US009535818B2

a2y United States Patent (10) Patent No.: US 9,535,818 B2

Vasudevan et al. 45) Date of Patent: Jan. 3, 2017
(54) IDENTIFYING HIGH IMPACT BUGS 2003/0066049 Al 4/2003 Atwood et al.
2004/0153822 Al1* 8/2004 Arcand etal. 714/38
(71) Applicant: MICROSOFT, Redmond, WA (US) 2005/0138536 AL* 6/2005 Smith ... GOOF ; };ﬁi/ggg
: : 2010/0100871 Al* 4/2010 Celeskey et al. 717/124
(72) Inventors: J ﬂna.nl Vasudevan, -Redmond,, WA 5010/0131450 Al 52010 Nguyen et al.
Eugg zl?_ndl‘e]‘)"’ fliecslousa Se&{ﬁllle:\yﬁ 2010/0251215 Al 9/2010 Yawalkar et al.
US); Firoz Dalal, Sammamish,
(US); Herman Widjaja, Seattle, WA
(US); Jarred Bonaparte, Scattle, WA OTHER PUBLICATIONS
(uS): Todd Krost, WOOdin‘fﬂle: WA “International Search Report & Written Opinion for PCT Patent
(US); Ryan Segeberg, Covington, WA Application No. PCT/US2013/065156”, Mailed Date: Jan. 21,
(US); Rajkumar Mohanram, 2014, Filed Date: Oct. 16, 2013, 10 pages.
Redmond, WA (US) Gousset, et al., “Chapter 23: Manual Testing”, In Book—Profes-
sional Application Lifecycle Management with Visual Studio, Sep.
(73) Assignee: Microsoft Technology Licensing, LLC, 19, 2012, pp. 1-21.
Redmond, WA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
%aglg 1;’ SZ}ESHS ed3 8; gjﬂéstEd under 33 Primary Examiner — Philip Wang
S Y b Assistant Examiner — Amir Soltanzadeh
(21) Appl. No.: 13/652,964 (74) Attorneyj Agent, or Firm — Sunah Lee; Dan Chota;
Micky Minhas
(22) Filed: Oct. 16, 2012
(65) Prior Publication Data (57) ABSTRACT
US 2014/0109053 A1 Apr. 17, 2014 Test cases are executed by the software engineering test
system. The test cases target software products. Test outputs
(51) Int. CL are generated indicating whether the software engineering
GOGF 11/36 (2006.01) test system determined the test cases to have passed or
(52) U.S. Cl falled. Separately, bug records are stored in a first dataset
CPC ... GO6F 11/3664 (2013.01); GO6F 11/3692 fhfse records :@enﬁfy C‘i”esdp‘?“ding bugs g Rt\ec‘?’tfdli of ﬂclle
5013 01 est case executions are stored 1n a second dataset. Records
(58) Field of Classification Search () thereol indicate whether a corresponding test case failed
None when executed. Such records may have bug identifiers
See anplication file for comnlete search histo entered by a test engineer and corresponding to bugs iden-
PP P =4 tified by the test engineer. The {first dataset 1s parsed to
(56) References Cited identily records of test runs that have failed, and for each

U.S. PATENT DOCUMENTS

204

iterate over test reports with "fail"
status;

identify any bugs associated with
the test reports;

update failure data for the
total failures over given period of

time, increase in failures over |ast
update, etc.)

such test run record a bug identifier thereof 1s 1dentified.
Statistics such as failure counts are updated for the bugs
found 1n the test run records.

8,074,119 B1* 12/2011 Raoc..ccocevvvininn, GO6F 8/20
714/38.1
8,151,248 Bl * 4/2012 Butleretal. ...cco........... 717/124 13 Claims, 6 Drawing Sheets

A

results DB

engineering test

tool/crawler
200

associated bugs (e.g., total failures,

]

U.S. Patent Jan. 3, 2017 Sheet 1 of 6 US 9,535,818 B2

software -
product (test

. target)

