12 United States Patent

US009535836B2

(10) Patent No.: US 9,535,836 B2

Chakrabarti et al. 45) Date of Patent: Jan. 3, 2017
(54) NON-VOLATILE MEMORY UPDATE 2009/0164738 A1 6/2009 Erfani et al.
TRACKING 2009/0282410 Al1* 11/2009 Moirovveevivnnnnnn, GO6F 9/467
718/101
(71) Applicant: Hewlett-Packard Development 2012/0030408 Al1* 2/2012 Flynnetal. ... 711/102
Company, L.P., Houston, TX (US) 2012/0254120 Al 10/2012 Fang et al.
2012/0284459 Al 11/2012 Gill
(72) Inventors: Dhruva Chakrabarti, San Jose, CA 2012/0290774 Al 1172012 Irika
(US); Hans Boehm, Palo Alto, CA 2012/0303737 A1 11/2012 Kazar et al.
(US)j " " 2014/0006685 Al* 1/2014 Peterson GOG6F 12/0238
711/102
(73) Assignee: Hewlett Packard Enterprise 2016/0034225 Al1* 2/2016 Yoon GO6F 12/0868
Development LP, Houston, TX (US) TV102
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATTONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 370 days. Volos, et al., “Mnemosyne: Lightweight Persistent Memory,” Mar.
2011, http://research.cs.wisc.edu/sonar/papers/mnemosyne-
(21) Appl. No.: 13/799,290 asplos2011.pdf.
(22) Filed: Mar. 13, 2013 * c1ted by examiner
(65) Prior Publication Data
US 2014/0281269 A1 Sep. 18, 2014 Primary Examiner — Edward Dudek, Ir.
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.
(51) Int. CL
GO6rl 9/30 (2006.01)
Go6l’ 12/08 (2016.01) (57) ABSTRACT
(52) U.S. CL
CPC ... GO6F 12/0804 (2013.01); GO6F 9/3004 A technique includes performing an update to a location of
(2013.01); GOGF 9/3009 (2013.01); GO6F a non-volatile memory. The update 1s created by execution
9/30087 (2013.01) of at least one machine executable instruction of a plurality
58) Field of Classification Search oI machine executable instructions. 1he technique includes
(58) f hi ble 1 1 Th hnique 1nclud
CPC ... GO6F 9/30087; GO6F 9/3004; GO6F 9/3009 using a processor-based machine to selectively track the
See application file for complete search history. update to allow recovery of the execution to a given con-
sistency point based at least 1n part on whether the machine
(56) References Cited executable instruction(s) creating the update are located
U.S PATENT DOCUMENTS within a synchronized section of the plurality of machine
o N executable instructions.
7,392,302 B2 6/2008 Halpern
2006/0184718 Al* 8/2006 Sinclair GO6F 3/0608

711/103 16 Claims, 2 Drawing Sheets

/—500
UPDATE
ASSOCIATED
INSTRUCTION(S) WITHIN NO

SYNCHRONIZED

51ko SEC'?I'ION
TRACK UPDATE o0
UPDATE
ASSOCIATED
END WITH NESTED

SYNCHRONIZED SECTION [N
ANOTHER THREAD
506 ?

\
DO NOT 508

\
TRACK UPDATE [TRACK UPDATE]

END (END)

U.S. Patent Jan. 3, 2017 Sheet 1 of 2 US 9,535,836 B2

110 116
\, /
=D PERSISTENT

5

1 130 199 MEMORY
Y T |20
MEMORY WT ————
LOG ENTRY
MANAGER CACHE

&

CPD>

PHYSICAL MACHINE

F1G.]

Q ->TAIL 200

- NEXT

202 204
FlG. 2

SO Q ->TAIL PR

- (/LA NEXT

302 302" 304

304
-G, 3

U.S. Patent Jan. 3, 2017 Sheet 2 of 2 US 9,535,836 B2

00

402
PERFORM WRITE THROUGH CACHING
FOR UPDATE TO PERSISTENT MEMORY

SELECTIVELY TRACK UPDATE BASED AT LEAST IN PART 404
ON WRETHER ASSOCIATED MACHINE EXECUTABLE INSTRUCTION
S LOCATED WITH SYNCHRONIZED SECTION

UPDATE

ASSOCIATED

INSTRUCTION(S) WITHIN
SYNCHRONIZED

SECTION
?

