12 United States Patent

Anand et al.

US009531829B1

US 9,531.829 Bl
Dec. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(60)

(1)

(52)

(58)

(56)

SMART HIERARCHICAL CACHE USING
HTMLS STORAGE APIS

Applicant: Instart Logic, Inc., Mountain View,
CA (US)

Ashok Anand, Bangalore (IN);
Mohammad H. Reshadi, Sunnyvale,
CA (US); Hariharan Kolam,
Sunnyvale, CA (US); Bowei Du,
Mountain View, CA (US); Aditya
AKkella, Madison, WI (US)

Inventors:

Assignee: Instart Logic, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 461 days.

Appl. No.: 14/091,794

Filed: Nov. 27, 2013

Related U.S. Application Data

Provisional application No. 61/898,766, filed on Nov.
1, 2013.

Int. Cl.

GOo6F 17/30 (2006.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC e, HO4L 6772842 (2013.01)
Field of Classification Search

None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,023,776 A * 6/1991 Gregor GOO6F 12/0897
711/118

6,192,398 B1* 2/2001 Hunt GO6F 17/30902
707/999.01

6,338,117 B1* 1/2002 Challenger GO6F 12/121
711/122

7,240,100 B1* 7/2007 Wein HO4L 67/1008
709/214

8,913,072 B2* 12/2014 Li .ooovvviininiiinn, G09G 5/00
345/557

2002/0116582 Al* &/2002 Copeland GO6F 17/30902
711/133

2002/0144065 Al1* 10/2002 Miulscoovveiii GO6F 15/167
711/147

2003/0187814 Al1* 10/2003 Patel GOG6F 9/3826
2004/0010499 Al1* 1/2004 Ghosh GO6F 17/30368
2006/0143256 Al* 6/2006 Galchev GO6F 12/084
2006/0195677 Al* 8/2006 Tan GO6F 12/0846
711/205

(Continued)

OTHER PUBLICATIONS

Gravelle, Rob. Building a Client Side AJAX Cache. 2009. <https://
web.archive.org/web/20090209 155730/ http://www.webreference.
com/programming/javascript/rg26/index html>.*

Primary Examiner — Syed Hasan

(74) Attorney, Agent, or Firm — Van Pelt, Y1 & James
LLP

(57) ABSTRACT

A method of caching resources corresponding to a webpage
on a client 1s disclosed. A hierarchy of a plurality of storage
mechanisms available on the client 1s determined based at
least 1n part on performance of the plurality of storage
mechanisms. The hierarchy comprises a plurality of levels to
which each storage mechanism may be assigned. A request
to cache a first resource corresponding to a webpage 1s
received. One of the plurality of storage mechanisms for
caching the first resource 1s selected based at least 1n part on
the hierarchy. The first resource 1s stored in the selected
storage mechanism of the hierarchy.

29 Claims, 10 Drawing Sheets

Key
img.jpg

, ”
3 <script>
hcache.get{"img.jpg", caliback);
Hf:ache.put("img.,'pg“);
</script>
- 'y
GET HCache API PUT
304
Policy * A
306
Storage Backends
In-Memory Cache
: : s :
Y el e
Local [] | = | Session
Storage IndexedDB F||Bsy3tem Starage
S N . N S]

Size

Metadata

=1024, Priority =0 | ~302

US 9,531,829 B1
Page 2

(56)

2008/0228772
2009/00191358

2009/0240698
2009/0240935

2010/0262647
2013/0185475

2015/0039713

References Cited

U.S. PATENT DOCUM

Al* 9/2008 Plamondon
Al* 1/2009 Langen
Al* 9/2009 Shukla
Al* 9/2009 Shukla
Al* 10/2010 Malek
Al* 7/2013 Talagala
Al* 2/2015 Martini

