US009537787B2

a2y United States Patent (10) Patent No.: US 9,537,787 B2

Bachar et al. 45) Date of Patent: Jan. 3, 2017
(54) DYNAMICALLY BALANCING RESOURCE (56) References Cited
REQUIREMENTS FOR CLIENTS WITH |
UNPREDICTARLE LOADS U.S. PATENT DOCUMENTS
(71) Applicant: INTERNATIONAL BUSINESS POTO.IO8 DL oS onyder
,046, zajkowski et al.
%AC&IN@ %(S)RPORATION’ 8,260,917 B1* 9/2012 Manikowski GO6F 9/505
HIONR, (US) 709/203
_ _ ’ 8,392,564 Bl 3/2013 Czajkowski et al.
(72) Inventors: Yariv Bachar, KlbblﬂZi Ma’abarot (IL); 8914497 Bl * 12/2014 Xi20 vovevevoeoiiere., HO4T 67/16
Ron Edelstein, Tel Aviv (IL); Alon 370/235
Horowitz, Tel-Aviv (IL); Oded Sonin, 2003/0046396 Al* 3/2003 Richter GO6F 9/505
Omer (IL) 709/226
(Continued)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,

Armonk, NY (US) OTHER PUBLICATIONS

“Adaptive Overload Control for Busy Internet Servers”; Welsh et.

(*) Notice: Subject to any disclaimer, the term of this al: 2003

patent 1s extended or adjusted under 35

U.5.C. 154(b) by 523 days. Primary Examiner — June Sison

(21) Appl. No.: 13/958,849 (74) Attorney, Agent, or Firm — Grifliths & Seaton PLLC
(22) Filed: Aug. 5, 2013 (57) ABSTRACT

_ o In one embodiment, by way of example only, a resource

(65) Prior Publication Data threshold limits the resource usage of each of the multiplic-

US 2015/0039766 Al Feb. 5, 2015 ity of clients. The resource threshold of each of the multi-

plicity of clients increases over time and decreases when the

(51) Int. CL resources deplete and a resource request of a client 1s

Goot 15/173 (2006.01) rejected. A subset of clients 1s created from the multiplicity

HO4L 12/911 (2013.01) of clients having a resource usage greater than the resource

GoOol 9/50 (2006.01) usage of the rejected client. A dynamic average of a nor-

HO4L 29/08 (2006.01) malized number of resources 1s calculated from the subset of

(52) U.S. CL clients. The resource threshold of each client from the subset

CPC ... HO4L 47/70 (2013.01); GO6F 9/50 of clients 1s decreased based on the dynamic average of the

(2013.01); GoO6F 9/505 (2013.01); HO4L 67/10 subset of clients, and further acquisition of resources 1s
(2013.01); GO6L" 2209/504 (2013.01); Y028 restricted from each client from the subset of clients in order
60/142 (2013.01) to bring the resource usage of each of the subset of clients

(58) Field of Classification Search under the resource threshold.
None
See application file for complete search history. 18 Claims, 8 Drawing Sheets

300

REQUEST

STATIC
RESOURCE DYNAMIC AVERAGE
AVERAGE
308A
304~ /00
‘ - — 314
3088 | | 310

314B

RESOURCES
LOAD
BALANCER

CLIENT

312 USED
THRESHOLD RESQURCES

US 9,537,787 B2
Page 2

(56)

2005/0055694
2006/0069716
2006/0212581
2007/0038738
2008/0008094
2008/0183865
2009/0037700
2010/0274893
2011/0167112

2012/0311598

References Cited

U.S. PATENT DOCUMENTS

Al* 3/2005 Leeooooveeeiinnnnn,
Al* 3/2006 Fleiner
Al* 9/2006 Coarocoeevvvinnnn.
Al* 2/2007 Iyengar

Al* 1/2008 Gilfix
Al* 7/2008 Appleby
Al* 2/2009 Graham
Al* 10/2010 Abdelal

Al* 7/2011 Mazzucco

Al 12/2012 Bachar et al.

* cited by examiner

GO6F 9/5083

718/100

HO4L 67/1095

709/203

HO4L 67/02

709/227

GOOF 11/3466

709/224

HO4AL 67/125

370/235

HO4L 67/1008

709/224

GOO6F 9/54

712/220

HO4L 29/0602

709/224

GOOF 9/505

709/203

US 9,537,787 B2

Sheet 1 of 8

Jan. 3, 2017

U.S. Patent

744 (A4

WALSAS WA1SAS

d31NdNOD d31NdNOD

AdOMLAN
NOILVOINNININOD

10IAd1d
AdOWAIWN 1OVHOLS

140d LINM ONISSI00dd

NOILVOINNININOD 1VdLNdO

14

_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ SSYIN _
_ _
_ _
_ _
_ _
_ _
| _
_ _
_ _
_ _
_

Ol

U.S. Patent Jan. 3, 2017 Sheet 2 of 8 US 9.537,787 B2

200

210 220 225
HOST HOST HOST

CONTROL SWITCH
541 MICRO MEMORY

II= PROCESSOR
BUFFERS 2437 | NONVOLATILE
244 1 STORAGE
CACHE 245 216
RESOURCE RESOURCE
ALLOCATOR REQUEST
OPERATION 250 MODULE MODULE
SOFTWARE 247
255
o WAIT AFTER RESOURCE
LOAD BALANCER DECREASE BOUNDARY
MODULE MODULE MODULE
257
256 STORAGE CONTROLLER 240

\>TORAGE 230a (STORAGE 230b > TORAGE 230n

VOLUME 232a VOLUME 232b VOLUME 238
VOLUME 234
VOLUME 240

VOLUME 236

FIG. 2

US 9,537,787 B2

S3D¥NOSIN ATOHSIYHL
aiasn ans 180€
\] |
s N e

av1e , ,
.]
_ | | 320€
: T
> S304NO0S3Y | ‘
= _
~ V2Z0€ ‘
g
ery VYIVTE r ‘
=

v0€
= 90¢
JOVYHINY
JOVHINY MAVYNAG

10dMN0OS3d

IILVILS

1S3N03Y

00¢

U.S. Patent
S

¥ Old

1OVHIAV O1LVI1S JAIL

US 9,537,787 B2

15V34d04d
d314v 1IVM ASVIHONI AALLIAAY
o
S
=
_4
= 15V314d04d
- di14V 1IVM
s 9
15V314d04d
AAILYOIdILINIA
—
~ 15SV314d04d JAILYOIIdILINN 4dHSYVH V
e
M 1SYINIIA 1SV31d04d
- AAILYOIIdILTNIA

AAILLVYOIdILININ

U.S. Patent

1DVHIAVY

JI1VLS MO144d

J10HS4ddHL

007

U.S. Patent Jan. 3, 2017 Sheet 5 of 8 US 9.537,787 B2

500

502
BEGIN
504
CALCULATE CURRENT THRESHOLD

506

HAS CLIENT’S
CURRENT RESOURCE USAGE
REACHED THE
THRESHOLD?

YES

NO
508

NUMBER OF ALLOCATED
RESOURSE REACHED THE
TOTAL RESOURCES?

INCREASE CLIENT'S CURRENT REBALANCE
RESOURCE USAGE 512

. (REJECT
REJECT
518 516
FIG. 5

YES

NO

U.S. Patent

600

SET CLIENT AS NO
ACTIVE
610

b6l2

SET THE CLIENT’S
THRESHOLD TO

BE THE CURRENT
STATIC AVERAGE

YES

SET “WAITING
AFTER DECREASE”
MODE TO OFF 514
UPDATE THE 616

CLIENT’S LAST
UPDATE TIME

Jan. 3, 2017

602
BEGIN

1S
CLIENT ACTIVE

(ACCORDING TO THE ACTIVE

TIME PERIOD)?

YES

1S
CLIENT IN “WAITING
AFTER DECREASE”
PHASE?

YES

CLIENT’'S LAST THRESHOLD

LOWER THAN THE CURRENT STATIC

AVERAGE DUE TO CHANGE
IN TOTAL RESOURCES?