YES NO

510
004

TRACK UPDATE

UPDATE

ASSOCIATED

WITH NESTED

SYNCHRONIZED SECTION IN

ANOTHER THREAD
?

END NO

506
DO NOT 008 Yygs
JRACK JPDATE TRACK UPDATE

FIG. 5

US 9,535,836 B2

1

NON-VOLATILE MEMORY UPDATEL
TRACKING

BACKGROUND

A computer system has traditionally contained both vola-
tile and non-volatile storage devices. In this manner, due to
their relatively faster access times, volatile memory devices,
such as dynamic random access memory (DRAM) devices,
have traditionally been used to form the working memory
for the computer system. To preserve computer system data
when the system 1s powered ofl, data has traditionally been
stored 1in non-volatile mass storage devices associated with
slower access times, such as magnetic media-based or
optical media-based mass storage devices.

The development of relatively high density, solid state
non-volatile memory technologies 1s closing the gap
between the two technologies, and as such, non-volatile
memory devices are becoming increasingly used for both
traditional “memory” and *“‘storage” functions.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a schematic diagram of a physical machine
according to an example implementation.

FIG. 2 1s an illustration of a data structure.

FIG. 3 1s an 1llustration of a potential consistency error
that may occur with the data structure of FIG. 2.

FIGS. 4 and 5 are flow charts depicting exemplary tech-
niques to track updates to persistent memory according to
example implementations.

DETAILED DESCRIPTION

A computer system may contain a working, persistent
memory that 1s formed from non-volatile memory (NVM)
devices, such as memristors, phase change memory devices,
spin-torque transier random access memory (STT-RAM)
devices, and so forth. Memory accesses at the byte granu-
larity using the NVM devices along with dynamic random
access memory (DRAM)-like latencies allow fine-grain and
ellicient persistence of data through execution of regular
central processing unit (CPU) store instructions. However,
data that 1s generated by the execution of CPU store instruc-
tions may not be immediately stored in the persistent
memory. In this manner, due to caches and the presence of
faults 1n the computing environment, challenges exist in
ensuring that persistent data 1s consistent. In this context, a
“consistent state,” requires that all program invariants are
met. Without a mechanism to enforce program invariants, a
hardware or software failure may render persistent data
incorrect and hence, unusable to applications.

Therefore, updates, or stores (or “writes™) to persistent
memory are tracked, or logged, for purpose of ensuring that
the data that 1s stored 1n the persistent memory 1s consistent.
However, tracking all updates to persistent memory may be
expensive from memory, computational and programming
standpoints. Systems and techniques are disclosed herein for
selectively tracking updates to persistent memory 1n a man-
ner that limits the number of updates that are tracked, while
still allowing recovery to given consistency points. The
limited tracking may ofler such advantages as being less
burdensome on the programmer/implementer and reducing,
the computational and memory storage expenses that may be
involved with logging updates to persistent storage.

More specifically, systems and techniques are disclosed
herein for purposes of tracking updates to a persistent

10

15

20

25

30

35

40

45

50

55

60

65

2

memory based at least in part on whether the machine
executable instructions associated with the updates are
located within synchronized sections (an atomic section or a
lock-based section, as examples) as defined by correspond-
ing consistency constructs. In this manner, updates due to
instructions that are executed within synchronized sections
are tracked, and an update that 1s due to an instruction that
1s executed outside of a synchronized section 1s not tracked
unless the data that 1s associated with the update depends
from a nested synchromized section in another thread.

Moreover, 1mn accordance with exemplary implementa-
tions, the selective tracking may be combined with write
through caching of memory updates to persistent memory,
the combination of which significantly reduces the overhead
that 1s otherwise incurred to maintain consistent, persistent
data.

It 1s noted that, 1n general, write through caching 1s
distinctly different from write back caching, which may be
used 1n a persistent memory computing system. With write
back caching, the effect of a CPU store instruction may
linger on within a volatile (i.e., a transient) structure in the
memory hierarchy, such as in a store bufler or in a cache.
Because cache lines may be written back to main memory at
any point of time, updates may be visible in the non-volatile
persistent memory out of order. At a certain point of time,
the state of a data structure may therefore be split between
volatile and non-volatile structures in the memory hierarchy.
For purposes of ensuring that the eflect of an update 1is
visible 1n the non-volatile memory before another, the first
update 1s tlushed out of the cache before the second update
1s 1ssued. In order to i1ssue a cache line flush, either a
programmer or implementer tracks the addresses that are the
target of the store mnstructions and programs 1n cache line
flushes at the appropriate points.

