12 United States Patent

Dehmann et al.

(10) Patent No.:

US009542173B2

45) Date of Patent:

US 9,542,173 B2

Jan. 10, 2017

(54) DEPENDENCY HANDLING FOR SOFTWARE

EXTENSIONS

(71)

Applicant: SAP SE, Walldort (DE)

(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

Inventors: Kai Dehmann, Baden-Wuerttemberg
(DE); Thomas Wieczorek, Meckesheim

(DE); Tamara Weckwerth, St.LLeon Rot
(DE); Steffi Kramer, Munich (DE)

Assignee: SAP SE, Walldort (DE)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 6 days.

Notice:

Appl. No.: 14/713,534

Filed: May 15, 2015

Prior Publication Data

US 2016/0335069 Al Nov. 17, 2016

Int. CI.
GO6l 9/44
GO6F 9/445
GO6l 11/34
GOo6l 11/30

U.S. CL
CPC

(2006.0
(2006.0
(2006.0
(2006.0°

)
)
)
)

GOGF 8/65 (2013.01); GO6F 11/302
(2013.01); GO6F 11/3409 (2013.01)

Field of Classification Search
CPC GO6F 8/65; GO6F 11/03; GO6F 11/3409;

GO6F 11/11302; GO6F 11/30; GO6F
11/3003

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,613,122 A * 3/1997 Burnard GOGF 9/4448
713/1
5,630,131 A * 5/1997 Palevich GOGF 9/4448
715/700
6,298,476 B1* 10/2001 Misheskl GOO6F 8/71
717/101
6,618,852 B1* 9/2003 wvan Eikeren GO6F 8/24
717/102
2002/0049788 Al* 4/2002 Lipkin GO6F 17/30893
715/236
2005/0022161 Al1* 1/2005 Burger GOO6F 9/4428
717/108
2007/0006149 Al* 1/2007 Resnick GO6F 8/24
717/116
2011/0016348 Al* 1/2011 Pacecooevvvnnneeinn, GO6F 8/60
714/2
2015/0038193 Al* 2/2015 Vergnes H04W 4/001
455/558

* cited by examiner

Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Schwegman Lundberg &

Woessner, P.A.
(57)

- " B
"f BEGHS /
\ i N)
AGCESS 502
ADAFRTATION OBJECT =
W TESY SYETEM
_— ——— hls
EMNERATE
G L

FOR CHECKS

DEPENDENCY DATA

Gus
ADARTATION QBUECT |2
T COLLECTION
FOR EXPORT

;

CRECHK ADAPTATYON
ORIeCT BASED Qi
DEPENDENCY DATA

EXFORY

ADARTATION OBJECT
FROM FIRST SYSTeM

ABSTRACT

Adaptation objects comprising soltware extensions for
applications of an enterprise system may be developed 1n a
test system. Dependency data for an adaptation object may
be generated based on a reference, 1 the adaptation object,
to at least one other adaptation object 1n the test system. IT
the adaptation object 1s assigned to a collection of adaptation
objects for export to the enterprise system then checks are
performed on the adaptation object based on the dependency
data. One check may be for determining whether the at least
one other adaptation object 1s: part of the collection or has
already been exported and i1s unchanged since last being
exported. I this check i1s failed a user interface 1s provided
for: adding a latest version of the at least one adaptation
object to the collection; or removing the reference to the at
least one other adaptation object from the adaptation object.

17 Claims, 8 Drawing Sheets

[DIA

US 9,542,173 B2

Sheet 1 of 8

Jan. 10, 2017

U.S. Patent

._.lf»

7 8§Ieyy Ty
\ Asuapuada

-

({ swfiog

..... il

f swdopasg N
o SR} e ,7/

ol . o u.ﬂ .."....-.." M e : ;
) ..'.. , “Jlr........n.-u._.m £y .

Wsuiosn

 siudhissen
._ S

/7
\ﬁ\\\

/
b0 o N

US 9,542,173 B2

Sheet 2 of 8

Jan. 10, 2017

U.S. Patent

™
TR R R,

s

T e e e el e e e

& & & &
a & a 4 2 2 2 2 &2 a a2 aaa

A & b &2 bk &2 b &2 b 2k a2 dh ad adoa
- - a . a4 & & a a a &2 & & & a
4 & & & & & b & & b h koS b & & & & oA

& & N
- - a2 & = a2 2 2 a2 = a
- d & b a2 bk & b &k oa N

FI - a . a & a
d & & & & & b & & oA N

a &2 & & & a
b & & b & koA

a &2 & & & a
b & & b & koA

a &2 & & & a
b & & b & koA

a &2 & & & a
b & & b & koA

a &2 & & & a
b & & b & koA

- a . - a . - a . - a . - a . - a .
b & & &b & b & & &b & b & & &b & b & & &b & b & & &b & b & &

a a2 = - a a
h a2 b &2 b & bk a2k
b & & & & & & & & b & &k b &k oE AN
2 &2 a2 =2 a2 a = a = a2 2 a2 a2 = a
a & & b a & a2 b & s a2k adadali
LI & & & & & a - - . - & &
.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.f

a = 2 2 2 a2 = a2 a a a = 2 2 2 a2 = a2 a a a = 2 2 2 a2 = a2 a a a = 2 2 2 a2 = a2 a a
a & & b a A a b &a s ah adada s adada sk adadadadadadadadadadadadadadadada
- a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a

.r

E

== omomom = == omomomomow
" m = m m om = moEEEEEEEEEE®E
- a4 = m =" m ®m E ®E E E EEEE®EEE E_§
5 . N EEEEEE N lﬁIlF RN
"o - a4 s & a2 &2 a aa a . a - lﬂ lﬂ lﬂ a - a a s aaoa
-y L A 2 & a h a b oa b a kh oa khoad k b-ﬂ iﬂiﬂ iﬂ iﬂiﬂ iﬂiﬂ RN NN
- . 4 = m = m m E ®m Em = E E E =S E =S ®EE®E=E®E =383 858835 s5jppa a . a a s aaoa - a . a s a s & a & sl s & & & & & & & & - a . a a .
& i‘ da " = = = = ® ®m W ®m E ®mE E ®E W ®EE ®EE =S ® =@ == ® =@ L b b & b b b b b A b b kb b A b b bbb i s b ok JRE L E Lk L b s b Lk b b A b Lk S .
- Fh = 5 ®m 5 = N N N N E N E E E N E E E E E S E ®E E NN E SJ N S A M A A NS N M S S E S AN A NS A N A W & & 4 & & & & & & & &2 & & a2 & & a
- e i il b 2 ko2 k om ko a ks ks hoa hoakahakoadkad a b a b a b ahahadadadald
- 4 2 & & & & & & & & & & & 2 & & & & & 2 & &2 & & & & 4 a & & & &2 & & & &2 & &2 & &2 & &2 & &
& A & & & b b b & & & b b b & & & b b b b & & b b b b & & b b b b & & b b b b b & b b b b b & b b b b b & b b b b kb kb b oA kA X A 2 & & b b b b & & b b b A kA kA N
- 4 2 a & m 2 & a & a a4 a & a2 & & & &2 &8 &2 & &2 & &2 & &
- b a b m b a b a b a b a bha ks b a bhaka ha bhakba ha haka hahakbahakbakbahakbakbakhakbakbakbakbadatdd b a b m b a b a khakahakadalk

F e rrbrrbirbririr

-
)

R N R NN

T R B I I I I B B I I I B I B B B B R B B B I R B I R B I N B B N I B B R B R R R R R I R T R RN B R O B R B B B R R R R R I I R I I R R R I RN B B B B R B R R B B R R R R R RN B R B R R B

h 2 bk 2 b 2 b a2 b a2 h ad adbadbad sk adadadad
- a . a4 & & & & a - a - a &2 & & & a - a .
4 & & & & & & & & b & & & & &k b & ks s ks s kS A ks AN
- a 2 2 2 a2 = a2 a a a = a4 &2 2 2 = a2 a a - = a & & a
4 & & &8 & &2 b a2 b 2k a s a s adkadkakadadadada
Fl a = a2 =2 2 a2 = a - a a a2 2 2 a2 = a - a =
P O I I I R N I O B B B I I I I T I R T I I T D I I I I I I R e I N I B R

- Fl a = a2 &2 a2 a2 = - a a a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = - a a2 & a - a = a2 2 2 a2 = a - a = a2 2 2 a2 = a - a = a & a
b & & b b b b b bk Lok tl.r P I I I I R I I B I I R R I I I R R R R R I R R O R R R I I R R I I R I N B B B R I I R R R DR T R I R R I] tl.r F N I I I I R I I I I I I I T R R N N B B B R I R I R D R R T R R T R I I
4 & & &4 &4 & & & & & a Itl I R e T T e T T P T P T T T Itl 4 4 &4 &4 &4 & & &4 & & & & & & & 4 & & 4 & & 4 4 & 4 4 & & 4 & & & & & & & &

- -

- .
A & & & & & b & b & & & O BE BE DE BE DE DE DK D B B B B B B B B B D DA B DO DA D DA DN DN D D DN DN N D DN D D D DN D DN DN RN DN DN R DN R RN R R R R] 4 & & & & & & & & & & & & & & & & & & N & kN ks ks b ks N A S s A S AN O

& b N ks ks s ks s A s s AN AN s kN E s ks s ks S A S A A & & & & & & & & & & & & & & & & & & &S s AN SN s kN E S kS S kS S
4 2 2 2 2 &2 2 a2 = a2 aa 4 2 2 2 2 2 2 2 2 2 2 2 2 &2 2 a2 2 2 2 s 2 2 a2 2 a2 2 &2 &2 2 8282 822 828222842228 224282422 8222282 a2aa 4 2 2 2 2 2 2 2 2 2 2 2 2 &2 2 2 2 2 2 &2 &2 2 a2 8 &2 28 2 a2 = 2 a2 =2 a2 a2 a2
blblblblblblﬁlblblbl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rl.rI.rl.rl.rl.rl.rl.rltll.rl.rl.rl.rl.rl.rl.rl.rl.rlblblblblblblblblbl*
-

-
‘l.r .rl.r
L]

lIllllllllllﬁblbllllllIllllIIlllllllllllllllllllllllllllllIllIlllllllltl.rlllllllllllllllllllllllllllllllllllll

Fl
Fl
&
-
L]
Fl
L]
Fl
&
-
L]
Fl
&
Fl
&
-
L]
a & a
& &
a & a
a &
Fl
L]
Fl
L]
Fl
&
-
L]
Fl
Fl a = a2 2 2 a2 = a
A 2 b &2 b a2 b 2 b =2k sk s d sl adk A 2 b & b & b oa N
- a & & a - a . a &2 & & & a -
b & & & & & & & & & & & &k b & kbAoA
Fl a4 2 &= 2 = = 4 2 2 2 2 2 2 a2 a2 a2 a
b & & & b &2 & 2 & 2 b &2 h 2 &k & 4k a2 &
Fl a a2 & a a = a2 2 2 a2 = a

- -
4 & & & & & & & b & b b ks s SSA

- -
a & & & &2 &

- a =
F I I I I I B B I I I I I)

- & &
a & a

b b &

Frrrrrr

[]
Frrrrr r rir

-
E
-
&
-

r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r
[]
r

T T T T i T P T
-

r

- - a = a2 2 a2 a2 = a
& & & & & & & b & & b & & b & & b b kb s ks s ks s kS
a4 2 &= 2 = = a4 2 a2 a2 =

b & & & b &2 & 2 & =2 b =]

a a2 & a - a = a =

F R I I R I B B B B B R

a2 2 a2 a2 = a
b b bk ok ok

- a =
b & & b &

Frrr r r r ir rir
[]

LI
r
[I]
r
[]

Frrrr

- - - a & & a - - - a & & a - - - a & & a - - - - - - -
E R I I D R R R R I B I B I e N B N I I R D B B B I R I I I B R I N I N D R B R R | 2 & 2 b 2 h 2 b 2k 2k 3k s s sk ak s ks kadsadadadadaldkr
a = a2 2 a2 a2 = a - a = a2 2 a2 a2 = a - a = a2 2 a2 a2 = a - a & a - - a - a = a2 2 a2 a2 = a - a = a2 2 a2 a2 = a - a = a & a

& & & & & & & & & & & & & & & & & & & b & kS s ks s ks Ak kS Sk ks A kAo L] 4 & & & & & & & & & & & & & &k & & & b s ks s ks s ks A kS A kS E N

-
a & a2 &

a
& & & & & & & & & & & & & & & & & & & bk, s ks s A s s AN NN kN A SN
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 &2 &2 2 a2 8 a2 28 a2 a2 = &2 22 &2 &2 22 828222 aa
h & & 2 b &2 b &2 b a2 b s b a b a s adkadadadadas bk asdadadadadadadasd sk adasdadadadadadasdoak d & b 2 bk 2 b 2 b a2k s b ad a b adadadadadasdadadadadadaldk
a & a - a4 & & & & a - - a4 & &8 &4 & & & & - a &2 & & & a - - a &2 & & & a - - a &2 & & & a - ap . a &2 & & & a - - a &2 & & & a - - a &2 & & & a - - a & a

e

US 9,542,173 B2

Sheet 3 of 8

Jan. 10, 2017

U.S. Patent

r

4 & & & & & bAoA b & & b & & b & ks oA

E I B I B I R R I I D T I T D DR R R RS R DR R R R R B R I B B T TR R RS DR R R DR RN R R I I B I I D R DR R DR R R R I I DN B TR RN D RN R R R R I R I I TR I I D D T R R R R RN R R R R R I B B B I R B R R R R)
a = 2 2 2 =2 a2 aa - a - a A & = a a = 2 2 2 2 &2 a2 a2 a2 a a - 2 &2 a2 =2 a2 a = Fl 2 &2 a2 =2 a2 & = a = - a A a2 a2 = a = - a

b & & 4 & & & & & & & & & & & & & &k & & & s b kb s kb s ks s ks s kb s kb s ks s ks s kS s ks Ao

E E E E E E E E E E E E E E E E »

F ok
[]
r
[]
F ok

r

r
[]
[]

n-"-:n' .

F ok
St ™
PR

& b 0k bk b h s ko h brd bh b h N d b h b h bk bk b h b h bdh b b d b h bk bk b h b h rh ko d b d rh bk A N] .
F IO RO D= RO DA RO BEF BN R A DA I BOF DN DO BN BEF DS RN I N RNF RN R N DO BEE DN BEF RO REF DEF B N BEF R DEF DEE A R B b & b s bk s b kS N h N s s kS Ao
e b S b b b e b b b A e b S b b b b S e b b b b S b b e b b b b e b 0 b b e b b S b b b b b b e b e b b e b S b A e b b b S N

F
! ey

r

E

|
Yo¥e

gl e e e e

" .rI.T'I

Pl . iy i i &
g E)
3 , ok
o - * oy
o »)
L . » _x
oy * o
2 xor . » ir iy
a2 - [r E)
* k- » " oar r X Jr
Y - o . iy
.._.__.....-..1 . Ey L ro-..........
dr oo .. n 1__._-.| Py
) [)] ik
2k . a rR dr Jr
4 o ra I

ar ko xtr roF iy .
ot "k " T
.r“ s - " P
&1.1 . -l..11 1_-.4

2 = - T

o -r L3 .
i-_.1 . .

b'rlr
L]

.