NO

RETURN THE CLIENT’S
LAST THRESHOLD

FIG. 6

Sheet 6 of 8

604

606

608

NO

US 9,537,787 B2

UPDATE THE 18
CLIENT’S LAST

UPDATE TIME

SET THE CLIENT’S

LAST THRESHOLD
ACCORDING TO 620
THE ADDITIVE

NCREASE

FORMULA

622

U.S. Patent

/700

YES NO
GET NEXT CLIENT IN SET

122

Jan. 3, 2017 Sheet 7 of 8

/02
BEGIN

FIND ALL CLIENTS WITH HIGHER RESOURCE
USAGE THAN THE REJECTED CLIENT

704

CALCULATE DYNAMIC AVERAGE OF THE 706

FOUND CLIENTS SET

US 9,537,787 B2

708
FOR EACH CLIENT IN THE FOUND CLIENT SET
710
CLIENT’S CURRENT -
RESOURCE USAGE HIGHER
THAN THE DYNAMIC 219
AVERAGE?
NO CALCULATE NEW THRESHOLD

720

NEW THRESHOLD
LOWER THAN THE LAST
THRESHOLD?

ACCORDING TO THE

MULTIPLICATIVE DECREASE
FORMULA

/714

NO 716
YES
SUCCESS SET THRESHOLD TO BE THE
724 NEW CALCULATED THRESHOLD

FIG. 7

SET “WAITING AFTER
DECREASE”™ MODE TO ON

718

U.S. Patent Jan. 3, 2017 Sheet 8 of 8 US 9.537,787 B2

300

3802
\ BEGIN

DECREASE THE CLIENTS CURRENT 804
RESOURCE USAGE

806

1S
CLIENTS IN “WAITING
AFTER DECREASE”
PHASE?

NO

808

CLIENTS CURRENT
RESOURCE USAGE ABOVE THE
CLIENTS LAST
THRESHOLD?

SET “WAITING AFTER DECREASE” MODE 810
TO OFF

3812

SUCCESS

FIG. 8

US 9,537,787 B2

1

DYNAMICALLY BALANCING RESOURCE
REQUIREMENTS FOR CLIENTS WITH
UNPREDICTABLE LOADS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates 1n general to computers, and
more particularly to dynamically balancing resource
resources according to a client’s requirement for a multi-
plicity of clients with unpredictable loads based on a prior
resource usage (e.g., resource usage history) by a processor
device 1n a computing environment.

2. Description of the Related Art

In today’s society, computer systems are commonplace.
Computer systems may be found in the workplace, at home,
or at school. Computer systems may include data storage
systems, or disk storage systems, to process and store data.
Data storage systems, or disk storage systems, are utilized to
process and store data. A storage system may include one or
more disk drives. These data processing systems typically
require a large amount of data storage. Customer data, or
data generated by users within the data processing system,
occupies a great portion of this data storage. Many of these
computer systems include virtual storage components.

Within the computing environment, system resources
may be required to perform a variety ol operations and
services. Systems that maintain simultaneously running
activities by multiple clients are often constrained by their
dependency on resources that may only be used by one
activity at a time. The challenge 1n such systems is to
distribute a limited number of resources between the mul-
tiple clients, while considering the resource availability and
the multiple clients’ need and prionty.

SUMMARY OF THE DESCRIBED
EMBODIMENTS

In one embodiment, a method 1s provided for dynamically
balancing resource resources according to a client’s require-
ment for a multiplicity of clients with unpredictable loads
based on a prior resource usage (e.g., resource usage history)
using at least one processor device 1n a computing environ-
ment. In one embodiment, by way of example only, a
resource threshold limits the resource usage of each of the
multiplicity of clients. The resource threshold of each of the
multiplicity of clients increases over time and decreases
when the resources deplete and a resource request of a client
1s rejected. A subset of clients 1s created from the multiplic-
ity of clients having a resource usage greater than the
resource usage of the rejected client. A dynamic average of
a normalized number of resources 1s calculated from the
subset of clients. The resource threshold of each client from
the subset of clients 1s decreased based on the dynamic
average of the subset of clients, and further acquisition of
resources 1s restricted from each client from the subset of
clients 1n order to bring the resource usage of each of the
subset of clients under the resource threshold.

In another embodiment, a computer system 1s provided
for dynamically balancing resource resources according to a
client’s requirement for a multiplicity of clients with unpre-
dictable loads based on a prior resource usage (e.g., resource
usage history) using at least one processor device, 1mn a
computing environment. The computer system includes a
computer-readable medium and a processor in operable
communication with the computer-readable medium. In one
embodiment, by way of example only, the processor, using

10

15

20

25

30

35

40

45

50

55

60

65

2

a resource threshold, limits the resource usage of each of the
multiplicity of clients. The resource threshold of each of the
multiplicity of clients increases over time and decreases
when the resources deplete and a resource request of a client
1s rejected. A subset of clients 1s created from the multiplic-
ity of clients having a resource usage greater than the
resource usage ol the rejected client. A dynamic average of
a normalized number of resources 1s calculated from the
subset of clients. The resource threshold of each client from
the subset of clients 1s decreased based on the dynamic
average ol the subset of clients, and further acquisition of
resources 1s restricted from each client from the subset of
clients 1n order to bring the resource usage of each of the
subset of clients under the resource threshold.

In a further embodiment, a computer program product 1s
provided for dynamically balancing resource resources
according to a client’s requirement for a multiplicity of
clients with unpredictable loads based on a prior resource
usage (e.g., resource usage history) using at least one
processor device, 1 a computing environment.

The com-
puter-readable storage medium has computer-readable pro-
gram code portions stored thereon. The computer-readable
program code portions mclude executable portions that use
a resource threshold to limit the resource usage of each of
the multiplicity of clients. The resource threshold of each of
the multiplicity of clients increases over time and decreases
when the resources deplete and a resource request of a client
1s rejected. A subset of clients 1s created from the multiplic-
ity of clients having a resource usage greater than the
resource usage of the rejected client. A dynamic average of
a normalized number of resources 1s calculated from the
subset of clients. The resource threshold of each client from
the subset of clients 1s decreased based on the dynamic
average of the subset of clients, and further acquisition of
resources 1s restricted from each client from the subset of
clients in order to bring the resource usage of each of the
subset of clients under the resource threshold.

In addition to the foregoing exemplary method embodi-
ment, other exemplary system and computer product
embodiments are provided and contribute related advan-
tages. The foregoing summary has been provided to intro-

duce a selection of concepts 1 a simplified form that are
further described below in the Detailed Description. This
Summary 1s not intended to identity key features or essential
features of the claimed subject matter, nor 1s 1t intended to
be used as an aid 1n determining the scope of the claimed
subject matter. The claimed subject matter 1s not limited to
implementations that solve any or all disadvantages noted 1n
the background.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

In order that the advantages of the invention will be
readily understood, a more particular description of the
invention briefly described above will be rendered by ret-
erence to specific embodiments that are illustrated 1n the
appended drawings. Understanding that these drawings
depict embodiments of the invention and are not therefore to
be considered to be limiting of 1ts scope, the invention will
be described and explained with additional specificity and
detail through the use of the accompanying drawings, 1n
which:

FIG. 1 illustrates a computer storage environment having,
an example storage device in which aspects of the present
invention may be realized;

US 9,537,787 B2

3

FIG. 2 1llustrates an exemplary block diagram showing a
hardware structure of a data storage system 1n a computer
system 1n which aspects of the present invention may be
realized;

FIG. 3 illustrates an exemplary block diagram showing a
computing environment with components for resource load
balancing system in which aspects of the present invention
may be realized;

FI1G. 4 15 a snapshot 1llustrating a computing environment
depicting the behavior of the resource threshold over time 1n
which aspects of the present mnvention may be realized;

FIG. 5 15 a flowchart 1llustrating an exemplary method for
resource allocation of resources for a resource request in
which aspects of the present invention may be realized;

FIG. 6 1s a flowchart 1llustrating an exemplary method for
calculating a clients current resource threshold in which
aspects of the present mvention may be realized;

FI1G. 7 1s a flowchart 1llustrating an exemplary method for
load rebalancing 1n which aspects of the present invention
may be realized; and

FIG. 8 1s a flowchart 1llustrating an exemplary method for
releasing a resource request 1n which aspects of the present
invention may be realized.

DETAILED DESCRIPTION OF THE DRAWINGS

Throughout the following description and claimed subject
matter, the following terminology, pertaining to the illus-
trated embodiments, 1s described. The definitions may form
a table of suitable of definitions, form various representa-
tions of mathematical equations for suitable purposes if
needed, form matrices for suitable purposes if needed, and
for certain terms used herein.

