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MANAGED MEMORY CACHE WITH
APPLICATION-LAYER PREFETCHING

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s related to U.S. Non-provisional appli-
cation Ser. No. 14/624,188, entitled “Application-Layer
Managed Memory Cache,” by Zhenyun Zhuang, Haricharan
Ramachandra, Badrinath K. Sridharan, and Cuong H. Tran,

filed on 17 Feb. 2015, the contents of which are herein
incorporated by reference.

BACKGROUND

Field

The described embodiments relate to techniques for cach-
ing files. More specifically, described embodiments relate to
techniques for application-layer caching of files in a man-
aged memory cache that has application-layer caching rules.

Related Art

Applications are increasingly using memory-mapped files
to manage their data i order to achieve improved pertor-
mance. Memory-mapped (mmap) files provide data map-
ping between disk files and the virtual memory space of a
computer system. This may allow applications executing 1n
an environment of the computer system to access the virtual
memory when they read/write the mapped files.

Moreover, when applications read data from disk files,
corresponding pages (which, for an illustrative operating
system, are typically each 4 kB) are allocated 1n memory and
filled with data from disk, so that later read/write accesses
can apply to the memory pages rather than disk files. By
using this page-caching technique in the operating system to
cache data, memory-mapped files can avoid time-consuming
disk mput-output (10) operations. In particular, reading and
writing of memory-mapped files 1s typically faster than
traditional disk-file operations because disk-file operations
rely on system calls and involve data copying between user
space and kernel space. In general, system calls are signifi-
cantly slower than accessing local memory. In addition,
accessing memory-mapped files usually does not result 1n
data copying between user space and kernel space.

Memory mapping works particularly well when the
mapped data can be entirely loaded into physical random
access memory (RAM), a scenario 1n which the data read
access results 1n a ‘page cache-hit.” However, as the data size
increases beyond the size of physical RAM (and, more
precisely, beyond the size of physical RAM that can be used
for operating-system page caches), naive use ol memory-
mapped files can lead to significantly degraded performance
because of the performance costs associated with a ‘page
cache-misses’ and disk 10. In the present discussion, note
that ‘physical RAM’ denotes the maximum page-cache size.
In addition, note that, 1n general, read access from applica-
tions (e.g., database querying) 1s typically blocking, while
write access by applications 1s typically non-blocking. Con-
sequently, read accesses are more likely to aflfect application
performance than write accesses.

Thus, memory-mapped files can result 1n severe memory-
inefliciency problems. In particular, for applications that use
data larger 1n size than physical RAM, not all the data can
be loaded into memory at one time. (Note that ‘data size’ as
used here refers to the ‘working data size,” 1.e., the amount
ol data that 1s actually accessed by the application.) Conse-
quently, attempting to cache new data may cause some pages
to be evicted from memory. However, later when the evicted
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data are needed, they will need to be brought into memory
again, thereby kicking out other data (which 1s referred to as
‘data thrashing’). Data thrashing can incur more-than-nec-
essary disk read 10. Because disk 1O 1s typically slow (and
can easily become a performance bottleneck of the entire
computer system), when data thrashing occurs the applica-
tion response time 1s often increased and the use of memory
mapping may paradoxically degrade the overall perior-
mance.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a drawing illustrating data thrashing in an
existing caching technique.

FIG. 2 1s a drawing 1llustrating an operating-system page
cache 1n an existing caching technique.

FIG. 3 1s a drawing 1llustrating an operating-system page
cache and a managed memory cache 1n accordance with an
embodiment of the present disclosure.

FIG. 4 1s a drawing illustrating components in an appli-
cation-layer caching technique in accordance with an
embodiment of the present disclosure.

FIG. 5 1s a drawing illustrating a hash table associated
with a managed memory cache 1n accordance with an
embodiment of the present disclosure.

FIG. 6 1s a flow chart illustrating a method for caching
data 1n accordance with an embodiment of the present
disclosure.

FIG. 7 1s a flow chart 1illustrating a method for dynami-
cally determining a cache size in accordance with an
embodiment of the present disclosure.

FIG. 8 1s a flow chart 1llustrating a method for replacing
data 1n accordance with an embodiment of the present
disclosure.

FIG. 9 15 a flow chart 1llustrating a method for prefetching
data 1n accordance with an embodiment of the present
disclosure.

FIG. 10 1s a flow chart illustrating a method for adding/
removing cache entries 1n accordance with an embodiment
of the present disclosure.

FIG. 11 1s a flow chart illustrating a method changing
cache granularity 1n accordance with an embodiment of the
present disclosure.

FIG. 12 1s a flow chart illustrating a method changing
cache granularity 1n accordance with an embodiment of the
present disclosure.

FIG. 13 1s a block diagram 1llustrating a computer system
that performs the methods of FIGS. 6-12 1n accordance with
an embodiment of the present disclosure.

Table 1 provides prefetched memory-mapped (mmap)
files 1n accordance with an embodiment of the present
disclosure.

Note that like reference numerals refer to corresponding
parts throughout the drawings. Moreover, multiple instances
of the same part are designated by a common prefix sepa-
rated from an 1nstance number by a dash.

DETAILED DESCRIPTION

In order to prevent data thrashing and the resulting
performance degradation, a computer system may maintain
an application-layer cache space to more eflectively use
physical memory and, thus, significantly improve an appli-
cation-memory hit ratio and reduce disk input-output opera-
tions. In particular, the computer system may maintain a
managed memory cache that 1s separate from a page cache.
The managed memory cache may be managed according to
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predefined caching rules that are separate from the caching
rules 1n the operating system that are used to manage the
page cache, and these caching rules may be application-
aware. Subsequently, when data for an application 1is
accessed, the computer system may prefetch the data and
associated information from disk and store the imnformation
in the managed memory cache based on data correlations
associated with the application.

This application-layer caching technique may signifi-
cantly improve memory usage efliciency and the perfor-
mance of the computer system. In particular, the application-
layer caching technique may: more densely pack usetul data
into memory; reduce cache-misses and data thrashing;
reduce disk-file reads and operating-system-level prefetch-
ing; allow the use of multiple, different (application-aware)
cache replacement techniques; and dynamically determine
the cache size and cache granularnty. Collectively, these
teatures of the application-layer caching technique may help
ensure that memory mapping of files improves performance
cven when the working data size exceeds the physical
memory available for file or page caching.

We now describe embodiments of the application-layer
caching technique, 1ts use, and the computer system. The
performance issues associated with memory mapping are
typically the result of ineflective use of physical memory,
which 1s further caused by multiple interleaving reasons. In
particular, data thrashing 1s usually the result of the inter-
actions between operating-system-level mechanisms (e.g.,
page caching and disk prefetching) and application read-
access patterns. As described further below, 1n general this
interaction 1s very complicated. Briefly, in existing caching
techniques, memory mapped data typically exhibit the
default operating-system page size, such as 4 kB. Therelore,
when data smaller 1n size than the default page size are
accessed, wasted memory results. In an extreme example,
even 11 the application only requests a single byte of data, at
least 4 kB of data may be read and loaded into memory,
which results 1 (4 k-1) bytes of wasted memory.

Moreover, disk-file prefetching can make the data thrash-
ing even worse. Notably, when reading data from disk files,
the operating system may decide to prefetch (or readahead)
the data around the requested data, and may put the
prefetched data into page caches 1n an attempt to reduce the
latency of future read/write accesses. Although prefetching
in many scenarios improves the 10 performance, in the
alorementioned scenario it can severely degrade the perfor-
mance.

