12 United States Patent

US009547702B2

(10) Patent No.: US 9,547,702 B2

Vilakkumadathil 45) Date of Patent: *Jan. 17, 2017
(54) VALIDATING CODE OF AN EXTRACT, (56) References Cited
TRANSFORM AND LOAD (ETL) TOOL |
U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS 2010705 B2 99011 And o
019, erson et al.
MACHINES CORPORATION, 8386419 B2 2/2013 Yalamanchilli
Armonk, NY (US) .
(Continued)
(72) Inventor: RokKky Vilakkumadathil, Manjer1 (IN) FOREIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines EP 2079020 17013
Corporation, Armonk, NY (US) WO 0133468 5/2001
(*) Notice: Subject‘ to any dlsclalmer,,. the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35
U.5.C. 154(b) by 0O days. Lerm, Julius et al.; Infosphere Datastage Parallel Framework Stan-
This patent is subject to a terminal dis- dard Practices; IBM Redbooks; Sep. 2010; pp. 50-54.
claimer. (Continued)
(21) Appl. No.: 14/954,114 Primary Examiner — Isaac T Tecklu
. (74) Attorney, Agent, or Firm — Schmeiser, Olsen &
(22) Filed: Nov. 30, 2015 Watts; Tohn PiVIliChlly
(65) Prior Publication Data (57) ABSTRACT
US 2016/0078113 Al Mar. 17, 2016 An approach for validating code for an extract, transform
Y and load tool 1s provided. Naming, coding, and performance
Related U.S. Application Dat . .
e pprication A standards for the code are received. The code 1s exported to
(63) Continuation of application No. 14/331,647, filed on 3 job definition file and parsed. Violations of the standards
Jul. 15, 2014, now Pat. No. 9,244,809. are determined by a mismatch between the parsed code and
the standards. A report identifying the violations 1s gener-
PR ated. based on a review ol the report and a rework ol the
oD 21(;6199/45 2006.01 d. Based ew of the report and K of th
COGF 17/30 (500 6. 0 1) code to comply with the standards, the reworked code 1is
_(O1) exported to another job definition file and parsed, and
(Continued) subsequently 1s determined to not include the violations of
onJe Rl the standards. A second report 1s generated that indicates the
(52) US. h dards. A d report is g d that indj h
CPC ... GO6E 17/305 65? (2013.01); GOGE 97445 8? reworked code does not include the violations. An approval
(2013'91)" GO6F 11/3604 (2013.01); of the reworked code 1s recerved based on the second report.
(Continued) Based on attributes of a job 1included 1n the code, a violation
(58) Field of Classification Search of one of the performance standards 1s determined.

None
See application file for complete search history.

100
1

16 Claims, 6 Drawing Sheets

102
/
COMPUTER
106
/
EXTRACT. TRANSFORM
LOAD (ETL) CODE
l 104
/ 108
/
VALIDATION DATA
TOOL STORE
110
L 4 4

VALIDATION REPORT

US 9,547,702 B2

Page 2
(51) Int. CL 2013/0152047 Al* 6/2013 Moortht GO6F 11/368
GO6F 11/36 (2006.01) 717/124
GO6F 9/445 (2006.01) 2013/0173529 Al1* 7/2013 Erlac........ GO6F 17/30563
(52) US. Cl. 2013/0246376 Al* 9/2013 Padmanabhan ... GO6F 129376223
CPC Gool’ 11/3612 (2013.01); GO6F 11/3616 707/694
(2013.01); GO6F 17/30371 (2013.01); GO6F 2014/0059561 Al* 2/2014 Grasselt GOGF 11/3419
17/30377 (2013.01) 718/104
2014/0279934 Al* 92014 Li .ocovvvivinninn.n, GO6F 17/30563
(56) References Cited 707/687
2014/0358845 Al* 12/2014 Mundlapudr GO6F 17/30592
U.S. PATENT DOCUMENTS 707/602
2015/0020049 Al 1/2015 Caufield et al.
8,826,240 B1* 9/2014 Lachwani GO6F 8/30 2015/0026136 Al1* 1/2015 Rathod GO6F 17/30082
714/38.1 707/692
9,244,809 Bl 1/2016 Vilakkumadathil 2015/0046389 Al* 2/2015 Dhayapule GO6F 17/30563
2003/0056195 Al* 3/2003 Huntcocoovvvveen GO6F 8/315 707/602
717/116 2015/0058278 Al*™ 2/2015 Fankhauser GO6F 17/30563
2006/0123389 Al* 6/2006 Kolawa GO6F 11/3616 707/602
717/101 2015/0100542 Al™ 42015 Li coovvviivinininnnn, GO6F 17/30563
2007/0239769 Al™ 10/2007 Fazal GO6F 17/30554 707/602
2008/0140537 Al* 6/2008 Powell G06Q 30/0601
707/705
2008/0195430 Al* 8/2008 Rustagi GO6Q 10/10 OTHER PUBLICATIONS
705/7 .41
2008/0307262 Al* 12/2008 Carlin, III GO6F 17/30303 Simitsis, Alkis; Modeling and Optimization of Extraction-Transfor-
714/37 mation-Loading (ETL) Processes in Data Warchouse Environments;
2008/0307430 Al1* 12/2008 Friedlander GO6F 19/322 Ph.D. Thesis; National Technical University of Athens, School of
_ 719/313 Electrical and Computer Engineering, Division of Computer Sci-
2010/0325569 Al* 12/2010 Kingccoooevvivvnnnnnnn, GO6F 8/75
715/771 ence; Oct. 2004: 201 pages.
2011/0047525 Al 2779011 Castellanos et al Singh, Jaiteg et al; Statistically Analyzing the Impact of Automated
2011/0265061 A1* 10/2011 Moore GO6F 8/35 ETL Testing on the Data Quality of a Data Warehouse; Internation
717/106 Journal of Computer and Electrical Engineering; vol. 1, No. 4; Oct.
2011/0296391 A1* 12/2011 Gass ...coccovvvvvininnin, GO6F 8/72 2009; pp. 488-495.
| | 717/168 Office Action (Mail Date May 21, 2015) for U.S. Appl. No.
2012/0017280 Al* /2012 Wiegenstem GOGF 11/3604 14/331,647; filing date Jul. 15, 2014; Confirmation No. 9925

726/25 Amendment filed Aug. 17, 2015 1n response to Office Action (Mail

%85585%?% N 3%853 Ilanmtlolii%brmama“ et al Date May 21, 2015) for U.S. Appl. No. 14/331,647; Filing Date Jul.

2012/0271865 Al 10/2012 Jin et al. 15, 2014; Confirmation No. 9925.

2012/0324419 Al* 12/2012 Roberts G06Q 10/101 Notice of Allowance (Mail Date Sep. 10, 2015) for U.S. Appl. No.
717/102 14/331,647, Filing Date Jul. 15, 2014; Confirmation No. 9925.

2013/0151491 Al* 6/2013 Gislason GO6F 17/30339

707/696 * cited by examiner

U.S. Patent Jan. 17, 2017 Sheet 1 of 6 US 9,547,702 B2

100
1

102

COMPUTER
106

EXTRACT, TRANSFORM
LOAD (ETL) CODE

104
108

VALIDATION DATA
TOOL STORE
110

VALIDATION REPORT

FiG. 1

U.S. Patent Jan. 17, 2017 Sheet 2 of 6 US 9,547,702 B2

200

VALIDATING EXTRACT, TRANSFORM, LOAD (ETL) CODE

I 202

EXPORT ETL CODE OF JOB(S) TO JOB DEFINITION FILE(S) (E.G., DSXFILE) [*
FROM DEVELOPMENT ENVIRONMENT

I 204

VALIDATION TOOL PARSES ETL CODE AND COMPARES PARSED CODE TO
NAMING, CODING AND PERFORMANCE STANDARDS

i 2006

DETERMINE VIOLATION(S) IN WHICH PARSED ETL CODE DOES NOT COMPLY ¢
WITH NAMING, CODING, AND/OR PERFORMANCE STANDARDS

208

DETERMINE JOB NAME, STAGE NAME, STAGE TYPE, VIOLATION TYPE, AND
DESCRIPTION OF THE VIOLATION(S)

210
GENERATE VALIDATION REPORT IDENTIFYING VIOLATION(S) FOR EACH JOB
212
YES DESIGNERS' REVIEW OF
VALIDATION REPORT
l IDENTIFIES ISSUE(S)?
REWORK 224
CODEIN [/ NO
DEVELOPMENT 14
ENVIRONMENT BASED ON VALIDATION REPORT, |,
DESIGNERS FORMALLY
APPROVE ETL CODE
216
IMPORT JOB DEFINITION FILE(S) (E.G., DSX FILE) TO QA ENVIRONMENT
218
YES
CODE ISSUE(S) IDENTIFIED?
NO 220 297

RELEASE CODE

FIG. 2

@\
o0
S & DIA
S
I~ I\.\\[
&
> -
- c 0 | Z | \dLogJs)sejyejeulua | OONIO
/ 0 | / 3 ~ $9]140ULIOYUONHEISLOONTD
X 0 | / Gl Puissa00ido]i4buipueTL.0ONID
JUnos | 1unoY
uonejoiA | buipods | Junos | uNos | JunoH
= 'SPIS -pJeH | ‘uuy | ‘weled | abe)g | dwieN 99uanhog
- P! SE0r 30N3ND3S
,_w 401>
-
=
| 0 % ¢ | Wwsze| 0 0 N 0 " 'SIVIoRHXT L00SIV
- 0¢ 0 0 6 | (Gz9 | | / y | ' SI\IUBWIYOLUT L00SIY
= 8 0 0 vy [Wszz| 0 ¢) UonepieAeIedL00S|v
! 0l 0 Z 0 (2) 2 | | | 0 18114dVYSIMZ003IV
p 6 0 G e | @z | 0 0 g 3ll4dVS8IUML00TIY
L 0 0 0 L | W)SL0| O 0 | 0 'Say peoT 0L0SAv
JUunoo | WUNOYH | JUNOY) | JUN0Y) | oney JunoH
UoneloIA | buipod | MY | MY | Uno) |3unoy | ‘Med | junod | junod
'SPIS | -pJeH | 9|4 | ga | ‘uuy | Mog | -8y | 'sues] | ‘bby | sWweN qof
, SE0r 1311vHvd
AN
ﬁ 00¢