. Y Y EEREN] Y o e e A e
¥ - / T e
RN . »a . e Sy e e e el g "

T T R R T I R R TR N N R N T R T T R T T "I " R R I "t R T I R R O T R T T R T R R R T h *
|'. F I B O R I R R R R R R R RN O I N R N D O R I R N R R RN N I T B N R N B N R O R RN R 3 . & .ll
-
x ' iy » ¥
. B T e N T T T . » a“
- a .un.a....q e e A A N i e A AL AN At A A N A A AL AL MM R AL AC AL M, - a aa ah . ~ .
Ll Wl e sl aEaE l al o -
a0 L e A S Nl M S Ml sl . » K-
L) LU CE 20 AL 2 E 200 20 L 20 3 AC M 20 0l -
4 L * L e e ksl » K
L 3l L 3 S U S S L S 3 -
-.l._l._. Ll aC '+ LA R E S A0 30 U BEAE 2E A0 3 0 M0 2N . »]] N
Ll stk al s sl aEaE E al o -
EE L e 3 S aE sl 5 & i ip e &
a T a T a et ara e aa a a Ta aTa a Tt ' .-__.._......_..._........._........._........._..._.........._..._..._..._............q..r.....q..r..........&....q..........q....q............ Pl Muu.
* L C a0 L0 300 3 a0) Fal) - drok b de ke ke)
. LALLM W A L LR aE ol 320 2l) Ll » SN DN g o g g g g e T T e N A .
Eal - - e Ul Sl AE - N o R R R RE R R sl el e
* & o o) b i b ok & L b b b b b h b ok h bk b bh h ok kK N N) N N W) o) . » l-.._......._.. - a .nln
s s & & & & & & b Jr b b b b Jrodr b A & b b b b b b A A A A A A I L N - Jrod 4 & i
L B R e) k) * L) » o K
¥, * LI & L) L A . - x k& s
¥ L Ea e AL - oty
Nr.r.r.._.r.._.r.._.r.__.r.._.r.._.r Y .-..-..-.l..-. i .-_.._ l‘.._.._...._......._. .nl N
.i.i N [y Y & & . Ey .I-_.....-.. .lli
.i..._ .r.t.__.r.__.r.__.t.__.v.__.r.__.t.._ .-..-. .-..-..-..-..-. 3 .-.__ l‘......_.....ull. .nl &
I B R N R R R b L]
.i.n LN LI U U T) &+ .-..-..-. .-..-..-..-..-.l..-.” . iy l-......._..... .nl -
LA T A L ' W K
[e PR L E 3 3 S 3l - Ty M
. . . .ﬂ. L e . R LN W n-. -
. . . . & o R N S E » i‘......_. &
¥ e LU RCC 30 A0 20 0 a0 a0 0l - X i F) .
e L e S . » i i .
et i e s Ao, Ao, - .#“ S .-IMI-_ At Al M Wl - “............. a* o gl %“
¥ » - LR M Al - ' X N
- o e R Nl) . » i-......-_.. I i ke K-
¥ a Ll R E C AL 20 20 0 a0 M aC - i i ar e dr e a
& o i Ll el el al i dr PN 'y
[e L L0 3 0 3 S 3 i N
- ER) ' a B . LN ' Ca e e X 'y
¥ " L] Ll aE EaE aE E al))
N * o) o N) Ll ' "R i‘.._..._. d o dr d ko ¥
¥ e L] LU CC 20 A0 20 0 20 0 20 0l . [r i i ardr e a e aa
- o e L S R . o o i a i e e 'y
[o L L E 3 3 S S 0 ¥ . ety)
F ER) i ar dr W R El v i ar ENC N 'y
¥ » U] L e Al [) RN)
- o i .-Ml- R R . e i i i W d e e g 'y
¥ ! T) s) 3 ra L Pl
& e i e A e = o A PN 'y
[.4.4.4....4“._..__ L L 3 A0 3 0N N N b " i)
- ¥ LR e W ' a L MR U Ml N . » r " i ' Ca e e X 'y
¥ o L a0 3 a L Sl e e s LA)
& .r.-“.r“.r‘"'...r 0 i a e a » .y "R i N N 'y
F F]] | [] & & []
LA .r.r.r.r-_H e ”.4”.__”.4”4”...%._.._. .__.L-i...l - . Tatat H&H&H;H#H&H;H...H&H.q”...) . » ”.1"1. * ““H... H...H...H...H...H...H...H...H 'y
LA T A R L R O AL M AL AL MLl » ar L M P N NN 'y
= mht s R e N R R Y w e atat taatt “ : * N _-......._. x e e X
LA ey e o) ! Ll » L Ea) PN 'y
[PR Ll al ol a0 e e ' L0 3 3l s - dro e 0 e e b e e g e dr e 0 e 0 e g b 0r b kb 0 b e
PR AR R Ll o e N . ! L E AE 0 al aE a2 . » N A N A N A N A N A N L N A N LN 'y
. . PR N o e e . ' e sl - o e r W e
?...1. ok ke b de U ke A .4....4.4...ln.r.r.r.r.r.r.r.r.r.r..i) L A aE a2l »]] 'y
* ko Lk b & A Ak A kA N) A kb b ok k& A N A o . ™ F - a
x.. F a " R L e U U U) .-..-.l..-..-.lli..r.r.__.r.._.r.._.r.r.r.r.-.l..r.r U N U U T) o d o & & & o & o & & . Ey . .ll
) .i..._ & & .T.-.r.r.r.__.r.__.r.__.t.__.v.__.r.__.t.__.r .-..-..-..-..-..-..-..-..-..-..-.l ll.r....r....v.__.r.__.t.__.v.__.r._..r.r.v.__.r.__..1.__..1.__.._.__..1.__..1 .__.t.-.T....t....r.-.T.r.r.r.t.__.T.-.r.__.r.-.TIt.__..1.__..1 & ..__.... .-..-..-.l..-..-..-..-..-..-..-.l..-..-..-..-..-..-..-..-..-..-. 3 oo .-.__ i.l.-_
a .i. a2 2 =2 &2 =2 a2 &2 x l..-..-..-.” L b b & b b k b & l..-.l..-..-..-..-..-.l..-..-..-.l..-_li..-. I .._.....r.-...._......_....._...........__.....__.-..__......_....._.-...._....._...._....-.-...-....r.....-.-..r......_....-.-...-....r.....-.-..-....b " .III..-. .-..-.l..-..-..-..-..-.l..-..-..-..-..-.l..-..-.l.l..-.l..-._ Lo I R R B B .-_.._ i.- a = = s omomom i.r.-_u
. - . .
X .__..,l.._i‘.__l__lml__l:l__l:l___.-‘. Aaie dn e e o o AL A A A A B A L 20 xR U TN N N -4-1#1“4.-4;.4 PL AN AL ML, e - PO IE N NN N LW
L WO ¥, - .__.un.a B e A N A A MM A A AR A A A AN AR E a et a - " . » -t
.ﬂ.__..._..__-.__ 2T .__.H._qH._q”.__.H._q”._qH._qH._qH._q”.__.H._qH._q”._q“._q”._q”.__.“._qH._q”.__.“._qH._qH._q“._qH._q”.__.“._qH._q”.__.“._q”._qH.__.H._ﬁ._q”.__.“._q”._q._q . .4.4H.4”.__.H#H;H..H#H&H...H...H&H...H&H&H...“ A ._...4“.__“.4”.4“... .___“ - . T e) EE R R R R R
2 a a A A) -
. - O e e o e L e M ol al E al L e T L) L sl . » o
¥ EEE = AL S N AE S A S A AL M A A M A S M e T * LU0 - E)
F PORCE M C EAC 0 U M E 30 A0 20 0 A 0 20 0 E S A0 3 UM E 20 AU 0 M M0 M a0 0EAE 2l L Ll ol al al) L LAl Ll » ot
P e e e a3l Ul L aC Ll EaCaE L -)
- L A N S S L S S e S S L Sl S s i aE Wl i) Ll) s Ll . » ke
¥ L L AE S E M E 300 2C L 2 0 2 30 20 SEAE 3 E BEAE 30 2E UM U A0 20 2E A Wl a0) W L LAl pE L - a
& L e e e e e e U aE E aE E aE e Wl L e EaC » P
L 3 N S L 3 a0 S R N 3 N S a0 S N Ll) -)
“.“.._ A A R LALLM AL LM AL MR AL ML AL AL . » Cat I
P At LALLM R WX - a a T A A L) * » -~ L
.i.i & & T N A I N I L U U e Y ok e i & & i b b b A 3 . Ey . - r
.i. LA b b b b b b b bbb bk b b b b oL & &+ & R E R A bk & a & ...l-.
N A d e ke e e e e e e de e e b e e e b e .-..-.l.l.-..-.l..-..-..-..-.l e e e b e e e] » oty A
.i.n e W N) W kb kb kSN . » r. h|‘1
.i. LN KN NN A & k& & b ok ok M A - - - g -I‘.
" .-..-..-.Il..-..-..-.l.r.r.r.r.r.r.r.r.r.r-_ Ey I i = '
& & & &+ & & P I T U R T R R TR T T) [[4 L] -.. -
a ko2 & B Jro dr B i & O O OF o o o o & o o o b o & b b oA . 5 r . - r
E N N) N R A N O O N N - [] -I‘. -
& I RN ol o N wl L A » Nor .) .
.i. 1 S b e o o ok o O o W R 4 & & & & b & & & & Kk) [[] ..lt a a
- e e e e e e . » o -
Ot O 0 E a0 a0 Ml e PR 3 - [] LI F
F L N R R R R LR LAl MLl » " L A
- CC Rl S S 3 a0 Al ey e) EC ol ol sl . » o P
. ¥ I N L aC A0 0 el L a0 NN PO L ol - 'l LI AT
& e e L R M e Ear wl sl » o .
[I Nl E E sl 0 a0 el PN e) - = F
- IO el A L A A0 L s ERCE < et i aL ol . » E a wr
¥ N R N e ECAE L - - LI F
.#.__ e B Al A M SR L R & o ALl » o A L
¥ BT T e e A A a N S Tt AL AL M . » o . LR :
F Rl L M a0l kAl) E ERC sl ol el Al » N a at a P
¥ I Nl al sl eEal & ECAE Sl -] LN . -
- PR Sl a0 3 sl e Ul L R Rk . » o - a2 - s
¥ I N L Ll ALl M aC a0 N CCE L L el) -] LIC » D] - n.
& I el ol) Ll ey R et » o . . PO O]
.i. ' A o o k& R o & & A & & N o & & & ['] ..l-. N a . -
- RO A L M AL M A M AL e S, A LAl MLl . » " A, Al au
LA e A N A A EREN L Al ol al » o .._%. - PO
.i. h b & I R N M o) o) A & iy A N EaE - '] ' l. N a . -
a A b b M moh O Jr i O O o o & dp & & & o LY r & [Y & & & & & . Ey o & r - a &b "
¥ b b & & ' N NN & ') e NN - '] ...l'.. T
F) L Rl ol B aE 2l Wl 2l o LR R el ol L) » N L4 = FI
¥ PR oLl aE a0 I N O aC aEaE C nE NN o P 3l el -] LN I . -
- ATk PR sl e ERC Rl Sl N Sl C U r e L ERC sl o) . » o - 2 a n &
¥ RO L0 ML a0 0 a0 wr e I N L a0l Al U M aC a0 N W ERCE L 2l aal -] LIC F) =
& e Ea Ea et bl al i r at I el e ol il »* P sl sl » o .
‘.lllllll.l A b b & A b & o & & & K o P R B A B O N & h W h & & & & K [[-...
a h a2 bk a k oad Ak ki K o & 0 e N Y ar .._.r.._..-..-..-..-..-..-.ill..-..-..-. ¥ Wk a wr b dr L0 M . 5] - r - -
.i..__ LT A b b & S A k& l..-.l..-..-.l..-..-.l..-. ' __..-_.r.__ .r.._-_.-..-..-.l..-..-..-..-..-..-..-.l..-.".-..-.l..-..-..-. & N " N " N .r.._ .r.r .r.._ .r.r.-_-..-.l..-..-..-.l..-.l..-. "y .-_.._ .rl \ - I‘. N .r.I ﬂ .
LA 2 e e N T T . ' » L F]
¥ a2 a Ak b & Ak N) h ok k Ak kol o A o & R & N NN - ..I‘..
* . - * - * & ..1.._ .r._. .r.._ . 3 ..1.._ .r.._ .r.._ * l..-.l..-..-..-..-..-.l.l h ok h h & ..1.._ .r.._ * 4441.44444444{'4441.444 & ..1.._ .r.._ .r.._ ..1.._ .r.._ .r.._ .r.._ .r.._ .r.._ .r.r.-_-..-.l..-..-.j.l..-.l..-.) .-_.._ 5 eI [
.i.n ' Lk kM b kI P N N b b ok .-".-..-..-..-..-..-.i.-..-..-..-.'.r.r.r.._.r.._.r.._.r.__'.-..-..-..-..-.. . » L om ko h|‘1 -
.i. 4 & & & & a) b & b & Rk o & i b & & I o o & o & B X o & 4 & & & & b b & N ok & A - a s s s aaaafpa ..I'.. }
" e o M [b A O O N) o i o & o & & & 5 & & & b b b & b b k kh = ' -
.i.n A b bk " A k& .-..-..-..-..-.l..-..-..-.l.-.l .I.r....__.r.__.._ .-..-..-..-..-..-..-..-..-..-..-..-..-..-..-.. .-..-..-..-..-. " .-_.__ 2 a2 2 2 a2 aaafpa i.T.-_ = lnq. I A
LA B A MM e e o e ~ e LIC .
LA 444444444{44444“.-__-_.. o T Taty ' = L o
[L a0l L) -)
F] -
L .4.__.“.4H.4H.4“.4”.4”._..H.4H.4U..H.qH.qH.qH.qH.qH...H&H#H&H&H# .4H .._...HJH H.._ nH.-_
¥ Eo" nL A0 U BEAE 30 A0 3 0 M 0 3E 0 20 0 20 02 L a0 wok o : -)
& L A S N A) »
¥ L M A U N N A 2 0 L M - F
- L RCC 30 20 0 200 20 00 C MEAE 30 0 M aC 2N LAl ol . » T
¥ Ll i) L e -)
& L 3 3 S S 0 Sl) ol al aE » A
¥ Ll aCE 200 20 20 0 20 0l 3EaC a0) Ll al s - '} a J
- L e e) s . » - o N
[L S S 30 3l M Al i) Bk & & - ¥) -
F - L EAC S C M E 30l 20 3 aE 3 aE L) LRl al » ik ot) ¥
ﬂu LS, .4....4.4...H.4”.4H.4H.4H.4”...“.4H#H#H#H#H#H#H&H#H&H&H&HL.. .4”#"””.4”...“ : .._“ .u".__ .“.r”. ,..-! .__..!t_.l X X]
& x gt A kAR - el » 2 - CinCnl il Ul 2l ol s nl il ol ol nl ol al l nf ol i r
[L 3l) el - ¥) L Nl Sl S S L A ol sl)
& 4 b h o A b h N h N . F] P B
.ﬂ“ a T ity byt 4H4H4”4“4H4”““In. .4...._.”.4 .4”._......4....4....4...4....4...._.”4”.'“...“4”4 H.._ H-..__ P LAl al H...HJH ._..H.4H.4”._..H.q”.q”...“.qu.q”...“.qu.qu...u.q”.q ; “.4H.4”._..H.4H.4H._..H.4H.4”.__.“.4H.4”._..“.4”4”...“4”4”...“4”4”4“4”4 ! 8
¥ R N W Ll kAl L ol ') L AC L 2EC 20 AL aE a0 20 L - '} N) AL 2E B E BEAE S U REAE M nl 2CAE A0 U 2E 0 2C B AC M 20 B E M 00 UM AE 20 AC 2CAE 200 20 20 0 A0 0 20 00 3L AC 0)
- x PR s S Sl N S N) . » - L o R M M S A A A Sl) r
¥ .._.__._.....__.r“.-.__.._ W e 4 W L ; - '} » LR N AE U R E M 20 3 0N S A A L0 a0 Al)
F - EREN N R N At L Ll ol al o AR LU RCE 20 AL 2 30 0 2 0 N A0 20 E B AE 2E AU 2 ME UM oLl 0 A0 a0 » ik - W i LAl kL) ¥
¥ el e PN ol al i)__Mh L el e e -) Al Sl nl Ll l i .-..-__
- a .r.rlvw-.._.rﬁ' PC 30l a3l s LU R C 2 C 3 S0 0 2 M nC B0 2 SE R AE 20 3 M 0 20 A 0 3002l . » o L LS R N Sl Sl A0l Ll] .