A “Total Resources” (“TotalResources™) 1s 1intended
herein to include the total number of resources that are
available for the clients.

A “Weight” 1s mtended herein to include the predefined
number that 1s assigned to each client and represents the
priority the client should have with relation to resource
allocation. Clients with a greater weight will have prece-
dence over clients with a lesser weight.

A “Current Resource Usage” (per client) 1s intended
herein to include the current number of resources that are
allocated to and/or taken by each client.

A “normalization tunction (e.g., £2.(x))” 1s intended herein
to be a normalization function per client that normalizes the
current resource usage of 1ts corresponding client according
to 1ts weight.

A “Static Average” (per client) 1s intended herein to
include a normalized current resource usage each client
should have, 1n order to achieve an 1deal load balance. In one
embodiment, an 1deal load balance 1s when all the available
resources are distributed and each client 1s gets a share of the
resources according to the client’s weight. The normalized
number of resources ol each client will be calculated using,
cach client’s corresponding normalization function. For
example, 1f there are 2 clients with client 1 being assigned
weight,=1 and client 2 being assigned weight,=2, and
TotalResources=6 then the StaticAverage=6 since the ideal
balance will be achieved when CurrentResourceUsage,=2
and CurrentResourceUsage,=4 and after normalization of
the clients’ current resource usage £2,(2)=£2,(4)=6. It 1s
calculated according to the formula as depicted the follow-
ing equation:

StaticAverage="TotalResources*LCM

(Weight,, . . . ,Weight,;) (1),

10

15

20

25

30

35

40

45

50

55

60

65

4

Where LCM 1s a least common multiple and the Weight 1s
a assigned to each client.

A “Dynamic Average™” 1s intended herein to include the
normalized number of resources each client from a selected
set of clients should have m order to achieve an 1deal balance
of the resources allocated by the clients 1n the selected set.
For example, 1f there are 3 clients,
weight,=weight,=weight,=1, TotalResources=7, Curren-
tResourceUsage, =1, CurrentResourceUsage,=2, and Cur-
rentResourceUsage =4, then DynamicAverage=3 of client 2
and 3.

An “Threshold” (e.g., resource threshold) (per client) 1s
intended herein to include the maximum normalized number
of resources that a client can acquire. Each client has its own
threshold and no threshold 1s lower than the static average.

A “Feedback Control Algorithm™ (FCA) 1s intended
herein to 1include the algorithm that utilizes the behavior of
a system to change 1ts operation in order to constantly reduce
the diflerence between the output and a target value.

An “Additive Increase/Multiplicative Decrease” (AIMD)
1s intended herein to include the feedback control algorithm
(FCA) that 1s used in transmission control protocol (TCP)
congestion avoidance. It combines linear growth of the
congestion window with an exponential reduction when
congestion takes place, and thus constitutes an example to a
teedback control algorithm that maintains the required FCA
properties. An adaptation of this algorithm may be used,
only by way of example, to describe the implementation of
controlling the resources.

An “Increase Rate Factor” 1s intended herein to include a
positive non-zero rational number that affects the rate of the
Additive Increase.

A “Decrease Rate Factor” 1s intended herein to include a
rational number between zero and one that aflect the rate of
the Multiplicative Decrease.

A “Update Latency” 1s intended herein to include a time
interval per client that passed since the last time the client’s
threshold (e.g., resource threshold) was updated. This 1s
used 1n the calculation of the current threshold of a given
client.

A “Active Time Period” 1s intended herein to include a
time interval that must pass since last resource request by a
client 1n order for it to be considered nactive.

In one embodiment, dynamic resource balancing 1s a
procedure of distributing a limited number of resources
among clients, while considering the resource availability
vis-a-vis the clients’ constraints. A client that requires a
resource 1ssues a request to the resource load balancer and
the load balancer decides whether to accept or reject the
request. In case the demand for the system’s resources 1s
greater than the number of available resources, one may
choose etther static or dynamic resource distribution. In
static resource distribution, the system’s resources are stati-
cally divided among the clients, and share per client 1s fixed
throughout the system’s lifetime. Subsequently, a request,
1ssued by a client for resources, will only be accepted 1f the
resource-share that 1s assigned to that client has not been
tully utilized. Although this approach 1s easier to implement,
it may be less eflicient and wastetful 1n certain systems, e.g.
where one client 1s not using 1ts share of resources at all
while another 1s constantly capped at 1ts resource boundary.

In one embodiment for dynamic resource distribution, the
resource-share per client 1s determined during run-time,
according to resource demand. In this manner, clients that
require a large amount of resources are favored over clients
that require a small amount of resources. Should the demand
for requirements change, the dynamic resource distribution

US 9,537,787 B2

S

mechanism will need to adapt the resource-share per client
during runtime. The resource load balancing mechanism
presented here 1s such dynamic resource distribution mecha-
nism. The resource load balancing mechanism may utilize
pending (1.e. not yet 1ssued) resource requests in order to 53
optimize the resource allocation scheme. For instance, 11 one
client has twice as many pending requests than the other, the
mechanism may decide to reject some of the requests of the
lower-demanding client 1n order to prepare for the high
amount of requests that are expected to be 1ssued from the 10
other client. While this approach allows a certain amount of
optimization to the resource load balancer, it requires the
clients to share their pending requests with the load balanc-
ing mechanism. This 1s not always practical (e.g., when the
requests arrive via a network link with only enough band- 15
width for the requests themselves). In these cases, resource
allocation requests are made available to the resource allo-
cation mechanism only once they are 1ssued.

Thus, the mechanisms of the present invention will satisty
the following essential requirements for dynamically bal- 20
ancing resource requirements for a multiplicity of clients
with unpredictable loads using a load balancer: (1) allocate
resources according to predefined weights per client, for
which clients with higher weights will be assigned a higher
resource share than clients with lower weights (e.g., the 25
greater the weight assigned to a client, the greater the
resources share size a client will have), (2) adjust to changes
in resource requests and dynamically assign more resources
to a client with higher demand at the expense of a client that
1s not currently using its entire resource share, (3) avoid 30
starvation of a less-clients (i.e., even though a client
demands lesser resources than other clients, 1t will receive
resources and will not be starved), (4) operate 1n unpredict-
able load (1.e., unaware of pending resource requests). The
resource allocation scheme depends solely on resource 35
requests already 1ssued and not on pending future requests,

(5) support multiple clients, and 6) dynamically adjust to
changes in the total number of resources available for
distribution. Thus, present mvention provides for resource
load balancing, satistying all requirements of these 6 40
requirements. In one embodiment, the present imvention
ecnables weighted (prioritized), dynamic resource distribu-
tion under unpredictable load for unlimited number of
clients. These six factors are further demonstrated below 1n
FIG. 3 and other FIG.’s below, and are referenced herein as 45
the “requirements” and/or “factors.”

In one embodiment, as described herein, the present
invention provides for dynamically balancing resource
requirement for a multiplicity of clients with unpredictable
loads based on an average of resource usage using at least 50
one processor device 1 a computing environment. In one
embodiment, by way of example only, a subset of clients are
created from the multiplicity of clients having a resource
usage more than one of the multiplicity of clients whose
resource request has been rejected. A dynamic average of a 55
normalized number of resources 1s calculated for each of the
subset of clients, for load balancing by a load balancer, of the
resources allocated to the subset of clients. A resource
threshold 1s dynamically determined based on the resource
usage of each of the multiplicity of clients. The resource 60
threshold 1s decreased based on the dynamic average for
cach the subset of clients from the multiplicity of clients, and
turther acquisition of the resources 1s restricted from each of
the subset of clients in order to bring the resource usage of
cach of the subset of clients under the resource threshold. 65

Thus, the present invention, uses a load balancer that
balances a set of resources among several clients while

6

taking into account the consumption of resources by other
clients. Each client 1s throttled independently with disregard
for the other clients. In one embodiment, the load balancer
doesn’t know how many resources each client wants,
requires, and/or needs. Rather, the load balancer dynami-
cally adjusts 1tself according to client’s resource requests
and provides as many resources as possible to each client
without going out of balance. In one embodiment, the load
balancer does not require predefined thresholds, but does
take 1nto account the overall balance of resources. In one
embodiment, the load balancer tries to use and/or provide as
many resources as possible (from a predefined number of
available resources to balance). In one embodiment, the load
balancer optimizing resource consumption.