U.S. Patent

US 9,547,702 B2

Sheet 4 of 6

Jan. 17,2017

U.S. Patent

v OId

<[[(TINN‘(1de10aye|i4]021LY.= SWeN qor
2Joym UjSg qor TH1O T1ISTIS Wwoly gl qor
109]88)° A9pZ|0S, {()MON Wi {OMON Ui}
(()3.LvaL13o ‘@ep) ITHIANOD'0) senjea (ON
Jm_‘_wwd_lmoﬁnwElel_me,mE_._.lmHmm_lvcm_
In_o_,nmE:.lmEDItSmlgoﬁ,mu‘wolwwoc_m:m_
'al” yoleg)osx3 yaleg 1410 IS IS ol
wesully Lvanli> = L L,=uolsieA saltedoid>

d HMA

buipogp.eH
asegeleq

00X3 ydieq
- THLO IS
198198 40

1d1908Y
9[I4,0¢1LY

qor
[3leled

412

<¢,91-41N,=buIpoousd) |,=UOISIOA JWX; >

<[[(TINN‘(1de10ays|i4|0211Y.= SWweN qor
2JOYM USQ qor YLD IS IS wol gl qor
109]88)‘,A8pZ|0S, {)MON Ui {()MON Uy}
(()3Lval3o ‘e1ep) 1HIANOD'0) senjeA (oN
I,m_‘_wwd_lpoﬁhmEmZI‘_me,mE_._.IBmm_l_ucm_
~gor‘awl] 9leq MUeIS qor‘eleq ssauisng
'al yoleg)osx3 yoreg 1YL SIS ol
Wesully Lvadli> .17 |,=UOISIeA saladold>
<¢.91-41N,=bUIpoaud 0 |,=UOISIBA WX/ >

AJAC10S

PuipodpJeH
aseqele

09X ydleg
- THLO IS
109188 d(

1d1808 Y
9|41 0¢ 1LY

qor
[9l[eJed

¢oll

oul] XSd

104

POY 00T
bug

uondiiosag
10113

aWweN
abelg

aweN
109l90

adA|
j00[q0

ON
aur

XSd

ﬁ 00F

US 9,547,702 B2

Sheet 5 of 6

Jan. 17,2017

U.S. Patent

S IJld

Buluoniied Bulpuey J8UIBIUOY -
<d0oIQy|> Yul7uo Buluoniued ony Ny SETNT 100G JBUIEUOY BuljpueJo.i30sd VBIBYS |
Jussa.d aqg p|noys 1d1Iog qor
<S3AON3LNdNOD AIY¥D Ldv$> | Jejsweled VIN Y/N I9)JSE|\DJeUllID | souanbeg |-
I9joWeled ¢OONdD 1LY
[(,hunod ?ﬁ L) uonejouoosay | [uonoundl
108[9Q] SAIj08]jaU] JUBWIB)E)S 10988 WL ILNNOD VIN VIN sainses\A|le(JS | BuNOY 6.¢3L6}
+ 11037138
[0007 : ©NjeA Jua1na] QoL _ Buiwoou|” [eulnop gor
UBL] SS9] 50 10U PINOUS 9ZIS ABLIY 8ZIS Aely | J0j08UU0D DFdO0 ~aiv pdngq UoljeplleAeled|.00SIV oeJed 0E8E9
[0007 : 2n[eA Jua.LNnI] ; _
000¢ Ueyy ssejeqloupoys | Y | 10j0euu00 080 | ey p oo | UONEDIEABIEQLOOSIY | oo | 9€8EQ
(JUNOY PIOTBY) JUNOT) JILLLLOY P100SY SIV PAn 49d 9|[eled
§ASy -plepueispd se | 5 o J8WIOJSUES “leuinop” o)l o)L H°r
10U <J3)UNON> SWEU 9|qeLeA 968)S IWEN isuel] dl | [INdX 14dVS=IUM 00TV o|BIe. -
0
UOljejOUUY O ON | UChejouly VIN Y/N Oll4dVS=IUM 00TV Eﬂm Lm ; -
uondiiosag 'ON
UOI}E|OIA adA| adA] dWeN oWeN adA] Ul
UoIR|OIA obels obes 39300 J93(00 XSd

L oos

U.S. Patent Jan. 17,2017 Sheet 6 of 6 US 9,547,702 B2

102
COMPUTER
602
4
604
CPU £
MEMORY 514
/
608 PROGRAM CODE FOR
VALIDATION TOOL
606
/0 INTERFACE
S
610 612
COMPUTER DATA
/0 DEVICES STORAGE UNIT

rFiG. 6

US 9,547,702 B2

1

VALIDATING CODE OF AN EXTRACT,
TRANSFORM AND LOAD (ETL) TOOL

This application 1s a continuation application claiming
priority to Ser. No. 14/331,647 filed Jul. 15, 2014, now U.S.

Pat. No. 9,244,809, 1ssued Jan. 26, 2016.

TECHNICAL FIELD

The present invention relates to reviewing ETL code, and
more particularly to validating ETL code to accelerate
review ol ETL projects.

BACKGROUND

ETL projects involve complex logic and a large number of
jobs and other objects. For example, each project may
include 100 to 1000 jobs and other objects. Effective and
quality delivery demands disciplined coding. Software
developers drawing from different experiences may generate
undisciplined coding of low quality. Low quality code has
defects and experiences malfunctions, which leads to
increased cost and time requirements to rework the code to
fix the defects. In the long run, low quality code leads to a
lower client confidence in the developers™ ability to deliver
quality code, which impacts the reputation of the developers.
For any project, code quality standards are set before devel-
opment activities start. The standards specily how to name
objects, the best coding practices to be followed, etc. Low
quality code still results when developers do not comply
with the standards. Not complying with the standards may
result from various reasons, including the lack of experience
of a developer, the developer being unaware of the relevance
of a particular standard and its impact, and/or overlooking a
standard by mistake. Overlooking a standard 1s the most
common source of non-compliance with the standards
because 1t 1s easy for a developer to miss one of the hundreds
ol standards that may be set for a particular project. Known
techniques for addressing non-compliance with the stan-
dards are reviews (e.g., peer reviews, group reviews, etc.).
Reviews 1 ETL projects are mostly manual processes.
Manual reviews of hundreds of standards are time consum-
ing processes and can be difhicult to execute 1n ETL projects
with aggressive timelines. Even if manual reviews are done,
reviewers can make mistakes similar to the developers by
overlooking some of the standards. With only manual
reviews in place, it 1s diflicult to assure a 100% adherence to
standards and the quality of deliverables 1s always at risk.

BRIEF SUMMARY

In a first embodiment, the present mvention provides a
method of validating code for an extract, transtform and load
(ETL) tool. The method includes responsive to a receipt of
naming, coding, and performance standards for the code of
the ETL tool and an export of the code to a job definition file,
a computer parsing the code of the ETL tool in the job
definition file. The method further includes the computer
determining violations of the naming, coding, and perfor-
mance standards 1n part by determining the parsed code does
not match the naming, coding, and performance standards.

The method further includes the computer generating a
report which identifies the violations. The method further

includes, based at least 1n part on a review of the report and

a rework of the code to comply with the naming, coding and
performance standards and responsive to an export of the
reworked code to another job defimition file, the computer

5

10

15

20

25

30

35

40

45

50

55

60

65

2

parsing the reworked code in the other job definition file,
determining that the parsed reworked code does not include
the violations of the naming, coding and performance stan-
dards, and generating a second report that indicates that the
reworked code does not include the violations.

In a second embodiment, the present invention provides a
computer system including a central processing unit (CPU);
a memory coupled to the CPU; and a computer-readable
storage device coupled to the CPU. The storage device
includes instructions that are executed by the CPU wvia the
memory to implement a method of validating code for an
extract, transtform and load (ETL) tool. The method 1includes
responsive to a receipt of naming, coding, and performance
standards for the code of the E'TL tool and an export of the
code to a job definition file, the computer system parsing the
code of the ETL tool 1n the job definition file. The method
further includes the computer system determining violations
of the naming, coding, and performance standards in part by
determining the parsed code does not match the naming,
coding, and performance standards. The method further
includes the computer system generating a report which
identifies the violations. The method further includes, based
at least 1n part on a review of the report and a rework of the
code to comply with the naming, coding and performance
standards and responsive to an export of the reworked code
to another job definition file, the computer system parsing
the reworked code 1n the other job definition file, determin-
ing that the parsed reworked code does not include the
violations of the naming, coding and performance standards,
and generating a second report that indicates that the
reworked code does not include the violations.