* cited by examiner

EINTTS

GOO6F 17/30902
HO4L 67/1095

709/226

GOO6F 17/30286
GOO6F 9/44505

713/100

HO4L 67/02

709/203

GO6F 12/0866

711/102

HO4L 67/2852

709/213

Vi Old dojde] uo awoiyn
(e1) sazis 103[q0

US 9,531,829 B1

-
L

Sheet 1 of 10

1001

Dec. 27, 2016

E 0001

U.S. Patent

(swi) awi} dn)ooT

gl Ol dojde}] uo xojaiidg
(gx) sazis 109lq0

0001 Q01 Ol !

US 9,531,829 B1

-
e

Sheet 2 of 10

o mmm e v+ 00}

pris
Iﬁn.il.-ﬂu
e
o -
e
o
e TS
e
— i
o T
g
ot

.._______n______n
wnt
-
-
1-__
-
L
i
at_._.l_.
e

" 0001

Dec. 27, 2016

U.S. Patent

(suu) s} dnMoon

Il Ol PloIpuUy U0 3W0JYD

() sozis 108[qO

000 L 001 Ol A

US 9,531,829 B1

-
-

Sheet 3 of 10

_ Joo

000

Dec. 27, 2016

U.S. Patent

(sw) awi} dn)ooy

US 9,531,829 B1

Sheet 4 of 10

Dec. 27, 2016

U.S. Patent

L "Old

SUOUA UD LIBLES
(g3) s9azis 109[q0

g2 "
1.!
..lﬁl.._,.
- T
e
l‘i

£ 001

0001

(sul) swil dnmjoo

ve ‘Old dolde] uo swoiyn

(g)) sozis 109lqO
000 L oom\ Ol ’ L O

US 9,531,829 B1

e

x
)\

3

-
s

7 e -001

Sheet 5 of 10
W\

N
(swi) swin Hasuj

27 T oL O-====777" © [Foool

Dec. 27, 2016

AN 2y, 1oV 1]

>1 —%-- 5ddl --%--- 5754 -

U.S. Patent

U.S. Patent

Dec. 27, 2016

Sheet 6 of 10

US 9,531,829 B1

\
\
\
\
\’i
\
x
\
W
\
\
\!
\
¥
\
\
\\
\
\
\\
W\
\\
t
X
\
X
1\
X
;
o -
-

(sw) s} J3sS U}

10 100 1000

Object sizes (kB)

0.1

FIG. 2B

Firefox on laptop

J¢ Old PICIPUY UO 3WIoIYND
() sazis 193lqQ0

US 9,531,829 B1

(-
-

Sheet 7 of 10

\Wxam 001

\ A
\
VA
\
\
(sw) auii] pasu|

— o T e s
||..|. tti‘i ——— M o ”uf..l.. ”...u OOD P

Dec. 27, 2016
AN

MMHWiﬁﬂ55ééié?%@éiéiézééiaéiiéééééééiééééézéiéééiéééééééiééézémpDDOOF

U.S. Patent

U.S. Patent Dec. 27, 2016 Sheet 8 of 10 US 9,531,829 B1

FIG. 2D

1000

A
100

K

10
Object sizes (kB)
Safari on iPhone

&
0.1

10
1

1000
100
ot

1 0000 e

(Sw) sull} asuj

& Ol

0 = Aluold ‘$Z0)= 92IS

20¢g — bdl-buu |

US 9,531,829 B1

. mmm._ou,m_.
UoISSag |

Sheet 9 of 10

IdY 8UJeni 149

Dec. 27, 2016

<1duos/>
(.,bdl"Buwi,)ind ayoeoy |

)18bayseosu _

‘(Moeqieo ', bdl bwi
<10d110S> .