¥ a ik oae s PO Ll b aE a0 M e O L0 E R E B AE 20U M E MO A0 0 300 2 B E 3EAE 3 UM E 20 AU 2 0 A 0 - » LA E R E S A0 0 U BEAE M 20 20 AE ME A 2 020 B0 AE 0 20 0 3 20l
& D ol) Pt sl e e e el o E aE E aE al Ul » - o e Ll Sl Sl a3l 2D sl
[P R PR L a0 aC a0 3 W A L A -) L A Sl nl S S L a0l 3
- a L) fy W e . » .. LU aCAE 20 AL 2C U M0 20 AL B A0 2 B E MEAE 3 U BEAE 20 a0 0 3 AL a0 ¥
¥ 2 i L el o e -) Sl 20 e ol
& Ol N S 3 e N AE N 30 S 0 S 0 3 2l 2l » - L 3 S S LS S Sl N aE S0 Sl 3 a0 S 20 sl r
¥ a ik L C L E S AE 20U M E MO A0 0 20 2l LR aE EaC 2l 2l - a LA E R E S A0 30 U BEAE M nl 2E 0 200 2E 0 2E B0 A0 0 20 0 0 2" 0 2l
- P L Nl el L e el . » o Lo R T el A0l r
¥ 2 i W R R ; - 2 a A » LR R N AE S U R E M 20 3 A0 M S A
I N L % L CaE 20l 2Ll a0l 144444444 L) » & L N - L CAE 30 AL 2C M0 2E AL 30 AE M 2E B0 E 3EAE 30 U 2EAE 20 A0 M 2l 2Ll 2l ¥
Ko e s e s el 2 EC N Sl S e Ml - L) - 2 e A) L T N A Rl S
] Ol A AR AL B e A R L a0 M AE AU W L] L) . » A s . W ¥
¥ a ik LA Al 0] a h Nl A 0l aEaC 3l ol) PG AL AN L A LM A e Al i - a sy a LA E R E S A0 0 BEAE M 20 20 AE ME A 2 0 20 B0 AE M 20 0 0 00l
& P ol i al w aar e E sl Ll e) L) Ll » E] P L e e e Ll S al aE el a0 sl r
[P L0 S0 WO ttL_r._..r.—....a.q....a.q....a.q L 3l S S W' * i & -) L A S E N E Ml Sl S S L a0l
- o L A0 WA ar Rl Ul 444;4444444;{%44 L) . » .. W R ¥
¥ * g L g ke EC e Ul) * L) -) Ll Nl a0
& O M Ml e Ear o R A sl) o N S Sl) L) Ll » A a3l) Ll R Rl A E Sl 2D sl r
¥ " L) a a F Pl 30 0l 2l o Ll E M E 20 2 L N " L) - a LA ol) WOl R R R
- - ; ¥y oy el) L o W e L e) - L) . » o .4.4....4.4...._._.-*_4.-1-.. Ll e e ALl W r
¥ * ey ._..__“ .r.__.i- RO) s N L A S 3 ar v a0 * -) L A0 el ot et S S L
F Ll CRC A0 e A rox Ll) * LC EAE nE 0 ME A a0l l al) L) Ll » ot LU CAE 20 A0 2C UM NP A L E 0 E MEAE 3 U 2EAE 20 a0 2l 2l ol ¥
¥ * Ll no e - & L Rl N el S .4.A-..l.1.4.__. - aza"a -) Ll) Lo Nl el ol
- L) L el .r“nM.r.ﬂ. LR LAl_...........................“!“.._... [) . 5 2 Wt L Ll Wl ¥
¥ " LAl Al L o ok ke k de Ll i Ll aCE 2R 0 20 0 2 Ll * LA - a e e e e e e e e a AT LA 2C R E B AE 2 2l BEAE L nU A0 AE M0 2 0 2E L AE M 2E M E 0 0l
& L) o o ke ki e b R LN B o T - » & N P L S ol S R T M S R 2Dl r
¥ L) L0 A0 L P PN LA) T T N " L) - W W e R
- - LAl Al ttt%#####;# * L L A0 el 2EC Ll 3l) L) L) . » T L) S i ¥
¥ * A s SO N N R N B Nl M e 2 S N N * L) -) L) L A e S A e A
& Ll ARR A e e A A G AR R A G AR R A A AR R AR AR RS L) L) » P k) L Rl A S E Sl Sl 2D sl r
¥ " A A e e g g, " L) a LAl L L EAC U 2EE 20 AC 2E 0 20 0 a0 " 2L L Al
- - Ll R L el ol aE aE L) Ll . - Ll R Nl aE el ATl r
[* .4.4.4....4.4.4]”#.__.._.__.__.._ R o g #.ﬂln..q... L) L A Nl Sl Sl S A 3l)
F Ll AL 2 y a A Rt L B Ll AL E R E S AE 0 U BEAE 20 U 2l 2L 2 ¥
¥ L) e e e e e KA e e e o E al a aE a al al al * = Ll L el el " kAl
-) T N N N .4..1.1..1....4.!!% . k) L Al Sl Sl 3l A0l r
¥ L 0 E M A0 U R AE 30 U 2EAE M U 2 A0 2C B AC M 2 0 S AE 20 E M AE 20 AU 2E 0 M 2 U 0 A M AE B E M A0 U M aE 20 Al Ll LAl L R AE S E M AE 20 Al 2E AL 2E 0 A0 > 20 L A
& L e e N Rl k) L Sl a0 sl r
L A 0 A L U A A M A M S AL A A M el UM A AL M A el N N Ll L AE R0 AU A0 M A 2 A
ﬂn At S i i it ot i . ety e A N BN B MM LN, AL MM =y
¥ P S - ayare epbabal sl b aCalalalalalal ol 3y DEaail o
¥ P LRl L AE R S AL M S A0 L -
F] - F] . F] &
¥ = " T e x i = aa a a aa - ¥ T T T T T e e4.4.__..4.4....4.4._...4.4....4.4.__..4.4....4.4.__..4.4....4.4.__..44444444444#44444#444444“” - P |
.i.nn.__ a2 ka2 bk adaka .__l.__ & n.l..-._l. I.-_n LA 2 b a b ahahahahakatadababakabada .__nnl.__nil.__lnn.__nnl .] .-..-..-..-..-.l..-..-.l..-..-..-.l..-.l..-..-..-..-..-.l..-..-.l..-..-.l..-.l. i .-.l..-..-..-..-..-..-..-..-..-_ .-..-..-..-_.-. .-..-..-..-..-.l..-.l..-..-..-..-..-.l..-..-..-..-..-.l..-.l.l.l..-.l..-..-.l..-. nn.__nnl.__ni
& I""nﬁ.._-. T] Ll Sl Sl 20l sl L Lt R e R e N e e e e R e e e I =y 6
[. [} - T * L A N 3 S L S S 0 3 E SE 0l ol o |
.ﬂn Aaa e a A . nnn.r._._. L R g b L, b “ ._..H.4H.4”...H.qu.qua.“.q”.q”...“#”.q”...“#”.q. H#H.q”._..“.q”.q.._....._.-u.._-. ._._-"._..H.4H.4”._..H.4H.4”._..H.4H.4”._..H.4H.4”._..HJH.qu...HJH.qu...HJH.q”#H#H#”#%H *x
¥ L EAC 0 AE M C 20 AL 20 3L A0 020 0 3 A0 2 Lon WO al ko aE 0 30 30 0 L 0 aE aE 0 a0 aE E 0 3 3 0 L 2l al a
- . -
] R T M Nl 4444{%....- e a aar a a a a a aa al at ar sl sl a sl 2l N B r
¥ W W i g b m s s s - d“l_l_
I []] L RC B E R E M AE S0 AU M E 3 AU M 20 20 2E M E SEAE M0 O M A A0 AE A0 0 A0 0 2E 3 AE 0 aE BEAE 30 AC 0 AE M AL A a0 RO OO - .
¥ ¥ # e A A M o A S A N N A S S -,
] .] L A A M s N oy
¥ r " L A aC L sl sl a3l a0l 3l 3 3L U A 3 BE A A 3E A0 3E 3 M ML 30 3 3E 3EC U 3E 3 30 a0 20 aE 3E 0 20 2l 2l) - }.l”.
&] A Al M N L A s et st s e s e e el et sl sl ol s) ’
¥ * ¥ R R W W NN NN NN N e O W W W e Sl sl Sl Sl al s al s al sl al st -y
.ﬂ. Iﬂlﬂlﬂlﬂlﬂlﬂ#n N N ’ : Pl e v e e e e e e S S S S e e S S S S S S L ;- - %
N dr dr dp dp dp e Jdp dp dp e B dr d Orodp O 4 dr & A N] & o R M A A b ™ .r..q-..-..-..-..-..-..-..-..-..-..-..-..-..-..-..-..-. a &
. . ¥ N N o N o N N N N ¥ LAl 2l 2N N N N N N N N N N N N R WL A 0 0 aE 0 2 3 E 3 a0 3l ol N
- iy 0 i ; N .] EaE el D P N Mt s et el e s e e sl a i el o I r
¥ " o o an * hu M AL AL RO e o o LA Ml 3l 3 L AL AL |
¥ - W 4 b dr 0o dr 0o M | 3 & & & &] h k kg rroa F - L R e R) |
.#“ “n .._.”.._..._. W H...H...H e “ : ' i " .4”._.”4”4”._..” R ”1“111. .r.._H.._.rH 4”4H4H4”4H4H4”4H4H4”4H4H . |
L - Py Ty M " 2 e . %ﬂuu L A M A a2l
- & o el & .] LA Ll o r ER M aC EC 30 a0 0 U M a0 a0 3 Al 3l N IF ¥ . .
¥ - i X kK ¥ EaC -] L S
& & EC &] Ll L) R Al E aE SE Ml sl B r
¥ - i dr ¥ a - ¥ LAl b) r EREENE AL L 20 020 0 20 0 E S AE 30 U 2 2N
N EN) i a N . EaE el E el r . .
¥%"N...... a . - ¥ ¥ ERC Tt r-.&...#;...#;...#;...#;...#;...l-.. | L L Yy
.i...__.....l.-_ L-................. ' EEEEEEN] M [I .-..-..-..-.l..-..-..-..-. " ror.m ar .-..-..-..-..4.-..-..-..-..-.4444#4#444#44444#44444#“ b A roe e e e e e e Te Te e Te e e e e ...‘ .
- EN) i i .] . Ll 1i-h S 0l al S M AL A 0l Al I r .
¥ P i i ¥] LAl al a r FOF | N N L L 0 L aE 0 2 E 3 AC 0 L a5 |
& i i dr i . . Ll) P) e T o N M A e s A ot s Al M AN W r .
3 XX . ' s d A A A I "3
. ...ttt-............. . . L) LT NN Nl e A R . I ¥
¥ P X ¥ LAl al ﬁ.ﬂ. ERCREREEE O Ll a0 0 a0 0 20 0l 320 30 0 2 aE 2 rl
- i e e X i .) A N I T T et s st sl st e sl sl sl al sl sl ol sl I r .
¥ .._....H"";.......... " LRl PR L 0 0 L 0 a0l s Al o rh
F LN ok Ll) ¥ P U MLl sl el et ettt s el sl sl sl sl sl W ¥ r .
¥ i Xk ¥ EaC a PR Nl ol al al al aE al sl L e |
- EN) i ki . Ll [.._.r.__.r.__.r.._.r..-..a.q....a.q....a.q....a.q....a.q...#l-. »ay .
¥ .._......_“m-"......... ¥ LAl b) N O L 2l al 20 0 a0 0 20 0 a0 0 20 2 W |
& EN) P L) 1q.r.r.r.r.r.r.r.r.r-..q.q....q.q....q.q....q.q....q.q....ql-.. it ey !
[) ik ¥ EaE C aE] S Ll aE E E aE a E s 0 s al aE ak al a |
- war i X . LA Ll o r .r.r.._.r...r...rr-..q.q....q.q....q.q....q.q....q.q....ql-. T ay r
¥ i Jr dr i ur | 3 & & & & & | TN L e R A‘
. A E N L) m“ ERCN 0 S a0 SE A sl N W r
¥ P “-_l.._....... a et a A ¥ LAl al] L AC 0 E EE M AC 0 AE M0 20 L 20l L) rl
- i ur i X N .) .r.r‘..q.q....q.q....q.q....q.q....q.q....ql-. .
¥) B, x x " LRl] L A M AE UM A |
I i i x Xy & LA Ll o .r.r-..q.q.__..q.q._...q.q._...q.q.__..q.q._...ql-.. r
¥ i Jr dr i our | 3 & & & & & - L e R A‘
= w ol ke N . . . L) EREN 3 0 S a0 A0 a0 a0 N I r
¥ i dr a i ¥ LAl al EREENE AL L 0 a0 0 20 0 E S AE 3 0 2 2N |
L2 i iy i N -m L) .r.r.r.r-..q.q....q.q....q.q....q.q...a.q....ql-.. .
“) ¥ i - L Ll L Nl N Sl N E Sl il '
A”....H .-..........H....H RN - R T e ll..-.“l.-.l .._. 3 1 .__.r.__H.T-..-.”.-.“l.H.-.”.-.“4”4”4“4”4”4“#”4”4“4”4”&. “.._”..__.“ ! 3 1......."
. k. - - r
¥ i dr i wr i LAl Ll Wl R e s e L) |
- i i P . L E e Sl S N I . 3 .
¥) N X LR a0 L R A U N M AL 0 A] |
I E) x Xy o e LA Ll o .r.r-..q.q.__..q.q._...q.q._...q.q.__..q.q._...ql-.. 2T ay . . r
¥) kX X & i & EaC e L N A N A Sl e |
] EN) i i LN . L) .r.._._..__.r...r...rr-...l-. a 'y r
¥ P X X aa X i aa LAl al LA SOl 0 a0 0 20 0 20 0 A0 0 a0 3 E 3 AL e E e |
& i EEEN ENCC N) T e T o A A M A N NN AR .
¥ ok F Mok x kK ok Xk LRl PR L 0 A0 0 U e a0 L a |
- i a e e . iy i . LA Ll o_.r.._.r.._.r.._.r.r-..q.q._...q.q._...q.q._...q.q.__..q.q._...ql-. T ay r
¥ o e e L Lol oLoL W aatay 3
- ey e e e iy e iy iy e e e e e e 0 i iy e . L) S A e A A A e I r
[N N N N N EaE C aE EE * |
F] F] B .
¥, H....._..._........._........._..................._..._.........._..._..._..._..._..._..._..._............_........._..............q....q....q....q................q............“.t... el .4”._.”.4”4”... .4”._.”.4”4” H H .4._.1-. | h
¥ : EaE EC |
&)) N r .
¥ LRl Rl |
-) . LA Ll o Ll) ¥ r
.i..._ F T R T e A T T T A T .-..-..-..-.l..-..-..-..-._ .-..-..-..-.l..-..-..-..-. .-.ll N r 1....‘
.i. ik b X 4 & &8 &8 & & & & & &2 2 2 & = &2 &2 &2 &2 & & & & L N L N ot i‘
.i.i-................ 2 o ma & 2 b 2 b 2 & 2 b 2 & 2 b 2 h a2 & = . l.l.l..-.l..-.l.l.l. "y l.l.l..-.l..-.l.l.l .-.l.l.l.ll a r T ...‘
F ENC Ll pCal o Ll) N ¥ . .
¥ iroa EaC s * ¥
- ENCC N . Ll Ll) - r -
¥ i d LAl L ALl al LAl
A |
¥ PN wa I N O L *
- wrCa . L) AR L Al a ¥
¥ Ea A * N n I L M *
N i i i * rorror r R R m ke ko .-..-..-..-..-..-..-..-..-. 'ty N r
r r ror .i.i-...........-...... . I EC N N) - "
. 1 1 1 1 .i. Y rr r r =k bk b bk E kA & ok & &
rFrP FP FP FP PP PP PP PP P OFPOF & ir g k .__.__.__.__.__.__.__.TJI..U.q ror rroror j.‘.bl_b.rb.Tb.rb.rb.Tb.rb.rb.Tb.rb.r l.l.l.j.l.j.l.l.l. l.l.l.ll.__ r
it e et e .i.n_......._. . Lh b b b b ok kW d Sl o o e L b b bk h ko kN P N) * lln r
¥ i i & L b & & b & & & b b b b b b & & b b b b b b b & b b & b b b b b b b b & & A b b & o s
" ir dr O O I o L I I I g I I L L o S L L U N L I U) & & & & " r
¥ ™ a w M W) NN TN T T T N N Y
.i.n . .-..-..-..-.l..-..-..-..-._.._.r.__..1.._..1.._.r.._..1.._..1.._..1.._..1.._.r.__.r.._.T.._.r.._.r.._.Tb.t.-.r.-.v.-.t.-.r.-.v.-.r_ﬁ.-.l..-..-.l..-..-.l. L r
¥, * L RCC 200 2CE 200 20 L C B AC 0 20 B AE MEAC 30 AU M E 20 A0 2C E M0 0 2 M 0 0 A0 2E B0 AC 20 AC a0 M 20 wtes |