In a third embodiment, the present invention provides a
computer program product including a computer-readable
storage device and a computer-readable program code stored
in the computer-readable storage device. The computer-
readable program code includes instructions that are
executed by a central processing unit (CPU) of a computer
system to implement a method of validating code for an
extract, transtform and load (ETL) tool. The method 1includes
responsive to a receipt of naming, coding, and performance
standards for the code of the ETL tool and an export of the
code to a job definition file, the computer system parsing the
code of the ETL tool 1n the job definition file. The method
includes the computer system determining violations of the
naming, coding, and performance standards in part by
determining the parsed code does not match the naming,
coding, and performance standards. The method further
includes the computer system generating a report which
identifies the violations. The method further includes, based
at least 1n part on a review of the report and a rework of the
code to comply with the naming, coding and performance
standards and responsive to an export of the reworked code
to another job definition file, the computer system parsing
the reworked code 1n the other job definition file, determin-
ing that the parsed reworked code does not include the
violations of the naming, coding and performance standards,
and generating a second report that indicates that the
reworked code does not include the violations.

Embodiments of the present mmvention provide a tool
named “Validation Script” that automatically validates ETL
code based on naming, coding, and performance standards
and reports violations of the standards, which facilitates
cllective review of the code 1n less time. The Validation
Script tool described herein facilitates the generation of high
quality, disciplined coding for an ETL tool, and traps most
code 1ssues before code 1s delivered from the development
environment, thereby decreasing costs mvolved in rework-

US 9,547,702 B2

3

ing code to fix code defects. The reporting of violations
includes indicators (e.g., red highlights of standards viola-
tions) that allow even non-technical managers to easily
monitor the quality of code of an ETL tool. The report also
lists configuration details of different objects 1n a catego-
rized and formatted manner, making the reports detailed and
exhaustive. The reports generated will even allow technical
experts (who do not have access to the code) to complete a
detailed review of the code. Embodiments of the present
invention provide processes for an automatic review and a
partially manual review of E'TL code. The automatic review
can provide a 100% savings on review ellorts and the
partially manual review can provide at least a 50-60%
savings on review ellorts.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system for validating code
of an ETL tool, in accordance with embodiments of the
present mvention.

FI1G. 2 1s a flowchart of a process of validating code of an
ETL tool, where the process 1s implemented 1n the system of
FIG. 1, 1in accordance with embodiments of the present
invention.

FIG. 3 depicts an exemplary portion of a report summa-
rizing violations of standards determined by the process of
FIG. 2, where the report 1s generated by the system of FIG.
1, in accordance with embodiments of the present invention.

FIG. 4 1s an exemplary portion of a report indicating
hardcoding violations determined by the process of FIG. 2,
where the report 1s generated by the system of FIG. 1, in
accordance with embodiments of the present invention.

FIG. 5 1s an exemplary portion of a report indicating
standards violations determined by the process of FIG. 2,
where the report 1s generated by the system of FIG. 1, in
accordance with embodiments of the present invention.

FIG. 6 1s a block diagram of a computer that 1s included
in the system of FIG. 1 and that implements the process of
FIG. 2, 1in accordance with embodiments of the present
invention.

DETAILED DESCRIPTION

Overview

Embodiments of the present invention provide automated
validation of code in an ETL tool, where the validation 1s
based on determinations of whether the code adheres to
predetermined naming, coding and performance standards.
The tool “Validation Script” 1s employed by ETL projects as
a review accelerator to determine whether objects developed
for the ETL projects adhere to standards and to generate a
well-formatted report that indicates which objects adhere to
the standards and which objects violate the standards. In one
embodiment, the E'TL tool that works with Validation Script
1s IBM® DataStage®, which 1s an ETL tool offered by
International Business Machines Corporation located 1in
Armonk, N.Y. IBM and DataStage are United States regis-
tered trademarks of International Business Machines Cor-
poration. Embodiments of the present invention also include
a unique “Release Process” with the method described
herein, giving a highly robust quality checkpoint for any
ETL project.
System for Validating Code of an ETL Tool

FIG. 1 1s a block diagram of a system 100 for validating
code of an ETL tool, 1n accordance with embodiments of the
present mvention. System 100 includes a computer 102,
which executes a software-based validation tool 104 (1.e.,

10

15

20

25

30

35

40

45

50

55

60

65

4

Validation Script), which 1s employed by projects using a
soltware-based ETL tool (not shown) that 1s executed by
computer 102. In one embodiment, validation tool 104 1s
employed by ETL projects using the DataStage® ETL tool.

Validation tool 104 receives ETL code 106 mn a job
definition file which specifies code and attributes of code
that includes jobs and other objects of an ETL project. In one
embodiment, the job definition file 1s a flat file 1n DataSt-
age® Export (DSX) format. Validation tool 104 retrieves
naming, coding, and performance standards which are stored
in a data store 108 and determines whether ETL code 106
complies with the standards.

The naming standards stored in data store 108 identify
valid names m an ETL project, including valid names for
10bs, sequences and other objects, parameters and parameter
sets, stage variables, and links 1n jobs and sequences. The
performance standards stored in data store 108 enforce (1)
limits on usage of expensive stages, including aggregators,
sort stages, and transformers; (2) limits on expensive opera-
tions, including inline sorting, repartitioning, database read/
write operations, and file read/write operations; (3) eflec-
tiveness of the performance of queries, including prohibiting
select * or select count(*) and enforcing eflicient array size
and commit count. Annotations standards stored in data
store 108 require jobs and sequences to be well annotated.
Partitioning-related standards stored in data store 108 pro-
hibit usage of auto partitioning. Parameter constraints con-
figured 1n validation tool 104 enforce certain parameters to
be present or not present on jobs, and enforce standards on
the default values specified for parameters. Job activity
parameter constraints configured 1n validation tool 104
enforce standards on values passed to jobs from a sequence
j0b. Other standards stored in data store 108 require: (1) file
paths begin with a root path defined at the project level, and
(2) surrogate keys are generated 1n Surrogate Key Generator
(SKG) stages and not in Transformer stages.

Validation tool 104 generates a validation report 110,
which includes at least: (1) a summary of a validation of
cach the jobs and other objects specified by ETL code 106,
(2) hardcoding present in the jobs and other objects specified
by ETL code 106, and (3) standards violations present in the
10bs and other objects specified by ETL code 106. Examples
of portions of validation report 110 that include the summary
of the validation, the hardcoding, and the standards viola-
tions are depicted in FI1G. 3, FIG. 4 and FIG. 5, respectively.

The atorementioned summary of the validation includes a
list of jobs and other objects specified by ETL code 106. The
list of jobs and other objects may be grouped 1nto categories,
such as parallel jobs, shared containers, sequence jobs,
routines, custom stages, parameter sets, table definitions,
etc. The summary includes object-specific information for
cach job or other object. The object-specific information
includes counts of violations for each object, including a
count of the number of instances of hardcoding 1n an object
and a count of the number of standards violations included
in the object. In one embodiment, the object-specific infor-
mation includes one or more of: a count of stages, a count
of parameters, a count of aggregators, a count of transform-
ers, a count of re-partitioning methods, a count of sorts, a
count of annotations, a count of database read/write opera-
tions, and a count of file read/write operations.

For example, for each parallel job, the object-specific
information includes: (1) date the object was modified, (2)
time the object was modified, (3) whether multiple mvoca-
tions of the same job can be run simultaneously, (4) whether
runtime column propagation (RCP) 1s enabled, (5) whether
an after job subroutine 1s present, (6) whether a before job

US 9,547,702 B2

S

subroutine 1s present, (7) stage count, (8) parameter count,
(9) aggregator count, (10) transformer count, (11) re-parti-
tioming count, (12) sort count, (13) annotation count, (14)
database read/write count, (15) file read/write count, (16)
hardcoding count, (17) standards violation count, and (18)

10b folder of the job.

Validation tool 104 determines whether the count of an
item specilied by the object-specific information exceeds a
predetermined threshold value stored 1n data store 108. If the
count exceeds the threshold value, validation report 110
includes a red colored background or other indicator for the
count to indicate a violation of standards stored 1n data store
108. Furthermore, if validation tool 104 determines that any
count ol an item of an object exceeds the corresponding
threshold value, then validation report 110 includes a red
colored background or other indicator for the name of the
object. If validation tool 104 determines that the counts of all
items for an object do not exceed the corresponding thresh-
old values, then validation report 110 depicts the object
without red colored background and any other indicator of
a violation to indicate that the object adheres to all naming,
coding, and performance standards stored 1n data store 108.
A reviewer studies validation report 110 to find which
objects have and which objects do not have a red colored
background or other indication of a standard violation. In
this way, the report gives a complete picture on the quality
of the code being delivered

For example, 1f validation tool 104 receives a threshold
value of zero for standards violations and determines that the
number of standards violations for object XY Z 1s four, then
validation report 110 includes the standards violation count
of four with a red background to indicate that four exceeds
the threshold value of zero, and includes the name “XYZ”
with a red background to indicate that there 1s at least one
violation associated with object XYZ. As another example,
if validation tool 104 receives a threshold value of one for
the transformer count and subsequently determines that
object XY Z includes two transformers, then validation tool
104 generates validation report 110 to include the count of
two transformers with a red background to indicate that
transformer count of two exceeds the threshold value of one.

The aforementioned hardcoding portion of validation
report 110 includes a list of all hardcoding present 1n the
ETL code 106, which includes a line number in the job
definition file (e.g., DSX line number), object type, object
name, stage name, error description, the string validation
tool 104 searched for in ETL code 106 to determine hard-
coding 1s present, and the line in the job defimition file (e.g.,
DSX line).

The aforementioned standards violation portion of vali-
dation report 110 includes a list of all violations of the
standards stored in data store 108, which includes object
name, object type, stage name, stage type, and type and
description of the wviolation. For a violation of a naming
standard, the list of violations includes the current, non-
compliant name of the object along with the expected name
of the object which complies with the naming standard.