Furthermore, operating-system page caching 1s usually
unaware ol application usage or data-access patterns.
Instead, operating-system page caching typically applies a
least-recently used (LRU) replacement techmque, which 1s
blind as to which pages are more important to particular
applications.

Therefore, 1n scenarios where the data size exceeds the
physwal RAM size, the physical RAM may become a

‘precious’ resource that needs to be used efliciently so that
the ‘cache-hit’ ratio increases and applications can get good
response times when reading the data. From this perspective,
the naive use of memory- -mapped files can cause the phy31-
cal memory to be inefliciently used, which can result 1n a
significantly lower cache-hit ratio.

Continuing this discussion 1n more detail, a simple use of
memory mapping often results 1in ineflicient use ol memory.
For simplicity, assume that an application encodes all the
data 1t uses as events, and that the events are randomly
accessed (1.e., they are not accessed sequentially). Moreover,
assume that each event has a size of about 100 bytes. As the
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application requests a series of random events (1.e., E,, E,
etc.), the physical memory may be gradually filled with the
data read from the disk files. FIG. 1 presents a series of
snapshots as to how the physical memory 1s used when 1t 1s
tull of application events. Even though a (4 kB) page can
hold multiple events (e.g., 40 events per page), not all of the
memory-held events are actually needed. Thus, the physical
memory 1s not efliciently used because of the existence of
other un-requested events. For example, if the random
events are distributed sparsely enough, every 4 kB memory
may only hold one useful event. In other words, 1 this
scenario the memory efliciency i1s only about 1/40.
Moreover, the methicient use of memory often results 1n
data thrashing. In particular, when all active data cannot be
loaded 1nto memory, newly accessed data may cause evic-
tion of other m-memory data because of the operating
systems’ page-replacement techmque This scenario 1s 1llus-
trated 1n FIG. 1. Prior to accessing the next event E, _,, E,
1s 1n memory at time t,. However, at time t,, when E__, 1s
accessed and 1s brought into memory, E, and the page
holdmg it are evicted. The result 1s that the new event E_ _,
1s put at the bottom of the memory. Subsequently, when E,
1s needed again at time t,, E,, along with the data around 1t
to form a page, are brought into memory, which kicks out E,.
Such data thrashing will mnevitably happen as long as the
active data size 1s larger than physical memory. Note that the
extent of the data thrashing may be exacerbated by the
aforementioned memory inefliciency, because as more
memory 1s wasted, more data thrashing results.
Furthermore, memory inetliciency typically results 1n disk
IO when new data are accessed. In addition, disk-file
prefetching can significantly inflate the actual disk 10. This
can be demonstrated using a simple workload in which
memory maps a single file. This workload may be written in
Java using MappedByteBuller class and the file size may be
1 GB. In this workload, a fixed number of reads with
different offsets between the beginning and the end of the
files may be generated. For each offset, a single byte may be
read (e.g., using a getChar( ) command), and the reading
oflsets may be spaced by a fixed length. The results for this
workload are shown in Table 1, which presents prefetched
mmap files. Note that the actual data being read from the
disk 1n these results 1s much larger than the actual data
requested by the application. For example, when the oflset
spacing 1s 1 MB and only 1 kB 1s requested by the appli-
cation (1.e., 1 kB getChar( ) calls), the total data size read
from the disk 1s about 771 MB, a difference of 771,000

times.

TABLE 1
Oflset Read Time/Read Disk Reading Transactions
Spacing (B) Bytes Size (MB) Per Second
1k 1M 1005 10.6k
2k 500k 1015 10.5k
4k 250k 1025 10.6k
ok 166k 1110 11.5k
gk 125k 1063 4.5k
16k 60k 1077 11k
64k 16k 1072 10.2k
1M 1k 771 8k
10M 100 77 804
20M 50 38 400
50M 20 16 174

By using memory mapping, the application may practi-
cally shake off the burden of 1ts own memory management,
and may delegate the memory management to the operating
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system’s page caching. Note that operating-system page
caching typically uses an internal-page replacement tech-
nique to determine which pages need to be evicted when
there 1s a shortage of memory. This replacement technique
usually 1s LRU-based, and thus 1s often totally unaware of
the application characteristics. When a new page needs to be
allocated, the operating system may simply choose the page
that has been used least recently and evict 1t from memory,
even though this page may include data that are more
frequently needed and that may be desirable to keep 1n
memory. Such application-unawareness 1s quite natural,
because the underlying operating system usually wants to
work 1n an application-independent fashion. In other words,
the application unawareness 1s typically not a drawback of
operating-system page caching. Instead, i1t 1s usually a
drawback of simply relying on memory mapping by the
application.

We now describe an application-layer caching technique
that addresses the memory-inefliciency problem associated
with using memory-mapped files when the active or working
data si1ze exceeds the physical memory. As noted previously,
simple use of memory mapping often relies on operating-
system page caching to perform an application’s memory
management. Consequently, the application may not man-
age 1ts memory at all, and 1t may only use the operating
system’s shared memory space to cache data. While such an
approach can simplify the design of the application, it may
result 1n performance issues in scenarios in which the
working data size exceeds the physical memory size.

In order to address the performance problems, the appli-
cation-layer caching technique uses a combined approach to
manage the memory. In particular, this application-layer
caching techmque may divide the memory-mapped memory
space used by an application (which 1s henceforth referred to
as a ‘memory-mapped memory footprint’) into two parts: a
managed memory and an un-managed memory. The man-
aged memory 1s what the application uses to actively cache
application data in memory-mapped files, and the applica-
tion may be in full control of this space. In contrast, the
un-managed memory may rely on simple memory mapping,
and, practically, may be the operating-system page cache.
This 1s shown 1n FIGS. 2 and 3, which, respectively, present
the different memory representations of an operating-system
page cache 200 for use with memory mapping 1n an existing,
caching technique, and an operating-system page cache 200
(1.e., the un-managed memory) and a managed memory
cache 300 (i.e., the managed memory) in the application-
layer caching technique. In particular, FIG. 2 shows a
conventional memory footprint for memory-mapped files 1n
which only a 4 kB-aligned page-cache space 1s used, while
FIG. 3 shows the memory footprint in an application-layer
caching technique described herein. Note that the applica-
tion still memory maps the data files, but 1t maintains its own
cache space (with associated predefined caching rules),
which has a more eflicient way of using the memory space.
In addition, note that the managed memory space may only
intend to cache data of high utility to the application (e.g.,
more frequently accessed data or more critical data). As
described further below, the managed memory space may be
implemented using physical memory and/or virtual memory.

The described application-layer caching technique may
cllectively implement an application-layer caching mecha-
nism between reading calls and the operating-system disk
reading. In the discussion that follows, the application-layer
caching technique may also refer to the managed-memory
space used by this caching solution. As described further
below with reference to FIG. 6, in the application-layer
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6

caching technique, when reading from memory-mapped
files, the application may first check to see whether 1ts own
cache has the requested data or not. If 1ts own cache has the
data, 1t may directly retrieve that data, while discarding the
operation of reading from memory-mapped files. However,
il 1its own cache does not have the data, the application may
perform memory-mapped reading and insert the read data
into its own cache. Then, the application may retrieve the
data. In both cases, the application-layer caching technique
may optionally update i1ts internally maintained states to
improve periformance.

Some benefits of the application-layer caching technique
result from mitigating the previously described memory-
inefhiciency problems. In particular, the cache space may be
more efliciently used as it can more densely pack the usetul
data 1n memory. Moreover, mnstead of being limited to
caching data with the operating system’s default page size
(as 1s the case with the operating-system page cache), the
managed memory cache can pack the data much more
cllectively 1n memory. Furthermore, the more eflective use
of memory may result in more events being cached and,
thus, in fewer cache-misses, which, 1n turn, may reduce data
thrashing.