As compared to write back caching, using write through
caching implies that a store 1s written to a cache line and
through to system memory. An individual store in the write
through cache mode may be slower than that in write back
cache mode. However, the primary benefit of write through
caching 1s that the effect of a CPU store instruction 1is
understood to be visible in the non-volatile memory when
the store completes. This implies that the programmer or the
underlying implementer may not need to track as many
memory accesses as 1 write back caching.

As a more specific example, FIG. 1 depicts a physical
machine 100 1n accordance with an example implementa-
tion. In general, the physical machine 100 1s an actual
machine that 1s made up of actual hardware and actual
machine executable instructions, or “software.” In this man-
ner, as depicted in FIG. 1, the physical machine 100 may
include hardware, such as one or more CPUs 108 and
non-volatile memory (NVM) storage 116. In general, the
NVM 116 storage provides a persistent memory 120 for the
physical machine 100. Among 1ts other hardware, the physi-
cal machine 100 may include a write through cache system
130 as well as other devices (input/output (I/0) devices,
network interfaces devices, and so forth), as can be appre-
ciated by the skilled artisan.

The software of the physical machine 100 may include, as
examples, machine executable instructions that when
executed by the CPU(s) 108 form one or more applications
110. Moreover, the physical machine 100 may also include
one or more machine executable instructions, which when
executed by the CPU(s) 108 form a memory manager 150.
For example implementations disclosed herein, the memory
manager 150 selectively tracks updates to the persistent
memory 120 (as disclosed herein) for purposes of allowing

US 9,535,836 B2

3

recovery ol program execution to a given consistency point.
The memory manager 150 may be part of an operating
system of the physical machine or may be separate from the
operating system, depending on the particular implementa-
tion.

For the following discussion, 1t 1s assumed that a region
abstraction exists to present the persistent memory 120 to
the application(s) 110. The application programming inter-
tace (API) for the persistent region abstraction may be
generally described as follows. A persistent region 1s a range
of virtual addresses that are mapped to physical pages of the
NVM storage 116. Each persistent region has a persistent
root (within the same persistent region at a fixed offset) for
the purpose of accessing the data structures within 1t. When
a particular application 110 1s executing, any data within a
persistent region, which 1s not reachable from 1ts persistent
root or from a program root 1s considered garbage and may
be recycled. When an application 110 crashes or when the
application 110 1s not executing, any data within a persistent
region that 1s not reachable from 1ts persistent root 1s
considered garbage and may be recycled.

The memory manager 150 assumes the existence of
consistency constructs, which convey information about the
invariance of the data structures, which are maintained. For
the example implementations disclosed herein, the consis-
tency constructs define corresponding synchronized sections
of program code, such as atomic sections and lock-based
sections. For an atomic section, machine executable instruc-
tions that are enclosed by corresponding atomic section
consistency constructs appear to execute 1n an indivisible
manner, such that all or none of its eflects are visible 1n the
persistent memory 120, regardless of program crashes of the
applications 110 and/or reboots of the physical machine 100.
It 1s noted that similar constructs may be used 1n serial,
multi-threaded and distributed memory applications to
impose certain consistency guarantees.

In accordance with example implementations, the
memory manager 150 infers consistency constructs from the
machine executable mstructions. For example, below 1s an

example code segment, where a node 1s allocated, populated
with 1nitial data, and then added to the end of a queue q:

1: struct node_ t;

: node = malloc(sizeof(node_ t));
: node->data = d;

: node->next = 0;

: atomic {

: q->tail->next = node;

. q->tail = node;

T

s s

Example Code Segment 1

Referring to example code segment 1 above, a consistent
program point may be anywhere between lines 11-13, at the
beginning of the atomic consistency construct at line 14 or
at the end of the atomic section construct at line 17. I a
consistent point between lines 11-13 1s reached and the
application 110 containing the above code segment crashes,
the new node may be allocated and not initialized or partially
initialized. However, this 1s not an 1ssue because the node 1s
still private, 1s not reachable from the queue and may be
garbage collected. Regardless of garbage collection, the
state of the queue remains uncorrupted.