Validation report 110 may also include one or more of: (1)
a list of parameters, defined on jobs and routines specified by
ETL code 106, (2) files used 1n parallel jobs specified by
ETL code 106, (3) queries 1n all the parallel jobs specified
by ETL code 106, (4) job activities 1n every sequence
specified by ETL code 106, (5) a list of after and before
subroutines of every parallel job specified by E'TL code 106,
(6) a list of details of email activities for every sequence
specified by ETL code 106, (7) a list of expressions from
transformers where direct mapping i1s not present, and (8)

10

15

20

25

30

35

40

45

50

55

60

65

6

10b change history. The list of these sheets will grow 1n next
versions ol the tool making review easier and complete.

In one embodiment, validation tool 104 (see FIG. 1) 1s
implemented as a multi-worksheet workbook of a spread-
sheet application program, such as Microsoft® Excel®
offered by Microsoft Corporation located i Redmond,
Wash. Microsoft and Excel are registered trademarks of
Microsolit Corporation 1n the United States and other coun-
tries.

The functionality of the components of FIG. 1 1s
described 1n more detail in the discussions presented below
relative to FIG. 2 and FIG. 6.

Process for Validating Code of an ETL Tool

FIG. 2 1s a flowchart of a process of validating code 106
(see FIG. 1) of an ETL tool, where the process 1s imple-
mented 1n the system of FIG. 1, in accordance with embodi-
ments of the present invention. The process of FIG. 2 starts
at step 200. Prior to step 202, computer 102 (see FIG. 1)
receives naming, coding, and performance standards for
ETL code 106 (see FI1G. 1) and stores the received standards
in data store 108 (see FIG. 1). The received ETL code 106
specifies job(s) and/or other object(s) of ETL project(s).
Hereinafter, in the discussion of FIG. 2, the received nam-
ing, coding, and performance standards are collectively
referred to as “the standards.”

In step 202, computer 102 (see FIG. 1) or another com-
puter (not shown) exports ETL code 106 (see FIG. 1) to job
definition file(s) (e.g., DSX file(s)). Validation tool 104 (see
FIG. 1) receives the exported ETL code 106 (see FIG. 1)
prior to step 204.

In step 204, validation tool 104 (see FIG. 1) parses the
ETL code 106 (see FIG. 1) and compares the parsed code
106 (see FIG. 1) to the standards to determine whether
portion(s) of the ETL code 106 (see FIG. 1) (1) match
character strings or regular expressions specified by the
standards, (2) indicate the usage of expensive stages and
operations 1 ETL code 106 (see FIG. 1) does not exceed
predetermined threshold values specified by the standards,
(3) indicate eflective performance of queries in ETL code
106 (see FIG. 1), and (4) indicate usage of auto partitioning,
in ETL code 106 (see FIG. 1). In one embodiment, in step
204, validation tool 104 (see FIG. 1) parses a DSX file into
which objects of an ETL project specified by the ETL code
106 (see FIG. 1) was exported.

The aforementioned match of character strings includes
(1) beginming characters of a name of an object matching a
predetermined string of characters or a regular expression to
indicate a violation of a naming standard, and (2) any
portion of ETL code 106 (see FIG. 1) matching a predeter-
mined string of characters (e.g., matching the string
“DWH_D”) or a regular expression to indicate an instance
of hardcoding. For example, determining that a dataset name
does not start with “DS_" indicates a naming standard
violation and determining that a portion of ETL code 106
(see FIG. 1) matches “DWH_D” indicates an instance of
hardcoding.

The aforementioned predetermined threshold values 1ndi-
cate limits on attributes of ETL code 106, where the attri-
butes are associated with the expensive stages and opera-
tions. For example, a predetermined threshold value of 1 for
an aggregator count means that determining that a job has
more than one aggregator indicates a performance standard
violation for the job.

The comparison to the standards to determine whether
portion(s) of ETL code 106 (see FIG. 1) indicate usage of
auto partitioning determines a standards violation 11 valida-
tion tool 104 (see FI1G. 1) determines that ETL code 106 (see

US 9,547,702 B2

7

FIG. 1) specifies an automatic selection of a partitioning
method for a link 1n ETL code 106 (see FIG. 1).

The comparison of the parsed code 106 (see FIG. 1) to the
standards also determine whether (1) file paths 1n ETL code
106 (see FIG. 1) begin with a root path defined at the project
level, (2) surrogate keys 1n ETL code 106 (see FIG. 1) are
generated only 1n SKG stages, (3) parameter(s) in a {irst
predetermined set of parameter(s) are present 1 a job
specified by ETL code 106 (see FIG. 1), (4) parameter(s) 1n
a second predetermined set of parameter(s) are not present
in a job specified by ETL code 106 (see FIG. 1), and (6) a
10b specified by ETL code 106 (see FIG. 1) 1s annotated in
a field that describes the job.

In step 206, validation tool 104 (see FIG. 1) determines
violation(s) in which job(s) and/or other object(s) of the
parsed ETL code 106 (see FIG. 1) do not comply with the
standards based 1 part on the comparison in step 204
determining that portion(s) of ETL code 106 (see FI1G. 1) (1)
do not match character strings or regular expressions speci-
fied by the standards, (2) indicate the usage of expensive
stages and operations in ETL code 106 (see FIG. 1) exceeds
the predetermined threshold values specified by the stan-
dards, (3) indicate 1netfective performance of the queries 1n
ETL code 106 (see FIG. 1), and/or (4) indicate ineflective
usage of partitioning 1 E'TL code 106 (see FIG. 1).

In one embodiment, the violation(s) determined 1n step
206 are also based in part on validation tool 104 (see FIG.
1) determining (1) a file path 1n ETL code 106 (see FIG. 1)
does not begin with a root path defined at the project level,
(2) a surrogate key in ETL code 106 (see FIG. 1) 1s generated
in a transformer stage or another stage other than an SKG
stage, (3) parameter(s) n the first predetermined set of
parameter(s) are present 1n a job specified by ETL code 106
(see FIG. 1), (4) parameter(s) in the second predetermined
set of parameter(s) are not present 1n the job, (5) the job 1s
not annotated 1n a field that describes the job, (6) the field
that describes the job does not include a value specified by
a job annotation standard, (7) the field that describes the job
does not mclude a name of the job, (8) a job activity 1n a
sequence specified by ETL code 106 (see FIG. 1) does not
pass a value specified by a job activity parameter standard,
(9) an add checkpoints feature 1s not enabled for the
sequence, where the add checkpoints feature allows jobs 1n
the sequence to be restartable after a failure of the jobs, (10)
a handle activities that fail feature 1s not enabled for the
sequence, where the handle activities that fail feature allows
an activity of a failing job 1n the sequence to be handled by
triggering automatically inserted code that branches to an
error handling point, (11) a log job errors feature 1s not
enabled for the sequence, where the log job errors feature
allows a message to be logged about a job whose run ends
with a warning or fatal error, (12) a log job reports feature
1s not enabled for the sequence, where the log job reports
teature allows a status report to be logged after a run of the
10b, and/or (13) a reset if required then run feature i1s not
enabled for the sequence, where the reset if required then run
teature allows the job to be run each time the sequence 1s
run, even aiter a run of the sequence 1s aborted.

In one embodiment, the violation(s) determined in step
206 are also based 1n part on validation tool 104 (see FIG.
1) determining that (1) a count of the number of aggregator
stages of a job specified by ETL code 106 (see FIG. 1)
exceeds a predetermined maximum number of aggregator
stages, (2) a count of the number of transformer stages of the
10b exceeds a predetermined maximum number of trans-
former stages, (3) a count of the number of occurrences of
re-partitioning of data sets in the job exceeds a predeter-

10

15

20

25

30

35

40

45

50

55

60

65

8

mined maximum number of occurrences of re-partitioning,
of data sets, (4) a count of the number of sort stages in the
10b exceeds a predetermined maximum number of sort
stages, (5) a count of the number of database read/write
operations 1n the job exceeds a predetermined maximum
number of database read/write operations, (6) a count of a
number of sequential file read/write operations 1n the job
exceeds a predetermined maximum number of sequential
file read/write operations, (7) a ratio of a number of stages
of the job to a number of stages of the job that are annotated
1s less than a predetermined minimum ratio of the number of
stages to the number of stages that are annotated, (8) a size
of a transaction for an insert, update, or delete operation of
the job 1s less than a predetermined minimum size of the
transaction, and/or (9) a size of an array employed for the
insert, update, or delete operation of the job 1s less than a
predetermined mimmum size ol the array. Validation tool
104 (see F1G. 1) recerves the predetermined maximums and
minimums described in this paragraph 1n 1tems (1)-(9) prior
to step 206.

In step 208, for each violation determined 1n step 206,
validation tool 104 (see FIG. 1) determines attributes of the
violation, including a corresponding job or object name,
stage name, stage type, violation type and description of the
violation.

In step 210, validation tool 104 (see FIG. 1) generates
validation report 110 (see FIG. 1), which identifies one or
both of the following items: (1) object(s) of ETL code 106
(see FIG. 1) that violate the standards and (2) other object(s)
of ETL code 106 (see FIG. 1) that comply with the stan-
dards. The violation(s) of the standards included in valida-
tion report 110 (see FIG. 1) are determined in step 206.
Subsequent to generating validation report 110 (see FIG. 1),
validation tool 104 (see FI1G. 1) sends validation report 110
(see FIG. 1) to designer(s) for their review. In one embodi-
ment, validation report 110 (see FIG. 1) 1s 1n a spreadsheet
format.