Additionally, when the requested data 1s ‘hit’ in the
application-layer caching technique, a disk-file reading
action may be avoided. This may also avoid unnecessary
operating-system-level prefetching, which can inflate disk
IO and memory usage. Additionally, the application-layer
caching technique may be application-aware. This may
allow the application to take advantage of the data-access
pattern(s) associated with an application, and to prioritize
the caching of data that 1s more important to the application.
Consequently, the cache-replacement technique(s) used 1n
the application-layer caching technique may be application-
aware, which 1s in sharp contrast with the blind LRU
typically used in the operating-system page-replacement
technique.

The application-layer caching technique may also have
some other advanced features. In particular, the application-
layer caching technique may automatically determine the
optimal cache-space size for an application. Moreover, the
application-layer caching technique may dynamically adjust
the cache-space size based on the data-access patterns.
Furthermore, the application-layer caching technique may
allow multiple, different cache-replacement techniques to be
used. Additionally, when an application reads from multiple
memory-mapped files (or from different portions of the same
memory-mapped files), the application may create a separate
cache space for each file (or each portion of a file) based on
different properties (e.g., the data-access pattern, the utility,
etc.) of thus data. In some embodiments, the application-
layer caching technique stores a particular application’s
data-access pattern(s), and may perform application-layer
prefetching to boost the performance of later runs. For
example, an application may sequentially read some data
blocks to perform certain operations. The application-layer
caching technique may record the sequence and may
prefetch later data proactively for the application. Note that
the application-layer caching technique may allow the appli-
cation to control some internal operations and may give
hints to the managed memory cache. For example, the
application may: explicitly determine the minimum or maxi-
mum size of the cache space, enable/disable space-size
resizing, and/or select the cache-replacement technique.

The application-layer caching technique may improve the
reading performance by supplying cached data rather than
fetching from disks. This approach may work particularly




US 9,535,843 B2

7

well when the raw memory-mapped files on disk do not
change. However, when the disk version of the data has
changed, the application-layer caching technique may need
to invalidate the corresponding cached entries to ensure data
integrity. The application-layer caching technique may
allow the application to invalidate the cache entries by
explicitly invalidating notification calls or by implicitly
handling the writing calls of memory-mapped files. In the
case of implicit mvalidation through handling the writing
calls, whenever the application-layer caching technique
needs to write to data 1n a memory-mapped file, 1t may
internally check to see whether the corresponding cache
entries exist or not. If the entries exist, the application-layer
caching technique may remove these entries. Otherwise, the
application-layer caching technique may simply pass
through.

We now further describe embodiments of the application-
layer caching technique. The application-layer caching tech-
nique may be usetul in embodiments 1n which the memory-
mapped working data size 1s larger than the available page
cache. In embodiments where all the data can be loaded into
physical memory, the application-layer caching technique
may provide less benefit because of 1ts overhead, including
the cache-checking operation during data reading. This
overhead can be removed by allowing the applications to
only use the application-layer caching technique when it 1s
suitable. Alternatively or additionally, the application-layer
caching technique may be implemented smartly so that 1t
can automatically identily such embodiments and can
respond accordingly.

The application-layer caching technique may help
improve the performance ol applications that supply data
from read-only memory-mapped data (e.g., applications that
provide query service). Although the application-layer cach-
ing technique can also be used with applications that write
to memory-mapped files, depending on the ratio of read and
write operations the performance benefits may be reduced.
In general, the more read operations (and the fewer write
operations), the larger the performance gain that may be
provided by the application-layer caching technique. Note
that the aforementioned read-only embodiments may not be
restricted to read-only applications. Instead, 1n these
embodiments some of the data files may be writable, while
other data may be read-only. Alternatively, 1n these embodi-
ments the read-portions and the write-portions of the {files
may be separate.

Embodiments of the application-layer caching technique
can be application-specific or application-transparent. In
particular, the application-layer caching technique can be
implemented either inside an application or outside an
application, resulting 1n application-specific or application-
transparent implementations, respectively. When the appli-
cation-layer caching technique 1s implemented inside an
application, it may provide application-specific caching.
This approach may provide the advantage of tight integra-
tion with the application and, thus, may ofler simplified
design considerations. For example, 1i an application only
reads from memory-mapped files, but does not write at all,
then the application-layer caching technique can be 1mple-
mented without considering caching invalidation. However,
because the logic of the application-layer caching technique
1s usually independent from the application logic, such an
application-specific 1mplementation may complicate the
application design.

Moreover, providing an application with its own cache
may complicate the application’s design because of the
associated memory management. Although the designs of
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the application-layer caching technique can be internally
implemented by a particular application, 1n order to address
the complication concerns, in some embodiments an appli-
cation-independent approach 1s used. This may ensure that
applications are free of the implementation details of the
application-layer caching technique. In order to simplily the
presentation, i the discussion that follows the application-
independent embodiments of the application-layer caching
technique are used as an 1llustration.

The application-independent embodiments of the appli-
cation-layer caching technique may wrap the cache-man-
agement mechanisms 1n a library, which 1s independent of
any application and can be called by multiple different
applications. With this approach, there may only be a small
change needed to the application code. In particular, instead
of calling a traditional command to get some data (e.g.,
getChar( )), the application can gain the benefits of the
application-layer caching technique and the managed
memory cache by calling the library’s exposed application
programming interface or API (e.g., getCharCache( )). Thus,
the memory management details (such as memory replace-
ment, mserting, and deleting) may be internal to the library,
so the application may not need to be aware of these
memory-management details.

As shown 1n FIG. 4, which presents a drawing illustrating
components or modules 1 the application-layer caching
technique, the application-layer caching technique may
involve or may use: a cache space 410, cache-hit/miss
processing 412, cache-size determination 414, a cache-
replacement policy 416, application-aware prefetching 418,
cache-entry management 420, and/or cache-granularity
adaptation 422. With the exception of the internal cache
space, the other components and modules may expose
public APIs 424 to allow applications to control the asso-
ciated operations.

Cache space 410 may be an internal cache space that 1s
maintained by the application-layer caching technique, and
which stores the memory mapped data. This cache space
may facilitate fast insertion, deletion, update, lookup and
cache replacement. Cache space 410 may contain a list of
cache entries, and each cache entry may be defined as
<MmapRead, MmapValue>, where MmapRead 1s the read-
ing operation of the memory-mapped files, and the
MmapValue 1s the data.

In some embodiments, a hash table 1s used to organize the
cache entries. The insertion, deletion, updating and lookup
may be handled 1 O(1). In order to allow for fast replace-
ment, the caching entries may be double-linked. In particu-
lar, depending on the caching technique, the double link may
be 1mplemented in different ways. For example, 1f the
application-layer caching technique includes LRU, then the
double link may be organized based on data-access time.
Moreover, the head of the double link may include newly
inserted caching entries. Whenever a cache entry 1s updated
(e.g., 1s read by an application), it may be moved to the head
of the double-linked list, and the associated pointers in the
double-linked list may be updated. In contrast, the tail of the
double link may include the least recently used caching
entry. When the cache space reaches 1ts size limit, the tail of
the double link may be removed, and the associated pointers
in the double-linked list may be updated.