U.S. Patent

U.S. Patent Dec. 27, 2016 Sheet 10 of 10 US 9,531,829 B1

get(key, cb) {
for (backend in cache hierarchy)
* If (key in backend)
obj = backend.get(key) or {}
* if (iIsValid(key, obj))
cb(obj)
onMiss(key, obj)

FiG. 4

put(key, value, “metadata) {
* ob] = metadata” metadata . onGetMetadata(key)
obj.value = value
for (backend in getHierarchy(obj))
* while (! backend.put(key, obj))
* if (! backend.evict(obj.priority))
oreak; // Go to slower storage type

FIG. 5

// We replace the code for loading into
// the property:

Img.src = "Img.jpg"

/{ with the hcache call:
hcache.get("img.jpg", function(obj) {

// .value representation of the image
Img.src = obj.value; })

FIG. 6

US 9,531,829 Bl

1

SMART HIERARCHICAL CACHE USING
HTMLS STORAGE APIS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/898,766 entitled HCACHE: A SMART

HIERARCHICAL CACHE USING HTMLS5 STORAGE
APIS filed Nov. 1, 2013 which 1s mcorporated herein by

reference for all purposes.

BACKGROUND OF THE INVENTION

Typically, a web browser needs to receive dependent
resources associated with different links and URLs (Uniform
Resource Locators) before 1t can complete the rendering of
a webpage. Eflicient delivery of these dependent resources
can significantly improve the end-user experience. There-
fore, improved techniques for delivering different types of

resources corresponding to a webpage would be desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed 1n the
following detailed description and the accompanying draw-
ngs.

FIG. 1A 1llustrates the lookup performance variation with
object size for various storage mechanisms using a Chrome
browser on a laptop computer.

FI1G. 1B 1llustrates the lookup performance variation with
object size for various storage mechanisms using a Firefox
browser on a laptop computer.

FIG. 1C 1llustrates the lookup performance variation with
object size for various storage mechanisms using a Chrome
browser on an Android smartphone.

FIG. 1D 1llustrates the lookup performance variation with
object size for various storage mechanisms using a Safari
browser on an 1Phone.

FIG. 2A illustrates the insertion performance variation
with object size for various storage mechanisms using a
Chrome browser on a laptop computer.

FIG. 2B illustrates the insertion performance variation
with object size for various storage mechanisms using a
Firefox browser on a laptop computer.

FIG. 2C illustrates the insertion performance variation
with object size for various storage mechanisms using a
Chrome browser on an Android smartphone.

FIG. 2D 1llustrates the insertion performance variation
with object size for various storage mechanisms using a
Safari browser on an 1Phone.

FI1G. 3 illustrates an embodiment of a hierarchical client-
side cache (HCache).

FI1G. 4 illustrates an embodiment of the pseudocode for a
get() API.

FIG. 5 illustrates an embodiment of the pseudocode for a
put() API.

FI1G. 6 illustrates an embodiment of a piece of JavaScript
code that has been modified to use the HCache to load

images dynamically.

DETAILED DESCRIPTION

The 1mvention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such

10

15

20

25

30

35

40

45

50

55

60

65

2

as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that 1s tem-
porarily configured to perform the task at a given time or a
specific component that 1s manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention 1s provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention 1s described in connection with such embodi-
ments, but the mvention 1s not limited to any embodiment.
The scope of the invention 1s limited only by the claims and
the mvention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth 1n the following description 1 order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarnty, technical
material that 1s known 1n the technical fields related to the
invention has not been described 1n detail so that the
invention 1s not unnecessarily obscured.

When a web browser starts loading an HTML (HyperText
Markup Language) webpage, the web browser parses the
webpage and discovers dependent resources (e.g.,
JavaScript files, 1mages, videos, audio clips, and CSS (Cas-
cading Style Sheets) files) that need to be separately down-
loaded and processed. For each resource, the web browser
contacts a server, downloads the content over the network,
and processes 1t locally on the client side.

Typically, a user may visit the same webpage at different
times, or visit a sequence of pages that share one or more
resources. A caching mechanism can temporarily store some
ol these resources and reduce the bandwidth usage, server
load, and user perceived delay. The cache may be located
anywhere between the origin server and the target client. For
example, a cache on the web server can reduce the compu-
tation overhead for generating the same webpage for mul-
tiple users. A cache on a Content Delivery Network (CDN)
node can cache the resources as close as possible to the users
and thus reduces the origin server load as well as the round
trip delay for receiving each resource on the client. A
client-side cache (e.g., a browser cache) can store a resource
on the client and avoid downloading the resource if the
resource 1s still valid.