In step 212, designer(s) determine whether their review of
the validation report 110 (see FIG. 1) 1dentifies 1ssue(s) in
the ETL code 106 (see FIG. 1) that need to be corrected or
otherwise addressed. Identifying issue(s) in the ETL code
106 (see FI1G. 1) 1n the review includes determining whether
validation report 110 (see FIG. 1) includes a red colored
background (or another predetermined visual indicator of a
violation of a standard) for the name(s) of object(s) listed in
validation report 110 (see FIG. 1) and/or for attribute(s) of
cach of the object(s) which are listed 1n validation report 110
(see F1G. 1). An attribute of an object that has the red colored
background or other predetermined visual indicator indi-
cates that the attribute causes the comparison 1n step 204 to
determine a violation of the standards. In one embodiment,
the review also includes the partially manual and partially
automated review described 1n the section presented below
entitled “Partially Manual Review.” For example, reviewers
g0 through a “Queries” sheet 1n validation report 110 (see
FIG. 1) to find all the quenies used in the ETL code and to
check to see 1f all the queries have the right clauses.

If none of the objects 1n validation report 110 (see FIG. 1)
includes the red colored background or other predetermined
visual indicator of a standards violation, then ETL code 106
(see FIG. 1) does not have any 1ssue(s) that require correc-
tion. If the designer(s)' review 1dentifies no 1ssue(s) with the
ETL code 106 (see FIG. 1) by determining that no objects
listed 1n validation report 110 (see FIG. 1) have any attribute
with the red colored background or other visual indicator of
a standards violation, then the No branch of step 212 1s taken
and step 214 1s performed.

US 9,547,702 B2

9

In an alternate embodiment, 1f none of the objects in
validation report 110 (see FIG. 1) includes the visual indi-
cator ol a standards violation and 1f the partially manual
review does not find any issues with the additional infor-
mation in validation report 110 (see FIG. 1), as described
below 1n the Partially Manual Review section, then ETL
code 106 (see FIG. 1) does not have any 1ssues that require
correction, the No branch of step 212 1s taken and step 214
1s performed.

In step 214, based on validation report 110 (see FIG. 1)
not having any indicator of standard violations as deter-
mined by the designer(s) review, the designer(s) formally
approve the ETL code 106 (see FIG. 1). Subsequent to step
214 and prior to step 216, validation tool 104 (see FIG. 1)

receives an 1ndication of the approval of the ETL code 106

(see FIG. 1).

In an alternative embodiment, in step 214, based on
validation report 110 (see FIG. 1) not having any indicator
of standard violations as determined by the designer(s)'
review and the partially manual review not finding any

issues with the additional information 1 validation report
110 (see FIG. 1), as described below 1n the Partially Manual
Review section, the designer(s) formally approve the E'TL
code 106 (see FIG. 1).

In step 216, job definition file(s) (e.g., file 1n DSX format)
specifying the ETL code 106 (see FIG. 1) 1s imported to
computer 102 (see FIG. 1) or another computer (not shown)
in a Quality Assurance (QA) environment.

Prior to step 218, computer 102 (see FIG. 1) or another
computer (not shown) attempts to run the ETL code 106 (see
FIG. 1) end-to-end and the results are reviewed by experts
in the QA environment. In step 218, 11 the review 1n the QA
environment 1dentifies no 1ssue(s) with the ETL code 106
(see FI1G. 1) by a review of the results of the end-to-end run,
then the No branch of step 218 1s taken and step 220 1s
performed.

In step 220, computer 102 (see FIG. 1) generates release
notes associated with the E'TL code 106 (see FIG. 1) and
releases the ETL code 106 (see FIG. 1) and the release notes.
Following step 220, the process of FIG. 2 ends at step 222.

Returning to step 218, if the review 1n the QA environ-
ment 1dentifies 1ssue(s) with the ETL code 106 (see FIG. 1)
that need to be corrected or otherwise addressed, then the
Yes branch of step 218 1s taken and step 224 1s performed.
In step 224, the designer(s) rework the ETL code 106 (see
FIG. 1) in the development environment to correct the

1ssue(s) and the process loops back to step 202 to export the
reworked ETL code 106 (see FIG. 1) to job defimition file(s).

In the subsequent 1teration of steps 202, 204, 206, 208, 210,
212, and 214, the ETL code 106 (see FI1G. 1) 1s replaced with
the reworked E'TL code 106 (see FIG. 1) resulting from the
most recent performance of step 224.

Returning to step 212, if the designer(s)' review 1dentifies
1ssue(s) with the ETL code 106 (see FIG. 1) that need to be
corrected or otherwise addressed, then the Yes branch of step
212 1s taken and step 224 1s performed. In step 224 following
the Yes branch of step 212, the designer(s) rework the ETL
code 106 (see FIG. 1) mn the development environment to
correct the 1dentified 1ssue(s) and the process loops back to
step 202 to export the reworked ETL code 106 (see FIG. 1)

to job definition file(s). In the subsequent iteration of steps
202, 204, 206, 208, 210, and 212 (and step 214 if the No

branch of step 212 i1s taken 1n the subsequent iteration), the

ETL code 106 (see FIG. 1) 1s replaced with the reworked
ETL code 106 (see FIG. 1) resulting from the most recent
performance of step 224.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an alternate embodiment, returning to step 212, 1f (1)
the designer(s)' review 1dentifies 1ssue(s) with the ETL code
106 (see FIG. 1) based on standard violation indicators 1n
validation report 110 (see FIG. 1), or if the partially manual
review linds issue(s) with the additional information in
validation report 110 (see FI1G. 1), as described below 1n the
Partially Manual Review section, then the Yes branch of step
212 1s taken and step 224 1s performed. In step 224 following
the Yes branch of step 212, the designer(s) rework the ETL
code 106 (see FIG. 1) in the development environment to
correct the 1dentified 1ssue(s) and the process loops back to
step 202 to export the reworked ETL code 106 (see FIG. 1)
to job definition file(s). In the subsequent iteration of steps
202, 204, 206, 208, 210, and 212 (and step 214 1f the No
branch of step 212 1s taken 1n the subsequent iteration), the
ETL code 106 (see FIG. 1) 1s replaced with the reworked
ETL code 106 (see FIG. 1) resulting from the most recent
performance of step 224.

Partially Manual Review

In one embodiment, the review 1n step 212 (see FIG. 2)
includes a partially manual review that uses additional
information included in validation report 110 (see FIG. 1).
The partially manual review checks (1) parameters from all
objects (1.e., all jobs, sequences and routines) specified by
ETL code 106 (see FIG. 1), (2) file names referred to 1n
different jobs from all kinds of file stages, (3) queries from
all database stages, (4) parameters passed to job activities 1n
different sequences, (5) job subroutines, (6) format of emails
from all mail activities, including the body of the email and
attachment(s) to the email, (7) all expressions from trans-
formers including stage varniables, output links, and loop
variables, and (8) job full description along with the last
modified timestamp of the job, which helps to vernify job
history. The aforementioned checks (1)-(8) are described
below.

In the check of the parameters from all objects specified
by ETL code 106, a reviewer views a list of parameters
defined on jobs, sequences and routines, along with the type
of parameter and the default value set, to (1) verily consis-
tency in naming ol similar parameters across E'TL projects,
(2) 1dentily redundant parameters, (3) verily type of param-
cters and default values, and (4) verily parameters defined
on routines.

In the check of the file names referred to 1n different jobs
from all kinds of {ile stages, a reviewer views a list of all the
different files used in parallel jobs specified by E'TL code
106 (see FI1G. 1), along with a type of the file (1.e., sequen-
tial, dataset, file set, lookup file set, or surrogate key state
file), whether each instance 1s a read or write operation, and
whether each mstance 1s a SKG state file, to (1) check 11 all
the files read are written somewhere in the system, (2)
identily typographical errors in file names, and (3) during
debugging, identily where a file 1s written or read 1nstead of
traversing through sequences.

In the check of queries from all database stages, a
reviewer views a list of queries from all the parallel jobs
specified by ETL code 106 (see FIG. 1), along with query
types (e.g., belore query or after query), write mode (e.g.,
isert, update, or read), and table action (e.g., append or
truncate), to (1) verily that each query has proper clauses
and structure, (2) check if quernies are performance eflective,
(3) check 11 the write mode 1s “append,” “truncate,” etc. at
approprate places, and (4) check 11 update queries have only
primary keys in the “where” clause.

In the check of parameters passed to job activities in
different sequences, a reviewer views a list of all job
activities 1 every sequence specified by ETL code 106 (see

US 9,547,702 B2

11

FIG. 1), along with corresponding job names, all parameters
of every job activity listed separately together with the
values passed, and flags indicating whether the values are
directly passed from the sequence parameters to (1) check if
appropriate values are passed for parameters in each job
activity, (2) validate the values passed when the flag is
“false” (1.e., value 1s not directly passed from the parameter)
to facilitate detection of any hardcoded values that are
passed to the job, and (3) determine which sequence(s) are
invoking a particular job.

In the check of job subroutines, a reviewer views a list of
alter subroutines and before subroutines for every parallel
j0b specified by E'TL code 106 (see FIG. 1) to check if the
correct subroutines are invoked 1n each job and to facilitate
a review ol routines of a significant number (e.g., hundreds)
ol jobs.

In the check of the format of emails from all mail
activities, a reviewer views the subject, sender address,
recipient list, attachments, and body of each mail activity to
(1) check for proper structure of the message in the email
body, (2) check for accuracy of the subject, (3) check
whether attachments are present in cases where attachments
are expected and whether the attachments refer to the
approprate files, (4) check whether the sender and recipient
list are as expected, and (5) check that only mails that
indicate an aborted job have a job report indicated.

In the check of all expressions from transformers 1nclud-
ing stage variables, output links, and loop variables, a
reviewer views expressions from transformers whenever a
direct mapping 1s not present, along with expressions of
links, stage variables and loop variables to (1) check the
accuracy of the expressions, (2) check for performance
ellectiveness of the expressions, and (3) verifying that the
correct parameters are passed when parallel routines are
being mnvoked.