FIG. 5 presents a hash table 500 that can be used to map
cache entries 1n cache space 410 to memory mapped data.
This hash table may 1include cache-entry values 510. A given
cache-entry value, such as cache-entry value 510-1, may
specily: an identifier of the memory mapped data (e.g., a file
or mapped data), a virtual memory address and a requested
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data size. Moreover, a key of a given cache-entry value (such
as cache-entry value 510-1) may include an operation 512
(such as a particular data read request). For example, 1n
general operation 512 may include filename 516, ofiset 518
and length 520. However, for the components of cache
merging/splitting and cache invalidation, operation 512 may
be slighted changed. In partlcular it may 1nclude a filename
516 and an ‘aligned-oflset.” For any oflset, an aligned-oflset
means only taking the higher-order ‘digits’ of the oflset.
Thus, 11 offset 518 1s 10440 and the aligning unit 1s 1000,
then the aligned-ofiset 1s 10000. Moreover, a hash function
§ applied to filename 516, offset 518 and length 520 may
uniquely (or with a very low probability of a contlict)
specily cache-entry value 510-1. In the event of a conflict,
note that hash table 500 may include a list for one or more
cache entries that can be used to resolve the contlict.
Furthermore, note that value 514 may include the requested
data, 1n the form of a byte array or language-specific data
types, €.g., mtegers and/or characters.

Referring back to FIG. 4, cache space 410 may be: a
single cache space covering all (or many) of the memory-
mapped files by an application (or by multiple applications),
per-file based, or per data-segment based (i.e., there may be
multiple cache spaces per file). If the data-access patterns of
the files are similar, then a global cache space makes sense.
For example, a water-supply application may maintain one
file per city, and all the files may be equally likely to be
accessed. However, for many applications, diflerent
memory-mapped files may be accessed with different fre-
quencies and/or patterns. In these embodiments, a per-file
based design 1s more appropriate. A per-file based cache
space may allow the application-layer caching technique to
finely tune the caching technique in a manner specific to the
data-access pattern(s) of each file. In particular, the cache-
s1ize limit of each memory-mapped files may be different
based on the different data-access frequencies of these files.

Cache-hit/miss processing 412 1s shown in FIG. 6, which
presents a flow chart of method 600 for caching data. This
method may be performed by computer system 1300 (FIG.
13). In particular, when the application performs a data-
reading activity or operation, the application may call the
application-layer caching technique’s corresponding public
API. In response, the application-layer caching technique
may internally check whether the requested data 1s 1n the
cache space or not. If the data 1s cached, then a cache-hit
results, and the data 1s returned to the application. Other-
wise, when the data 1s not cached, then a cache-miss occurs.
The application-layer caching technique may then: call or
perform a conventional memory-mapped reading to obtain
the data, put the data into cache space (which may include
adding a cache-entry value into hash table 500 1n FIG. 5),
and return the data to the application. In addition, the
application-layer caching technique may update state infor-
mation, such as one or more counters.

Note that the caching may also be based on data-access
patterns. For example, 1f data 1s read once, 1t may not be
cached. However, 1 a portion of the data 1s read more than
once, regularly or frequently, this portion of the data may be
cached. In some embodiments, a frequency threshold 1s used
during a time 1nterval (e.g., 2) to gate caching. Thus, caching
of data may be based on the average number of accesses
during a time 1nterval.

In some embodiments, during cache-hit/miss processing,
412 (FIG. 4), the application-layer caching technique
exposes the public API set of MRead™( ) and MWrite®( ),
which correspond to different types of data. For example, for
the operations of reading and writing of an Integer (1n Java

10

15

20

25

30

35

40

45

50

55

60

65

10

it 1s four bytes long, getlnt( ) and putlnt( ), as defined 1n
MappedByteBufller class), the application-layer Cachmg
technique may have MReadlInt( ) and MWritelnt( ) wrapping
methods for the application to use. Note that MReadInt( )
may be 1n the form of MReadInt(ByteBuiler b1, int offset),
which reads an integer at the particular oflset from the
particular ByteBuller.

Cache-size determination 414 (FIG. 4) 1s shown in FIG.
7, which presents a flow chart of method 700 for dynami-
cally determining a cache size. This method may be per-
formed by computer system 1300 (FIG. 13). In particular,
the mternally maintained cache space may allow dynamic
(on-the-1ly) size control. On one hand, the size should be big
enough to achieve 1ts intended goal. Alternatively, the size
should not grow too big because of the associated house-
keeping overhead and the loss of memory from other
applications. In addition, each application and each
memory-mapped file may have diflerent data-access pat-
terns. Consequently, using a fixed cache size may not work
well or provide optimal performance. Instead, 1in the appli-
cation-layer caching technique, the application may control
the size of each cache space. Furthermore, the application
may dynamically adapt the cache-size limit based on the
particular application’s data-access pattern(s).

Although a naive treatment of cache-size limit could
involve a fixed or hard-set cache-size limit for each file
based on knowledge and experience, in the application-layer
caching technique the cache size may be dynamically (i.e.,
on-the-tly) adapted, for a given file, based on the accumu-
lated data-access pattern(s). The basic 1dea of size adaptation
1s to grow the cache size 1f the application-layer caching
technique predicts that caching more data 1s worthy. Other-
wise, the cache size may shrink or decrease. The decision as
to whether to grow or to shrink the cache space (such as the
managed memory cache) may be based on caching eflec-
tiveness, such as a metric that measures the cache-hits for
previously cached data that are subsequently removed from
the cache. Specifically, the application-layer caching tech-
nique may monitor the cache-hits of least useful formerly
cached data that are removed from the cache. If the average
number of cache-hits for this group are below a first thresh-
old (e.g., T, equal to 1.5), then the application-layer caching
technique may shrink the cache space. Alternatively, 1t the
average number of cache-hits of those least usetul formerly
cached data 1s above a second threshold (e.g., T, equal to 2),
then the application-layer caching technique may grow the
cache space.

In an exemplary embodiment, every time an existing
cache entry 1s removed because of a cache-space limit, the
cache-hit count for the removed cache entry may be
recorded. This information will be used by cache-size deter-
mination 414 (FIG. 4) to grow, shrink or maintain the current
cache-space size. For example, 1f a cache entry was never
referenced again after being cached, the cache-hit count may
be zero, indicating no benefit of caching that cache entry.
However, 11 the cache-hit 1s larger than zero, it means the
cache entry has been referenced after being cached and may
have potentially saved disk 10. Note that the cache-size
determination may be based on the relative value of average
cache-hits of removed cache entries and some threshold
values, such as T, and T,. In addition, note that determina-
tion as to whether the cache size should be grown or shrunk
may be performed when the size of the formerly cached
entries during a time interval (such as 10 or 30 minutes)
equals or exceeds the current cache size. Alternatively or
additionally, the determination as to whether the cache size
should be grown or shrunk may be performed when the
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number of formerly cached entries equals or exceeds the
number of currently cached entries and/or based on time
(such as every 10 or 30 minutes).

In some embodiments, the application-layer caching tech-
nique exposes the public API of CacheSizeLimit(CacheS-
pace cache, int minSize, 1int maxSize, float growThreshold,
float shrink'Threshold) to allow the application to control the
internal cache-size mechanism of the previously created
cache space. Note that minSize may be the minimum file
size (and the default may be zero). Moreover, the default
maxSize may be one hundredth of the memory-mapped file
s1ze, and grow'Threshold may be the threshold value to grow
the cache space. When the average cache-hits of previously
removed caching entries exceeds grow Threshold, the cache
space may increase. Similarly, shrinkThreshold may be the
threshold value to shrink the cache space. When the average
cache-hits of previously removed caching entries 1s below
shrink Threshold, the cache space may shrink. Cache-size
checking (1.e., growing and shrinking) may be performed
periodically for every N removed caching entries. N may
initially be set to ten, and then may be updated to the size of
the cache space (in number of caching entries) aiter the
cache size exceeds 10. Furthermore, if the managed memory
cache 1 the application-layer caching technique decides to
grow or shrink, 1t may grow/shrink by a certain percentage
of the current size. The default percentage may be 20%.