10

15

20

25

30

35

40

45

50

55

60

65

4

Due to the atomic section that ends at line 17, the
consistent state of the code segment at line 17 must be 1n the
persistent memory 120. This means that the eflects of all
changes made to persistent data i lines 11-17 have reached
the persistent memory 120 at this point. This leads to
publication safety, a semantic guarantee generally required
in multi-threaded programs. In the presence of write back
caching, the publication safety may be achieved by flushing
out changes made 1n lines 11-17 from volatile buflers and
caches. In this manner, cache line flushes may be 1ssued for
addresses, which correspond to “node->data”, “node->
next”’, “g->tail->next”, and “g->tail.” For these cache line
flushes to occur, the system tracks these stores that exist in
the original program. The stores that are tracked are both
within and outside of the atomic sections. Extrapolation
indicates that all stores to persistent data in the entire
program have to be tracked. In multi-threaded programs,
atomic sections may be relatively infrequent and small. As
suggested by the example code segment 1 above, memory
locations often start out as private to a thread, then get
initialized and finally get published. Publishing uses atomic
sections to protect mutation of shared data, as 1llustrated 1n
lines 14-17 of example code segment above. Thus, relatively
frequently, mutations to persistent data structures occur
outside atomic sections. The write back caching mode tracks
updates that occur due to execution of instructions that are
both within and outside of atomic sections.

FIGS. 2 and 3 depict a scenario 1f the write in line 12 1s
not tracked. In this manner, 1f the store to the “data’ field of
the new node 1s not tracked, the corresponding update may
remain 1 a cache, such that the cache line may not get
flushed out when the atomic section commits to persistent
memory. FIG. 2 1llustrates how 1nitially the g->tail pointer
may point to a last node 202, having “d1” as i1ts data. When
the atomic section commits and assumes that the store to the
“data” field has not made its way to persistent memory, the
state of the queue may be as shown 1n FIG. 3. In this manner,
FIG. 3 illustrates an exemplary queue 300 in which the dl
data 1s 1deally stored in the last queue position 302. How-
ever, as indicated by shaded box 302", the data field may
have garbage at this point. Therefore, 1f the code segment
crashes at this point, the data 1n caches will not survive, as
the data that 1s already 1n persistent memory only survives.
On application restart, the persistent queue has garbage 1n 1ts
last node, as indicated at reference numeral 302', thereby
making 1t corrupt and unusable. Therefore, 1n the write back
caching mode, all stores to persistent memory are tracked
and flushed as appropriate. Otherwise, applications may end
up with persistent data with inconsistencies, such as wild
pointers, pointers to uninitialized data, dangling pointers,
and so forth.

Thus, 1n accordance with exemplary implementations,
write through caching may be employed for updates to the
persistent memory 120. Reads get the benefit of caching and
no programmer-directed cache line flushes are used. Con-
sequently, a relatively large number of writes are not
tracked, as further disclosed herein.

To contrast write back and write through caching, the
following example code segments may be analyzed:

1: struct node__t;

11: node = malloc(sizeof(node_ t));
12: node->data = d;

12a: Flush{node->data);

13: node->next = 0O;

US 9,535,836 B2

S

-continued

13a: Flush(node->next);
14: atomic {

14a: Log the write 15

15: g->tail->next = node;
15b: Flush(qg->tail->next);
15¢: Log the write 16

16: g->tail = node;

16b: Flush(qg->tail);

17: }

Example Code Segment 2

1: struct node_ t;

11: node = malloc(sizeof(node_ t));
12: node->data = d;

13: node->next = 0;

14: atomic {

14a: Log ;

the write 15

15: g->tail->next = node;
15a: Log the write 16
16: g->tail = node;

16b: mience

17: }

Example Code Segment 3

Example code segment 2 above employs write back
caching; and example code segment 3 above employs write
through caching. In both example code segments 2 and 3, the
operation “log” stores the previous value of the operand 1n

a side data structure (such as a log entry 122 of FIG. 1); and
in the event of a crash/recovery, the operand 1s reverted to
the previous value stored in the log. Code required to
commit or roll back the atomic section i1s elided. The
operation “flush” 1n example code segment 2 refers to a
sequence ol a memory fence operation, a cache line flush
that contains the operand, and a subsequent memory fence
operation.