In the check of job full description, a reviewer views a list
of the job full descriptions of every job along with the
timestamp of the last modification of the job to (1) verily
that job change history 1s present, (2) use the date modified
to verily that a history log 1s present for the latest change,

and (3) check whether the change description 1s accurate,
meaningful, and properly structured.

EXAMPLES

FIG. 3 depicts an exemplary portion 300 of validation
report 110 (see FIG. 1) summarizing violations of standards
determined by the process of FIG. 2, where the report 1s
generated by the system of FIG. 1, in accordance with
embodiments of the present mnvention. Portion 300 includes
a section 302 including a list of parallel jobs and a section
304 including a list of sequence jobs, which are determined
by validation tool 104 (see FIG. 1).

Section 302 includes object-specific information for each
j0b, including a job name, aggregator count, transformer
count, re-partitioning count, sort count, annotation count,
database read/write count, file read/write count, hardcoding
count (1.e., count of the number of instances of hardcoding
for each job), and standards violation count.

For example, for the second row of data 1n section 302,
the job name 1s AIEO01 WriteSAPFile, the aggregator count
1s 8, the transformer count 1s 6, the re-partitioning count 1s
6, the sort count 1s 7, the annotation count ratio 1s 22, the
database read/write count 1s 3, the file read/write count 1s 3,
the hardcoding count 1s O, and the standards violation count

1s 59.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Although not shown in FIG. 3, an indicator of a red
colored background 1s present for the items that exceed
corresponding threshold values. For example, in the second
row of data 1n section 302, the aggregator count, transformer
count, re-partitioning count, sort count, annotation count
ratio, and standards violation count exceed predetermined
thresholds of 1, 1, 1, 1, 2, and O, respectively. Therefore,
cach of the aggregator count, transformer count, re-parti-
tioning count, sort count, annotation count ratio, and stan-
dards wviolation count has a red colored background to
indicate a standards violation. Furthermore, the job name of

AIE001WriteSAPFile has a red colored background to indi-

cate the job has at least one standards violation and/or at
least one hardcoding violation.

FIG. 4 1s an exemplary portion 400 of validation report
110 (see FIG. 1) indicating hardcoding violations deter-
mined by the process of FI1G. 2, where the report 1s generated
by the system of FIG. 1, 1n accordance with embodiments of
the present invention. Portion 400 includes a list of hard-
coding violations determined by validation tool 104 (see
FIG. 1), where each hardcoding violation 1s i1dentified by
DSX line number, object type, object name, stage name,
error description, string looked for, and DSX line.

For example, the first row of data 1n portion 400 indicates
that for a parallel job having the name ATL201F1ileReceipt,
validation tool 104 (see FIG. 1) detects a database hardcod-
ing violation because validation tool 104 (see FIG. 1) finds
the string SOL2DEYV (see the string 1n the String L.ooked For
column 1n portion 400) 1 a DSX line of the parallel job
ATL201FIleReceipt. A portion of the DSX line that includes
“sol2dev” 1s shown 1 the DSX Line column i FIG. 4.
Regarding the second row of data in portion 400, although
the DWH_D string 1in the String Looked For column 1s not
shown 1n the portion of the DSX line included 1n the DSX
Line column, validation tool 104 (see FIG. 1) finds the string
DWH_D 1n a search of the entire DSX line, thereby detect-
ing a hardcoding violation.

FIG. 5 1s an exemplary portion 500 of validation report
110 (see FIG. 1) indicating standards violations determined
by the process of FIG. 2, where the report 1s generated by the
system of FIG. 1, in accordance with embodiments of the
present invention. Portion 500 includes a list of standards
violations determined by validation tool 104 (see FIG. 1).
Each violation 1n the list of standards violations 1ncludes a
DSX line number, object type, object name, stage name,
stage type, violation type and violation description.

For example, the first row of data 1n portion 500 indicates
that for the parallel job AIE001 WriteSAPFile, validation
tool 104 (see FIG. 1) determines an annotation violation
because there 1s no job annotation for AIEO01 WriteSAPFile.
Computer System

FIG. 6 15 a block diagram of a computer that 1s included
in the system of FIG. 1 and that implements the process of
FIG. 2, 1in accordance with embodiments of the present
invention. Computer 102 1s a computer system or mobile
computing device that generally includes a central process-
ing unit (CPU) 602, a memory 604, an mput/output (I/0)
interface 606, and a bus 608. Further, computer 102 1is
coupled to I/O devices 610 and a computer data storage unit
612. CPU 602 performs computation and control functions
of computer 102, including carrying out instructions
included in program code 614 to perform a method of
validating code of an E'TL tool, where the instructions are
carried out by CPU 602 via memory 604. CPU 602 may
include a single processing unit, or be distributed across one
Or more processing units i one or more locations (e.g., on

US 9,547,702 B2

13

a chient and server). Program code 614 includes program
code for validation tool 104 (see FIG. 1).

Memory 604 includes a known computer readable storage
medium, which 1s described below. In one embodiment,
cache memory elements of memory 604 provide temporary
storage of at least some program code (e.g., program code
614) in order to reduce the number of times code must be
retrieved from bulk storage while instructions of the pro-
gram code are carried out. Moreover, similar to CPU 602,
memory 604 may reside at a single physical location,
including one or more types of data storage, or be distributed
across a plurality of physical systems in various forms.
Further, memory 604 can include data distributed across, for
example, a local area network (LAN) or a wide area network
(WAN).

I/O 1interface 606 includes any system for exchanging
information to or from an external source. I/O devices 610
include any known type of external device, including a
display device, keyboard, etc. Bus 608 provides a commu-
nication link between each of the components in computer
102, and may include any type of transmission link, includ-
ing electrical, optical, wireless, efc.

I/O 1nterface 606 also allows computer 102 to store
information (e.g., data or program instructions such as
program code 614) on and retrieve the information from
computer data storage unit 612 or another computer data
storage unit (not shown). Computer data storage unit 612
includes a known computer-readable storage medium,
which 1s described below. In one embodiment, computer
data storage unit 612 1s a non-volatile data storage device,
such as a magnetic disk drive (1.e., hard disk drive) or an
optical disc drive (e.g., a CD-ROM drive which receives a
CD-ROM disk).

Memory 604 and/or storage unit 612 may store computer
program code 614 that includes instructions that are carrled
out by CPU 602 via memory 604 to validate code of an E'TL
tool. Although FIG. 6 depicts memory 604 as including
program code 614, the present invention contemplates
embodiments in which memory 604 does not include all of
code 614 simultaneously, but instead at one time includes
only a portion of code 614.

Further, memory 604 includes an operating system (not
shown) and may include other systems not shown 1n FIG. 6.

Storage unit 612 and/or one or more other computer data
storage units (not shown) that are coupled to computer 102
may include data store 108 (see FIG. 1).

As will be appreciated by one skilled 1n the art, in a first
embodiment, the present mvention may be a system; 1n a
second embodiment, the present invention may be a method;
and 1n a third embodiment, the present invention may be a
computer program product.

Any of the components of an embodiment of the present
invention can be deployed, managed, serviced, etc. by a
service provider that offers to deploy or integrate computing
inirastructure with respect to validating code of an ETL tool.
Thus, an embodiment of the present mnvention discloses a
process Ior supporting computer infrastructure, where the
process mncludes providing at least one support service for at
least one of integrating, hosting, maintaining and deploying
computer-readable code (e.g., program code 614) 1n a com-
puter system (e.g., computer 102) including one or more
processors (e.g., CPU 602), wherein the processor(s) carry
out instructions contained in the code causing the computer
system to validate code of an ETL tool. Another embodi-
ment discloses a process for supporting computer inirastruc-
ture, where the process imncludes integrating computer-read-
able program code mto a computer system including a

10

15

20

25

30

35

40

45

50

55

60

65

14

processor. The step of integrating includes storing the pro-
gram code 1n a computer-readable storage device of the
computer system through use of the processor. The program
code, upon being executed by the processor, implements a
method of validating code of an E'TL tool.

While 1t 1s understood that program code 614 for validat-
ing code of an ETL tool may be deployed by manually
loading directly in client, server and proxy computers (not
shown) via loading a computer-readable storage medium
(e.g., computer data storage unit 612), program code 614
may also be automatically or semi-automatically deployed
into computer 102 by sending program code 614 to a central
server or a group of central servers. Program code 614 1s
then downloaded into client computers (e.g., computer 102)
that will execute program code 614. Alternatively, program
code 614 1s sent directly to the client computer via e-mail.
Program code 614 is then either detached to a directory on
the client computer or loaded into a directory on the client
computer by a button on the e-mail that executes a program
that detaches program code 614 into a directory. Another
alternative 1s to send program code 614 directly to a direc-
tory on the client computer hard drive. In a case in which
there are proxy servers, the process selects the proxy server
code, determines on which computers to place the proxy
servers’ code, transmits the proxy server code, and then
installs the proxy server code on the proxy computer.
Program code 614 1s transmitted to the proxy server and then
it 1s stored on the proxy server.

Another embodiment of the invention provides a method
that performs the process steps on a subscription, advertising
and/or fee basis. That 1s, a service provider, such as a
Solution Integrator, can offer to create, maintain, support,
etc. a process of validating code of an E'TL tool. In this case,
the service provider can create, maintain, support, etc. a
computer inirastructure that performs the process steps for
one or more customers. In return, the service provider can
receive payment from the customer(s) under a subscription
and/or fee agreement, and/or the service provider can
receive payment from the sale of advertising content to one
or more third parties.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) (memory 604 and computer data storage unit 612)
having computer readable program instructions 614 thereon
for causing a processor (e.g., CPU 602) to carry out aspects
of the present invention.