While the application-layer caching technique can per-
form the cache-size-determination operations automatically
with pre-defined thresholds, the application-layer caching
technique may also allow the application to finely control
the operations. Thus, the application may or may not explic-
itly set the threshold values.

Cache-replacement policy 416 (FIG. 4) 1s shown 1n FIG.
8, which presents a flow chart of method 800 for replacing
data. This method may be performed by computer system
1300 (FIG. 13). In particular, if the internally maintained
cache space reaches 1ts cache-size limit, a cache-replace-
ment techmque may be used. The application-layer caching,
technique can apply different caching techniques/rules to
different cache spaces. Moreover, an application may create
multiple cache spaces, and may configure or define different
caching techmiques/rules when creating them. These caching
techniques/rules may include: least recently used (LRU),
most frequently used (MFU) and/or least frequently used
(LFU). (However, the default caching technique may be the
LRU, but depending on the application-usage scenario other
caching techniques may work better 1in terms of the cache-hit
rat10.) In general, each file or event may have a diflerent
data-access pattern and, thus, may have 1ts own cache space
and caching technique/rules. Consequently, the cache space
may be divided into multiple sub-spaces, each with its own
caching technique/rules. Alternatively, each data type may
have i1ts own caching technique/rules.

In some embodiments, the application-layer caching tech-
nique exposes the public API of ReplacePolicy(CacheSpace
cache, ReplacementPolicy policy) to allow the applications
to explicitly set the cache-replacement technique for a cache
space.

Application-aware prefetching 418 (FI1G. 4) 1s shown 1n
FIG. 9, which presents a flow chart of method 900 for
prefetching data. This method may be performed by com-
puter system 1300 (FIG. 13). Application-layer prefetching
may improve the performance. For example, when an appli-
cation first starts, 1t may need to read certain data from disks.
If those data can be prefetched, the application’s startup
delay can be reduced. As another example, when an appli-
cation performs certain operations (e.g., supply an mncoming
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query), 1t often needs to read a particular set of data. A
prefetching technique may help reduce the application
latency (e.g., query latency) because the data can be read
from memory rather than from disks. Note that the appli-
cation-layer caching technique may be able to learn the
data-access patterns, and the prefetching may be based on
these learned patterns. In particular, for each pair of cached
data entries or events within a certain time period, the
application-layer caching technique may build or determine
a correlation degree or value (or a conditional probability)
that indicates whether these two data entries can benefit
from prefetching. If application-aware prefetching 1s
enabled, reading a cached entry may trigger the prefetching
of other highly correlated cache entries. Furthermore, the
application-layer caching technique may also allow the
application to enable/disable and to control the prefetching
mechanism. For example, the application-layer caching
technique may allow the application to register the corre-
lated caching entries.

In an exemplary embodiment, application-aware
prefetching 418 (FI1G. 4) automatically learns or determines
the correlation between memory mapped data (i.e., caching
entries) through correlation profiling. The higher correlation
degree between two cache entries, the more likely they will
be prefetched when either entry 1s accessed. In particular, for
two cache entries D, and D,, the correlation degree C, ; may
be defined as the time di:Terence between accesses of the two
entries. Note that the access time may be based on logical
time to avoid a heavy system call to determine the real clock.
The application-layer caching technique may maintain an
internal clock, and may increase 1t by one for every read
access. In order to further reduce overhead, the C, ; may only
be updated 11 the clock difference 1s below a certain thresh-
old of T.

The result of the correlation profiling 1s that for every
cache entry, the application-layer caching technique may
have a correlated entry set of P,, such that the element D, in
P, has C,; greater than C1, where CT 1s the correlation
threshold (which may be specified by the application). For
example, CT may be selected so that P, includes 10 entries
or elements. When a cache entry of D, in P, 1s accessed.,
application-aware prefetching may check the correlated
entry set of P, and may pretfetch the remainder of P, 11 these
entries are not 1n cache space.

Note that the correlation profiling may be dynamically
cnabled/disabled by the application. Correlation profiling
may incur overhead 1n the form of computation and memory
usage. Consequently, it may be useful to keep the overhead
to a mmimum. In particular, the correlation profiling may
work after the application starts, and may keep working until
the cache space 1s full.

In some embodiments, the application-layer caching tech-
nique also allows the application to explicitly control appli-
cation-aware prefetching 418 (FIG. 4) by registering
prefetching orders. It may expose the public APIs to enable
this capability. The form of the APIs can vary in different
embodiments. One example 1s PrefetchHint(MmapRead
ops, MmapRead| | fetchData). For the particular MmapRead
operation, the list of fetchData may be prefetched. When-
ever application-aware prefetching sees the reading opera-
tion of ops, 1t may proactively prefetch fetchData. Another
example 1s to register the correlation of two operations, such
as PrefetchCorrelate(MmapRead opsl, MmapRead ops2),
so that either operation may trigger the prefetching of the
other.

Cache-entry management 420 (FIG. 4) 1s shown in FIG.
10, which presents a flow chart of method 1000 for adding/
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removing cache entries. This method may be performed by
computer system 1300 (FIG. 13). In particular, the applica-
tion-layer caching technmique may allow applications to
explicitly add or remove cache entries. When adding a cache
entry, 1f the cache entry does not exist in cache space, then
it 1s added to the end of the cache space. However, depend-
ing on the embodiment of the application-layer caching
technique, 11 the added cache entry already exists in the
cache space, then it may be updated in the form of a
reference count update or by moving the cache entry to the
beginning of the cache space.

The application-layer caching technique may explicitly
invalidate a cache entry or a range of cache entries. Such
invalidations may occur when applications write to memory-
mapped files. For example, when the data corresponding to
a particular cache entry 1s modified, the application-layer
caching techmque may immediately invalidate 1t. The appli-
cation-layer caching technique may also allow applications
to invalidate a range of bytes of the memory-mapped {iles.
In this case, the application-layer caching technique may
then search for all corresponding cache entries and invali-
date them. Note that the search may be based on the byte
oflsets and the lengths of the cache entries.

In some embodiments, cache-entry management 420
(FIG. 4) allows the application to create a cache space and
add memory-mapped files to an existing cache space. In
particular, the application-layer caching technique may
expose the public API of Cachelnitiate(String fileName) and
AddToCache(CacheSpace cache, String fileName). Cachel-
nitiate(String fileName) may create a new cache space and
return the identifier of the cache space. AddToCache may
add a new file to an existing cache space. In addition,
AddToCache may allow applications to add cache entries to
an existing cache space. The API call may be AddCacheEn-
try(CacheSpace cache, CacheEntry entry). Similarly, a
cache entry can be invalidated/removed by calling Remove-
CacheEntry(CacheSpace cache, MMapkFile file, int offset,
int length), which may remove the range of data bytes of the
memory-mapped file from cache space cache. Note that the
data bytes may start from ‘offset” with a length of ‘length.’