Lines 14-17 for example code segments 2 and 3 set forth
a corresponding atomic section that guarantees all-or-noth-
ing behavior. Therefore, updates inside the atomic section
are tracked so as to retain the ability to roll back the effects
of an mncomplete atomic section 1n the event of a crash. This
tracking 1s employed, regardless of whether write through
caching or write back caching 1s employed. It 1s noted that
with write through caching, a single memory fence opera-
tion at the commit point of the atomic section 1n line 17 of
example code segment 3 1s suflicient to ensure publication
safety when all persistent stores use the write through mode
of caching. The memory fence ensures that all stores before
line 16b have completed. The memory fence further ensures
that a write combining bufler, if used 1n the write through
mode, 1s empty at that point. Thus, a diflerence between
write back and write through 1s that 1n the former, updates
outside an atomic section are tracked so as to flush the
relevant addresses while 1n the latter, the updates are not
tracked for flushing purposes.

Tracking memory accesses serves another purpose: a way
to roll back the persistent state to one that was seen at a
particular point 1n a set ol machine executable instructions.
For example, 1n write back caching mode of example code
segment 2, all operations 1n lines 11-17 are tracked, and this

10

15

20

25

30

35

40

45

50

55

60

65

6

tracking may include logging the previous value being
overwritten by the current update. If the program crashes,
the consistent points to which the implementation may roll
back correspond to lines 11, 12, 13, 14, and 17 of example
code segment 2. It 1s noted that the program points at lines
15 and 16 are not consistent, because these instructions are
in the middle of an atomic section (i.e., the start and end
points ol an atomic section are consistent points). As pre-
viously set forth by the example in connection with FIGS. 2
and 3, the failure to track the write on line 12 of example
code segment 2 may result in a corrupt queue. Moreover, not
tracking the write associated with line 12 may also result in
losing the ability to undo the corresponding update. In this
case, this implies that the system may not be able to revert
to the state corresponding to the beginning of line 12 if a
crash occurs after line 12.

The following 1s an example of a “corner case” 1nconsis-
tency situation, which may arise from losing the ability to
roll back the state of data structures to an arbitrary program
point. This corner case may occur for write back as well as
write through caching implementations. To illustrate this
problem, example code segments 4 and 5 are set forth
below:

Initially data = 0O, flag = false;

1: atomic

2: flag = true;
3:}

4: data = 1;

5: atomic {

6: flag = false;
7: data = 0;

8: |

Example Code Segment 4

Initially data = 0, flag = false;
: lock(I);

: flag = true;

: unlock(I);

: data = 1;

: lock(I);

: flag = false;

: data = O;

: unlock(I);

o0 =] S o P) b

Example Code Segment 5

It 1s noted that example code segment 4 illustrates an
atomic section; and example code segment 5 illustrates a
lock-based section. For write back caching, all stores to
persistent locations are tracked. With write through caching,
for the Tollowing example, 1t 1s assumed that the store to data
in line 4 of example code segment 4 1s not tracked. If the
program, for this example, crashes after executing line 4 and
the recovery phase reverts the state at line 1, the value of
“flag”™ 1s rolled back to “false” due to the update to “tlag™ 1n
line 2 being logged. However, the value of “data” remains
“1,” because the update to “data” in line 4 1s not logged. The
problem 1s that “flag=false, data=1" 1s an 1nconsistent state,
which may not be obtained 1n a failure-free operation. This
1s stmilar to the classical “shorn write” error situation where
only some of the updates are seen.

The above-described situation may be avoided by noting
that 1n the example code segment 4, there 1s no need to revert

US 9,535,836 B2

7

to the state 1n line 1 because there 1s no need to roll back
beyond the commit point of an atomic section 1f that commuit
completed successiully.

The lock-based construct of example code segment 5,
however, 1s slightly more complicated. The lock-based syn-
chronized section has a relatively more complex “happens-
before” relation between threads, as there 1s no explicit
commit point and the recovery phase may be forced to revert
to the consistency point on line 1. Thus, the inconsistent
state set forth for the example code segment 4 above may
indeed happen. To prevent such an occurrence, the following
conditions may be imposed to determine whether tracking of
updates to persistent locations outside of consistency con-
structs may be eliminated.

