a signal at step 620. For example, if the determination is made that speech is not present in the current frame of a reconstructed signal, a noise signal is provided to acoustic speech 60 recognition module 316 in order to ensure that no false positive for speech detection occurs. The noise signal may be any type of signal that has a high likelihood of not being mistaken for speech by the speech recognition module. A speech recognition module may be provided with an 65 indication that speech is present in the acoustic signal at step 630. In this case, automatic speech recognition module 316

nal;

determining two or more features for the sub-band signals, the two or more features including a speech energy level for the sub-band noise level and at least one of the following: inter-microphone level differences, inter-microphone time differences, and intermicrophone phase differences between the primary acoustic signal and the secondary acoustic signal; suppressing a noise component in the primary acoustic signal based on the two or more features, the suppressing configured to clean the primary acoustic signal to create a cleaned speech signal optimized for accurate speech recognition processing by an automatic speech recognition processing module, the suppressing comprising:

applying a gain to a sub-band of the primary acoustic signal to provide a noise suppressed signal, the applying comprising:

determining a speech to noise ratio (SNR) for the sub-band of the primary acoustic signal;

accessing the gain, based on the frequency of the sub-band and the determined SNR for the subband, from a datastore, the datastore including a plurality of pre-stored gains configured to create cleaned speech signals optimized for accurate speech recognition processing by the automatic speech recognition processing module, each prestored gain in the plurality of pre-stored gains associated with a corresponding frequency and an SNR value; and applying the accessed gain to the sub-band frequency; and

11

providing the cleaned speech signal and corresponding noise suppression information to the automatic speech recognition processing module, the noise suppression information based on the two or more features and including a voice activity detection signal.

2. The method of claim 1, further comprising determining whether the primary acoustic signal includes speech, the determination performed based on the two or more features.

3. The method of claim **2**, further comprising providing a noise signal to the automatic speech recognition processing ¹⁰ module in response to detecting that the primary acoustic signal does not include speech.

4. The method of claim 2, wherein the voice activity detection signal is generated based on the determination of 15whether the primary acoustic signal includes speech, and the voice activity detection signal indicating whether automatic speech recognition is to occur. 5. The method of claim 4, wherein the voice activity detection signal is a value within a range of values corre- $_{20}$ sponding to the level of speech detected in the primary acoustic signal. 6. The method of claim 2, wherein the noise suppression information includes a speech to noise ratio for the current time frame and the sub-band to the automatic speech rec- 25 ognition processing module. 7. The method of claim 1, wherein the noise suppression information includes a speech to noise ratio, the method further comprising modulating a bit rate of a speech encoder or decoder based on the speech to noise ratio for a particular $_{30}$ frame. 8. The method of claim 1, wherein the noise suppression information includes a speech to noise ratio, the method further comprising setting a node search depth level by the automatic speech recognition processing module based on $_{35}$ the speech to noise ratio for a current frame. 9. A non-transitory computer readable storage medium having embodied thereon a program, the program being executable by a processor to perform a method for reducing noise in an audio signal, the method comprising:

12

speech recognition processing by an automatic speech recognition processing module, the suppressing comprising:

applying a gain to a sub-band of the primary acoustic signal to provide a noise suppressed signal, the applying comprising:

determining a speech to noise ratio (SNR) for the sub-band of the primary acoustic signal;

accessing the gain, based on the frequency of the sub-band and the determined SNR for the subband, from a datastore, the datastore including a plurality of pre-stored gains configured to create cleaned speech signals optimized for accurate speech recognition processing by the automatic speech recognition processing module, each prestored gain in the plurality of pre-stored gains associated with a corresponding frequency and an SNR value; and

applying the accessed gain to the sub-band frequency; and

providing the cleaned speech signal and corresponding noise suppression information to the automatic speech recognition processing module, the noise suppression information based on the two or more features and including a speech to noise ratio for each of the sub-band signals and a voice activity detection signal.
10. The non-transitory computer readable storage medium of claim 9, further comprising providing a noise signal to the automatic speech recognition processing module in response to detecting that the primary acoustic signal does not include speech.

11. The non-transitory computer readable storage medium of claim 9, wherein the voice activity detection signal is generated based on the determination of whether the primary acoustic signal includes speech, and the voice activity detection signal indicating whether automatic speech recognition is to occur.

- generating sub-band signals from a received primary acoustic signal and a received secondary acoustic signal;
- determining two or more features for a sub-band signal, the two or more features including a speech energy 45 level for the sub-band noise level and at least one of the following: inter-microphone level differences, intermicrophone time differences, and inter-microphone phase differences between the primary acoustic signal and the secondary acoustic signal; 50
- suppressing a noise component in the primary acoustic signal based on the two or more features, the suppressing configured to clean the primary acoustic signal to create a cleaned speech signal optimized for accurate

12. The non-transitory computer readable storage medium of claim 9, wherein the noise suppression information includes a speech to noise ratio for the current time frame and the sub-band to the automatic speech recognition processing module.

13. The non-transitory computer readable storage medium of claim 9, wherein the noise suppression information includes a speech to noise ratio, the method further comprising modulating a bit rate of a speech encoder or decoder based on the speech to noise ratio for a particular frame.

14. The non-transitory computer readable storage medium of claim 9, wherein the noise suppression information includes a speech to noise ratio, the method further comprising setting a node search depth level by the automatic speech recognition processing module based on the speech to noise ratio for a current frame.

* * * * *