Cache-granularity adaptation 422 (FIG. 4) 1s shown in
FIGS. 11 and 12, which present flow charts of methods 1100
and 1200 for changing cache granularity. This method may
be pertormed by computer system 1300 (FIG. 13). In some
embodiments, the application-layer caching technique
dynamically adjusts the caching granularity. Caching granu-
larity may be defined as the data unit that composes caching
entries. The finest level of caching granularity 1n the appli-
cation-layer caching technique and the managed memory
cache may be one or more bytes (e.g., 1 byte of characters).
Similarly, the coarsest level of granularity 1n the application-
layer caching technique and the managed memory cache
may be a file (e.g., an entire file 1s cached). Note that the
caching granularity may be an internal property of the
application-layer caching technique, which may not be
known to the applications that use the application-layer
caching technique.

In general, there may be performance tradeoils of using a
particular caching granularity level with regard to space
used, searching/adding/deleting speed, etc. The application-
layer caching technique may internally and dynamically
adjust the caching granularity levels to strike a performance
balance. In particular, when a cache entry 1s first inserted, it
may be maintained at the byte level based on the number of
bytes 1t contains. For example, in Java, reading or writing an
integer 1s 1n the unit of four bytes, therefore the associated
cache entry may contain or include four bytes of memory
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mapped data. However, when more and more cache entries
are added to the cache space falling inside a page range (e.g.,
multiple cache entries are on the same page of 4 kB), the
application-layer caching technique may automatically
cache the entire page instead. The argument for this merging
1s that the particular page contains or includes enough
popular data bytes that justify the caching of the entire page.
For example, if bitmap values for all the entries in a unit area
1s set to one, then these entries may be merged into a
common entry in the cache space. Note that the benefits of
dynamically adjusting the caching granularity may include:
reducing the number of caching entries and the correspond-
Ing storage space, increasing searching/maintaining speed,
ctc. In addition, note that such merging in the cache space
can continue until it reaches the granularity level of the
entire file.

Furthermore, the application-layer caching technique may
also decrease caching granularity levels dynamically or
on-the-fly. In particular, when usage patterns suggest that a
particular granularity level for certain cached data is too
coarse (e.g., when only a portion of a cached entry 1s used),
then the application-layer caching technique may break
down the data range into smaller cache entries. For example,
when a page of data (e.g., 4 kB) 1s cached, 1 the application-
layer caching technique determines that only a few bytes of
data are actually needed during a time interval (such as 10
or 30 minutes), 1t may: extract that data, create a cache entry,
and discard the other data in the page.

In an exemplary embodiment, for the current level of
caching granularity, 1 enough or suflicient bytes (e.g., a
percentage larger than Level_Up_Threshold) exist in the
cache space for the next higher level of granularity, then
cache-granularity adaptation 422 (FIG. 4) may move up to
the higher level. When this occurs, existing cache entries
falling into the higher level of the caching unit may be
merged. For example, if the current caching granularity 1s
byte-level, the next granularity 1s page-level (such as 4 kB),
and Level_Up_Threshold equals 40%, then 1f more than 1.6
kB of data in a particular page are in the cache space, the
particular page may be treated as a single cache entry. All
cache entries 1n this page may be merged, and other bytes
may be fetched to fill the page.

The leveling down process 1s similar, except that 1t may
use another Level _Down_Threshold value (which 1s lower
than Level_Up_Threshold). The use of two threshold values
may help avoid granularity-level thrashing, 1.e., increasing/
decreasing granularity levels too frequently. Note that, for
the current granulanty level, 1f the Level _Down_Threshold
percentage of the data bytes are not accessed anymore (such
as 20%), then cache-granularity adaptation 422 (FIG. 4) may
break down into smaller caching entries based on data-
access patterns.

In some embodiments, cache-granularity adaptation 422
(FIG. 4) allows applications to explicitly control the granu-
larity of a particular cache space by an API call of setGranu-
larity(CachingSpace cache, GranulantyLevel level). Fur-
thermore, note that the GranulantyLevel may be defined at
different levels, including: byte, page, hugepage (1.e., larger
than the operating system’s default page size), and/or file.

In some embodiments of methods 600 (FIG. 6), 700 (FIG.
7), 800 (FIG. 8), 900 (FIG. 9), 1000 (FIG. 10), 1100 (FIG.
11) and/or 1200 (FIG. 12), there may be additional or fewer
operations. Moreover, the order of the operations may be
changed, and/or two or more operations may be combined
into a single operation. Note that, in general, the parameters
used in the methods and by the application-layer caching
technique may be explicitly controlled and set by the appli-
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cation. In some embodiments, the application-layer caching
technique exposes a public API of CacheConfig(String
parameter, float value) for this purpose.

We now describe exemplary embodiments of the deploy-
ment and usage of the application-layer caching technique.
Many languages support memory-mapped {iles, so 1n order
to take advantage of the apphcatlon-layer cachmg technique
the implementation options may differ for different lan-
guages. However, as shown 1n FIG. 3, the application-layer
caching technique has a managed part of memory that is
different from the operating-system page cache, so the
managed memory space can be implemented in different
forms. For example, the managed memory space can be
implemented in: a memory space managed by a runtime
specific, e.g., heap Java virtual machine, native memory
(e.g., malloc( ) calls), and/or a special memory-mapped file.
In the discussion that follows, Java 1s used as an example.

Java maintains a heap, which 1s essentially a memory
space managed by the Java virtual machine. Managed
memory 1n the application layer caching technique naturally
can be implemented in a heap (e.g., by using hash tables).
However, Java also supports direct memory (which 1s ofl-
heap memory). Alternatively (and less mtuitively), the man-
aged part of the application-layer caching technique can also
be implemented in a memory-mapped files. Although any
memory-mapped file actually can be aflected by operating-
system page-caching techniques, by directly manipulating
the bytes in the memory-mapped file, 1t can be used to
cllectively utilize the memory space.

Furthermore, the application-layer caching technique may
be directly implemented inside application code. However,
as noted previously, another approach 1s to make 1t a library
(or API package) for an application to call. The library (or
API package) may internally encapsulate the details of the
application-layer caching techmque, and may only expose
certain public APIs for the application to call. For example,
the library may expose readCharSmart(int oflset) method to
applications, and applications may simply call the method
and expect 1t to return the same value as 1f it 1s calling
readChar(int offset).

In an exemplary embodiment, the application-layer cach-
ing technique 1s implemented in Java. The cache space uses
a per-file based design. In particular, for a file that 1s larger
than 1 MB, a cache space may be created. Note that the
initial and minimum cache-space size may be set to Vioo of
the raw file size, and the maximum cache-space size may be
set to V1o of the raw file size.

In this example, there may be classes of CacheRead and
CacheValue. The CacheRead class may encode the memory
mapped read action, which includes the virtual memory
address and the requested data size 1n bytes. Moreover, the
CacheValue class may encode the requested data, be 1t
integer, float and/or byte array. Furthermore, the cache-space
may use LinkedHashMap class. LinkedHashMap may use a
hash table 1nternally, but 1t may also put the data 1n a doubly
linked list. As described further below, this data structure
may allow the LRU caching technique to be easily imple-
mented. Note that the cache entry may be in the form of
<(CacheRead, CacheValue>. Given a reasonable load factor,
the cache-hit and cache-miss checking theoretically incurs
O(1) time complexity.

For the cache-hit/miss processing in the exemplary
embodiment, when reading an existing cache entry, readEn-
try( ) method may be called. It may internally move the
accessed cache entry to the head of the doubly linked list.
Moreover, writeEntry( ) may be the method used to 1nsert a
new cache entry. Internally, 1t may add the number of bytes
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to the total cache size, which may be used to determine when
the cache space 1s full. When the cache space 1s full, the state
of the removed cache entry (e.g., reference count, size) may
be recorded. This information may be used to resize the
cache-size limit. Note that cache-hit/miss processing may
implement several types of public API, corresponding to
different types of data, e.g., MmapRead-Char( ),
MmapReadShort( ), MmapReadInt( ), MmapReadlLong,
MmapReadFloatO, MmapReadDouble( ), MmapRead-
Bytes( ).