1 6 test —
———— test case automation
system

BN edits, 111
analysis<

bug report | 11

\
\
\

114[bug report] \

104 1le
bug
‘ ‘l report | bugs DB
114

results (pass/
fail)

results DB

SN— -

FIG. 1

U.S. Patent

Jan. 3, 2017 Sheet 2 of 6

engineer authors test case for
target software product

engineering test system executes

test case, including execution of
softare product and test tools

134

engineering test system outputs
test report (including pass/fall
iInformation)

engineer analyzes test report for
falled execution of test case

engineer identifies a bug to which
the failure iIs attributed

test report and analysis stored in
results database

FIG. 2

US 9,535,818 B2

U.S. Patent Jan. 3, 2017 Sheet 3 of 6 US 9,535,818 B2

bugs DB results DB

engineering

202

iterate over test reports with "fail”
status; tool/crawler

200

iIdentify any bugs associated with
the test reports;

update failure data for the
associated bugs (e.g., total failures,
total failures over given period of
time, increase In faillures over last
update, etc.)

FIG. 3

U.S. Patent Jan. 3, 2017 Sheet 4 of 6 US 9,535,818 B2
110
test run 1D test case pass/fall assoclated bug(s)
007 | caeA | F | 1 | .
008 caseB F 1
009 caseA - 4,7
00 | caseb | F | 2 | ..
o011 | caseB | F | 3 | ..
112
Bug ID added patch/fix status
1 V7 17112012
3/14/2012 I
3% 4/2/2012
4 4/12/2012
6/13/2012 I R I
e

FIG. 4

U.S. Patent Jan. 3, 2017 Sheet 5 of 6 US 9,535,818 B2

Bug ID date fallure count
1/1/2012
1/1/2012
1/1/2012
1/1/2012

1/1/2012

A

o)

1632
42
39
13

1/8/2012
1/8/2012
1/8/2012
1/8/2012
1/8/2012

N

3

155
21

N
A

FIG. 5

U.S. Patent Jan. 3, 2017 Sheet 6 of 6 US 9,535,818 B2

FIG. 6

US 9,535,818 B2

1
IDENTIFYING HIGH IMPACT BUGS

BACKGROUND

Identifying high impact bugs within a software engineer-
ing environment 1s useful to help prioritize engineering
resources and streamline the engineering process cycle. A
typical software engineering environment usually includes
both (1) an automation system and (11) a bug tracking system.

An automation system usually has physical hardware
resources such as servers, test networks, and databases, as
well as software used to execute tests. An automation system
automates testing of soltware products, captures test results,
schedules tests, and may perform other known test func-
tions.

A bug tracking system 1s a software tool that usually
provides a front end to a database, often stored remotely on
a server. Test engineers typically file database records,
known as bugs, which can be tracked to prioritize and fix
product 1ssues. Prioritization has previously been managed
manually via a software product team, for instance, based on
the severity of the 1ssue reported. This manual triage process
has problems. Engineers are unable to i1dentify bugs that
have systemic aflects (e.g., bugs that can lower the through-
put of the engineering system) or that create a dispropor-
tionate number of software failures. Bugs that may occur for
different independent software products and that cause wide-
spread test failures for those software products have had low
visibility.

Techniques related to identifying high impact bugs are
discussed below.

SUMMARY

The following summary 1s included only to introduce
some concepts discussed 1n the Detailed Description below.
This summary 1s not comprehensive and 1s not intended to
delineate the scope of the claimed subject matter, which 1s
set forth by the claims presented at the end.

Test cases are executed by the software engineering test
system. The test cases target software products. Test outputs
are generated indicating whether the software engineering
test system determined the test cases to have passed or
talled. Separately, bug records are stored in a first dataset
whose records 1dentify corresponding bugs. Records of the
test case executions are stored 1n a second dataset. Records
thereol indicate whether a corresponding test case failed
when executed. Such records may have bug identifiers
entered by a test engineer and corresponding to bugs 1den-
tified by the test engineer. The first dataset 1s parsed to
identify records of test runs that have failed, and for each
such test run record a bug identifier thereof 1s 1dentified.
Statistics such as failure counts are updated for the bugs
found 1n the test run records.

Many of the attendant features will be explained below
with reference to the following detailed description consid-
ered 1n connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
tollowing detailed description read in light of the accompa-
nying drawings, wherein like reference numerals are used to
designate like parts 1n the accompanying description.