In particular, in accordance with example implementa-
tions, each time execution reaches a consistent point, the
memory manager 150 removes all log entries up to that
program point. The core 1dea 1s not to roll back beyond an
untracked persistent location update. Therefore, when an
update to a persistent location outside a synchronized sec-
tion 1s encountered, the memory manager 150 determines
whether the executing thread has any existing log entry. IT
so, the memory manager 150 infers that a roll back to an
carlier point may happen during recovery; and therefore, the
memory manager 150 tracks the update under consideration.
If the memory manager 150 determines that that there 1s no
log entry, then the memory manager 150 does not track the
update under consideration. With atomic sections, the
removal of log entries on commit ensures that the condition
always holds so that updates outside of atomic sections are
not tracked.

In other words, 1n accordance with example implemen-
tations, the memory manager 150 logs, or tracks, updates
that occur within synchronized sections. For an update that
1s outside of a synchronized section, the memory manager
150 does not track the update unless it depends on an update
within a nested synchromzed section of another thread.

In accordance with example implementations, the
memory manager 150 may include a counter, which the
memory manager 150 increments each time a lock 1s
acquired and decrements the counter every time a lock 1s
released. In this manner, a counter value of zero indicates
that execution 1s outside of the synchronized section. If the
log that 1s maintained by the executing entity 1s empty at that
point, the memory manager 150 eliminates all tracking until
the counter becomes non-zero. Other implementations are
contemplated, which are within the scope of the appended
claims.

Thus, referring to FIG. 4, 1n accordance with example
implementations, a technique 400 includes performing
(block 402) write through caching for an update to persistent
memory. The technique 400 includes selectively tracking
(block 404) the update based at least in part on whether
associated machine executable instruction(s) are located
within a synchronized section.

As a more specific example, FIG. 5 depicts an exemplary
technique 500. Pursuant to the technique 500, the memory
manager 150 determines (decision block 502) whether an
update associated with one or multiple instructions 1s asso-
ciated with a synchronized section of the current thread. If
s0, the memory manager 150 tracks the update, pursuant to
block 510. Otherwise, 1f the update 1s not associated with
instructions within a synchronized section of the current
thread, the memory manager 150 determines (decision block
504) whether the update 1s associated with a nested syn-
chronized section 1s another thread. If so, the memory
manager 150 tracks the update, pursuant to block 508.

10

15

20

25

30

35

40

45

50

55

60

65

8

Otherwise, the memory manager 150 does not track the
update, pursuant to block 506.

As another example, the memory manager 150 may
perform the following tracking, in accordance with an
example implementation. If a thread T1 reads a value within
a synchronized section c¢sl from a location last written
betore or within a nested synchronized section cs2 executed
by another thread T2, then the memory manager 150 logs
any 1nstruction executed outside a synchronized section by
T1 subsequent to c¢sl unless 1t can be proved that the
dynamically executed outermost synchronized section
within which c¢s2 1s enclosed will not be rolled back. This
ensures that c¢sl will not be rolled back and hence the
istruction executed outside a synchronized section by T1
subsequent to ¢s1 will not be rolled back either and hence it
does not have to be logged.

For every lock L1 to Ln, the memory manager 150
maintains a counter C1 to Cn. These counters are shared
across threads. Counters track the number of times each lock
has been released.

The memory manager 150 uses a hash table HT that maps
a lock to a log entry. On a release of lock L, the log entry
corresponding to the release 1s installed in HT. On an acquire
of lock L, the memory manager 150 queries the HT hash
table with L and 1f an existing entry 1s found, a happens-after
edge 1s added from the acquire-log-entry to the found
release-log-entry. The following augments the HT hash table
to help determine whether an update dynamically outside a
critical section needs to be logged.

Assuming that lockinfo 1s a type containing a lock address
and 1ts counter type, the hash table entry 1s augmented to
contain a set of elements of type lockinfo along with other
existing information.

The memory manager 150 maintains a thread local data
structure called “local set tld_roll_back_locks,” where every
clement 1s of type “lockinio.” The set 1s a union of the locks
held by the current thread and other locks potentially held by
other threads. If any of the synchronized sections corre-
sponding to the latter fails, the current synchronized section
of this thread is rolled back.