Moreover, for the cache-size determination in the exem-
plary embodiment, the resizing of the cache limit may be
based on the average utility associated with the removed
cache entries. The utility value may be calculated as the
average of reference counters of the removed cache entries
since the last resizing of the cache limit. The application-
layer caching technique may use two threshold values to
decide on the increasing/decreasing of the cache-size limat.
For example, the threshold values may be 2 and 1.2,
respectively. If the average utility 1s larger than the larger
threshold, then the cache-space limit may be increased by
20%. Otherwise, 1f the utility value 1s smaller than the
smaller threshold, then the cache-space limit may be reduced
by 20%.

Furthermore, for the cache-replacement policy in the
exemplary embodiment, LRU may be used. In particular,
LRU may be the inherited cache-replacement technique with
LinkedHashMap. When a cache entry 1s accessed, it may be
treated as the most recently accessed cache entry.

We now describe embodiments of a computer system for
performing the application-layer caching technique. FIG. 13
presents a block diagram illustrating a computer system
1300. This computer system includes processing subsystem
1310, memory subsystem 1312, and networking subsystem
1314. Processing subsystem 1310 includes one or more
devices configured to perform computational operations. For
example, processing subsystem 1310 can include one or
more microprocessors, application-specific integrated cir-

cuits (ASICs), microcontrollers, programmable-logic
devices, and/or one or more digital signal processors
(DSPs).

Memory subsystem 1312 includes one or more devices
for storing data and/or instructions for processing subsystem
1310 and networking subsystem 1314. For example,
memory subsystem 1312 can include dynamic random
access memory (DRAM), static random access memory
(SRAM), and/or other types of memory. In some embodi-
ments, istructions for processing subsystem 1310 in
memory subsystem 1312 include: one or more program
modules or sets of istructions (such as program module
1322 or operating system 1324), which may be executed by
processing subsystem 1310. Note that the one or more
computer programs may constitute a computer-program
mechanism. Moreover, instructions 1n the various modules
in memory subsystem 1312 may be implemented 1n: a
high-level procedural language, an object-oriented program-
ming language, and/or 1n an assembly or machine language.
Furthermore, the programming language may be compiled
or interpreted, e.g., configurable or configured (which may
be used interchangeably 1n this discussion), to be executed
by processing subsystem 1310.

In addition, memory subsystem 1312 can include mecha-
nisms for controlling access to the memory. In some
embodiments, memory subsystem 1312 includes a memory
hierarchy that comprises one or more caches coupled to a
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memory 1 computer system 1300. In some of these embodi-
ments, one or more of the caches 1s located 1n processing
subsystem 1310.

In some embodiments, memory subsystem 1312 1s
coupled to one or more high-capacity mass-storage devices
(not shown). For example, memory subsystem 1312 can be
coupled to a magnetic or optical drive, a solid-state drive, or
another type ol mass-storage device. In these embodiments,
memory subsystem 1312 can be used by computer system
1300 as fast-access storage for often-used data, while the
mass-storage device 1s used to store less frequently used
data.

Networking subsystem 1314 includes one or more devices
configured to couple to and communicate on a wired and/or
wireless network (i.e., to perform network operations),
including: control logic 1316, an nterface circuit 1318 and
one or more optional antennas 1320. For example, network-
ing subsystem 1314 can include a Bluetooth networking
system, a cellular networking system (e.g., a 3G/4G network
such as UMTS, LTE, etc.), a unmiversal serial bus (USB)
networking system, a networking system based on the
standards described in IEEE 802.11 (e.g., a Wi1-Fi network-
ing system), an Ethernet networking system, and/or another
networking system.

Networking subsystem 1314 includes processors, control-
lers, radios/antennas, sockets/plugs, and/or other devices
used for coupling to, communicating on, and handling data
and events for each supported networking system. Note that
mechanisms used for coupling to, communicating on, and
handling data and events on the network for each network
system are sometimes collectively referred to as a ‘network
interface’ for the network system. Moreover, 1n some
embodiments a ‘network’ between the electronic devices
does not yet exist. Therefore, computer system 1300 may
use the mechanisms in networking subsystem 1314 for
performing simple wireless communication between elec-
tronic devices, e.g., transmitting advertising or beacon
frames and/or scanning for advertising frames transmitted
by other electronic devices.

Within computer system 1300, processing subsystem
1310, memory subsystem 1312, and networking subsystem
1314 are coupled together using bus 1328. Bus 1328 may
include an electrical, optical, and/or electro-optical connec-
tion that the subsystems can use to communicate commands
and data among one another. Although only one bus 1328 i1s
shown for clarity, different embodiments can include a
different number or configuration of electrical, optical, and/
or electro-optical connections between the subsystems.

In some embodiments, computer system 1300 includes a
display subsystem 1326 for displaying information on a
display, which may include a display driver and the display,
such as a liquid-crystal display, a multi-touch touchscreen,
etc.

Computer system 1300 can be (or can be included 1n) any
clectronic device with at least one network interface. For
example, computer system 1300 may include one of a
variety of devices capable of manipulating computer-read-
able data or communicating such data between two or more
computing systems over a network, including: a personal
computer, a laptop computer, a tablet computer, a mainframe
computer, a portable electronic device (such as a cellular
phone or PDA), a media player, an appliance, a subnote-
book/netbook, a tablet computer, a smartphone, a piece of
testing equipment, a network appliance, a set-top box, a toy,
a controller, a digital signal processor, a game console, a
computational engine within an appliance, a consumer-
clectronic device, a personal organizer, a sensor, a user-
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interface device, a server, a client computer (in a client-
server architecture) and/or another electronic device.
Moreover, the network may include: the Internet, World
Wide Web (WWW), an intranet, a cellular-telephone net-
work, LAN, WAN, MAN, or a combination of networks, or
other technology enabling communication between comput-
ing systems.

Although specific components are used to describe com-
puter system 1300, 1n alternative embodiments, different
components and/or subsystems may be present in computer
system 1300. For example, computer system 1300 may
include one or more additional processing subsystems,
memory subsystems, networking subsystems, and/or display
subsystems. Additionally, one or more of the subsystems
may not be present in computer system 1300. Moreover, 1n
some embodiments, computer system 1300 may include one
or more additional subsystems that are not shown 1n FIG. 13.
Although separate subsystems are shown in FIG. 13, i
some embodiments, some or all of a given subsystem or
component can be mtegrated into one or more of the other
subsystems or component(s) in computer system 1300. For
example, 1n some embodiments program module 1322 1is
included in operating system 1324.

Moreover, the circuits and components in computer sys-
tem 1300 may be implemented using any combination of
analog and/or digital circuitry, including: bipolar, PMOS
and/or NMOS gates or transistors. Furthermore, signals 1n
these embodiments may include digital signals that have
approximately discrete values and/or analog signals that
have continuous values. Additionally, components and cir-
cuits may be single-ended or differential, and power supplies
may be unipolar or bipolar.

An mtegrated circuit may implement some or all of the
functionality of networking subsystem 1314, such as a radio.
Moreover, the integrated circuit may include hardware and/
or soltware mechanisms that are used for transmitting wire-
less signals from electronic device 1300 and receiving
signals at computer system 1300 from other electronic
devices. Aside from the mechanisms herein described,
radios are generally known 1n the art and hence are not
described 1n detail. In general, networking subsystem 1314
and/or the imtegrated circuit can include any number of
radios. Note that the radios 1n multiple-radio embodiments
function 1 a similar way to the described single-radio
embodiments.