Iy

r

R N R I e I O I B B B B R R R e I I e I e I I R I R R e R I R I e e O I I I I I I e e N B B B I I T I D T I T I R T I R R I I I I R B R I R R R R T I R I I B I I I R R I B T R T T R R I T T I I I I I I R I R R R R O I R R e R I I B I T R R e I R R R R R R I R I I N N e N I B B B I I I T I D T I T T T T I T I I T I R I I R B B I I R I R R I R I I R B B
4 4 &4 &4 &4 & & &4 & & & &4 & & 4 4 & & 4 4 & &4 & & &4 &4 & & 4 & & & 4 & & & 4 & 4 4 4 & 4 4 & &4 4 & & &4 & & & 4 & & & 4 & & 4 4 & 4 4 & & &4 & & 4 & & & 4 & & & 4 & & 4 4 & 4 4 & & &4 & & & & & & & & & & A& & 4 &4 &4 &4 &4 & &4 &4 & & & &4 & & 4 4 & 4 4 & &4 &4 & & &4 & & & 4 4 & & 4 & & 4 4 & 4 4 & & 4 & & & & & & &4 & & & 4 & & 4 4 & 4 4 & & 4 & & & & & & & & & & & & & A
s & & & & & &a & &2 b & & 2 b &2 bk &a h s b a2k s sk s s a2t s sk s s ad s sk s s st s sk s s s ks ks b s s s ks b s s s ks d s s s ks b s ks ks b s s s ks b s s s ks h s d s ks h s s s ks s s S - s & & & 2 & &2 b &2 & 2 & & s &2k 2 s &2 b a2k s sk st a sk s sk st a sk s sk st a bk s sk s s a ks sk s s a sk s sk s s a sk s sk s b a ks sk st a ks sk s doa ks s oy

308

31

US 9,542,173 B2

Sheet 4 of 8

Jan. 10, 2017

U.S. Patent

ol

BT TR
g? T TR
A

507
HIDONYIN NOLOITIOO

SR TR RS R A

FAH U

YOb
ASLSIOHEY NOLLY LAYAY

O0%~_ .\..m

» Llr

0y
004 NOILVIGYOY

Buebo) \

napodxs oq uen = /

US 9,542,173 B2

Ajenpiapul
DBUOOXD 8Q URD =

Sheet 5 of 8

Jan. 10, 2017

U.S. Patent

U.S. Patent Jan. 10,2017 Sheet 6 of 8 US 9,542,173 B2

; ACCESS
| ADAPTATION OBJECT |

IN TEST Yo ieM

GENERATE
DEPENDENCY DATA
FOR CHECKS

ASSIGN
- ADAPTATION OBJECT | 27
. TOCOLLECTION |

FOR EXPORT

CHECK ADAPTATION
QBJElT BASED ON
DEPENDENCY DATA

EAPORT

ADAPTATION OBJECT
- FROM FIRST SYSTEM |

U.S. Patent Jan. 10, 2017 Sheet 7 of 8 US 9,542,173 B2

ﬁ/"“ 00

RETREIVE | _
OBJECT FROM |a-Y—

15 OBJECT IN ™
~_COLLECTION?

COLLECTION |

. N SECOND) W X T
e YSTEM ped

1S OBJECT ™.
S UNCHANGED?~

RETREIVE 710

OBJECT FROM | 27
SECOND
SYSTEM

IMPORT
COLLECTION

U.S. Patent Jan. 10,2017 Sheet 8 of 8 US 9,542,173 B2

- BB{}

8 Q 2 y
4
Jl';\.

i

I

PROCESSOR

VIDEO |
DISPLAY |

NSTRUCTIONS! |

MAIN MEMORY |

ALPHA-NUMERIC]

I 1 INPUT DEVICE

INSTRUCTIONS| |
ce—— 3087

- -} 814
I NAVIGATION |
DEVICE |

STATIC

MEMORY :vaung

DRIVE UNIY

] TCOMPUTER- 1

x"‘*---h,h_h : NTERF ,&;GE - ~=-wmmmmmmnmame a0 o ommmnmeanneene 2 g ?y’; ~ U ?)}’? irgmazz
DEVICE f : * '

818

SIGNAL
oo Pl GENERATION
: DEVICE

FIG. &

US 9,542,173 B2

1

DEPENDENCY HANDLING FOR SOFTWARE
EXTENSIONS

TECHNICAL FIELD

This document generally relates to methods and systems
for processing (e.g., importing, installing, patching, etc.)
extensions for software applications, for example, 1n order to
extend the capabilities of, or data available to, an existing
software application. More particularly, this document
relates to providing dependency handling checks for soft-
ware extensions (e.g., to allow coherent transport of all
necessary files/software) before they are deployed in a
production environment.

BACKGROUND

With the growth of cloud computing, where remote
servers allow for centralized data storage and online access
to computer resources, users are adopting enterprise soit-
ware 1n the cloud at an accelerating pace. The speed of
innovation, ease ol consumption, and low total cost of
ownership associated with a cloud based enterprise solution
will certainly continue to attract more enterprise customers.
However, user development of software extensions for
enterprise applications 1n a public cloud-based environment
often includes little or no chance to test a software extension
developed 1n a first (test) system just before 1t 1s exported to
the second (enterprise) system. In standard “on the prem-
1ses” development environments a quality system may be
provided between the first (test) system and the second
(enterprise) system in order to conduct meaningful tests 1n
the quality system before importing any software changes to
the second system. The lack of meaningtul “export/import
time” checks for software extensions in the public cloud
may result in a high risk for the enterprise system if, for
example, a first software extension 1s based on (and there-
fore requires) a second software extension and the first
software extension 1s 1installed on an application of the
enterprise system before the second software extension has
been imported to the enterprise system. In this situation, the
installation of the first software extension will fail and this
fallure may cause serious harm the enterprise system.

BRIEF DESCRIPTION OF DRAWINGS

The present disclosure 1s 1llustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and 1n which:

FIG. 1 1s a use case diagram providing an overview of the
systems and methods for developing, 1n a test system,
soltware extensions for applications of a production system,
in accordance with example embodiments.

FIG. 2 1s a block diagram 1llustrating a composite system
for developing, 1n a test system, software extensions for
applications of a production system, in accordance with
example embodiments.

FIG. 3 1s a block diagram illustrating, 1n more detail, a
composite system for developing, 1n a test system, soltware
extensions for applications of a production system, in accor-
dance with example embodiments.

FIG. 4 1s a ladder diagram illustrating a method, in
accordance with an example embodiment, for creating,
registering and collecting adaptation objects, 1n a test sys-
tem, for import to a production system.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5A 1s a diagram 1illustrating options for handling a
dependency between an adaptation object in a non-local
collection and an adaptation object 1mn a local collection
according to an example embodiment.

FIG. 5B 1s a diagram illustrating options for handling a
dependency between a changed adaptation object 1n a non-
local collection and an unchanged adaptation object in the
same collection according to an example embodiment.

FIG. 6 1s a tlow diagram 1llustrating a method, 1n accor-
dance with an example embodiment, for processing software
extensions including a dependency checks phase prior to
export.

FIG. 7 1s a flow diagram 1llustrating a method, 1n accor-
dance with an example embodiment, for performing checks
on a software extension during a dependency checks phase
prior to 1import.

FIG. 8 1s a block diagram of a machine 1n the example
form of a computer system within which instructions for
causing the machine to perform any one or more of the
methodologies discussed herein can be executed.

DETAILED DESCRIPTION

The description that follows includes illustrative systems,
methods, techniques, 1nstruction sequences, and computing
machine program products that embody illustrative embodi-
ments. In the following description, for purposes of expla-
nation, numerous specific details are set forth 1n order to
provide an understanding of various embodiments of the
inventive subject matter. It will be evident, however, to those
skilled 1n the art that embodiments of the inventive subject
matter can be practiced without these specific details. In
general, well-known 1nstruction instances, protocols, struc-
tures, and techniques have not been shown 1n detail.

For the purposes of this specification, example meaning,
of various term are provided below:

Production System: A production system includes, for
example, an enterprise computer system used productively
by business users.

Test System: A test system includes a computer system
used to develop software extensions for applications of the
production system.

Key User: A key user includes a developer of the exten-
sions for software applications of the production system 1n
the test system, e.g. by adding an additional field to an
application screen 1n the test system.

Project Manager: A project manager transports the exten-
sions between the test and production systems, e.g. by
transporting the additional field extension developed by the
key user from the test system to the production system.

Business User: A business user consumes the extended
application 1n the production system, e€.g. by entering values
for the added field 1n the screen of the application in the
production system.

Adaptation Item/Object: An adaptation object includes a
semantic 1tem that represents a single extension of an
application of the production system. It 1s meamngiul for
and can be addressed by the key user, e.g. semantic descrip-
tions like “new field extension™ or *“custom form”. An
adaptation item/object may consist of metadata and further
transportable content—including technical objects—re-
quired for implementing the extension and/or required by
the extended application at runtime.

Adaptation Type: Each adaptation item/object includes a
specific adaptation type depending on the type of extension
being represented.

US 9,542,173 B2

3

Collection: A collection comprises multiple software
extensions (including adaptation items and associated sofit-
ware objects) that have been grouped by the project manager
for transport to the production system.

In an example embodiment, software extensions for appli-
cations of a production system (e.g., enterprise system) may
be developed 1n a test system. A key user creates, edits or
deletes an adaptation object 1n the test system for an appli-
cation in the production system, the adaptation object
including a semantic representation of a software extension
for the application (e.g., describing the solftware extension)
and at least one associated software object (e.g., for imple-
menting the software extension). The test system then gen-
erates dependency data for the adaptation object based on a
reference, 1n the adaptation object, to at least one other
adaptation object 1n the test system. The 1dentification of the
references to other adaptation objects may be based on the
adaptation type of the adaptation object. For example, the
references may be determined based on reference data
associated with the adaptation type of the adaptation object.
Generating the dependency data may include updating an
index of dependencies between adaptation objects 1n the test
system. The dependency data may be generated at export
time so that the most current version of the adaptation object
and any referenced objects are exported. A project manager
accesses, 1n the test system, the adaptation object developed
by the key user. The project manager processes the adapta-
tion object (e.g., changes the object from a local object to a
transport object) by adding the adaptation object to a col-
lection of adaptation objects for export from the test system.

The test system then performs checks on the adaptation
object based on the generated dependency data. One check
may be for determining whether a referenced adaptation
object 1s: part of the collection or has already been exported
to the production system and 1s unchanged since last being,
exported. I this check 1s failed a user interface i1s provided
for: adding a latest version of the referenced adaptation
object to the collection; or removing the reference from the
adaptation object. The test system may then (e.g., based on
passing the tests or based on correcting the failed tests via
the Ul) export the adaptation object along with any other
adaptation objects grouped together 1n the collection. Impor-
tation time checks may also be performed (e.g., in the
production system) on each of the adaptation objects based
on the dependency data before importing the adaptation
object (along with any other adaptation objects grouped
together 1n the collection) into the production system.