FIG. 1 shows an example engineering test automation
system.

FIG. 2 shows a process corresponding to FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3 shows a tool for identifying high impact bugs in the
bug database.

FIG. 4 shows details of a test results database and the bug
database.

FIG. 5 shows accumulated bug statistics.

FIG. 6 shows a computing device for implementing
embodiments described herein.

DETAILED DESCRIPTION

Embodiments discussed below relate to identifying high
impact bugs. Discussion will begin with an explanation of an
example engineering test system and how human activity
and data flows through the system. Examples of information
stored by the engineering test system will be described next,
including bug information and test results information. This
will be followed by discussion of a software tool to use the
stored imnformation to i1dentify high impact bugs.

FIG. 1 shows an example engineering test automation
system 100. Various software products 102 are subjected to
testing by the test automation system 100. Software products
102 may be any of a variety of applications, servers,
development tools, word processors, operating systems, and
others. Engineers 104 author test cases 106. A test case 106
may be a formal specification, for example conforming to a
schema 1interpretable by the test automation system 100. A
test case 106 may contain test information for a test of a
corresponding software product 102. For example, such
information might identify a target software product 102
and/or a version level thereot, input data to be processed by
the target software product 102, runtime flags of the test
automation system 100 or the target software product,
simulated hardware conditions, functions or features to be
tested, a patch to be applied, metadata i1dentitying related
tests, and so forth. Test cases 106 may also be embodied as
data 1n a database, tlat text files, scripts executable by the test
automation system 100, etc.

The test automation system 100 1s an environment that
controls and monitors execution of tests. The test automation
system 100 runs a test case 106 under controlled conditions,
initially parsing the test case 106, identifying and marshal-
ing resources as needed, opening log files, assuring that
input data 1s available, initiating network, server, or client
connections or other prerequisites for the test, etc. The test
automation system 100 then executes the target software
product 102 until the test 1s determined by the test automa-
tion system 100 to have completed, at which time the test
automation system 100 generates a corresponding test report
108. The test automation system 100 determines whether a
test case run (execution of a test case) passed or failed. A
failure might result from either failure of the target software
product 102 or from a failure of the underlying test auto-
mation system 100. For example, a test case run might hang
and terminate when a time limit has been reached by the test
automation system 100. A test case run might end with a
failure code from the target software product 102 when a
supporting hardware or software component fails (perhaps
due to a latent bug triggered by the test case). The types of
things that can cause a test run to fail are well known and
extensive.

As noted, the results of test case executions may be
captured 1n test reports 108. Test reports 108 may be any
form of recorded data such as flat text files (possibly as
markup text), database entries, etc. In the example of FIG.
1, test reports 108 are stored 1n a test results database 110.
An individual test report 108 may store information such as
an 1dentifier of a test case 106 that was executed, a date and

US 9,535,818 B2

3

time of execution, locations of logs, trace files, or other data
generated by the test run, diagnostic data, test configuration
settings, or other information related to execution of a test
case. In particular, a test report 108 may include information
indicating whether a test case execution failed or passed.

As discussed above, failure may be a result of a variety of
problems originating in either the target software product,
the test bed (e.g., the test automation system 100), or both.
In one embodiment, test reports 108 are stored 1n a results
database 110, although other forms of storage are equally
acceptable, such as a repository or folder of files, a large
XML (eXtensible Markup Language) file, or other. In some
embodiments, as discussed further below, a test report 108
for a failed test run may also include a field or entry that
indicates one or more bugs that have been determined to
have caused the test run to fail. For example, per an
engineer’s 104 analysis or edits 111, a test report 108 might
be edited to identily one or more bugs, for example by
adding an identifier of a bug (such bug existing as a record
in a bug database 112, for example).

The bug database 112 may or may not be a part of the test
automation system 100. For example, there might be a bug
database 112 or table for each of the software products 102
that 1s used by a particular product development team. The
bugs 1n the bug database 112 might be, or may correspond
to, bug reports 114 filed by engineers 104, by test personnel,
by users of the relevant software product 102, or by others.
In one embodiment, bugs and test results may be stored as
tables 1n a single database.