Just before a lock Li is released, the following 1s per-
formed. <Li, Ci> 1s removed from tld roll back locks.
Optionally, tld_roll_back_locks 1s traversed and a check 1s
performed to verily whether any of the counters has
increased. If so, that element 1s removed from tld roll
back_ locks. The log entry corresponding to the release
instruction 1s installed. Additionally, nstall tld_roll_back_
locks ito HT for lock Li. Immediately after acquiring a lock
L1, the following 1s performed. Ci1 1s incremented. tld_roll_
back_locks 1s then set equal to <Li, Ci> U tld_roll_ back_
locks U get_global_roll_back_locks(L.1), where U denotes
set_union and get_global_roll_back_locks(LL1) queries HT
with L1 and obtains the list from HT.

Given the above protocol, the following holds at any
program point. If, for all elements i tld_roll_back_locks,
the shared counter value 1s greater than the value found in
tld_roll_back_locks, the instruction executed at that pro-
gram point 1s not within a synchronized section and does not
depend on any data written within a synchronized section
that can be rolled back. If this condition holds, this instruc-
tion 1s not logged. Whenever tld_roll_back_locks 1s tra-
versed and its elements checked, any element, for which its
counter value has increased, can be removed.

Thus, as disclosed herein, persistent memory accesses
outside synchronized sections may not have to be tracked;
and persistent memory accesses inside synchronized sec-
tions are tracked. The reduction of tracking has been dis-

US 9,535,836 B2

9

closed herein 1n a way that preserves the underlying sys-
tem’s capability to recover from failure. The elimination of
tracking outside of synchronized sections may improve
programmability, especially when incorporating existing
code. Depending on the specific API, either significantly less
work would be required of the programmer or 11 the mecha-
nism described herein 1s used by the underlying implemen-
tation, 1ts complexity may be reduced. Tracking memory
accesses may involve logging and may generally, be com-
putationally expensive. In this manner, more tracking
implies a larger log and consequently higher memory con-
sumption. Reduction of tracking may improve application
performance because of these reasons.

Even if logging can be eliminated outside synchronized
sections, updates to non-volatile memory outside synchro-
nized sections are flushed out of caches 11 write-back cach-
ing mode 1s used; but, no cache line flushes are used for
write through, in accordance with example implementations.
Theretfore, using write through caching as described herein,
may be a large differentiator as a lot of data structure updates
appear outside of synchronized sections.

While a limited number of examples have been disclosed
herein, those skilled in the art, having the benefit of this
disclosure, will appreciate numerous modifications and
variations therefrom. It 1s intended that the appended claims
cover all such modifications and variations.

What 1s claimed 1s:

1. A method comprising;

performing an update to a location of a non-volatile

memory, the non-volatile memory accessible at a byte
level granularity via central processing unit store
instructions, the update created by execution of at least
one machine executable instruction of a plurality of
machine executable instructions; and

using a processor-based machine to selectively track the

update to allow recovery of the execution to a given
consistency point based at least 1n part on whether the
at least one machine executable instruction 1s located
within a synchronized section of the plurality of
machine executable instructions, wherein the synchro-
nized section comprises multiple instructions of the
plurality of machine executable instructions, wherein
the synchronized section comprises a lock-based sec-
tion, wherein using the processor-based machine to
selectively track the update 1s based at least 1n part on
a determination ol whether the update can be rolled
back, wherein the update 1s outside of the synchronized
section, and determining whether the update can be
rolled back comprises:

determining whether another synchromized section 1s

executed before the synchronized section comprising
the lock-based section can be rolled back.

2. The method of claim 1, wherein:

the synchronized section comprises an atomic section;

and

using the processor to selectively track the update com-

prises tracking the update 1f the at least one machine
executable instruction 1s located within the atomic
section and not track the update 1f the at least one
machine executable 1nstruction 1s located outside of the
atomic section.

3. The method of claim 1, wherein using the processor to
selectively track the update 1s based at least in part on
non-volatile logging updates, wherein the updated location
and a log generated by the logging are stored 1n non-volatile
memory.