The project manager may then 1nstall the software exten-
sion ol the adaptation object on the application in the
production system, using the at least one associated software
object for each extension, based on the results of the checks
for each respective adaptation object. For example, checks
may be performed to determine whether installing the soft-
ware extension ol the adaptation object on the application
includes first installing the software extension of the refer-
enced adaptation object on the application. The project
manager may, for each failed check, be provided with a
meaningful error message (e.g., import referenced adapta-
tion object first) based on the semantic description of the
soltware extension from the adaptation object that failed the
test. The project manager may initiate the checks by, for
example, accessing the dependency data from a file stored 1n
a designated transport directory shared by the test system
and the production system. In an example embodiment, the
project manager may 1initiate the checks via an import
button.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 1s a block diagram providing an overview 100 of
the systems and methods described herein for developing, in
a test system 102 by a key user 106, software extensions to
be 1nstalled on applications of a production system 104 by
a project manager 108, 1n accordance with example embodi-
ments. In an mitial development phase 110, the key user 106
creates adaptation objects including semantic representa-
tions of software extensions for adapting applications of the
production system 104 to specific user requirements. The
key user 106 develops the adaptation objects 1n the test
system 102 so that the development of soltware extensions
does not mterrupt the operations of production system 104.
Whenever a key user 106 creates, edits or deletes an
adaptation object 1n test system 102, the test system 102
generates dependency data for the adaptation object based
on a reference, 1n the adaptation object, to at least one other
adaptation object (e.g., custom form references an extended
ficld) 1n the test system 102. The test system 102 may
identily the references, 1n an adaptation object, to other
adaptation objects 1n test system 102 based on the adaptation
type of the adaptation object. For example, the references
may be determined based on reference data associated with
the adaptation type of the adaptation object, e.g., the imple-
mentation of adaptation type X requires adaptation objects Y
and 7. Generating the dependency data may include updat-
ing an index of dependencies between adaptation objects 1n
the test system 102. The dependency data may be generated
at export time so that the most current version of the
adaptation object and any referenced objects are exported to
production system 104.

In order to transport selected adaptation objects to the
production system 104 (e.g., change the adaptation object
from a local object to a transport object), the project man-
ager 108 can group a set of adaptation objects (including
associated software objects) mnto a collection. The project
manager 108 may create the collection 1n the test system
102, e¢.g., by assigning adaptation objects to a collection
from a list of unassigned adaptation objects.

In an assembly phase 114, the key user 106 has finished
developing and testing their adaptation objects 1n the test
system 102 and selected adaptation objects have been
assigned to a collection by the project manager 108. The
collection can now be exported from the test system 102 (for
eventual transport to production system 104) and therefore
the project manager 108 starts the assembly of the collection
for transport. After a successiul assembly (e.g., 1dentification
and collection of all needed technical objects) the collection
can be exported from the test system 102 so that it 1s ready
for importation (e.g., deployment) to the production system
104. The project manager 108 may review that status of the
assembly 1n the test system 102 and, 11 the assembly of the
collection for transport fails, a comprehensive list of error
messages will be provided that 1s understandable and mean-
ingful to the project manager 108, e.g., semantically signifi-
cant error messages that do not refer to techmical (e.g.,
soltware) objects and 1nstead focus on the semantic repre-
sentation ol software extensions provided by the adaptation
objects of the collection being assembled for transport.

After a successtul assembly 1n the test system 102 the
collection 1s exported from the test system. The export from
test system 102 starts with a dependency checks phase 118
where the adaptation objects of the collection are subjected
to a series of checks that may be performed in the test system
102. These checks are performed based on dependency data
generated for the adaptation objects of the collection. The
test system 102 may check whether each adaptation object
referenced by an adaptation object of the collection 1s either

US 9,542,173 B2

S

part of the collection or has already been exported to the
production system 104 and 1s unchanged (e.g., has not been
edited by key user 106) since last being exported. If this
check 1s failed a user interface 1s provided by test system 102
for: adding a latest version of the referenced adaptation
object to the collection; or removing the reference from the
referring adaptation object. The test system 102 may then
(e.g., based on the tests being passed or based on correcting
the failed tests via the Ul) export the adaptation object along,
with any other adaptation objects grouped together in the
collection. The dependency data (e.g., updated dependency
indexes) can be accessed during the export and import
processes (e.g., from the test system 102 and the production
system 104), for example, the dependency data may be
generated based on the adaptation type of the adaptation
object by accessing reference data associated with the said
adaptation type of the adaptation object.

After a successiul dependency checks phase 118 (e.g., all
checks have been passed) the collection 1s transported to the
production system 104 in a deployment phase 120. The
project manager 108 can decide when to deploy the collec-
tion to the production system 104, for example, the collec-
tion may be deployed immediately or at some scheduled
point 1n time. Importation time checks (e.g., dependency
checks phase 118 1n the production system 104) may also be
performed on each of the adaptation objects, based on the
dependency data, before importing the adaptation object
(along with any other adaptation objects grouped together 1n
the collection) into the production system 104. For example,
a check may be performed to determine whether installing
the software extension of the adaptation object on the
application 1 the production system 104 includes first
installing the software extension of another adaptation
object (that 1s referenced by the adaptation object) on the
application or a check may be performed to ensure that
adaptation objects are imported to the production system
104 1n the same order they got exported from the test system
104. The project manager 108 may, for each failed check, be
provided with a meaningful error message (e.g., “import
referenced adaptation object first”) based on the semantic
description of the software extension (e.g., free of unneces-
sary technical details) from the adaptation object that failed
the test. The project manager 108 may 1nitiate the depen-
dency checks via an mmport button. The status of the
deployment may be reviewed by the project manager 108 1n
the production system 104. The project manager 108 may
then install the software extension of the adaptation object
on the application in the production system 102, using the at
least one associated soltware object for the adaptation
object, based on the results of the checks for the adaptation
object.

In a patch development phase 112, the key user 106 may
develop changes (e.g., a patch) for transported (e.g.,
deployed) adaptation objects. These changes could include
the creation of new adaptation objects that must be part of
the collection, e.g., adaptation objects that depend on one
another such as a custom form that includes a custom field.
Changes made to adaptation objects that have already been
deployed will automatically become part of the next export
initiated by the project manager 108. Any other unassigned
adaptation objects may be added to the collection by the
project manager 108 in the manner described herein.

In a patch assembly phase 116, the key user 106 has
finished creating/changing and testing adaptation objects 1n
the test system 102 and the project manager 108 starts the
assembly of the changed collection 1n the manner described

10

15

20

25

30

35

40

45

50

55

60

65

6

herein. The project manager 108 then deploys the changes to
the production system 104 in a patch deployment phase 122.

FIG. 2 1s a block diagram 1llustrating a composite system
for developing, 1n a test system 202, soitware extensions for
applications of a production system 204, 1n accordance with
example embodiments. The test system 202 can be a mirror
of the production system 204 for the purpose of testing
soltware extensions for applications of the production sys-
tem 204. Therefore, the test system 202 may simply be
copied from the production system 204. This test system 202
may also serve as a test bed for other updates to the
production system 204, for example receiving such updates
a couple of weeks before they are scheduled to be 1mple-
mented 1n the production system 204. The production sys-
tem 204 may be copied from a master system (e.g., software
vendor system). As updates are developed and tested in the
test system 202, these updates are transported from the test
system 202 to the production system. However, a transport
from test system 202 to production system 204 may not be
possible during the time between an update to test system
202 (which may add new objects to the test system 202) and
the corresponding update to production system 204, since
the test system 202 may contain an object (that a key user
206 may want to adapt) which does not yet exist in the
production system 204. If an adaptation object 214 trans-
terred to the production system 204 references an object that
has not yet been imported to the production system 204 an
error will occur. For this kind of update activity, software
logistics locks may be used so that transport 1s only possible
if no software logistics lock 1s set, e.g., by a service provider.

In an embodiment, a clear distinction 1s made between
customer objects and customer data created by key user 206
(e.g., adaptation object 214) and native system objects (e.g.,
from soltware developer/manufacturer), so that no native
system objects are modified by the key user 206 and data 1s
written only to either pure customer tables or to native
system tables in designated customer parts of the test system
202 and production system 204. Therefore the software
vendor upgrade (and hotlix) process will not delete customer
objects or customer data created by key user 206 and no
particular action 1s required (e.g., by key user 206 or project
manager 208) during the upgrade or hotfix process.

In an embodiment, a change and transport system 218 for
transporting changes developed in the test system 202 to the
production system 204 1s coupled to an adaptation transport
organizer 216 that speaks “key user language” in order
simplity the user experience for the key user 206. The
adaptation transport organizer 216 may accomplish this by
hiding development artifacts such as transport requests
including list of technical objects (e.g., repository soltware
objects) to be transported and instead presenting the key user
206 (and project manager 208) with a semantic description
of the software being transported. As noted above, with
respect to FIG. 1, the key user 206 adapts the system, e.g. by
using an adaptation tool 212 to add an additional field to a
screen 1n an application 1n the test system 202. Whenever a
key user 206 creates, edits or deletes an adaptation object
214 1n test system 202, the test system 202 generates
dependency data for the adaptation object 214 based on a
reference, 1n the adaptation object 214, to at least one other
adaptation object 214 (e.g., custom form references an
extended field) in the test system 202. The test system 202
may 1dentily the references to other adaptation objects 214
in test system 202 based on the adaptation type of the
adaptation object 214. For example, the referenced adapta-
tion objects 214 may be determined based on reference data
associated with the adaptation type of the adaptation object

US 9,542,173 B2

7

214, ec.g., implementation of adaptation type X requires
adaptation objects Y and 7. Generating the dependency data
may include updating an index of dependencies between
adaptation objects 214 1n the test system 202. The depen-
dency data may be generated at export time so that the most
current version of the adaptation object 214 and any other
referenced adaptation object(s) 214 are exported to produc-
tion system 204.

The project manager 208, using the adaptation transport
organizer 216, transports the adaptations (e.g., adaptation
object 214) between systems, e.g. by transporting a new field
that was added to a standard form by key user 206 {from test
system 202 to production system 204. After the adaptation
object 214 has been implemented in production system 204
(e.g., installed on application 222), a business user 210 may
consume the adapted production system 204, ¢.g. by enter-
ing values for the added field in the application 222.

As noted above, the test system 202 1s used by the key
user 206 for adapting and testing while the production
system 204 1s used productively by business user 210. The
change and transport system 218 transports the changes (e.g.
adaptation object(s) 214) between the test system 202 and
the production system 204 1n the two-system landscape of
FIG. 2. The change and transport system 218 may require a
special file structure for transport data, logs, temporary data,
and transport control data. Therefore, in order to run auto-
matically, the change and transport system 218 can use a
transport directory 220 that can be shared by the test system
202 and the production system 204 to store and/or access
such data.

Adaptation object 214 represents a single adaptation of
the system. As noted above, the adaptation object 15 mean-
ingiul for and can be addressed by key user 206 and project
manager 208, ¢.g. “field extension” or “custom form™. The
adaptation object 214 consists of metadata and further
transportable content—including repository objects—that
are required for 1ts implementation 1n the production system
204 and/or required by the adapted (e.g., extended) appli-
cation 222 at runtime. Adaptation object 214 may refer to
other adaptation objects, for mstance, a custom print form
may use a custom field. Adaption tool 212 i1s, for instance,
an editor or wizard that 1s used by key user 206 to create
adaptation object 214. As shown 1n FIG. 2, multiple adap-
tation tools 212 may be present, for instance, to add addi-
tional fields to a business object or create a new e-mail
template. Adaptation tool 212 generates and administers the
transportable content (e.g., software objects) of the adapta-
tion object 214. However, the key user 206 does not need to
provide (or even understand) any technical adaptation trans-
port-related information when creating/editing an adaption
object 214—this 1s done by the adaptation tool 212 auto-
matically. The adaptation tool 212 registers the adaptation
objects 214 in the adaptation transport organizer 216 which
in turn provides the technical information to the adaption
tool 212.

In an embodiment, the adaption transport organizer 216
provides an overview of all adaption objects 214 and 1s used
by project manager 208 for transporting the adaption objects
214 from test system 202 to production system 204. The
adaption transport organizer 216 creates and administers the
packages of techmical objects/data and creates a transport
request. It can utilize change and transport system 218 to
transport the adaption objects 214 from test system 202 to
production system 204, e.g., using the transport directory
220 to store the transport request including the adaptation
objects 214. The export from test system 202 may include a
series ol checks (e.g., mn the test system 202) on the

10

15

20

25

30

35

40

45

50

55

60

65

8

adaptation objects 214 based on dependency data generated
for the adaptation objects 214 of the collection. The test
system 202 may check whether each adaptation object 214
of test system 202 that 1s referenced by an adaptation object
214 of the collection 1s 1tself: either part of the collection or
has already been exported to the production system 204 and
1s unchanged (e.g., has not been edited by key user 206)
since last being exported from test system 202. If this check
1s failed a user interface of adaptation transport organizer
216 (e.g., for project manager 208) 1s provided by test
system 202 for: adding a latest version of the referenced
adaptation object 214 to the collection; or removing the
reference from the referring adaptation object 214. The test
system 202 may then (e.g., based on passed tests or on
correcting the failed tests via the Ul of adaptation transport
organizer 216) export the adaptation object 214 along with
any other adaptation objects 214 grouped together in the
collection. The dependency data (e.g., updated dependency
indexes) can be accessed during the export and import
processes (e.g., from the test system 202 and the production
system 204 via adaptation transport organizer 216), since
this dependency data may be generated based on the adap-
tation type of the adaptation object 214 by accessing refer-
ence data (e.g., 1 test system 202 or production system 204)
associated with the said adaptation type of the adaptation
object 214. For example, implementation of adaptation type
X requires adaptation objects Y and Z.

Additionally, the adaption transport organizer 216 can
write 1ts own dependency data file to the transport directory
220. The dependency data file can be used to control the
importation of adaptation objects and execute checks (e.g.,
during a dependency checks phase 118 1n production system
204) prior to implementing the adaption objects 214 1nto the
production system 204. As mentioned above, dependency
data may also be obtained from adaptation tool 212 based on
data specific to each adaptation object 214, such as the
adaptation type of the adaptation object 214. In an embodi-
ment, a check may be performed to determine whether
installing the software extension of the adaptation object 214
on the application 222 in the production system 204 includes
first 1nstalling the software extension of another adaptation
object 214 (that 1s referenced by the adaptation object 214)
on the application 222. The project manager 208 may, for
cach failed check, be provided with a meaningiul error
message (e.g., “import referenced object first”) based on the
semantic description of the software extension (e.g., iree of
unnecessary technical details) from the adaptation object
214 that failed the test. The project manager 208 may 1nitiate
the dependency checks via an import button. The project
manager 208 may then install the software extension of the
adaptation object 214 on the application 222 1n the produc-
tion system 204, using the at least one associated software
object for the adaptation object 214, based on the results of
the checks for the adaptation object 214 (e.g., 1nstall soft-
ware extensions in required order).