The computer readable storage medium (1.e., computer
readable storage device) can be a tangible device that can
retain and store instructions (e.g., program code 614) for use
by an instruction execution device. The computer readable
storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium and a computer

US 9,547,702 B2

15

readable storage device, as used herein, are not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
clectromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions (e.g., program
code 614) described herein can be downloaded to respective
computing/processing devices (e.g., computer 102) from a
computer readable storage medium or to an external com-
puter or external storage device (e.g., computer data storage
unit 612) via a network (not shown), for example, the
Internet, a local area network, a wide area network and/or a
wireless network. The network may comprise copper trans-
mission cables, optical transmission fibers, wireless trans-
mission, routers, firewalls, switches, gateway computers
and/or edge servers. A network adapter card (not shown) or
network interface (not shown) in each computing/processing,
device receives computer readable program instructions
from the network and forwards the computer readable
program 1nstructions for storage in a computer readable
storage medium within the respective computing/processing
device.

Computer readable program instructions (e.g., program
code 614) for carrying out operations of the present inven-
tion may be assembler 1nstructions, mstruction-set-architec-
ture (ISA) 1nstructions, machine instructions, machine
dependent 1nstructions, microcode, firmware instructions,
state-setting data, or either source code or object code
written 1n any combination of one or more programming,
languages, icluding an object oriented programming lan-
guage such as Smalltalk, C++ or the like, and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations (e.g., FIG. 2) and/or
block diagrams (e.g., FIG. 1 and FIG. 6) of methods,
apparatus (systems), and computer program products
according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions (e.g.,
program code 614).

These computer readable program instructions may be
provided to a processor (e.g., CPU 602) of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus (e.g., computer 102) to produce a
machine, such that the instructions, which execute via the

10

15

20

25

30

35

40

45

50

55

60

65

16

processor ol the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified 1n the tlowchart and/or block dia-
gram block or blocks. These computer readable program
istructions may also be stored in a computer readable
storage medium (e.g., computer data storage unit 612) that
can direct a computer, a programmable data processing
apparatus, and/or other devices to function 1n a particular
manner, such that the computer readable storage medium
having instructions stored therein comprises an article of
manufacture 1ncluding instructions which 1mplement
aspects of the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer readable program instructions (e.g., pro-
gram code 614) may also be loaded onto a computer (e.g.
computer 102), other programmable data processing appa-
ratus, or other device to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mnstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tflow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, i fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

While embodiments of the present invention have been
described herein for purposes of illustration, many modifi-
cations and changes will become apparent to those skilled 1n
the art. Accordingly, the appended claims are intended to
encompass all such modifications and changes as fall within
the true spirit and scope of this invention.

What 1s claimed 1s:

1. A method of validating code of an extract, transform
and load (ETL) tool, the method comprising the steps of:

responsive to a receipt of naming, coding, and perfor-

mance standards for the code of the E'TL tool and an
export of the code of the ETL tool to a job definition
file, a computer parsing the code of the ETL tool 1n the
j0b definition file;

the computer determining violations of the naming, cod-

ing, and performance standards 1n part by determining
the parsed code of the E'TL tool does not match the
naming, coding, and performance standards;

the computer generating a report which identifies the

violations:

based at least 1in part on a review of the report and a

rework of the code of the ETL tool to comply with the
naming, coding and performance standards and respon-
sive to an export of the reworked code of the ETL tool

US 9,547,702 B2

17

to another job definition file, the computer parsing the
reworked code of the ETL tool 1n the other job defi-
nition file, determining that the parsed reworked code
of the ETL tool does not include the violations of the
naming, coding and performance standards, and gen-
crating a second report that indicates that the reworked
code of the ETL tool does not include the violations:

the computer receiving maximum numbers of aggregator
stages of a job included 1n the code of the E'TL tool,
transformer stages of the job, occurrences of reparti-
tioning ol data sets in the job, sort stages of the job,
database read/write operations of the job, and sequen-
tial file read/write operations of the job;

the computer receiving a minimum ratio ol a number of
stages of the job to a number of stages of the job that

are annotated;

the computer recerving minimum sizes of a transaction for
any 1sert, update or delete operation of the job and an
array employed for any insert, update or delete opera-
tion of the job; and

based on aggregator stages ol the job exceeding the
maximum number of aggregator stages, transformer
stages of the job exceeding the maximum number of
transformer stages of the job, occurrences of reparti-
tioning of data sets 1n the job exceeding the maximum
number of occurrences of repartitioning of data sets 1n
the job, sort stages of the job exceeding the maximum
number of sort stages, database read/write operations of
the job exceeding the maximum number of database
read/write operations, sequential file read/write opera-
tions of the job exceeding the maximum number of
sequential file read/write operations, a ratio of the
number of stages of the job to the number of stages of
the job that are annotated being less than the minimum
ratio of the number of stages to the number of stages
that are annotated, a size of a transaction for an insert,
update or delete operation of the job being less than the
minimum size of the transaction, or a size of an array
employed for an insert, update or delete operation of
the job being less than the minimum size of the array,
the computer determining a violation of a performance
standard included in the naming, coding, and perfor-
mance standards.

2. The method of claim 1, further comprising the steps of:

the computer sending the other job definition file of the
approved reworked code of the ETL tool to a quality
assurance (QA) environment;

in response to a second rework of the code of the ETL tool
based on the other job definition, the computer export-
ing the code of the E'TL tool resulting from the second
rework to yet another job defimition file, parsing the
code of the ETL tool resulting from the second rework,
determining that the code of the ETL tool resulting
from the second rework does not include the violations
of the naming, coding and performance standards,
generating a third report that indicates that the code of
the ETL tool resulting from the second rework does not
include the violations, recerving an approval of the
code of the ETL tool resulting from the second rework,
and sending a job definition file of the approved code
of the ETL tool resulting from the second rework to the
QA environment;

the computer receiving an indication of a successiul
end-to-end run of the ETL tool based on the approved
code of the ETL tool resulting from the second rework;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

based on the recerved indication of the successiul end-
to-end run of the ETL tool, the computer generating
release notes for the approved code of the ETL tool
resulting from the second rework.

3. The method of claim 1, further comprising the steps of:

the computer determining the code of the ETL tool
matches a regular expression specified by a coding
standard 1ncluded 1n the naming, coding, and perfor-
mance standards; and

based on the code of the ETL tool matching the regular
expression, the computer determining the code of the

ETL tool includes hardcoding, wherein the step of
generating the report includes generating the report
which i1dentifies the hardcoding, wherein the step of
generating the second report 1s based in part on a
rework of the code of the ETL tool to eliminate the
hardcoding, and wherein the second report indicates the
reworked code of the ETL tool does not include the
hardcoding.

4. The method of claim 1, further comprising the steps of:

the computer determining a name of an object included 1n
the code of the ETL tool:;

the computer determining a naming standard of the object
includes a regular expression or a sequence of charac-
ters that 1s not a regular expression, the naming stan-
dard included 1n the naming, coding, and performance
standards:

11 the naming standard of the object includes a regular
expression, the computer determining a name of the
object does not match the regular expression, or 1if the
naming standard of the object includes the sequence of
characters, the computer determining the name of the
object does not begin with the sequence of characters;
and

based on the name of the object not matching the regular
expression or not beginning with the sequence of
characters, the computer determining a violation of the
naming standard, which 1s included 1n the violations of
the naming, coding, and performance standards.

5. The method of claim 1, further comprising the step of

the computer determining job names, stage names, stage
types, violation types, and descriptions of the violations,
wherein the step of generating the report includes generating
the report to include the job names, stage names, stage types,
violation types and descriptions of the violations.

6. The method of claim 1, further comprising the step of:
providing at least one support service for at least one of
creating, integrating, hosting, maintaining, and deploy-
ing computer-readable program code in the computer
system, the program code being executed by a proces-
sor of the computer system to implement the steps of
parsing the code of the ETL tool, determining the
violations, generating the report, parsing the reworked
code of the ETL tool, determining that the parsed
reworked code of the E'TL tool does not include the
violations, generating the second report, receiving the
maximum numbers of the aggregator stages of the job,
the transformer stages of the job, the occurrences of the
repartitioning of the data sets, the sort stages of the job,
the database read/write operations, and the sequential
file read/write operations, recerving the minimum ratio
of the number of stages of the job to the number of
stages of the job that are annotated, receiving the
minimum sizes of the transaction for any insert, update
or delete operation of the job and the array employed
for any insert, update or delete operation of the job, and
determining the violation of the performance standard.