However, client-side caching using a browser cache has a
number of drawbacks. A browser cache was designed to
optimize network bandwidth rather than latency. Bandwidth
optimization 1s suitable for fairly static webpages, because
the goal 1s to show all of the content of a webpage as soon
as possible. However, as the amount of content 1n webpages
increases and as interactivity becomes more important in
modern web applications, latency optimization becomes
more important.

The cache performance for some types of resources may
impact the overall performance more than for other types of
resources, and thus the cache performance for some
resources might be more important than for others. For
example, their respective importance may depend on the

US 9,531,829 Bl

3

composition of the webpages. However, existing browser
caches may offer suboptimal performance and no applica-
tion control. In addition, existing cache control mechanisms
offer little to no flexibility 1n cache usage.

4

The HCache determines the performance of different
storage mechanisms. In some embodiments, the perfor-
mance results are used to determine how the alternative
storage mechanisms are utilized to replace or augment the

"y

Browser caches are not the most efficient storage mecha- 5 browser caches under different conditions, including the
nisms to handle certain workloads on certain user clients types of storage mechal}isms use.d for istoring d?fzerent types
(e.g., browsers and devices). When handling different work- of resource, the order/hierarchy in which the diilerent types
loads on different user clients, various alternative storage of storage mechan{sms are filled slvell the type of browser
mechanisms, e.g., localStorage, sessionStorage, and a.nd the type of device that the browser 1s running on, and the
indexDB available in HI'ML3J, have wide ranges of storage 10 like. . .

. . As an 1llustrative example, the performance of the storage
access time and performance. Some of the alternative stor- . . . g .
. . mechanisms available 1n HIMLS are determined below.
age mechanisms (e.g., localStorage and sessionStorage) can I :

. o owever, the performance of other storage mechanisms may
be shown to b'e consistently and significantly (one tc{ j[wo be determined, and other embodiments for determining the
ordfars of magnitude) faster tha:n br.owser caches. In addlt{onj 15 performance data may be used as well.
unlike the browser cache, which 1s shared across domains, Table 1 illustrates the attributes of a plurality of HTMLS5
some of the storage mechanisms are per-domain, thus storage mechanisms for storing data on the client. Unlike the
improving both the performance and security of the web browser cache, which is shared across domains, the alter-
ElppliCEltiOIlS. ACCOI’diIlgly,, a hierarchical client-side cache native S‘[Orage mechanisms i Table 1 are Separated from
(referred to as the HCache) can be used to leverage the 20 each other based on the domain name of the web application.
different alternative storage mechanisms as backends to In other words, the alternative storage mechanisms in Table
replace or augment the browser caches in a hierarchical 1 are private storages that are not shared between different
tashion, such that the webpage load latency can be reduced web applications. Therefore, the web application need not
significantly. In some embodiments, the HCache can be handle the side eflects of other applications on these stor-
accessed via a set of APIs (Application Programming Inter- ages.

TABLE 1
Type Capacity Persistence Access Support Storage Model API
LocalStorage 5 MB Yes Synchronous Most String Full hash
key/value table
SessionStorage 5 MB Per-session Synchronous Most String Full hash
key/value table
IndexDB — Yes Asynchronous Most NoSQL Object
database lookup
FileSystem — Yes Asynchronous Chrome file File/directory
10
Browser Cache — Non- Asynchronous All Implementation None
deterministic dependent
faces). The APIs allow web application developers to intel- %Y With reference to Table 1, localStorage has a size limit of
ligently control how the alternative storage mechanisms are 5> megabytes per domain. It stores the data with no expiration
used. date—the data will not be deleted when the browser is