10

15

20

25

30

35

40

45

50

55

60

65

10

4. The method of claim 1, wherein using the processor to
selectively track the update comprises selectively deleting
log entries 1n response to determination of a consistent state
and determining whether an executing entity can be rolled
back by checking whether any log entry exists in the
plurality of machine executable 1nstructions at a point where
an update 1s made to a location 1n non-volatile memory.

5. The method of claim 1, wherein wherein determining,
whether the update can be rolled back further comprises:

determining whether execution of another synchronized

section that occurs before the synchromized section
comprising the lock-based section has completed.

6. The method of claim 1, further comprising using write
through caching to reduce a degree of tracking of updates to
the non-volatile memory.

7. The method of claam 1, wherein the synchronized
section 1s delimited by programming constructs.

8. The method of claim 1, wherein using the processor-
based machine to selectively track the update comprises:

determiming whether the update 1s located within the

synchronized section; and

selectively tracking the update based on the determina-

tion.

9. A system comprising:

a non-volatile memory, the non-volatile memory acces-

sible at a byte level granularity via central processing
unit store instructions;

a write through cache;

a processor to use the write through cache to update a
location of the non-volatile memory in response to
execution of at least one machine executable instruc-
tion of a plurality of machine executable instructions;
and

a memory manager to selectively track the update to allow
recovery of the execution to a given consistency point
based at least in part on whether the at least one
machine executable instruction 1s located within a
synchronized section of the plurality of machine
executable instructions, wherein the synchronized sec-
tion comprises multiple instructions of the plurality of
machine executable instructions, wherein the synchro-
nized section comprises an atomic section, wherein the
processor 1s adapted to track the update 11 the at least
one machine executable instruction 1s located within
the section and selectively track the update 11 the at
least one machine executable mstruction 1s located
outside of the atomic section.

10. The system of claim 9, wherein the persistent memory
comprises a non-volatile memory, and the processor com-
prises a central processing unit.

11. The system of claim 9, wherein the processor 1s
adapted to

selectively track the update based at least in part on
logging updates stored i1n non-volatile memory,
wherein the selectively tracked update and the logging
updates are stored in non-volatile memory.

12. The system of claam 9, wherein the processor 1s
adapted to selectively track the update based at least in part
on a determination of whether the update can be rolled back.

13. The system of claim 12, wherein the update 1s outside
of the synchronized section, and the processor 1s adapted to
determine whether the update can be rolled back by selec-
tively tracking the update based at least in part on whether
execution of another synchronized section occurs before the
synchronized section of the plurality of machine executable
instructions.

US 9,535,836 B2

11 12
14. An article comprising a non-transitory storage tively track the update based at least 1n part on whether
medium to store instructions readable by a processor-based the update can be rolled back, wherein the update 1s
machine which when executed by the processor-based outside of the synchronized section, and the storage
machine cause the processor-based machine to: medium storing instructions that when executed by the
perform write through caching for an update to a location > pr oce§sor-based n‘}achlne cause the processor-based
of a non-volatile memory, the non-volatile memory machine to determine whether the update can be rolled

back based at least 1n part on a determination of

whether another synchronized section that 1s executed

before the synchronized section of the plurality of
10 machine executable instructions can be rolled back.

15. The article of claim 14, wherein the synchronized
section comprises an atomic section, the storage medium
storing 1nstructions that when executed by the processor-
based machine cause the processor-based machine to selec-
tively track the update based on whether the update 1s
located within the atomic section.

16. The article of claim 14, the storage medium storing
instructions that when executed by the processor-based
machine cause the processor-based machine to selectively
20 track the update based at least in part on a log, wherein the

log and the update are stored in non-volatile memory.

accessible at a byte level granularity via central pro-
cessing unit store instructions, the update created by

execution of at least one machine executable 1nstruc-
tion of a plurality of machine executable instructions
association with an application; and

selectively track the update to allow recovery of the
execution to a given consistency point based at least 1n
part on whether the at least one machine executable
istruction 1s located within a synchronized section of 13
the plurality of machine executable instructions,
wherein the synchronized section comprises multiple
instructions of the plurality of machine executable
instructions, wherein the synchronized section com-
prises a lock-based section, the storage medium storing
istructions that when executed by the processor-based
machine cause the processor-based machine to selec- I I

	Front Page
	Drawings
	Specification
	Claims