Turning now to FIG. 1, exemplary architecture 10 of data
storage systems (e.g., virtual tape systems) for resource
allocation of resources for dual activities systems in a
computing environment 1s depicted. The computer system
10 includes central processing unit (CPU) 12, which 1s
connected to mass storage device(s) 14 and memory device

16. Mass storage devices may include hard disk dnive
(HDD) devices, solid-state devices (SSD) etc., which may
be configured in a redundant array of imndependent disks
(RAID). The backup operations further described may be
executed on device(s) 14, located 1n system 10 or elsewhere.
Memory device 16 may include such memory as electrically
erasable programmable read only memory (EEPROM) or a
host of related devices. Memory device 16 and mass storage
device 14 are connected to CPU 12 via a signal-bearing
medium. In addition, CPU 12 may be connected through
communication port 18 to a communication network 20,
having an attached plurality of additional computer systems
22 and 24.

FIG. 2 1s an exemplary block diagram 200 showing a
hardware structure of a data storage system 1n a computer
system according to the present invention. It should be noted
that the mechanisms of the present invention describes any
dual activity computing system, which may require resource
allocation. In one exemplary embodiment, by way of
example only, a storage sub-system or storage controller 1s
described but 1s not intended to limit the scope of the present
invention. Referring to FIG. 2, there are shown host com-
puters 210, 220, 225, each acting as a central processing unit
for performing data processing a part of a data storage
system 200 for resource allocation of resources for dual
activities systems. The hosts (physical or virtual devices),
210, 220, and 225 may be one or more new physical devices
or logical devices to accomplish the purposes of the present
invention in the data storage system 200. In one embodi-
ment, by way of example only, a data storage system 200, as
described herein, may be implemented as IBM® products
(e.g., IBM® System Storage™ TS7650/TS7650G Protec-
TIER Deduplication products). A Network connection 260
may be a fibre channel fabric, a fibre channel point to point
link, a fibre channel over ethernet fabric or point to point
link, a FICON or ESCON I/O iterface, any other 1/0
interface type, a wireless network, a wired network, a LAN,
a WAN, heterogeneous, homogeneous, public (1.e. the Inter-
net), private, or any combination thereof. The hosts, 210,
220, and 225 may be local or distributed among one or more
locations and may be equipped with any type of fabric (or
tabric channel) (not shown in FIG. 2) or network adapter
260 to the storage controller 240, such as Fibre channel,
FICON, ESCON, Ethernet, fiber optic, wireless, or coaxial
adapters. Data storage system 200 1s accordingly equipped
with a suitable fabric (not shown in FIG. 2) or network

US 9,537,787 B2

7

adapter 260 to communicate. Data storage system 200 1is
depicted 1n FIG. 1 comprising storage controller 240 and
storage 230.

To facilitate a clearer understanding of the methods

described herein, in one exemplary embodiment, by way of 5

example only, a storage controller 240 1s shown 1n FIG. 2 as
a single processing unit, mcluding a microprocessor 242,
system memory 243 and nonvolatile storage (“NVS”) 216,
which will be described 1n more detail below. It 1s noted that
in some embodiments, storage controller 240 1s comprised
of multiple processing units, each with their own processor
complex and system memory, and interconnected by a
dedicated network within data storage system 200. Storage
230 may be comprised of one or more storage devices, such
as storage arrays, which are connected to storage controller
240 by a storage network.

In some embodiments, by way of example only, the
devices 1included in storage 230 may be connected 1n a loop
architecture. Storage controller 240 manages storage 230
and facilitates the processing of write and read requests
intended for storage 230. The system memory 243 of storage
controller 240 stores program instructions and data, which
the processor 242 may access for executing functions and
method steps associated with managing storage 230 and
executing the steps and methods of the present invention for
resource allocation of resources for dual activities systems in
a computer storage environment. In one embodiment, sys-
tem memory 243 includes, 1s associated, or 1s 1n communi-
cation with the operation software 250 for resource alloca-
tion of resources for dual activities systems 1 a computer
storage environment, including the methods and operations
described herein. As shown in FIG. 2, system memory 243
may also include or be 1n communication with a cache 245
tor storage 230, also referred to herein as a “cache memory”,
for bullering “write data” and “read data”, which respec-
tively refer to write/read requests and their associated data.
In one embodiment, cache 245 1s allocated 1n a device
external to system memory 243, yet remains accessible by
microprocessor 242 and may serve to provide additional
security against data loss, 1n addition to carrying out the
operations as described 1n herein.

In some embodiments, cache 245 may be implemented
with a volatile memory and non-volatile memory and
coupled to microprocessor 242 via a local bus (not shown 1n
FIG. 2) for enhanced performance of data storage system
200. The NVS 216 included 1n data storage controller may
be accessible by microprocessor 242 and serves to provide
additional support for operations and execution of the pres-
ent mvention as described in other figures. The NVS 216,
may also referred to as a “persistent” cache, or “cache
memory” and may be implemented with nonvolatile
memory that may or may not utilize external power to retain
data stored therein. The NVS may be stored in and with the
Cache 245 for any purposes suited to accomplish the objec-
tives of the present invention. In some embodiments, a
backup power source (not shown in FIG. 2), such a battery,
supplies NVS 216 with suflicient power to retain the data
stored therein 1n case of power loss to data storage system
200. In certain embodiments, the capacity of NVS 216 may
be less than or equal to the total capacity of cache 24S5.

Storage 230 may be physically comprised of one or more
storage devices, such as storage arrays. A storage array may
be a logical grouping of individual storage devices, such as
a hard disk. In certain embodiments, storage 230 1s com-
prised of a JBOD (Just a Bunch of Disks) array or a RAID
(Redundant Array of Independent Disks) array. A collection
of physical storage arrays may be further combined to form

10

15

20

25

30

35

40

45

50

55

60

65

8

a rank, which dissociates the physical storage from the
logical configuration. The storage space 1n a rank may be
allocated into logical volumes, which define the storage
location specified 1n a write/read request.

In one embodiment, by way of example only, the storage
system as shown 1n FIG. 2 may include a logical volume, or
simply “volume,” may have diflerent kinds of allocations.
Storage 230a, 2306 and 2307 are shown as ranks in data
storage system 200, and are referred to herein as rank 2304,
2306 and 230x. Ranks may be local to data storage system
200, or may be located at a physically remote location. In
other words, a local storage controller may connect with a
remote storage controller and manage storage at the remote
location. Rank 230a 1s shown configured with two entire
volumes, 234 and 236, as well as one partial volume 232a.
Rank 23056 1s shown with another partial volume 2325. Thus
volume 232 may be allocated across ranks 230a and 2305.
Rank 2307 1s shown as being fully allocated to volume
238 that 1s, rank 230% refers to the entire physical storage
for volume 238. From the above examples, 1t will be
appreciated that a rank may be configured to include one or
more partial and/or entire volumes. Volumes and ranks may
turther be divided into so-called “tracks,” which represent a
fixed block of storage. A track 1s therefore associated with a
given volume and may be given a given rank.

In one embodiment, by way of example only, the storage
controller 240 may include a resource allocator module 255,
a wait alter decrease (or may be referred to as waiting after
decrease throughout the specification and drawings) module
256, a resource boundary module 257 (e.g., a resource
threshold), and a resource request module 247, a load
balancer module 259 to assist with resource allocation of
resources for dual activities systems 1n a computing envi-
ronment. The resource allocator module 255, the wait after
decrease module 256, the resource boundary module 257,
the resource request module 247 may each be adapted to
include one or more feedback control modules (not shown)
and/or be configured to be 1n communication with one or
more feedback control modules (not shown). The resource
allocator module 255, the wait after decrease module 256,
the resource boundary module 257, the resource request
module 247, and the load balancer module 259 may work in
conjunction with each and every component of the storage
controller 240, the hosts 210, 220, 225, and storage devices
230. Both the resource allocator module 255, the wait after
decrease module 256, the resource boundary module 257,
the resource request module 247, and the load balancer
module 2359 may be structurally one complete module
working together and 1n conjunction with each other for
resource allocation of resources for dual activities systems in
a computing environment or may be individual modules,
performing 1individual functions as designed and configured
according to the mechanisms described below. If the
resource allocator module 255, the wait after decrease
module 256, the resource boundary module 257, the
resource request module 247, and the load balancer module
2359 are one module, a feedback control module (not shown)
may be implemented together in the one complete module.
The resource allocator module 255, the wait after decrease
module 256, the resource boundary module 257, the
resource request module 247, and the load balancer module
259 may also be located 1n the cache 245 or other compo-
nents ol the storage controller 240 to accomplish the pur-
poses of the present mvention.