FIG. 3 1s a block diagram illustrating, in more detail, a
composite system 300 for developing, in a test system 302,
soltware extensions for applications of a production system
304, 1n accordance with example embodiments. A key user
306 may use an adaptation tool 312 (there may be multiple
adaptation tools 312 available) to generate and process the
metadata 324 (e.g., semantic descriptors) and transportable
content 326 (e.g., software objects) of the adaptation object
314. The adaptation tool 312 registers the adaptation object
314 1n the adaptation registry 328 of the adaptation transport
organizer 316. The adaptation tool 312 uses adaptation
namespace 330, e.g., a prefix provided at system setup to be

US 9,542,173 B2

9

used 1n naming user created adaptation objects 314. In this
way, all adaptation objects 314 are located 1n the adaptation
namespace 330. The adaptation tool 312 can use a known
soltware packing method, for example an Advanced Busi-
ness Application Programming (ABAP) package 334 to
automatically package the technical objects (e.g., transport-
able content 326) required to implement the adaptation
objects 314 that are designed by key users 306 and collected
(via collection manager 336 of the adaptation transport
organizer 316) 1n a collection 332 for import to production
system 304 by project manager 308. The relevant informa-
tion (e.g., which technical objects to package for implement-
ing specific adaptation objects 314 of a collection 332) 1s
provided by the adaptation transport organizer 316, which
gets this information from the adaptation tool 312. The
adaptation tool 312 can provide a bill of material 338 for
cach adaptation object 314, where the bill of maternial 338
comprises a list of all transportable content 326 per adap-
tation object 314.

The import manager 366 registers each adaptation object
314 (e.g., after performing checks 354) in the adaptation
registry 328 in the production system 304. The adaptation
registry 328 therefore offers a comprehensive overview over
all adaptations (e.g., software extensions) of the system. The
adaptation registry 328 also provides more detailed infor-
mation for every adaption object 314, such as current status
(e.g., imported), version number of the collection 332, last
change date and user, etc. for every adaption object 314. The
adaptation registry 328 also contains information regarding
the test system 302 1n which the adaption object was created.
The adaption registry 328 can be updated in the test system
302 by the adaption tool 312 whenever an adaption object
314 1s modified by a key user 306. For this purpose the
adaptation tool 312 sends a notification to the adaptation
transport organizer 316. The adaption registry 328 is pro-
vided 1n language that 1s meaningtul for the key user 306,
¢.g. Iree of technical jargon associated with the adaptation
objects 314.

Whenever a key user 306 creates, edits or deletes an
adaptation object 314 1n test system 302, the test system 302
generates dependency data for the adaptation object 314
based on at least one reference, 1n the adaptation object 314,
to at least one other adaptation object 314 (e.g., custom form
references an extended field) 1n the test system 302. The test
system 302 may 1dentily the references to other adaptation
objects 314 1n test system 302, in the adaptation object 314,
based on the adaptation type of the adaptation object 314.
For example, the at least one referenced adaptation objects
314 may be determined based on reference data associated
with the adaptation type of the adaptation object 314, e.g.,
implementation of adaptation type X requires adaptation
objects Y and Z. Generating the dependency data may
include updating an index of dependencies (e.g. in adapta-
tion registry 328) between adaptation objects 314 1n the test
system 302. The dependency data may be generated at
export time so that the most current version of the adaptation
object 314 and any other referenced adaptation object(s) 314
are exported to production system 304.

In an embodiment, each adaption object 314 1s assigned
to a collection 332 by the project manager 308 using
collection manager 336 of the adaptation transport organizer
316. A collection 332 may be designated as local or trans-
portable by the project manager 308. Initially, adaptation
objects 314 are automatically assigned to a local collection
332. At a later time the project manager 308 can change the
assignment, e¢.g. from local to transportable so that the
collection 332 may be transported to production system 304.

10

15

20

25

30

35

40

45

50

55

60

65

10

The project manager 308 may change collection assign-
ments via adaptation transport organizer 316.

A collection 332 has a version number that i1s increased
cach time the collection 332 i1s exported to production
system 304. In an embodiment, a changelist 340 1s generated
(via a changelist manager 342 of the adaptation transport
organizer 316) when a collection 332 1s exported. The
changelist 340 contains the list of adaptation objects 314 to
be exported with a corresponding bill of material 338 for
cach adaptation object 314. The bill of material 338 1is
provided by the adaptation tool 312 to the adaptation trans-
port organizer 316. A changelist 340 can contain data
regarding only changes that have been made to an adaptation
object 314 by a key user 306 since the collection 332 was
last exported (referred to herein as a delta changelist) or 1t
can contain data regarding all of the adaptation objects 314
of a collection 332 (referred to herein as a full changelist).
A transport request 344 to be processed by change and
transport system 318 1n order to transport the collection 332
1s generated; however the transport request 344 does not
know which of its transport objects (e.g., transportable
content 326) belong to what adaptation object 314 of col-
lection 332. Theretore, the bill of material 338 (e.g., stored
in the changelist 340) 1s used to keep track of what transport
object belongs to what adaptation object 314.

The export from test system 302 may include a series of
checks (e.g., 1n the test system 302) on the adaptation objects
314 based on dependency data generated for the adaptation
objects 314 of the collection 332. The test system 302 may
check whether each adaptation object 314 of test system 302
that 1s referenced by an adaptation object 314 of the collec-
tion 332 1s itself: either part of the collection 332 or has
already been exported to the production system 304 and 1s
unchanged (e.g., has not been edited by key user 306) since
last being exported from test system 302. If this check 1is
failed a user interface of adaptation transport organizer 316
(e.g., for project manager 308) 1s provided by test system
302 for: adding a latest version of the referenced adaptation
object 314 to the collection 332; or removing the reference
from the referring adaptation object 314 of collection 332.
The test system 302 may then (e.g., based on passed tests or
on correcting any failed tests via the Ul of adaptation
transport organizer 316) export the collection 332. The
dependency data (e.g., updated dependency indexes in adap-
tation registry 328) can be accessed during the export and
import processes (e.g., from the test system 302 and the
production system 304 via adaptation transport organizer
316), since this dependency data may be generated based on
the adaptation type of the adaptation object 314 by accessing
reference data (e.g., 1 test system 302 or production system
304) associated with the adaptation type of adaptation object
314. For example, implementation of adaptation type X
requires adaptation objects Y and 7. Furthermore, depen-
dency data specific to an individual adaptation object 314
may be written to a manifest file 362 (as explained below)
in the transport directory 320 for access by the production
system 304.

In an embodiment, each pair of test system 302 and
production system 304 (of an enterprise customer) has its
own transport directory 320 and the test system 302 and
production system 304 are both connected to that transport
directory 320. Alternate embodiments with separate trans-
port directories for the test system 302 and the production
system 304 are also possible. The transport directory 320
contains a virtual import queue 346 and an import queue 348
for the production system 304. A project manager 308 can
export only the changes (since last export) of a collection

US 9,542,173 B2

11

332 or the project manager 308 can export the entire
collection 332. Based on the selection by project manager
308, the export manager 350 requests a bill of material 338
per adaptation object 314 from each adaptation type, e.g.,
type of software extension. After the changelist manager 342
creates a changelist 340 and a transport request 344 and fills
them accordingly, the export manager 350 authorizes the
export of the collection 332 (e.g., after performing checks
354 based on the dependency data) as a data file 360 (e.g.,
written to the transport directory 320) and adds the transport
request 344 to the virtual import queue 346 using the change
and transport system 318, 1.e. via an automated transport
program tp/R3trans 364.

Additionally, the export manager 350 creates a manifest
file 362 that 1s also written to the transport directory 320. In
the case of separate transport directories for each of the two
systems 302 and 304, the manifest file 362 may be integrated
to the standard data file 360 so that the data file 360 can be
directly exported to a separate “transport directory” of
production system 304). The manifest file 362 contains the
relevant adaptation registry 328 information, the bill of
material 338, and other metadata of the collection 336 such
as a reference to another adaptation object 314 (e.g., depen-
dency data). The data 1n the manifest file 362 may also (or
alternatively) be written to a file (e.g., in an 1nternal table)
in the adaptation transport organizer 316 in production
system 304. The export history 358 of export manager 350
provides an overview of when, who, and what was exported
from test system 302 to production system 304, as well as
the status and the information regarding whether each export
was a delta/full export 352. The export log 356 of export
manager 350 1s written for each export and can contain two
levels of information, namely, a business log which 1s easy
to understand for the project manager 308 and a techmical
log that i1s understandable by techmical personnel (e.g.,
service provider) and 1s hidden for the other users of the
system such as key user 306 and project manager 308.

The project manager 308 can import changes (e.g., col-
lection 332 of adaptation objects 314) to production system
304 that have been previously exported from test system
302. The project manager 308 may use an import manager
366 of adaptation transport organizer 316 for this purpose.
All of the exported files (e.g., data file 360) 1n the virtual
import queue 346 might be offered for import to production
system 304 by the project manager 308. However, not all of
the files might be available, for example, a data file 360 for
a collection 332 1n version 4 might be oflered for import, but
if a full version 5 of the same collection 332 1s later
imported, then the lower version 4 of collection 332 would
no longer be oflered for import. Based on the data files 360
and manifest files 362 available 1n the transport directory
320, the project manager 308 can choose what collection
332 (including which version of the collection 332) 1s to be
imported into production system 304. In an embodiment, the
project manager 308 may schedule collections to be
imported at a future time using a scheduler 368 of the import
manager 366. In an embodiment, the adaptation transport
organizer 316 may automatically import all delta exports of
a collection 332 up to the version number selected by the
project manager 308 while ensuring that these are imported
to production system 304 in the same sequence they were
exported from test system 302, e.g., based on the version of
collection 332 and 11 the exported files contain a delta or full
changelist 340.

Before the actual import of any files to production system
304, the import manager 366 can perform checks 354 (e.g.,
in a dependency checks phase 118) based on the manifest file

10

15

20

25

30

35

40

45

50

55

60

65

12

(e.g. specific dependency data) and also based on adaptation
tool-specific checks 354. For example, dependency data
used as a basis for testing adaptation objects 314 during a
dependency checks phase (e.g., 118) before importation may
be obtained from adaptation tool 312 based on the adapta-
tion type of the adaptation object 314. It all of the checks
354 are successiul, for example because the results of the
checks conform to reference data associated with the respec-
tive adaptation types of each of the adaptation objects 314 of
the collection 332, the transport request 344 (persisted in
data file 360) is transferred to the actual import queue 348
ol the production system 304. The adaptation registry 328 of
the production system 304 1s then updated, and the actual
import of the data file 360 1s triggered using the change and
transport system 318, 1.e. via program tp/R3trans 364. The
import history 370 of import manager 366 provides an
overview ol when, who, and what was 1imported 1nto pro-
duction system 304 from test system 302. The import log
372 of import manager 366 1s written for each import and
can contain two levels of information, namely, a business log
which 1s easy to understand for the project manager 308 and
a technical log that 1s understandable by technical personnel
(e.g., service provider) and 1s hidden for the other users of
the system such as key user 306 and project manager 308.

In an embodiment, data specific to each adaptation object
314 may be used to check 1t a transport request 344 cannot
be imported properly into production system 304 because
one adaptation object 314 of the transport request 344
references another adaptation object 314 that 1s: not on the
transport request 344 1tself, has not previously been
imported to the production system 304 or has been changed
since last being imported to production system 304. There-
fore, interdependency of adaptation objects 314 1s an 1mpor-
tant consideration, because all interdependent adaptation
objects 314 should be present at import time for the import
to production system 304. For example, i an adaptation
object 314 includes a form CUSTOMER_DATA that uses an
enhancement field TELNO (e.g., based on an adaptation
object 314 created by a key user 306) of a table CUS-
TOMER then form CUSTOMER_DATA depends on the
enhancement field TELNO of the table CUSTOMER. This
means either this enhancement field (TELNO of the table
CUSTOMER) must be present 1n the production system 304
before the adaptation object 314 that includes the form
CUSTOMER_DATA 1s imported or the enhancement field
(TELNO of the table CUSTOMER) must be in the same
collection 332 as the adaptation object 314 that includes the
form CUSTOMER DATA. See FIGS. 5A and 5B below for
more details. Being present in the same collection 332 1s
suilicient because the adaptation transport organizer 316 will
allow only full exports of the collection 332 or delta exports
without skipping any intervening delta exports during
import of the adaptation object 314 into production system
304.

In an embodiment, dependencies between adaptation
objects can be determined based on the adaptation type of an
adaptation object 314. For example, 11 the information that
form CUSTOMER DATA uses the enhancement field
TELNO of the table CUSTOMER 1s just written 1n a table,
technical means (e.g., a search) might not be able to find this
data. Therefore the adaptation type of an adaptation object
314 may be the basis for the adaptation transport organizer
316 to look for data (e.g., call to a class of the adaptation
type of the adaptation object 314) regarding any dependen-
cies between adaptation objects 314.

FIG. 4 1s a ladder diagram 1illustrating a method 400, 1n
accordance with an example embodiment, for creating,

US 9,542,173 B2

13

registering and collecting adaptation objects 314 1n a test
system 302 for import to a production system 304. This
method can utilize an adaptation tool 402 (e.g., 312), an
adaptation registry 404 (e.g., 328) and a collection manager
408 (e.g., 336) 1n the test system 302. A key user 306 may
use the adaptation tool 402 to create an adaptation object 314
in a first step 408. In step 410, the adaptation tool 402
provides an adaptation object ID and descriptive information
regarding the adaptation object 314 (e.g., semantic descrip-
tion of software extension) so that an entry for the adaptation
object 314 can be created in the adaptation registry 404 1n
step 412. The entry for the adaptation object 314 1n the
adaptation registry 404 may include dependency data such
as an 1index of adaptation object(s) 314 that either refer to or
are referred to by the adaptation object 314. The adaptation
tool 402 can therelore register the adaptation object 314 by
calling the adaptation transport orgamizer 316 with the
adaptation object 314, adaptation object description (in “key
user language”), and the adaptation type of the adaptation
object since the adaptation transport organizer 316 includes
an adaptation registry 328 of all existing adaptation objects
314 for a system. The adaptation transport organizer 316 will
store the information with the description for this adaptation
object 314 (e.g. so that the user interface can show this to a
key user 306 instead of the ID). In step 414, the adaptation
object 1s added to the LOCAL collection 332 by the collec-
tion manager 406. At a later point in time the key user 306
can reassign it to another NON-LOCAL (transportable)
collection 332 using the adaptation transport organizer 316.
The adaptation transport orgamizer 316 tells the adaptation
tool 312 which development package (e.g., ABAP package
334) shall be used for the technical objects belonging to this
adaptation object 314. The adaptation tool 312 then creates
the metadata 324 and the transportable content 326 (e.g.
technical objects).