Current browser and browser cache implementations also closed. The APIs of localStorage are synchronous; thus, the
have many limitations that impact the cache hit ratio for 44 calling thread for retrieving and returning the data 1s blocked
critical resources. Cache hit ratio 1s affected by the eviction in the browser until the data 1s ready. The data 1s stored 1n
policy. After downloading a particular resource, the web key/value pairs. SessionStorage 1s 1dentical to localStorage,
browser needs to decide whether to cache the resource or except that 1t stores the data for only one browsing session,
not, and whether some other resources need to be evicted 1.e., when an user opens a website and visits one or more
from the cache. In current cache implementations, the 55 pages in that website. The data 1s deleted when the user
browser and the server negotiate caching capability and closes the browser window.
content validity without providing any control to the appli- Unlike localStorage and sessionStorage, indexDB, file-
cations, and yet the impact of resource caching on the user System, and browser cache do not have a size limit of 3
experience 1s dependent on how the application uses the megabytes per domain. The symbol “-” in the capacity
resource. In addition, the applications have no control over 55 column of Table 1 denotes that the capacity depends on the
the cache load/store and network requests. Therefore, the device capacity. The APIs for indexDB, fileSystem, and
applications cannot guide the browser cache behavior in browser cache are asynchronous: the calling thread ifor
order to reduce latency and improve user experience. Cache retrieving and returning the data 1s not blocked in the
hits are also reduced when the browser cache 1s shared browser until the data 1s ready; instead, a callback function
across domains, especially when some applications store 60 1s called when the data 1s ready.
undue amounts of data. The HCache provides the applica- The storage mechanisms 1n Table 1 are supported by most
tions the necessary control over the cache behavior 1n order web browsers, including Chrome, Firefox, and Safari. Cur-
to reduce application load latency, including enabling the rently, fileSystem storage i1s only supported by Chrome.
applications to make tailored choices about the importance As compared to the alternative storage mechanisms 1n
of resources, e.g., those retrieved from third-party servers 65 Table 1, the browser cache 1s not the most reliable storage

relative to application-owned resources, 1n relation to page
load performance.

for web applications. The browser cache 1s a transparent
storage that may be used when a resource 1s requested via an

US 9,531,829 Bl

S

URL. The persistence of the data 1s non-deterministic and
depends on the user activity and the amount of cachable
content that other web sites and web applications may
download.

With the exception of the browser cache, all of the
alternative storage mechanisms 1n Table 1 offer tull control
over the content of the storage, including support for opera-
tions such as adding, removing, enumerating, and the like.

In some embodiments, the performance of various storage
mechanisms 1s determined by measuring the load/store time
for different object sizes on diflerent browsers, devices, and
operating systems (OSs). Table 2 illustrates a plurality of
combinations of browsers, devices, and operating systems
that can be used for determining the performance of the
various storage mechanisms.

TABLE 2
Operating System
Browser Device Version (ON)
Chrome (PC) Lenovo T430 29.0 Ubuntu-12.0.4
Firefox (PC) Lenovo T430 24.0 Ubuntu-12.0.4
Chrome (Mobile) Galaxy S4 25.0 Android 4.2.2
Safari (Mobile) iPhone 4 8 108-6

As described above, the APIs for indexDB, fileSystem,

and browser cache are asynchronous. Since the implemen-
tation of asynchronous API calls may pipeline the operations
for better performance, the performance ol the storage
mechanisms 1s measured when 1) the APIs are called
asynchronously and 2) when the API calls are serialized. In
the asynchronous case, when the load/store operation 1s
i1ssued, the callback function 1s received independently. In
the serialized case, each load/store operation 1s serialized

alter the callback function of the previous load/store opera-
tion 1s received. In both cases (i.e., the asynchronous case
and the serialized case), a timer 1s started when the load/
store request 1s 1ssued, and the time elapsed since the last
callback tunction 1s called 1s measured. In the asynchronous
case, the requests are 1ssued together and the callbacks may
be called at any time afterwards. In the senialized case, the
requests and callbacks are interleaved.

The performance of the browser cache may be measured
using two different approaches. The performance 1s evalu-
ated idirectly because the browser cache does not offer any
direct API calls (see Table 1). In the first approach, an
XMLHttpRequest (XHR) object 1s used to repeatedly fetch
a cacheable object of a given size. After the object has been
fetched once, subsequent requests will obtain the object
from the browser cache. In the second approach, image
objects (IMGs) are used to download images. The image
requests are sent to the browser cache first and, upon a cache
miss, the requests are sent out to the network. The source
attribute of an 1mage object 1s set to an URL. Identical to the
first approach, after an 1mage object has been fetched once,
subsequent requests will obtain the 1mage object from the
browser cache.