The storage controller 240 may be constructed with a
control switch 241 for controlling the fiber channel protocol
to the host computers 210, 220, 225, a microprocessor 242

US 9,537,787 B2

9

for controlling all the storage controller 240, a nonvolatile
control memory 243 for storing a microprogram (operation
software) 250 for controlling the operation of storage con-
troller 240 data for control, cache 245 for temporarily
storing (bullering) data, and buflers 244 for assisting the
cache 245 to read and write data, a control switch 241 for
controlling a protocol to control data transfer to or from the
storage devices 230, resource allocator module 23535, the wait
after decrease module 2356, the resource boundary module
257, and the resource request module 247 on which infor-
mation may be set. Multiple buflers 244 may be 1mple-
mented with the present invention to assist with the resource
allocation of resources for a dual activity system 1n a
computing environment.

In one embodiment, by way of example only, the host
computers or one or more physical or virtual devices, 210,
220, 225 and the storage controller 240 are connected
through a network adaptor (this could be a fiber channel) 260
as an 1nterface 1.e., via a switch called “Fabric.” In one
embodiment, by way of example only, the operation of the
system shown in FIG. 2 will be described. The micropro-
cessor 242 may control the memory 243 to store command
information from the host device (physical or virtual) 210
and information for identitying the host device (physical or
virtual) 210. The control switch 241, the buflers 244, the
cache 245, the operating soiftware 250, the microprocessor
242, memory 243, NVS 216, resource allocator module 255,
the wait after decrease module 256, the resource boundary
module 257, the resource request module 247, and the load
balancer module 259 are in communication with each other
and may be separate or one 1ndividual component(s). Also,
several, 11 not all of the components, such as the operation
software 245 may be included with the memory 243 for
resource allocation of resources for a dual activity system in
a computing environment. Each of the components within
the storage device may be linked together and may be in
communication with each other for purposes suited to the
present mvention.

As previously mentioned, the illustrated embodiments
provide mechanisms for dynamically balancing resource
requirement for a multiplicity of clients with unpredictable
loads based on an average of resource usage by a processor
device within a computing environment. FIG. 3 illustrates an
exemplary block diagram 300 showing a computing envi-
ronment with components for resource load balancing sys-
tem. FIG. 3 illustrates a resource load balancer 310 that
manages, controls, supervises, and/or assists 1n load balanc-
ing. Resource requests 302 (e.g., shown as 302A-C) are
issued by one or more clients 308 (Client 1 302A, Client 2
308B, and Client 3 308C) are accepted only 11 the client’s
308 current resource usage 1s lower than the client’s 308
threshold. Requests 302 from a client 308 that has exceeded
this boundary shall be rejected. The client’s 308 threshold
312 1s initially set to the static average 306, and the current
resource usage of each client 1s set to zero. Thus, requests
from a client 308 that has not yet exceeded 1ts static average
306 are likely to be accepted. This behavior ensures that no
client 308 A-E will starve, even with low resources demand,
hence satistying the requirement (3), as described above, of
avoiding starvation of a less-clients (i.e., even though a
client demands lesser resources than other clients, 1t will
receive resources and will not be starved).

The threshold 312 of each client 308 1s decided dynami-
cally, during runtime, by an FCA, which 1s affected by the
total number of resources and by the number of clients 308.
By taking those variables ito account, the FCA makes sure
that the amount of time 1t takes to deplete all the resources

5

10

15

20

25

30

35

40

45

50

55

60

65

10

1s constant, hence the behavior of the load balancer remains
the same, no matter what the current TotalResources i1s, and
satisfies requirement (6) of dynamically adjusting to changes
in the total number of resources available for distribution.

The FCA 1s unaware of any pending resource requests
302. Every decision 1t takes i1s based solely on resource
requests 302 already 1ssued, and not on pending future
requests, therefore satistying requirement (4), operate in
unpredictable load (1.e., unaware of pending resource
requests).

The FCA needs to have the following properties. As long
as the other client’s 302 requests for resources are accepted,
the FCA will allow the threshold 312 of the client 308 to
increase. When a request 302 for a resource by a client 308

1s rejected—the FCA will decrease the threshold 312 of all

the clients 308 that allocated more resources than the
dynamic average 304, which will be calculated according to
the partial set of clients 308 (e.g., a set of 308A-E) who

allocated more resources than the rejected client (e.g., one of
the clients from 308A-E).

The FCA 1s unaware of the client’s 308 weights and does
not prioritize according to the weights. Therefore, the FCA
does not use the actual current resource usage 314 (e.g.,
314 A-E for each client) of the clients nor the actual Total-
Resources. Instead, the load balancer 310 normalizes those
amounts according to each client’s 308 normalization func-
tion and lets the FCA handle only normalized amounts. This
way, when the FCA balances the clients 308 1n an equal
weights environment, 1t actually prionitizes clients 308
according to their weights. This behavior 1s aligned with
requirement (1), which 1s to allocate resources according to
predefined weights per client, for which clients with higher
weights will be assigned a higher resource share than clients
with lower weights (e.g., the greater the weight assigned to
a client, the greater the resources share size a client will
have).

When the number of total resources changes, the thresh-
olds 312 of all the clients 308 are reset to the static average
306 and the FCA starts adjusting to the new situation in the
same manner as before.

This utilization of feedback control enables clients 308
with high resource demand to gradually take precedence
over clients 308 with very low resource demand, thus
allowing the resource load balancer 310 to dynamically
adjust to changes 1n resource requests 302 and to satisty
requirement (2), which 1s to adjust to changes 1n resource
requests and dynamically assign more resources to a client
with higher demand at the expense of a client that 1s not
currently using its entire resource share. However, once the
clients’ 308 resource loads change, this behavior may cause
other clients’ 308 requests to be rejected, and the threshold
312 1s rapidly adjusted to accommodate the change. It
should be note that both the static average and the dynamic
average are not dependent on the number of clients 308, and
both are used to balance any given number of clients.
Therefore, the load balancer can support multiple clients as
required 1n requirement (5), which 1s to support multiple
clients.

In one embodiment, as described in greater detail below,
when a client requires a resource, it 1ssues a resource
request. The resource load balancer keeps track of the
number of resources each client has (current resource usage,
see FIG. 3 314) and the resource load balancer utilizes the
current resource usage, together with the client’s resource
threshold, to determine whether to accept the resource
request. If the request was accepted, once the client finishes

US 9,537,787 B2

11

using the resource it noftifies the load balancer that the
resource 1s now Ifree—and the current resource usage of the
client 1s updated accordingly.

As long as no resource request from a client 1s rejected,
the threshold of each client keeps increasing additively,
starting from the static average. The static average 1s cal-
culated according to the formula depicted above 1n Equation
1, whereas LCM stands for least common multiple.

The threshold 1s updated according to Equation 2 (to-
gether forming the additive increase), below, whereas N 1s
the number of clients. The increase rate 1s dertved from the
number of resources and the number of clients. This way, the
amount of time it takes to deplete the available resources 1s
not dependent on the TotalResources or the number of
clients. The increase rate factor 1s a positive non-zero
rational number that affects the rate of the Additive Increase.
The threshold 1s calculated according to the formula as
depicted the following equations:

IncreaseRate=(IncreaseRateFactorxTotalResources)/N

Threshold,=Threshold,+UpdateLatency,xIncreaseRate (2).

When a request from a client 1s rejected, the load balancer
goes over all the clients, normalizes the current resource
usage of each client and creates a partial set of clients with
greater normalized current resource usage than the rejected
client’s normalized current resource usage. Let N be the
number of clients, the Normalization function of each client
1s defined according to the formula depicted 1n Equation 3,
described as a normalization function of client 1:

A (3)

AN b
|« Z welight,
k=0 /

{4;(x) =

- | %= X.