In one 1mplementation, broken references (e.g., call to
unknown or non-existent objects) are handled differently
depending on the circumstances. For instance, 1 a soft
dependency 1s mvolved (e.g., a call to a custom field that
might be selected by a business user 310) then the import of
the transport request 344 including the calling adaptation
object 314 will proceed but the user interface (UI) of the
extended application 322 (extended by the calling adaptation
object) may simply hide or disable the custom field. On the
other hand, 11 a hard dependency 1s involved (e.g., a refer-
enced field of a custom structure does not exist in the
production system 304) the import of a transport request 344
that includes an adaptation object 314 that cannot be acti-
vated will stmply fail. An index/where-used list of a reposi-
tory information system (e.g., in or connected to adaptation
registry 328) can provide a basis for handling such depen-
dencies. Such an index/where-used list may be set up for
customer-specific objects (e.g., adaptation objects 314) and
may be updated incrementally. For example, in the test
system 302, the index can be updated immediately for every
change to an adaptation object 314 by a key user 306, while,
in the production system 304, the index may be generated
and/or updated only after a transport request 344 1is
imported. In order to have a prompt update of the index, the
adaptation transport organizer 316 may trigger the update
job 1immediately after any import to the production system
304.

Dependency between adaptation objects 314 and other
objects (e.g., other adaptation objects 314) may be based on
a business logic that calls for adaptation objects 314 to
reference each other, e.g. via an i1dentifier. Since adaptation
objects 314 can only be transported 11 they are no longer part

5

10

15

20

25

30

35

40

45

50

55

60

65

14

of a local (non-transportable) collection 332, before export-
ing an adaptation object 314 from test system 302, the
adaptation transport organizer 316 can check to ensure that
none of the transportable (non-local) objects (e.g. transport-
able content 326) references a local (non-transportable)
object. In implementations described below with respect to
FIGS. 5A and 3B, the business logic can resolve references
between transportable and non-transportable adaptation
objects 314 at export time 1n different ways.

FIG. 5A 1s a diagram 1llustrating options for handling a
dependency between an adaptation object D 1n a non-local
collection 504 and an adaptation object B 1n a local collec-
tion 502 according to an example embodiment. A depen-
dency (e.g., a call or reference) 506 between adaptation
object D 1n non-local collection 502 (e.g., collection 1is
designated for transport) and adaptation object B in local
collection 502 1s i1dentified. In this situation, the user (e.g.,
key user 306 or project manager 308) may be presented with
two choices (e.g., via the Ul of the adaptation tool 312 or the
Ul of the adaptation transport organizer 316): removing the
reference (e.g., dependency) from the adaptation object D to
the adaptation object B so that local collection 502 remains
unchanged and non-local collection 3504 i1s modified to
obtain non-local collection 504' by removing the call from
adaptation object D to adaptation object B'; or assigning the
referenced adaptation object B to the transportable non-local
collection 504 to obtain modified local collection 502" and
modified non-local collection 504".

FIG. 5B 1s a diagram 1illustrating options for handling a
dependency between a changed adaptation object (B', D' and
E') in a non-local collection 504 and an unchanged adapta-
tion object C 1n the same collection 504" according to an
example embodiment. Continuing with the example of re-
assigning a dependency 1n FIG. 5A, once 1t has been assured
that modified non-local collection 504" includes no refer-
ences to any adaptation objects in a local collection, checks
are performed to ensure that the adaptation objects (B, C, D
and E) to be exported 1n collection 504" do not depend on
(e.g., call or refer to) changes made to any of these objects
by a key user 306 after the last export of the collection 504.
If only unchanged adaptation objects (e.g., objects that have
already been exported atfter the last change to the object) of
collection 504" are to be exported, then no check 1s required
since a check was already performed 1n a previous export of
collection 504. If all of the objects that were changed since
the last export of collection 504 are to be exported in
collection 504", then no check is required either since the
unchanged objects were checked before (e.g., previous
export) and changed objects to be exported comprise all of
the changes to the adaptation objects of collection 504" so
that, 11 there are dependencies, then the dependencies are
exported together.

However, 1f only a subset of all objects of collection 504"
that were changed since the last export of collection 504 1s
to be exported, then a check 1s performed to determine that
all dependent changes are included in the subset of adapta-
tion objects to be exported. In FIG. 5B, adaptation objects
that have been changed are B', D' and E', therefore adapta-
tion objects E' and B' could be exported individually, since
these objects do not depend on any changed object, e.g., they
both depend only from unchanged adaptation object C.
However, when the adaptation object D' 1s to be exported,
then changed object B' will also be exported since object D
depends on changed object B'. Even 1f the changes made to
B' may not, in fact, actually be relevant to any use of
changed adaptation object B' by adaptation object D', this
situation would require an export of all dependent parts of

US 9,542,173 B2

15

the adaptation object D' including changed adaptation object
B'. The adaptation transport organizer 316 can provide a user
with the option to export all changes (or a subset) since last
export of a collection with an error message if there are any
broken dependencies.

FIG. 6 15 a flow diagram illustrating a method, 1n accor-
dance with an example embodiment, for processing soltware
extensions including a dependency checks phase prior to
export. Method 600 can be performed by processing logic
that can comprise hardware (e.g., circuitry, dedicated logic,
programmable logic, microcode, etc.), soltware (e.g.,
instructions run on a processing device), or a combination
thereof.

At operation 602, an adaptation object 314 associated
with an application 322 1n a second system (e.g., production
system 304) 1s accessed 1n a first system (e.g., test system
302). The adaptation object 314 comprises a semantic rep-
resentation ol a software extension for the application 322
(e.g., a short description easily understood by a key user 306
or project manager 308) and at least one software object,
¢.g., metadata 324 and further transportable content 326—
including repository objects required for implementation of
adaptation object 314 and at runtime of application 322. The
accessing of an adaptation object 314 1n the test system 302
may include a user (e.g., key user 306) deciding to create,
edit or delete an adaptation object 314 of test system 302 via
the Ul of adaptation transport tool 312. As mentioned above,
a check 1s performed to determine 1f any software logistics
locks have been set to prevent adaptations of the test system
302 and the production system 304 during maintenance e.g.
hotfixes or upgrades. If there 1s no such lock in place, then
the collection 332 may be set to a lock-status of “assembly-
started” so that no new objects can be added to the collection
332, no objects can be removed from the collection 332 and
no mmport of the same collection 332 can be done until
assembly 1s finished.

At operation 604, dependency data (e.g., data used for
checks performed on an adaptation object 314 during a
dependency checks phase 118) based on the adaptation type
of the adaptation object 314 1s generated. The adaptation
transport organizer 316 reads which adaptation objects 314
belong to the collection 332 and reads when the last export
was done from export history 358 (in case of a delta export
of only changed objects). The adaptation transport organizer
316 then calls, for each adaptation object 314 of the collec-
tion 332, the adaptation type 1n order to determine the object
lists for the transport of the collection, e.g., determine the
data needed by the change and transport system 318 to
transport the collection. The adaptation transport organizer
316 uses the adaptation type of each adaptation object 314
to generate dependency data for checks (e.g., checks 354) by
examining a class of the adaptation type (e.g., via a call to
the class definition). As noted above, this data may be used
to determine 11 an adaptation object 314 1s active (e.g., still
in use) or consistent (e.g., does not depend on missing
objects), or to do any further checking that 1s needed.

The adaptation type data (or related class data) may be
used to generate dependency data provided to the production
system 304 via a manifest file 362 created after the success-
tul export of the transport request 344 by the adaptation
transport organizer 316, e.g., via export manager 350. The
manifest file 362 also contains general information regard-
ing the test system 302 (e.g., export system) at export time
(e.g. release, software components, support package levels,
tull or delta transport, version number of the collection, . .

10

15

20

25

30

35

40

45

50

55

60

65

16

.) that can be used to perform checks in the production
system 304 prior to import of the adaptations of collection
332.

At operation 606, the adaption object 314 1s assigned to
a collection 332 (of adaptation object(s) 314) by the project
manager 308 using collection manager 336 of the adaptation
transport organizer 316. A collection 332 may be designated
as local or transportable by the project manager 308. Ini-
tially, adaptation objects 314 are automatically assigned to a
local collection 332. At a later time the project manager 308
can change the assignment, e.g. from local to transportable
so that the collection 332 may be transported to production
system 304. The project manager 308 may change collection
assignments via adaptation transport organizer 316.

At operation 608, certain dependency checks (e.g., checks
354) are performed belfore export of the collection 332
including the adaptation object 314. For each check that 1s
failed, the relevant errors will be shown on the Ul of the
adaptation transport organizer 316. If all checks are suc-
cessiul (e.g., satisfied based on a comparison to reference
data as explained above) a data file 360 based on the
transport request 344 1s placed into the transport directory
320 together with the manifest file 362. As noted above, the
dependency data may be used as a basis for checks per-
formed by the adaptation transport organizer 316 (e.g., via
export manger 350) prior to export of collection 332. Certain
checks (e.g., checks 354) are performed by the adaptation
transport organizer 316 (e.g., via export manger 350) on the
collection 332 including the adaptation object 314 at “export
time” just before the collection 332 has been exported from
the test system 302. The checks may be based on the
adaptation type of the adaptation object 314, for example
checks may be used to determine 11 the adaptation object 314
1s active (e.g., still in use) or consistent (e.g., does not
depend on missing objects), or to do any further checking
that 1s needed. The results of the checks (e.g., too many
failures) may impede the implementation of an adaptation
(e.g., installation of software extension on application 322 of
production system 304) and the errors will be represented on
the UI of the adaptation transport organizer 316 1n a manner
that 1s understandable to the project manager 308, ¢.g. based
on the semantic representation of the software extension
from the adaptation object that failed the test. I all checks
are successiul (e.g., satisfied based on a comparison to
reference data as explained above) the adaptations of the
collection 332 will be imported in the production system 304
via the adaptation transport organizer 316 adding the trans-
port (e.g., data file 360) to an 1mport queue 348 of the
transport directory 320 and removing 1t from the virtual
import queue 346.

At operation 610, the actual export of collection 332 can
begin based on all of the checks of operation 608 being
successiul. The export manager 350 authorizes the export of
the collection 332 (e.g., after performing checks 354 based
on the dependency data) as a data file 360 (e.g., written to
the transport directory 320) and adds the transport request
344 to the virtual import queue 346 using the change and
transport system 318, 1.e. via an automated transport pro-
gram tp/R3trans 364. After the export of the transport
request 344 an export history 358 would be updated and an
export log 356 would be created based on the export and the
transport request 344 would be added to the virtual import
queue 346.

FIG. 7 1s a flow diagram 1illustrating a method 700, 1n
accordance with an example embodiment, for performing
checks on a software extension during a dependency checks
phase prior to import. Method 700 can be performed by

US 9,542,173 B2

17

processing logic that can comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soit-
ware (e.g., mstructions run on a processing device), or a
combination thereof.

As noted above, the dependency data may be used as a
basis for checks performed by the adaptation transport
organizer 316 (e.g., via import manger 366) prior to 1mpor-
tation of collection 332. In this situation the adaptation
transport organizer 316 will read the manifest file 362 and do
some general checks (e.g. if this 1s a delta transport with
version 7 of collection 332 and the production system 304
only has version 5 of this collection 332, then version 7 delta
cannot be mmported, until version 6 1s imported). If these
general checks are successtul, the adaptation transport orga-
nizer 316 reads from the manifest file 362 which adaptation
objects 314 exist 1n the transport and which adaptation types
they belong to and determine further dependency data for
cach of the adaptation objects 314. Then the adaptation
transport organizer 316 calls the adaptation types for this
dependency mformation and collects the results.

Before an import or check before import of the collection
332 can be done, the virtual import queue 346 1s read e.g. by
a batch job running at certain intervals or 1n background jobs
when the import Ul 1s started in production system 304.
Such a background jobs will read for each transport request
344 found 1n the virtual import queue 346 the dependency
data (e.g. in the manifest file 362) the information about
collection 332, such as collection name, collection version,
tull or delta changelist, adaptation objects 314 in the trans-
port request 344 and 1t will transfer this information to the
adaptation transport organizer 316 (in the production system
304). Then the project manager 308 can see the collection
versions with the collection name, the tull/delta information,
the version miformation waiting for import in the Ul of the
adaptation transport organizer 316 (e.g., import manager
366 1n the production system 304) and project manager 308
may select one collection version for import. Before the
actual import 1s done, more dependency checks may be
performed.

At operation 702 the adaptation transport organizer 316
determines whether all of the adaptation objects 314 1n test
system 302 that are referenced by any of the adaptation
objects 314 1n collection 332 are included 1n the collection
332.

At operation 704, 1f i1t 1s determined that all of the
adaptation objects 314 1n test system 302 that are referenced
by any of the adaptation objects 314 1n collection 332 are
included 1n the collection 332 then the software extensions
of collection 332 may be installed on application(s) 322 of
production system 304 at operation 712.

At operation 706, 11 1t 1s determined that any of the objects
314 1n test system 302 that i1s referenced by any of the
adaptation object 314 1n collection 332 is not included 1n the
collection 332 then 1t 1s determined if all of the referenced
adaptation objects 314 that are not 1n collection 332 are 1n
production system 304 (e.g. a check to see 11 the referenced
adaptation object 314 has previously been imported into
production system 304). It 1t 1s determined that any of the
referenced objects 314 that are not 1n collection 332 1s not
in production system 304 then the method ends without
being able to import the collection 332 and error messages
will be provided the project manager 308.

At operation 708, 1t 1s determined whether any of the
referenced adaptation objects 314 that are in production
system 304 has been changed since last being imported into
the production system 304 (e.g., by checking import history
370 and/or import log 372). It it 1s determined that any of the

10

15

20

25

30

35

40

45

50

55

60

65

18

referenced adaptation objects 314 that are in production
system 304 has been changed since last being imported into
the production system 304 (e.g., by checking import history
370 and/or import log 372) then the method ends without
being able to import the collection 332 and error messages,
including options for correcting the errors as explained with
regard to FIGS. 5A-5B above, will be provided for the
project manger 308 wvia the Ul of adaptation transport
organizer 316.

At operation 710, 1f 1t 1s determined that all of the
referenced adaptation objects 314 that are i production
system 304 have not been changed since last being imported
into the production system 304 (e.g., by checking import
history 370 and/or import log 372) then the software exten-
sions of collection 332 may be mstalled on application(s)
322 of production system 304 using a copy of the referenced
adaptation object 314 retrieved from production system 304.

At operation 712, based on the checks being successiul,
the adaptation transport organizer 316 imports the transport
request 344 associated with the collection 332. After the
import of the transport request 344 an import history 370
would be updated and an import log 372 would be created
based on the imported collection 332.

Modules, Components and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules can constitute either software modules (e.g., code
embodied (1) on a non-transitory machine-readable medium
or (2) 1n a transmission signal) or hardware-implemented
modules. A hardware-implemented module 1s a tangible unit
capable of performing certain operations and can be con-
figured or arranged 1n a certain manner. In example embodi-
ments, one or more computer systems (e.g., a standalone,
client or server computer system) or one or more processors
can be configured by software (e.g., an application or
application portion) as a hardware-implemented module that
operates to perform certain operations as described herein.