FIG. 2 shows a process corresponding to FIG. 1. At step
130 an engineer 104 authors a test case 106 for a target
soltware product 102. At step 132 the test case 1s executed,
including execution of the target soitware product 102. At
step 134 the automating or engineering test system outputs
a test report 108. Subsequently, at step 136 an engineer 104
analyzes the test or test report 108 and at step 138 1dentifies
a bug to which a failure of the test 1s attributed by the
engineer 104. At step 140 the association between the test
tailure and the identified bug is recorded, for example, as a
field 1n the corresponding test report 108.

Due to the sometimes imndependent purposes of bugs and
test results, bug data and test data 1s often not logically tied
or used 1 ways that leverages both types of data. For
example, bugs may be tracked by persons responsible for a
particular software product 102 without concern for testing
of the software product 102. Conversely, those who are
responsible for testing the soiftware product 102 may be
concerned primarily with the execution of tests and provid-
ing test results without regard for the causes of test failures.
As such, correlations between test results and bugs have not
been appreciated or i1dentified.

FIG. 3 shows a tool 200 for identifying high impact bugs
in the bug database 112. The tool 200 may be a part of (or
work 1n conjunction with) the test automation system 100.
The tool 200 may be implemented as a stand-alone program
that crawls test results such as the results database 110. The
tool 200 may also be implemented as a script, a segment of
code 1n a test suite application, a database client, etc. The
tool 200 performs a process 202 to i1dentify high impact
bugs.

The process 202 may begin with an iteration over test
reports or the like that correspond to failed test runs or that
have a “fail” status indicating that a corresponding run of a
test case did not pass. This may involve parsing test reports
or database records 1n results database 110 to 1dentify those
test runs that failed. Next the process 202 may, for each
identified test result, identity any bugs associated with such

5

10

15

20

25

30

35

40

45

50

55

60

65

4

a test report. This may involve 1dentifying content 1n a file
by finding a particular markup tag, reading a field n a
database record, performing a text search or pattern match to
identily keywords such as names or identifiers of bugs,
parsing a link to a separate record that lists bugs, etc.

As the process 202 iterates over the test results, the
process 202 collects information about the bugs that have
been found 1n the test results. For example, at the beginming
of the process 202 a data structure may be set up (e.g., an
associative array) that 1s indexed by bug identifier, and when
a bug 1s found in the test results an entry indexed by a
corresponding bug identifier 1s incremented to account for
the found bug. As the test results are parsed, statistics about
the bugs 1n the test results are accumulated and updated. In
one embodiment, the process segments bug statistics by time
periods. For example, a new set of statistics may be collected
on a periodic basis, and bug analysis can subsequently be
performed 1n the time dimension. Such data collection can
be aided by time/date information associated with each test
result; a test result’s date and time of execution 1s used as the
date and time of a bug referenced therein.

FIG. 4 shows details of the test results database 110 and
the bug database 112. The bug database 112 may include or
link to a dataset of records, where each record represents a
different bug, each having a bug identifier, a date the bug
was created, related metadata such as status, and so forth.
The results database may serve as another dataset that lists
the results of automated runs of test cases. Each entry may
represent a different test run, and a same test case may have
multiple test runs that were executed at different times. Each
test run has a field identifying whether the test run passed or
failed. In addition, a field may be included 1n which one or
more bugs can be listed. As noted above, such information
1s often inputted by a test engineer or other person who has
evaluated a test run output to decide what might have been
a cause of failure. This bug information, such as an “asso-
ciated bug(s)” column, 1s used to collect statistics about
individual bugs. In the example of FIG. 4, the bug with bug
ID “1” 1s associated with two test failures. FIG. 5 shows
accumulated bug statistics 240. Each bug, identified by an
identifier, has a failure count or other statistic (e.g., failure
rate), possibly for a date or time period. The bug statistics
may be stored as a column 1n the bug database 112, as a
separate dataset or table indexed by bug ID, as a file or
spreadsheet, and so on.

In one embodiment, bug statistics may be sub-categorized
by the software products with which they are associated. In
this manner, 1t may be possible to identily systemic bugs that
are mnherent to the test automation system or 1ts infrastruc-
ture. Identifying and remedying such bugs may help to
improve the overall utilization and throughput of the test
automation system. For example, when a driver bug is
identified as frequently causing failure of multiple software
products (as evidenced by failed test runs thereotf), fixing
such a bug can have a high impact on overall software
product quality.