Then, the dynamic average of the partial set of clients 1s
calculated in the following manner. Let W be the set of
weights of all the clients, W be the set of weights of the
clients in the partial set and TotalResoures be the set of
normalized current resource usage of the clients in the
partial set, the dynamic average 1s calculated according to
the formula 1n Equation 4:

(4)

(DynamicAverage) =

2

weight; e W

[Z wefghrj]

weighrjEW

([(Tﬂmlﬁ'emwes) * [welight, « LCM (W)” \1

\ /

After the dynamic average was calculated, a multiplica-
tive decrease 1s performed on the threshold of each client
from the partial set that its normalized current resource
usage 1s greater than the calculated dynamic average. Equa-
tion 5, below, describes how the multiplicative decrease 1s
performed that 1s calculated as:

Threshold,=DynamicAverage+(£2.(CurrentResource-
Usage,)-DynamicAverage)™*DecreaseRateFactor

(3).

Turning now to FIG. 4, a snapshot illustrating a comput-
ing environment depicting the behavior of the resource
threshold over time, 1s depicted. As illustrated in FIG. 4,
once a multiplicative decrease takes place, the load balancer
waits for the client’s current resource usage to actually reach

10

15

20

25

30

35

40

45

50

55

60

65

12

the new threshold 1n a state called “waiting after decrease™.
This prevents the decreased client from taking resources it
should have released. As long as the client’s current resource
usage has not reached the new (decreased) threshold, the
threshold does not additively increase. It can be multiplica-
tively decreased only if some other rejected client calculates
an even lower threshold. Once the current resource usage of
the client reaches the threshold, the waiting after decrease
phase ends and the additive increase of the boundary 1s
re-started.

In one embodiment, the procedure for processing an
acquire resource request 1s as follows. When a resource
request 1s 1ssued, the resource load balancer determines
whether the total number of resources allocated so far by all
the clients has reached the total resources. If that 1s the case,
there are no more resources to allocate (until some client
releases some of its resources), thus the request 1s rejected
and the resource load balancer rebalances (see FIG. 7). If
there 1s a free resource to allocate, the resource load balancer
calculates the client’s current threshold (see Equation 2) and
checks whether the current resource usage reaches the
threshold. If so, the request 1s rejected,—otherwise, the
resource load balancer increases the current resource usage
of the client by one and accepts the request. Such a process
1s also demonstrated below 1n FIG. 5.

FIG. 5 1s a flowchart illustrating an exemplary method
500 for resource allocation of resources for a resource
request 1n which aspects of the present invention may be
realized. The method 500 begins (step 502) by calculating a
current threshold (step 504). The method 500 determines 1f
one and/or all clients current resource usage has reached the
resource threshold (step 506). If yes, the method 500 then
rejects the request (step 516). If no, the method 500 deter-
mines if the total number of allocated resources has reached
the total resources (step 508). If yes, the method 500
rebalances the resource load (step 512). Then the method
500 then rejects the request (step 516). If no, the method 500
increases the client’s current resource usage (step 510). The
method 500 accepts the resource request (step 518).

FIG. 6 1s a flowchart illustrating an exemplary method
600 for calculating a client’s current resource threshold. The
method 600, begins (step 602) by first checking whether the
client 1s active, by checking whether the time elapsed since
the last update time of the client 1s greater than the active
time period (step 604). If the client was 1nactive, the client
turns active and all its state data (step 610), and sets the
client’s last threshold to be the current static average (step
612), sets the client’s “waiting after decrease™ mode to off
(step 614), and updates the client’s last update time (e.g., last
update time 1s reset) (step 616).

Next, the load balancer checks whether the client 1s 1n a
“waiting aiter decrease™ phase (step 606). 11 the client 1s not
in the “waiting after decrease” phase then the load balancer
updates the client’s last update time (step 618) and calcu-
lates and/or sets the client’s new threshold according to the
additive increase formula (see Equation 2) (step 620). At that
point the method 600 returns the client’s last threshold (step
622).

If the client 1s 1n the “waiting after decrease” phase, the
load balancer checks whether the client’s last threshold 1s
lower than the current static average (step 608). The static
average may change since the total resources 1s being used
in order to calculate the static average and because the
resource load balancer supports changing the total resources
online (see requirement (6) as mentioned above. The client’s
last threshold 1s always returned. However, before the cli-
ent’s last threshold i1s returned, the method 600 needs to

US 9,537,787 B2

13

prevent the threshold from going under the static average by
checking whether it gone below and 1f so the method 600
fixes the client’s last threshold by performing (steps 612,
614, and 616) 1n order to prevent the threshold from going
under the static average. It the client’s last threshold 1s not
lower than the current static average, the last threshold 1s
returned (step 622). Otherwise, the load balancer turns oflf
“waiting after decrease”, updates last update time, and sets
the new threshold to be static average (step 614).

In one embodiment, the present invention provides the
procedure for rebalancing 1s as follows. First, the load
balancer creates a partial set of clients, which contains any
client with greater resource usage than the rejected client.
Then the dynamic average of this set 1s calculated and the
load balancer handles each client 1n the set 1n the following
way. First 1t checks whether the client has a greater resource
usage than the dynamic average. If not, the client keeps its
current threshold. Next, the load balancer calculates a new
threshold for the client using the multiplicative decrease
formula (see Equation 5). Then, the load balancer checks
whether the new threshold 1s lower than the last threshold.
This 1s done since the previous punishment might have been
more severe and the load balancer should avoid raising the
threshold due to a later lighter punishment. If this 1s the case,
the threshold 1s decreased to be the new threshold and the
client’s “wait after decrease” mode 1s turned on. When all
the clients in the set were handled, the rebalance procedure
finishes. Such a process 1s also demonstrated below 1n FIG.
7.

FIG. 7 1s a flowchart illustrating an exemplary method
700 for load rebalancing. The method 700 begins (step 702)
by finding all clients (e.g., identifies and/or creates a partial
set of clients) with a higher resource usage than a client that
has had a resource request rejected (step 704). The method
700 calculates a dynamic average of the partial set of clients
(step 706). Next, for each client 1n the found set of clients
(step 708), the method 700 determines 11 a client’s current
resource usage 1s higher than the dynamic average (step
710). I a client’s current resource usage 1s not higher than
the dynamic average, the method 700 determines if there are
any clients left in the set (step 720). It yes, the method 700
calculates a new threshold according to the multiplicative
decrease formula (step 712). The method 700 determines if
the new threshold 1s lower than the last threshold (step 714).
If yes, the method 700 sets the threshold to be the new
calculated threshold (step 716) and then sets the “waiting
alter decrease” mode to “ON” (step 718). Returning to step
714, 11 the new threshold 1s not lower than the last threshold,
the method 700 determines 11 there are any clients left 1n the
set (step 720). If no, the method 700 reaches a success status
(step 724). If there are more clients in the set, the method
700 retrieves and/or gets the next client 1n the set of clients
(step 722) and returns to step 710.

In one embodiment, 1f the resource request 1s accepted,
the client needs to notily the load balancer once 1t finishes
using the resource. The procedure for processing a release
resource request 1s as follows. First, the procedure decreases
the client’s current resource usage by one and checks
whether the client 1s still 1n “waiting after decrease™ phase.
IT 1t 1s not the case, the procedure finishes. Otherwise, the
load balancer checks whether the client should still remain
in “‘waiting aiter decrease” by checking whether the new
resource usage of the client 1s still greater the last threshold.
IT so, the client stays 1n “waiting after decrease”. If not, the
load balancer disables the client’s “waiting after decrease™
phase. Such a process 1s also demonstrated below in FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 8 1s a flowchart illustrating an exemplary method
800 for releasing a resource request. The method 800 begins
(step 802) by decreasing the client’s current resource usage
(step 804). The method 800 determines 11 the client 1s 1n the
“waiting after decrease” phase (step 806). If no, the method
800 reaches a success (step 812). If the client 1s 1n the
“waiting after decrease” phase, the method 800 determines
if the client’s current resource usage 1s above the client’s last
threshold (e.g., last resource threshold) (step 808). If yes, the
method moves to step 812. If no, the method 800 sets the
“waiting after decrease” mode to “OFF” (step 810) and then
moves to step 812.