In some embodiments, networking subsystem 1314 and/
or the mtegrated circuit include a configuration mechanism
(such as one or more hardware and/or software mechanisms)
that configures the radio(s) to transmit and/or receive on a
given communication channel (e.g., a given carrier fre-
quency). For example, in some embodiments, the configu-
ration mechanism can be used to switch the radio from
monitoring and/or transmitting on a given communication
channel to monitoring and/or transmitting on a different
communication channel. (Note that ‘monitoring’ as used
herein comprises receiving signals from other electronic
devices and possibly performing one or more processing
operations on the received signals, e.g., determining 1f the
received signal comprises an advertising frame, etc.)

While some of the operations 1n the preceding embodi-
ments were implemented 1n hardware or software, 1n general
the operations 1n the preceding embodiments can be 1mple-
mented 1n a wide variety of configurations and architectures.
Therefore, some or all of the operations in the preceding
embodiments may be performed 1n hardware, 1n software or
both. For example, at least some of the operations 1n the
caching technique may be implemented using program
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module 1322 and/or operating system 1324. Alternatively or
additionally, at least some of the operations in the caching
technique may be implemented 1n a physical layer, such as
hardware 1n processing subsystem 1310.

While the preceding embodiments illustrated the applica-
tion-layer caching technique with cache rules that are
included in a library that is separate ifrom the operating
system, 1n other embodiments the library and/or cache rules
associated with the application-layer caching techmique are
included in the operating system.

In the preceding description, we refer to ‘some embodi-
ments.” Note that ‘some embodiments’ describes a subset of
all of the possible embodiments, but does not always specitly
the same subset of embodiments.

The foregoing description 1s intended to enable any
person skilled 1n the art to make and use the disclosure, and
1s provided in the context of a particular application and 1ts
requirements. Moreover, the foregoing descriptions of
embodiments of the present disclosure have been presented
for purposes of 1illustration and description only. They are
not mtended to be exhaustive or to limit the present disclo-
sure to the forms disclosed. Accordingly, many modifica-
tions and variations will be apparent to practitioners skilled
in the art, and the general principles defined herein may be
applied to other embodiments and applications without
departing from the spirit and scope of the present disclosure.
Additionally, the discussion of the preceding embodiments
1s not intended to limit the present disclosure. Thus, the
present disclosure 1s not intended to be limited to the

embodiments shown, but 1s to be accorded the widest scope
consistent with the principles and features disclosed herein.

What 1s claimed 1s:

1. A computer-implemented method for prefetching infor-
mation, the method comprising;:

creating a managed memory cache that 1s separate from a

page cache, wherein the managed memory cache 1s
managed according to predefined caching rules that are
separate from the operating-system rules that are used
to manage the page cache,

wherein the predefined caching rules include application-

aware caching rules, wherein cache size of the managed
memory cache are dynamically determined based on
data-access patterns of the data entries, and wherein
dynamically determining the cache size of the managed
memory cache comprises determining whether to grow
or to shrink the managed memory cache based on a
metric that measures cache-hits for previously cached
data that are subsequently removed from the managed
memory cache; and

prefetching the mmformation from another memory and

storing the additional information in the managed
memory cache based on data correlations associated
with an application executed in an environment of the
operating system on the computer.

2. The method of claim 1, wherein the method further
comprises storing additional information in the managed
memory cache based on the predefined rules.

3. The method of claim 2, wherein the additional infor-
mation 1s stored in the managed memory cache when a
cache-miss occurs.

4. The method of claim 2, wherein storing the additional
information involves replacing second imnformation stored 1n
the managed memory cache; and

wherein the second information 1s replaced based on

data-access patterns associated with the application.
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5. The method of claim 2, wherein the method further
comprises maintaining second nformation in the managed
memory cache when storing the additional information; and

wherein the second 1nformation 1s maintained based on

data-access patterns associated with the application.

6. The method of claim 1, wherein the method further
comprises merging adjacent data entries in the managed
memory cache into a single data entry based on data-access
patterns associated with the application.

7. The method of claim 1, wherein the method further
comprises separating a data entry into two or more data
entries 1n the managed memory cache based on data-access
patterns associated with the application.

8. The method of claim 1, wherein at least one of data
entries 1n the managed memory cache has a page size that 1s
smaller than a minimum page size of the page cache; and

wherein at least some of the data entries 1n the managed

memory cache have different page sizes.

9. The method of claim 8, wherein the page size of at least
the one of the data entries 1n the managed memory cache 1s
1 byte.

10. The method of claim 8, wherein at least some of the
data entries have different associated predefined caching
rules.

11. The method of claim 8, wherein the page sizes of the
data entries are dynamically determined based on data-
access patterns of the data entries associated with at least the
application.

12. The method of claim 1, wherein the managed memory
cache 1s implemented 1n virtual memory.

13. The method of claim 1, wherein the managed memory
cache 1s implemented 1n physical memory.

14. The method of claim 1, wherein the predefined
caching rules are associated with a library that 1s called by
the application.

15. The method of claim 1, wherein the data entries 1n the
managed memory cache are organized based on a hash table.

16. An apparatus, comprising:

One Or mMore pProcessors;

memory; and

a program module, wherein the program module 1s stored

in the memory and, during operation of the apparatus,
1s executed by the one or more processors to pretetch
information, the program module including:
instructions for creating a managed memory cache that
1s separate from a page cache, wherein the managed
memory cache 1s managed according to predefined
caching rules that are separate from operating-sys-
tem rules that are used to manage the page cache,
wherein the predefined caching rules include applica-
tion-aware caching rules, wherein page sizes of data
entries within the managed memory cache are
dynamically determined based on data-access pat-
terns of the data entries, and wherein dynamically
determining the cache size of the managed memory
cache comprises determining whether to grow or to
shrink the managed memory cache based on a metric
that measures cache-hits for previously cached data
that are subsequently removed from the managed
memory cache; and
instructions for prefetching the information from
another memory and storing the additional informa-
tion 1n the managed memory cache based on data
correlations associated with an application executed
in an environment of the operating system on the
apparatus.
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17. The apparatus of claim 16, wherein the managed are separate from operating-system rules that are
memory cache 1s implemented 1n one of: virtual memory; used to manage the page cache,
and physical memory. wherein the predefined caching rules include applica-
18. The apparatus of claim 16, wherein the predefined tion-aware caching rules, wherein page sizes of data

entries within the managed memory cache are
dynamically determined based on data-access pat-
terns of the data entries, and wherein dynamically
determining the cache size of the managed memory
cache comprises determining whether to grow or to

caching rules include application-aware caching rules. 5

19. The apparatus of claim 16, wherein at least one of data
entries 1n the managed memory cache has a page size that 1s
smaller than a minimum page size of the page cache; and

wherein the page sizes of the data entries are dynamically shrink the managed memory cache based on a metric
determined based on data-access patterns of the data 0 that measures cache-hits for previously cached data
entries associated with at least the application. that are subsequently removed from the managed

20. A system, comprising; memory cache; and

a processing module comprising a non-transitory com- prefetch the mﬁ?r:matlm} from E}HOth_ef memory and
puter-readable medium storing instructions that, when store the additional information n the man:aged
executed, cause the system to: memory cache based on data correlations associated

with an application executed in an environment of

create a managed memory cache that 1s separate from ,
the operating system on the computer.

a page cache, wherein the managed memory cache 1s
managed according to predefined caching rules that k ok &k ok
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