With regard to remedies, 1t will be appreciated that the
mere existence of test-driven bug statistics can be inherently
usetiul. Software engineers responsible for a software prod-
uct can directly use such statistics to cull and select bugs for
remediation. In addition, such statistics can be useful 1n
generating bug prioritization reports, identitying bugs with
high 1mpact over time, automatically prioritizing test runs,
and so forth.

FIG. 6 shows a computing device for implementing
embodiments described herein. The computing device may
have a display 310, a processing component 311 including

US 9,535,818 B2

S

a processor 312, volatile storage (memory) 313, non-volatile
storage 314, and one or more 1nput devices 316. The input
devices 316 may be a touch sensitive surface (possibly
integrated with display 310), a mouse, a 3D-motion sensor
(c.g., a camera), a pressure sensitive tablet surface, and so

forth.

Embodiments and features discussed above can be real-
ized 1n the form of information stored in volatile or non-
volatile computer or device readable media. This 1s deemed
to include at least media such as optical storage (e.g.,
compact-disk read-only memory (CD-ROM)), magnetic
media, flash read-only memory (ROM), or any current or
future means of storing digital information. The stored
information can be in the form of machine executable
instructions (e.g., compiled executable binary code), source
code, bytecode, or any other information that can be used to
enable or configure computing devices to perform the vari-
ous embodiments discussed above. This 1s also deemed to
include at least volatile memory such as random-access
memory (RAM) and/or virtual memory storing information
such as central processing unit (CPU) instructions during
execution ol a program carrying out an embodiment, as well
as non-volatile media storing information that allows a
program or executable to be loaded and executed. The
embodiments and features can be performed on any type of
computing device, including portable devices, workstations,
servers, mobile wireless devices, and so on.
The 1nvention claimed 1s:
1. A method of 1dentifying high impact bugs detected by
a software engineering test system comprised of one or more
computing devices, the method, performed by the one or
more computing devices, comprising:
executing runs of the test cases by the software engineer-
ing test system, the test cases authored by test engi-
neers, the test cases targeting software products to be
tested, wherein, when test case runs are executed by the
soltware engineering test system, corresponding soft-
ware products are executed by the software engineering
test system and corresponding test outputs are gener-
ated indicating whether the solftware engineering test
system determined the test cases to have passed or
failed;
storing bug records 1n a first data store, each bug record
comprising an identifier of a corresponding bug and
metadata about the bug entered by a test engineer,
wherein at least some of the bug records correspond to
failures of the software products that did not occur
while the software products were being tested;

storing, 1n a second data store, test run records of the
outputs of the runs of the tests cases, the test run records
comprising records ol the test reports, respectively,
cach test run record indicating whether a corresponding
single test case execution failed, each test run record
corresponding to only one execution of a corresponding
single test case, each test run record comprising one or
more of the bug 1dentifiers entered by a test engineer to
indicate that a corresponding one of the bug records
was 1dentified by the test engineer as a cause of failure
of a corresponding test run, wherein at least some of the
test run records comprise respective pluralities bug
identifiers such that some of the test run records are
associated with multiple distinct bugs;

computing failure statistics for the bug 1dentifiers, respec-

tively, by crawling the first data store to search for test
run records that indicate that corresponding test runs
falled, determining numbers of occurrences of the
respective bug 1dentifiers within the results, and com-

10

15

20

25

30

35

40

45

50

55

60

65

6

puting the failure statistics according to the respective
numbers ol occurrences of the respective bug 1dentifi-
ers, wherein each failure statistic indicates the deter-
mined number of occurrences of a respective one of the
bug identifiers; and

determining which of the bugs are systemic to the soft-

ware engineering test system by categorizing the failure
statistics according to the software products that the
corresponding bugs are associated with.

2. A method according to claim 1, further comprising
running a report generating process that generates a report
according to the failure statistics of the bug records, and
storing the report in storage of the solftware engineering
system.