In various embodiments, a hardware-implemented mod-
ule can be implemented mechanically or electronically. For
example, a hardware-implemented module can comprise
dedicated circuitry or logic that 1s permanently configured
(e.g., as a special-purpose processor, such as a field pro-
grammable gate array (FPGA) or an application-specific
integrated circuit (ASIC)) to perform certain operations. A
hardware-implemented module can also comprise program-
mable logic or circuitry (e.g., as encompassed within a
general-purpose processor or other programmable proces-
sor) that 1s temporanly configured by software to perform
certain operations. It will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by soft-
ware) can be driven by cost and time considerations.

Accordingly, the term “hardware-implemented module™
should be understood to encompass a tangible entity, be that
an enfity that 1s physically constructed, permanently con-
figured (e.g., hardwired) or temporarily or transitorily con-
figured (e.g., programmed) to operate in a certain manner
and/or to perform certain operations described herein. Con-
sidering embodiments in which hardware-implemented
modules are temporarily configured (e.g., programmed),
cach of the hardware-implemented modules need not be
configured or instantiated at any one instance in time. For
example, where the hardware-implemented modules com-
prise a general-purpose processor configured using solftware,
the general-purpose processor can be configured as respec-
tive different hardware-implemented modules at different

US 9,542,173 B2

19

times. Software can accordingly configure a processor, for
example, to constitute a particular hardware-implemented
module at one 1nstance of time and to constitute a different
hardware-implemented module at a different instance of
time.

Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple-
mented modules. Accordingly, the described hardware-
implemented modules can be regarded as being communi-
catively coupled. Where multiple such hardware-
implemented modules exist contemporaneously,
communications can be achieved through signal transmis-
s10on (e.g., over appropriate circuits and buses) that connect
the hardware-implemented modules. In embodiments in
which multiple hardware-implemented modules are config-
ured or instantiated at different times, communications
between such hardware-implemented modules can be
achieved, for example, through the storage and retrieval of
information 1 memory structures to which the multiple
hardware-implemented modules have access. For example,
one hardware-implemented module can perform an opera-
tion and store the output of that operation 1n a memory
device to which 1t 1s communicatively coupled. A further
hardware-implemented module can then, at a later time,
access the memory device to retrieve and process the stored
output. Hardware-implemented modules can also initiate
communications with mput or output devices, and can
operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented mod-
ules that operate to perform one or more operations or
functions. The modules referred to herein may, 1 some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein can be at least
partially processor-implemented. For example, at least some
of the operations of a method can be performed by one of
processors or processor-implemented modules. The perior-
mance of certain of the operations can be distributed among
the one or more processors, not only residing within a single
machine, but deployed across a number of machines. In
some example embodiments, the processor or processors
can be located 1n a single location (e.g., within a home
environment, an oflice environment or a server farm), while
in other example embodiments the processors can be dis-
tributed across a number of locations.

The one or more processors can also operate to support
performance of the relevant operations 1n a “cloud comput-
ing”~” environment or as a “software as a service” (SaaS). For
example, at least some of the operations can be performed
by a group of computers (as examples of machines including
processors), these operations being accessible via a network
(¢.g., the Internet) and via one or more appropriate interfaces
(e.g., Application Program Interfaces (APIs).)

Electronic Apparatus and System

Example embodiments can be implemented in digital
clectronic circuitry, or 1 computer hardware, firmware,
soltware, or combinations of these. Example embodiments
can be implemented using a computer program product, e.g.,
a computer program tangibly embodied 1n an information
carrier, €.g., 1n a machine-readable medium for execution by,

10

15

20

25

30

35

40

45

50

55

60

65

20

or to control the operation of, data processing apparatus,
¢.g., a programmable processor, a computer, or multiple
computers.

A computer program can be written 1n any form of
programming language, including compiled or interpreted
languages, and 1t can be deployed in any form, including as
a stand-alone program or as a module, subroutine, or other
unit suitable for use 1 a computing environment. A com-
puter program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.

In example embodiments, operations can be performed by
one or more programmable processors executing a computer
program to perform functions by operating on input data and
generating output. Method operations can also be performed
by, and apparatus of example embodiments can be 1mple-
mented as, special purpose logic circuitry, e€.g., an FPGA or
an ASIC.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In embodiments
deploying a programmable computing system, it will be
appreciated that both hardware and software architectures
require consideration. Specifically, it will be appreciated that
the choice of whether to implement certain functionality in
permanently configured hardware (e.g., an ASIC), 1n tem-
porarily configured hardware (e.g., a combination of soft-
ware and a programmable processor), or in a combination of
permanently and temporarily configured hardware can be a
design choice. Below are set out hardware (e.g., machine)
and software architectures that can be deployed, in various
example embodiments.

Machine Architecture and Machine-Readable Medium

FIG. 8 1s a block diagram of a machine 1n the example
form of a computer system 800 within which instructions for
causing the machine to perform any one or more of the
methodologies discussed herein can be executed. In alter-
native embodiments, the machine can operate as a stand-
alone device or can be connected (e.g., networked) to other
machines. In a networked deployment, the machine can
operate 1n the capacity of a server or a client machine 1n
server-client network environment, or as a peer machine 1n
a peer-to-peer (or distributed) network environment. The
machine can be a personal computer (PC), a tablet PC, a
set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a network router, switch
or bridge, or any machine capable of executing instructions
(sequential or otherwise) that specily actions to be taken by
that machine. Further, while only a single machine 1s illus-
trated, the term “machine” shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.

The example computer system 800 includes a processor
802 (e.g., a central processing unit (CPU), a graphics
processing umt (GPU), or both), a main memory 804 and a
static memory 806, which communicate with each other via
a bus 808. The computer system 800 can further include a
video display unit 810 (e.g., a liqud crystal display (LCD)
or a cathode ray tube (CRT)). The computer system 800 can
also include an alpha-numeric input device 812 (e.g., a
keyboard or a touch-sensitive display screen), a user inter-
tace (UI) navigation device 814 (e.g., a mouse), a drive unit

US 9,542,173 B2

21

816, a signal generation device 818 (e.g., a speaker), and a
network interface device 820.
Machine-Readable Medium

The disk drive unit 816 includes a computer-readable
medium 822 on which 1s stored one or more sets of instruc-
tions and data structures (e.g., software) 824 embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The instructions 824 can also reside,
completely or at least partially, within the main memory 804
and/or within the processor 802 during execution thereof by
the computer system 800, the main memory 804 and the
processor 802 also constituting machine-readable media.

While the machine-readable medium 822 1s shown 1n an
example embodiment to be a single medium, the term
“machine-readable medium” can include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more 1instructions or data structures. The term “machine-
readable medium™ shall also be taken to include any tangible
medium that 1s capable of storing, encoding or carrying
instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies
of the present disclosure, or that 1s capable of storing,
encoding or carrying data structures utilized by or associated
with such instructions. The term “machine-readable
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media. Specific examples of machine-readable media
include non-volatile memory, including by way of example
semiconductor memory devices, e.g., Frasable Program-

mable Read-Only Memory (EPROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM), and flash
memory devices; magnetic disks such as mternal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks.
Transmission Medium

The instructions 824 can further be transmitted or
received over a communications network 826 using a trans-
mission medium. The instructions 824 can be transmitted
using the network interface device 820 and any one of a
number of well-known transfer protocols (e.g., HITP).
Examples of communication networks include a local area
network (LAN), a wide area network (WAN), the Internet,
mobile telephone networks, Plain Old Telephone (POTS)
networks, and wireless data networks (e.g., WiF1 and
WiMax networks). The term “transmission medium” shall
be taken to 1include any intangible medium that is capable of
storing, encoding, or carrying instructions for execution by
the machine, and includes digital or analog communications
signals or other intangible media to facilitate communication
of such software.

Although an embodiment has been described with refer-
ence to specific example embodiments, 1t will be evident that
vartous modifications and changes can be made to these
embodiments without departing from the broader spirit and
scope of the disclosure. Accordingly, the specification and
drawings are to be regarded 1n an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof show by way of 1llustration, and not of limitation,
specific embodiments 1n which the subject matter can be
practiced. The embodiments illustrated are described in
suilicient detail to enable those skilled in the art to practice
the teachings disclosed herein. Other embodiments can be
utilized and derived theretrom, such that structural and
logical substitutions and changes can be made without
departing from the scope of this disclosure. This Detailed
Description, therefore, 1s not to be taken 1n a limiting sense,

10

15

20

25

30

35

40

45

50

55

60

65

22

and the scope of various embodiments 1s defined only by the
appended claims, along with the full range of equivalents to
which such claims are entitled.

Such embodiments of the inventive subject matter can be
referred to herein, individually and/or collectively, by the
term “‘invention” merely for convenience and without
intending to voluntarily limit the scope of this application to
any single mvention or mventive concept 1f more than one
1s 1n fact disclosed. Thus, although specific embodiments
have been 1illustrated and described herein, it should be
appreciated that any arrangement calculated to achieve the
same purpose can be substituted for the specific embodi-
ments shown. This disclosure 1s intended to cover any and
all adaptations or varnations of various embodiments. Com-
binations of the above embodiments, and other embodi-
ments not specifically described herein, will be apparent to
those of skill 1n the art upon reviewing the above descrip-
tion.

The mvention claimed 1s:

1. A method comprising:

accessing, 1n a first computer system, an adaptation object

associated with an application 1n a second computer
system, the adaptation object comprising a software
extension for the application;

assigning the adaptation object to a collection of adapta-

tion objects for export from the first computer system;
selecting the collection for export from the first computer
system:

in response to the selecting, generating dependency data

based on a reference, 1n the adaptation object, to at least
one other adaptation object 1n the first computer sys-
tem,;

performing checks on the adaptation object based on the

dependency data;

exporting the collection from the first computer system

based on passing the checks; and
tailing at least one of the checks based on a determination
that the referenced at least one other adaptation object
in the first computer system 1s not part of the collection
or has already been exported from the first computer
system and has not been changed since last being
exported from the first computer system.
2. The method of claim 1, wherein accessing the adapta-
tion object 1n the first computer system comprises creating,
updating or deleting the adaptation object.
3. The method of claim 1, wherein generating the depen-
dency data comprises determining that the adaptation object
references at least one other adaptation object in the first
computer system based on an adaptation type of the adap-
tation object.
4. The method of claim 3, wherein determining that the
adaptation object references the at least one other adaptation
object 1n the first computer system based on the adaptation
type of the adaptation object comprises a call-back to a class
associated with the adaptation type of the adaptation object.
5. The method of claim 1, wherein generating the depen-
dency data comprises updating an index of dependencies
between adaptation objects 1n the first computer system.
6. The method of claim 1, further comprising;:
providing a user interface for adding a latest version of the
referenced at least one adaptation object to the collec-
tion or removing the reference to the at least one other
adaptation object from the adaptation object; and

exporting the collection from the first computer system
based on passing the checks after the adding or the
removing.

US 9,542,173 B2

23

7. The method of claim 1, wherein the checks include a
check to determine that installing the software extension of
the adaptation object on the application includes first install-
ing the soiftware extension of the referenced at least one
other adaptation object on the application, the method fur-
ther comprising:

importing the collection to the second computer system;

and

installing the software extension of the referenced at least

one other adaptation object on the application before
installing the solftware extension of the adaptation
object on the application.

8. The method of claim 7, wherein 1nstalling the software
extension ol the referenced at least one other adaptation

object on the application before installing the software
extension of the adaptation object on the application 1s based
on the adaptation object and the referenced at least one other
adaptation object being imported to the second computer
system 1n the same order as they were exported from the first
computer system.

9. A system comprising:

an adaptation transport module comprising at least one

processor and configured to:

access, 1n a test computer system, an adaptation object
associated with an application in the enterprise com-
puter system, the adaptation object comprising a
software extension for the application;

assign the adaptation object to a collection of adapta-
tion objects for export from the test computer sys-
tem,

select the collection for export from the test computer
system;

in response to the selection, generate dependency data
based on a reference, 1n the adaptation object, to at
least one other adaptation object in the test computer
system:
perform checks on the adaptation object based on the

dependency data;
export the collection from the first computer system
based on passing the checks; and

fail at least one of the checks based on a determination
that the referenced at least one other adaptation
object 1n the first computer system 1s not part of the
collection or has already been exported from the first
computer system and has not been changed since last
being exported from the first computer system.

10. The system of claim 9, wherein the adaptation trans-
port module 1s further configured to access the adaptation
object 1n the test computer system by creating, updating or
deleting the adaptation object.

11. The system of claim 9, wherein the adaptation trans-
port module 1s further configured to generate the depen-
dency data by determining that the adaptation object refer-
ences at least one other adaptation object in the test
computer system based on an adaptation type of the adap-
tation object.

12. The system of claim 9, wherein the adaptation trans-
port module 1s further configured to:

provide a user interface for adding a latest version of the

referenced at least one adaptation object to the collec-
tion or removing the reference to the at least one other
adaptation object from the adaptation object; and
export the collection from the test computer system based
on passing the checks after the adding or the removing.

10

15

20

25

30

35

40

45

50

55

60

24

13. The system of claim 9, wherein the checks include a
check to determine that installing the software extension of
the adaptation object on the application includes first install-
ing the software extension of the referenced at least one
other adaptation object on the application and the adaptation
transport module 1s further configured to:

import the collection to the enterprise computer system;

and

install the software extension of the referenced at least

one other adaptation object on the application before
installing the solftware extension of the adaptation
object on the application.

14. A non-transitory machine-readable storage medium
comprising 1nstructions, which when implemented by
machines, cause the machines to perform operations com-
prising;:

accessing, 1n a first computer system, an adaptation object

associated with an application 1n a second computer
system, the adaptation object comprising a software
extension for the application;

assigning the adaptation object to a collection of adapta-

tion objects for export from the first computer system;
selecting the collection for export from the first computer
system;

in response to the selecting, generating dependency data

based on a reference, 1n the adaptation object, to at least
one other adaptation object 1n the first computer sys-
tem;

performing checks on the adaptation object based on the

dependency data;

exporting the collection from the first computer system

based on passing the checks; and
failing at least one of the checks based on a determination
that the referenced at least one other adaptation object
in the first computer system 1s not part of the collection
or has already been exported from the first computer
system and has not been changed since last being
exported from the first computer system.
15. The storage medium of claim 14, wherein generating
the dependency data comprises determining that the adap-
tation object references at least one other adaptation object
in the first computer system based on an adaptation type of
the adaptation object.
16. The storage medium of claim 14, the operations
further comprising:
providing a user interface for adding a latest version of the
referenced at least one adaptation object to the collec-
tion or removing the reference to the at least one other
adaptation object from the adaptation object; and

exporting the collection from the first computer system
based on passing the checks after the adding or the
removing.

17. The storage medium of claim 14, wherein the checks
include a check to determine that installing the software
extension ol the adaptation object on the application
includes first nstalling the software extension of the refer-
enced at least one other adaptation object on the application,
the operations further comprising:

importing the collection to the second computer system:;

and

installing the software extension of the referenced at least

one other adaptation object on the application before
installing the soiftware extension of the adaptation
object on the application.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