Thus, as describe herein, the present invention provides a
solution for dynamically balancing resources according to
resource requirements for each of a multiplicity of clients
with unpredictable loads based on a resource usage history
by a processor device 1n a computing environment. In one
embodiment, the present invention limits a resource usage of
cach of the plurality of clients by a resource threshold,
increases the resource threshold of each of the multiplicity
of clients increases over time, decreases the resource thresh-
old of each of the multiplicity of clients upon a depletion a
multiplicity of resource and a resource request of one of the
multiplicity of clients 1s rejected, creates a subset of clients
from the multiplicity of clients having the resource usage
greater than the resource usage of the one of the multiplicity
ol clients whose resource request has been rejected, and/or
computes a dynamic average of a normalized number of a
multiplicity of resources from the subset of clients. The
resource threshold 1s decreased of all clients from the subset
of clients based on the dynamic average of the subset of
client. Further acquisition of the plurality of resources is
restricted from all of the clients from the subset of clients in
order to bring the resource usage of each of the subset of
clients under the resource threshold.

In one embodiment, by way of example only, the present
invention accepts a resource request if a sum of a current
resource usage ol each the multiplicity of clients 1s lower
than a total number of the multiplicity of resources, and
rejects the resource request if the sum of a current resource
usage ol each the plurality of clients 1s greater than a total
number of the plurality of resources. Subsequent to rejecting
the resource request, the present invention nominalizes a
current resource usage using a normalization function for
cach of the multiplicity of clients, and/or performs a mul-
tiplicative decrease on the resource threshold for each of the
subset of clients from the multiplicity of clients.

In one embodiment, by way of example only, the present
invention accepts the resource request by one of the multi-
plicity of clients if the resource usage of the one of the
multiplicity of clients 1s lower than the resource threshold
set for the one of the multiplicity of clients, and/or rejects the
resource request by one of the multiplicity of clients 1f the
resource usage of the one of the multiplicity of clients 1s one
of equal to and greater than the resource threshold set for the
one of the multiplicity of clients. Subsequent to rejecting the
resource request, the present invention nominalizes a current
resource usage using a normalization function for each of
the multiplicity of clients, and/or performs a multiplicative
decrease on the resource threshold for each of the subset of
clients from the multiplicity of clients. In one embodiment,
the present invention accepts the resource request by a client
if the sum of current resource usage of all the clients 1s lower
than the total resources and reject otherwise. Once a client’s
resource request has been rejected, the present mmvention
frees some resources 1 order to accept the client’s future
resource request 1s by lowering the resource threshold of the

US 9,537,787 B2

15

client 1n the set of clients. This 1s done by rejecting the
resource request by one of the multiplicity of clients 1 the
resource usage ol the one of the plurality of clients 1s one of
equal to and greater than the resource threshold set for the
one of the multiplicity of clients.

In one embodiment, by way of example only, the present
invention allocates the multiplicity of resources according to
predefined weights for each one of the multiplicity of clients.
Those of the multiplicity of clients having a higher pre-
defined weight are allocated a greater number of the multi-
plicity of resources. The present invention adjusts the allo-
cation of the multiplicity of resources based on changes 1n
resource requests by the multiplicity of clients by dynami-
cally assigning more of the multiplicity of resources to at
least one of the multiplicity of clients having a higher
demand of the multiplicity of resources at an expense of one
of the multiplicity of clients that 1s not currently using an
entire allocated portion of the multiplicity of resources.

In one embodiment, by way of example only, the present
invention mitially sets the resource threshold for each of the
multiplicity of clients to a static average and the resource
usage for each of the multiplicity of clients to zero, and/or
resets the resource threshold for each of the multiplicity of
clients to the static average when a total number of the
multiplicity of resources changes.

In one embodiment, by way of example only, the present
invention increases the resource threshold for each the
multiplicity of clients until the resource request for an
alternative one of the at least one of the multiplicity of
clients 1s rejected, and/or 1n response to the rejection of the
resource request for the alternative one of the at least one of
the multiplicity of clients, performs each one of 1) decreas-
ing the resource threshold based on the dynamic average for
cach the subset of clients from the multiplicity of clients
having more of the multiplicity of resources allocated than
the one of the multiplicity of clients whose resource request
has been rejected, and/or 2) commencing a wait after
decrease mode until a current resource usage for each the
subset of clients from the multiplicity of clients 1s one of less
than and equal to the decreased resource threshold.

In one embodiment, by way of example only, the present
invention terminates the wait after decrease mode when the
current resource usage of each the subset of clients from the
multiplicity of clients reaches the decreased resource bound-
ary, restarts an additive increase operation of the resource
threshold that was previously decreased, maintains the cur-
rent resource usage and the resource boundary for each of
the multiplicity of clients, and/or sends a notification when
the multiplicity of clients 1s completed with an 1ssued one of
the multiplicity of resources and updating the current
resource usage.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage

10

15

20

25

30

35

40

45

50

55

60

65

16

medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that may contain, or store a program for
use by or 1 connection with an 1instruction execution
system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wired, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present mmvention have been described
above with reference to flowchart 1llustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the mven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart illustrations and/or block diagrams,
may be mmplemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that may direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including istructions which
implement the function/act specified 1n the flowchart and/or
block diagram block or blocks. The computer program
istructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to
cause a series of operational steps to be performed on the
computer, other programmable apparatus or other devices to
produce a computer implemented process such that the
instructions which execute on the computer or other pro-

US 9,537,787 B2

17

grammable apparatus provide processes for implementing
the functions/acts specified in the tlowchart and/or block
diagram block or blocks.

The flowchart and block diagrams in the above figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for 1mplementing the specified logical
tfunction(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted 1n the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks 1n the block diagrams and/or flowchart illustration,
may be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

While one or more embodiments of the present invention
have been illustrated 1n detail, the skilled artisan will appre-
ciate that modifications and adaptations to those embodi-
ments may be made without departing from the scope of the
present invention as set forth 1n the following claims.

What 1s claimed 1s:

1. A method for dynamically balancing a plurality of
resources according to resource requirements for each of a
plurality of clients with unpredictable loads based on a
resource usage history by a processor device in a computing,
environment, the method comprising:

limiting a resource usage of each of the plurality of clients

by a resource threshold;

increasing the resource threshold of each of the plurality

of clients increases over time;

decreasing the resource threshold of each of the plurality

of clients upon a depletion a plurality of resource and
a resource request of one of the plurality of clients 1s
rejected;

creating a subset of clients from the plurality of clients

having the resource usage greater than the resource
usage ol the one of the plurality of clients whose
resource request has been rejected;

computing a dynamic average ol a normalized number of

a plurality of resources from the subset of clients,

wherein:

the resource threshold 1s decreased of all clients from
the subset of clients based on the dynamic average of
the subset of clients; and

further acquisition of the plurality of resources 1s

restricted from all of the clients from the subset of
clients 1n order to bring the resource usage of each of
the subset of clients under the resource threshold;
increasing the resource threshold for each the plurality of
clients until the resource request for an alternative one
of the at least one of the plurality of clients is rejected;
and
in response to the rejection of the resource request for the
alternative one of the at least one of the plurality of
clients, performing each one of:
decreasing the resource threshold based on the dynamic
average for each the subset of clients from the
plurality of clients having more of the plurality of

5

10

15

20

25

30

35

40

45

50

55

60

65

18

resources allocated than the one of the plurality of
clients whose resource request has been rejected, and

commencing a wait aiter decrease mode until a current
resource usage for each the subset of clients from the
plurality of clients 1s one of less than and equal to the
decreased resource threshold.

2. The method of claim 1, further including performing
one of:

accepting the resource request 1f a sum of a current

resource usage ol each the plurality of clients 1s lower

than a total number of the plurality of resources, and

rejecting the resource request if the sum of a current
resource usage of each the plurality of clients 1s greater
than a total number of the plurality of resources,
wherein subsequent to rejecting the resource request
performing one of:
nominalizing a current resource usage using a normal-
1zation function for each of the plurality of clients,
and
performing a multiplicative decrease on the resource
threshold for each of the subset of clients from the
plurality of clients.
3. The method of claim 1, further including performing
one of:
allocating the plurality of resources according to pre-
defined weights for each one of the plurality of clients,
wherein those of the plurality of clients having a higher
predefined weight are allocated a greater number of the
plurality of resources, and
adjusting the allocation of the plurality of resources based
on changes 1n resource requests by the plurality of
clients by dynamically assigning more of the plurality
of resources to at least one of the plurality of clients
having a higher demand of the plurality of resources at
an expense of one of the plurality of clients that 1s not
currently using an entire allocated portion of the plu-
rality of resources.
4. The method of claim 1, further including performing
one of:
imtially setting the resource threshold for each of the
plurality of clients to a static average and the resource
usage for each of the plurality of clients to zero, and

resetting the resource threshold for each of the plurality of
clients to the static average when a total number of the
plurality of resources changes.
5. The method of claim 1, further including performing
one of:
terminating the wait after decrease mode when the current
resource usage ol one of the plurality of clients falls
below the decreased resource boundary, and

restarting an additive increase operation ol the resource
threshold that was previously decreased.