3. A method according to claim 1, wherein each failure
statistic has a corresponding time information indicating a
time or a period of time corresponding to the failure statistic,
such that for a given time or period of time of a given bug
record, a corresponding number or rate of test run failures
can be determined.

4. A method according to claim 1, further comprising
ranking at least some of the bug identifiers, relative to each
other, based on the failure statistics corresponding thereto,
and wherein a rank of a bug identifier depends at least on 1ts
tailure statistic.

5. A method according to claim 4, wherein bugs with
higher failure statistics relative to other bugs are given
higher priority for debugging relative to the other bugs.

6. A method according to claim 1, wherein at least some
of the test run records correspond to, and were triggered by,
test run failures that failed due to system bugs of the
engineering test system that prevented successiul executions
ol corresponding test runs.

7. A method according to claim 1, wherein the first data
store comprises a bug tracking database comprising the bug
records, the second data store comprises a testing database,
and wherein the crawling 1s performed by a crawler tool that
crawls the testing database to associate test run failures with
corresponding bugs.

8. One or more computer-readable storage media that 1s
not a signal, the storage media storing information to enable
a computing device to perform a process, the process
comprising:

executing test runs of software products by the software

engineering test system, wherein tests runs are
executed by the software engineering test system
attempting to execute soltware products targeted by the
test runs, the engineering test system comprising a
computer having a test suite with access to the software
products, wherein the engineering test system deter-
mines whether the test runs, respectively, pass or fail,
and wherein some determinations of test runs failing do
not correspond to failures of the corresponding soft-
ware products but instead correspond to erroneous
failures of components of the engineering test system
that prevent completion of the corresponding test runs,
and wherein some determinations of test runs failing do
not correspond to failures of any components of the
engineering test system but rather correspond to fail-
ures of the software products;

accessing bug records 1 a bugs database;

automatically storing test run records for the respective

test runs, each test run record corresponding to a single
corresponding test run, each test run record comprising
a respective indication of whether the corresponding
test run failed or passed, and each test run record
comprising one or more bug-test associations, each

US 9,535,818 B2

7

bug-test association comprising an indication of a bug
record associated with the corresponding test run
record, wherein some of the test run records comprise
plural bug-test associations such that some of the test
run records are associated with plural bugs, the bug-test
associations comprising bug diagnoses entered by test
engineers, wherein the bug-test associations together
indicate which test run failures were determined by the

test engineers to be associated with which bugs in the
bug database, wherein some of the bug-test associa-
tions associate test run failures with bug records cor-
responding to erroneous failures of components of the
engineering test system that prevented completion of
the corresponding test runs, and wherein the bug-test
associations associate some individual test run records
indicating test failures with respective pluralities of
bugs 1n the bug database;

automatically analyzing, by the engineering test system,
the bug-test associations, and for the bugs in the
bug-test associations, determining respective failure
counts, each failure count indicating a number of
bug-test associations for the corresponding bug,
wherein each failure count corresponds to a number of
test runs determined to have failed due a same respec-
tive bug;

storing the failure counts in storage of the software
engineering test system; and

determining which of the bug records represent bugs that
are systemic to the software engineering test system by

5

10

15

20

25

8

categorizing the failure counts according to the soft-
ware products that the corresponding bugs are associ-
ated with.

9. One or more computer-readable storage media accord-
ing to claim 8, wherein the failure counts all correspond to
a same time period, and wherein an indication of the same
time period 1s stored in association with the failure counts.

10. One or more computer-readable storage media
according to claim 8, wherein a given bug has a first failure
count corresponding to a first period of time when the
analyzing was performed, and the given bug has a second
failure count corresponding to a second period of time when
the analyzing was performed.

11. One or more computer-readable storage media accord-
ing to claim 8, the process further comprising executing a
bug prioritization process that prioritizes a list of bugs to be
fixed, where the prioritization 1s according to the stored
failure counts.

12. One or more computer-readable storage media
according to claim 8, wherein each test run i1s executed by
executing a test case authored by a test engineer, each test
case specilying test conditions and one of the software
products to be tested, and wherein some of the test runs
comprise re-executions of same test cases.

13. One or more computer-readable storage media
according to claam 12, wherein each bug-test association
corresponds to a decision made by a test engineer as a cause
ol a corresponding failure of a test case.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