US 9,547,702 B2

19

7. A computer system comprising:

a central processing unit (CPU);

a memory coupled to the CPU; and

a computer-readable storage device coupled to the CPU,

the storage device containing instructions that are
executed by the CPU wvia the memory to implement a
method of validating code of an extract, transform and
load (ETL) tool, the method comprising the steps of:

responsive to a receipt of naming, coding, and pertfor-

mance standards for the code of the ETL tool and an

export of the code of the E'TL tool to a job definition

file, the computer system parsing the code of the

ETL tool 1n the job definition file;

the computer system determiming violations of the
naming, coding, and performance standards in part
by determining the parsed code of the E'TL tool does
not match the naming, coding, and performance
standards:

the computer system generating a report which 1denti-
fies the violations;

based at least in part on a review of the report and a
rework of the code of the ETL tool to comply with
the naming, coding and performance standards and
responsive to an export of the reworked code of the

ETL tool to another job definition file, the computer

system parsing the reworked code of the ETL tool 1n

the other job defimition file, determining that the

parsed reworked code of the ETL tool does not

include the violations of the naming, coding and

performance standards, and generating a second

report that indicates that the reworked code of the

ETL tool does not include the violations;

the computer system receiving maximum numbers of
aggregator stages of a job included 1n the code of the

ETL tool, transformer stages of the job, occurrences
of repartitioning of data sets 1n the job, sort stages of
the job, database read/write operations of the job,
and sequential file read/write operations of the job;

the computer system receiving a minimum ratio of a
number of stages of the job to a number of stages of
the job that are annotated;

the computer system receiving minimum sizes ol a
transaction for any insert, update or delete operation
of the job and an array employed for any insert,
update or delete operation of the job; and

based on aggregator stages of the job exceeding the
maximum number of aggregator stages, transformer
stages of the job exceeding the maximum number of
transformer stages of the job, occurrences of repar-
titioming of data sets 1n the job exceeding the maxi-
mum number of occurrences of repartitioning of data
sets 1n the job, sort stages of the job exceeding the
maximum number of sort stages, database read/write
operations of the job exceeding the maximum num-
ber of database read/write operations, sequential file
read/write operations of the job exceeding the maxi-
mum number of sequential file read/write operations,
a ratio of the number of stages of the job to the
number of stages of the job that are annotated being
less than the minimum ratio of the number of stages
to the number of stages that are annotated, a size of
a transaction for an 1nsert, update or delete operation
of the job being less than the mimmum size of the
transaction, or a size of an array employed for an
insert, update or delete operation of the job being less
than the minimum size of the array, the computer

20

system determining a violation of a performance
standard included in the naming, coding, and per-
formance standards.

8. The computer system of claim 7, wherein the method

> further comprises the steps of:

10

15

20

25

30

35

40

45

50

55

60

65

the computer system sending the other job defimition file

of the approved reworked code of the F'TL tool to a
quality assurance ((QA) environment;

in response to a second rework of the code of the E'TL tool

based on the other job definition, the computer system
exporting the code of the ETL tool resulting from the
second rework to yet another job definition file, parsing,
the code of the ETL tool resulting from the second
rework, determining that the code of the ETL tool
resulting from the second rework does not include the
violations of the naming, coding and performance
standards, generating a third report that indicates that
the code of the ETL tool resulting from the second
rework does not include the violations, receiving an
approval of the code of the ETL tool resulting from the

second rework, and sending a job definition file of the
approved code of the ETL tool resulting from the
second rework to the QA environment;

the computer system recerving an indication of a success-

ful end-to-end run of the FTL tool based on the
approved code of the ETL tool resulting from the
second rework; and

based on the received indication of the successful end-

to-end run of the FTL tool, the computer system
generating release notes for the approved code of the
ETL tool resulting from the second rework.

9. The computer system of claim 7, wherein the method

turther comprises the steps of:
the computer system determining the code of the ETL tool

matches a regular expression specified by a coding
standard 1ncluded 1n the naming, coding, and perfor-
mance standards; and

based on the code of the ETL tool matching the regular

expression, the computer system determining the code
of the E'TL tool includes hardcoding, wherein the step
ol generating the report includes generating the report
which i1dentifies the hardcoding, wherein the step of
generating the second report 1s based in part on a
rework of the code of the ETL tool to eliminate the
hardcoding, and wherein the second report indicates the
reworked code of the ETL tool does not include the
hardcoding.

10. The computer system of claim 7, wherein the method
turther comprises the steps of:
the computer system determining a name of an object

included 1n the code of the ETL tool;

the computer system determining a naming standard of

the object includes a regular expression or a sequence
of characters that 1s not a regular expression, the
naming standard included in the naming, coding, and
performance standards;

11 the naming standard of the object includes a regular

expression, the computer system determining a name of
the object does not match the regular expression, or i
the naming standard of the object includes the sequence
of characters, the computer system determining the
name of the object does not begin with the sequence of
characters; and

based on the name of the object not matching the regular

expression or not beginning with the sequence of
characters, the computer system determining a viola-

US 9,547,702 B2

21

tion of the naming standard, which 1s included 1n the
violations of the naming, coding, and performance
standards.

11. The computer system of claim 7, wherein the method
turther comprises the step of the computer system determin-
ing job names, stage names, stage types, violation types, and
descriptions of the violations, wherein the step of generating
the report 1includes generating the report to include the job
names, stage names, stage types, violation types and
descriptions of the violations.

12. A computer program product, comprising:

a computer-readable storage device; and

a computer-readable program code stored in the com-

puter-readable storage device, the computer-readable
program code containing instructions that are executed
by a central processing umit (CPU) of a computer
system to implement a method of validating code of an
extract, transform and load (E'TL) tool, the method
comprising the steps of:
responsive to a receipt of naming, coding, and perfor-
mance standards for the code of the ETL tool and an
export of the code of the E'TL tool to a job definition
file, the computer system parsing the code of the
ETL tool 1n the job definition file;
the computer system determiming violations of the
naming, coding, and performance standards in part
by determining the parsed code of the ETL tool does
not match the naming, coding, and performance
standards;
the computer system generating a report which identi-
fles the violations;
based at least in part on a review of the report and a
rework of the code of the ETL tool to comply with
the naming, coding and performance standards and
responsive to an export of the reworked code of the
ETL tool to another job definition file, the computer
system parsing the reworked code of the ETL tool in
the other job defimtion file, determining that the
parsed reworked code of the ETL tool does not
include the violations of the naming, coding and
performance standards, and generating a second
report that indicates that the reworked code of the
ETL tool does not include the violations:
the computer system receiving maximum numbers of
aggregator stages of a job included 1n the code of the
ETL tool, transformer stages of the job, occurrences
of repartitioning of data sets 1n the job, sort stages of
the job, database read/write operations of the job,
and sequential file read/write operations of the job;
the computer system receiving a minimum ratio of a
number of stages of the job to a number of stages of
the job that are annotated;
the computer system recerving minimum sizes of a
transaction for any insert, update or delete operation
of the job and an array employed for any insert,
update or delete operation of the job; and
based on aggregator stages of the job exceeding the
maximum number of aggregator stages, transformer
stages of the job exceeding the maximum number of
transformer stages of the job, occurrences of repar-
titioming of data sets 1n the job exceeding the maxi-
mum number of occurrences of repartitioning of data
sets 1n the job, sort stages of the job exceeding the
maximum number of sort stages, database read/write
operations of the job exceeding the maximum num-
ber of database read/write operations, sequential file
read/write operations of the job exceeding the maxi-

10

15

20

25

30

35

40

45

50

55

60

65

22

mum number of sequential file read/write operations,
a ratio of the number of stages of the job to the
number of stages of the job that are annotated being
less than the minimum ratio of the number of stages
to the number of stages that are annotated, a size of
a transaction for an insert, update or delete operation
of the job being less than the mimmum size of the
transaction, or a size of an array employed for an
insert, update or delete operation of the job being less
than the minimum size of the array, the computer
system determining a violation of a performance
standard included in the naming, coding, and per-
formance standards.

13. The computer program product of claim 12, wherein
the method further comprises the steps of:
the computer system sending the other job defimition file

of the approved reworked code of the F'TL tool to a
quality assurance (QA) environment;

in response to a second rework of the code of the ETL tool

based on the other job definition, the computer system
exporting the code of the ETL tool resulting from the
second rework to yet another job defimition file, parsing,
the code of the ETL tool resulting from the second
rework, determining that the code of the ETL tool
resulting from the second rework does not include the
violations of the naming, coding and performance
standards, generating a third report that indicates that
the code of the ETL tool resulting from the second
rework does not include the violations, receiving an
approval of the code of the ETL tool resulting from the
second rework, and sending a job definition file of the
approved code of the ETL tool resulting from the
second rework to the QA environment;

the computer system recerving an indication of a success-

ful end-to-end run of the FTL tool based on the
approved code of the ETL tool resulting from the
second rework; and

based on the received indication of the successful end-

to-end run of the ETL tool, the computer system
generating release notes for the approved code of the
ETL tool resulting from the second rework.

14. The computer program product of claim 12, wherein
the method further comprises the steps of:
the computer system determining the code of the ETL tool

matches a regular expression specified by a coding
standard 1ncluded 1n the naming, coding, and perfor-
mance standards; and

based on the code of the ETL tool matching the regular

expression, the computer system determining the code
of the ETL tool includes hardcoding, wherein the step
of generating the report includes generating the report
which identifies the hardcoding, wherein the step of
generating the second report 1s based in part on a
rework of the code of the ETL tool to eliminate the
hardcoding, and wherein the second report indicates the
reworked code of the E'TL tool does not include the
hardcoding.

15. The computer program product of claim 12, wherein
the method further comprises the steps of:
the computer system determining a name of an object

included 1n the code of the ETL tool;

the computer system determining a naming standard of

the object includes a regular expression or a sequence
of characters that 1s not a regular expression, the
naming standard included in the naming, coding, and
performance standards;

US 9,547,702 B2
23

if the naming standard of the object includes a regular
expression, the computer system determining a name of
the object does not match the regular expression, or i
the naming standard of the object includes the sequence
of characters, the computer system determining the 5
name of the object does not begin with the sequence of
characters; and

based on the name of the object not matching the regular

expression or not beginning with the sequence of
characters, the computer system determining a viola- 10
tion of the naming standard, which 1s included 1n the
violations of the naming, coding, and performance
standards.

16. The computer program product of claim 12, wherein
the method further comprises the step of the computer 15
system determining job names, stage names, stage types,
violation types, and descriptions of the violations, wherein
the step ol generating the report includes generating the
report to include the job names, stage names, stage types,
violation types and descriptions of the violations. 20

G e x Gx s

24

	Front Page
	Drawings
	Specification
	Claims