6. The method of claim 1, further including performing at
least one of:

maintaining the current resource usage and the resource

boundary for each of the plurality of clients, and
sending a notification when the plurality of clients 1s

completed with an 1ssued one of the plurality of

resources and updating the current resource usage.

7. A system for dynamically balancing a plurality of
resources according to resource requirements for each of a
plurality of clients with unpredictable loads based on a
resource usage history in a computing environment, com-
prising:

a memory 1n communication with at least one processor

device executing instructions to provide:

a load balancer 1n the computing environment; and

US 9,537,787 B2

19

the at least one processor device, operable 1n the com-
puting environment and controlling the load balancer,
wherein the at least one processor device:
limits a resource usage of each of the plurality of clients
by a resource threshold,
increases the resource threshold of each of the plurality
of clients increases over time,
decreases the resource threshold of each of the plurality
of clients upon a depletion a plurality of resource and
a resource request of one of the plurality of clients 1s
rejected,
creates a subset of clients from the plurality of clients
having the resource usage greater than the resource
usage ol the one of the plurality of clients whose
resource request has been rejected,
computes a dynamic average ol a normalized number
of a plurality of resources from the subset of clients,
wherein:
the resource threshold 1s decreased of all clients from
the subset of clients based on the dynamic average
of the subset of client, and
further acquisition of the plurality of resources 1s
restricted from all of the clients from the subset of
clients 1n order to bring the resource usage of each
of the subset of clients under the resource thresh-
old,
increases the resource threshold for each the plurality
of clients until the resource request for an alternative
one of the at least one of the plurality of clients 1s
rejected, and
in response to the rejection of the resource request for
the alternative one of the at least one of the plurality
of clients, performs each one of:
decreasing the resource threshold based on the
dynamic average for each the subset of clients
from the plurality of clients having more of the
plurality of resources allocated than the one of the
plurality of clients whose resource request has
been rejected, and
commencing a wait after decrease mode until a
current resource usage for each the subset of
clients from the plurality of clients 1s one of less
than and equal to the decreased resource thresh-
old.
8. The system of claim 7, wherein the at least one
processor device performs one of:
accepting the resource request if a sum of a current
resource usage ol each the plurality of clients 1s lower
than a total number of the plurality of resources, and
rejecting the resource request i1f the sum of a current
resource usage of each the plurality of clients 1s greater
than a total number of the plurality of resources,
wherein subsequent to rejecting the resource request
performing one of:
nominalizing a current resource usage using a normal-
1zation function for each of the plurality of clients,
and
performing a multiplicative decrease on the resource
threshold for each of the subset of clients from the
plurality of clients.
9. The system of claim 7, wherein the at least one
processor device performs one of:
allocating the plurality of resources according to pre-
defined weights for each one of the plurality of clients,
wherein those of the plurality of clients having a higher
predefined weight are allocated a greater number of the
plurality of resources, and

10

15

20

25

30

35

40

45

50

55

60

65

20

adjusting the allocation of the plurality of resources based
on changes 1n resource requests by the plurality of
clients by dynamically assigning more of the plurality
of resources to at least one of the plurality of clients
having a higher demand of the plurality of resources at
an expense of one of the plurality of clients that 1s not
currently using an entire allocated portion of the plu-
rality of resources.

10. The system of claim 7, wherein the at least one

processor device performs one of:

imitially setting the resource threshold for each of the
plurality of clients to a static average and the resource
usage for each of the plurality of clients to zero, and

resetting the resource threshold for each of the plurality of
clients to the static average when a total number of the
plurality of resources changes.

11. The system of claim 7, wherein the at least one

processor device performs one of:

terminating the wait after decrease mode when the current
resource usage ol one of the plurality of clients falls
below the decreased resource boundary, and

restarting an additive increase operation of the resource
threshold that was previously decreased.

12. The system of claim 7, wherein the at least one

processor device performs at least one of:

maintaining the current resource usage and the resource
boundary for each of the plurality of clients, and

sending a notification when the plurality of clients 1s
completed with an 1ssued one of the plurality of
resources and updating the current resource usage.

13. A computer program product for dynamically balanc-

ing a plurality of resources according to resource require-
ments for each of a plurality of clients with unpredictable
loads based on a resource usage history by a processor
device, the computer program product comprising a non-
transitory computer-readable storage medium having com-
puter-readable program code portions stored therein, the
computer-readable program code portions comprising:

a first executable portion that limits a resource usage of
cach of the plurality of clients by a resource threshold;

a second executable portion that increases the resource
threshold of each of the plurality of clients increases
over time;

a third executable portion that decreases the resource
threshold of each of the plurality of clients upon a
depletion a plurality of resource and a resource request
of one of the plurality of clients 1s rejected;

a Tourth executable portion that creates a subset of clients
from the plurality of clients having the resource usage
greater than the resource usage of the one of the
plurality of clients whose resource request has been
rejected;

a fifth executable portion that computes a dynamic aver-
age of a normalized number of a plurality of resources
from the subset of clients, wherein:
the resource threshold 1s decreased of all clients from

the subset of clients based on the dynamic average of

the subset of client, and

further acquisition of the plurality of resources 1is
restricted from all of the clients from the subset of
clients 1n order to bring the resource usage of each of
the subset of clients under the resource threshold;

a sixth executable portion that increases the resource
threshold for each the plurality of clients until the
resource request for an alternative one of the at least
one of the plurality of clients 1s rejected; and

US 9,537,787 B2

21

a seventh executable portion that, in response to the
rejection of the resource request for the alternative one
of the at least one of the plurality of clients, performs
cach one of:
decreasing the resource threshold based on the dynamic
average for each the subset of clients from the
plurality of clients having more of the plurality of
resources allocated than the one of the plurality of
clients whose resource request has been rejected, and

commencing a wait alter decrease mode until a current
resource usage for each the subset of clients from the
plurality of clients 1s one of less than and equal to the
decreased resource threshold.

14. The computer program product of claim 13, further

including an eighth executable portion that performs one of:
accepting the resource request if a sum of a current
resource usage ol each the plurality of clients 1s lower
than a total number of the plurality of resources, and
rejecting the resource request i1if the sum of a current
resource usage of each the plurality of clients 1s greater
than a total number of the plurality of resources,
wherein subsequent to rejecting the resource request
performing one of:
nominalizing a current resource usage using a normal-
1zation function for each of the plurality of clients,
and
performing a multiplicative decrease on the resource
threshold for each of the subset of clients from the
plurality of clients.

15. The computer program product of claim 13, further

including an eighth executable portion that performs one of:

allocating the plurality of resources according to pre-
defined weights for each one of the plurality of clients,

10

15

20

25

30

22

wherein those of the plurality of clients having a higher
predefined weight are allocated a greater number of the
plurality of resources, and
adjusting the allocation of the plurality of resources based
on changes 1n resource requests by the plurality of
clients by dynamically assigning more of the plurality
of resources to at least one of the plurality of clients
having a higher demand of the plurality of resources at
an expense of one of the plurality of clients that 1s not
currently using an entire allocated portion of the plu-
rality of resources.
16. The computer program product of claim 13, further
including an eighth executable portion that performs one of:
imitially setting the resource threshold for each of the
plurality of clients to a static average and the resource
usage for each of the plurality of clients to zero, and

resetting the resource threshold for each of the plurality of
clients to the static average when a total number of the
plurality of resources changes.
17. The computer program product of claim 13, further
including an eighth executable portion that performs one of:
terminating the wait after decrease mode when the current
resource usage ol one of the plurality of clients falls
below the decreased resource boundary, and

restarting an additive increase operation of the resource
threshold that was previously decreased.

18. The computer program product of claim 13, further
including an eighth executable portion that performs at least
one of:

maintaining the current resource usage and the resource

boundary for each of the plurality of clients, and
sending a nofification when the plurality of clients 1s
completed with an 1ssued one of the plurality of

resources and updating the current resource usage.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