The performance of each of the storage mechanisms in
Table 1 may be measured by loading a test webpage. The test
webpage 1ncludes a simple JavaScript program that first
tetches N objects (e.g., N=100) of the same size and stores
them using a given HTMLS5 storage. The JavaScript program
then loads the objects back. Both the load and the store time
are measured using different combinations of browsers,
devices, and operating systems as shown in Table 2. The
object sizes may range from 100 bytes to 1 megabytes.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 1A-1D 1illustrate the lookup/load operation perfor-
mance variation with object size for various storage mecha-
nisms on various platforms. In the figures, LS denotes
localStorage, SS denotes sessionStorage, IDB denotes
indexDB, IDB-S denotes indexDB APIs that are serialized,
FS denotes fileSystem, FS-S denotes fileSystem APIs that
are serialized, XHR denotes browser cache using XHR, and
XHR-S denotes browser cache using XHR and with the
APIs serialized. FIG. 1A illustrates the lookup performance
variation with object size for various storage mechanisms
using a Chrome browser on a laptop computer. FIG. 1B
illustrates the lookup performance variation with object size
for various storage mechanisms using a Firefox browser on
a laptop computer. FIG. 1C 1illustrates the lookup pertor-
mance variation with object size for various storage mecha-
nisms using a Chrome browser on an Android smartphone.
FIG. 1D 1illustrates the lookup performance variation with
object size for various storage mechamisms using a Safari
browser on an 1Phone. The lookup time shown in the figures
1s the total time taken for N lookups, where N=100.

FIG. 2A-2D illustrate the insertion/store operation per-
formance variation with object size for various storage
mechanisms on various platforms. FIG. 2A 1llustrates the
insertion performance variation with object size for various
storage mechanisms using a Chrome browser on a laptop
computer. FIG. 2B illustrates the insertion performance
variation with object size for various storage mechanisms
using a Firefox browser on a laptop computer. FIG. 2C
illustrates the insertion performance varnation with object
size for various storage mechanisms using a Chrome
browser on an Android smartphone. FIG. 2D illustrates the
insertion performance variation with object size for various
storage mechanisms using a Safar1 browser on an 1Phone.

The msertion time shown 1n the figures 1s the total time taken
for N 1nsertions, where N=100.

With reference to FIGS. 1A-1D and 2A-2D, localStorage
and sessionStorage perform significantly (e.g., 10-100
orders of magnitude) better than other storage mechanisms
on all devices and platforms, even though the performance
gap for the storage mechanisms narrows for larger objects.
In addition, the asynchronous versions of the APIs perform
better than their serialized versions. IndexDB performs two
times better than XHR using Chrome on an Android smart-
phone. However, the two perform similarly using Chrome
on a laptop computer. FileSystem performs worse than other
storage mechanisms, but 1t 1s likely to outperform network
access 1n most cases. As shown 1n the above figures, the
performance of diflerent storage mechanisms may vary over
time as the web browsers, the devices, and the operating
systems continue to evolve and as new platforms become
available. Accordingly, the HCache may continuously deter-
mine the performance of different storage mechanisms on
different platforms and under different conditions such that
the HCache can leverage the various storage mechanisms
more ellectively.

FIG. 3 1llustrates an embodiment of a hierarchical client-
side cache (HCache). The HCache provides a cache inter-
face between the web browser and the various storage
mechanisms on the client. A web application loads and
stores objects via the HCache 1nstead of directly interfacing
with the browser cache. The HCache transparently manages
which storage mechanism 1s used for caching resources,
including loading/storing the resources from/to the selected
storage mechanism. The HCache includes a policy module
for application specific optimizations. In selecting a particu-
lar storage mechanism for caching a piece of resource, the
HCache takes into account application-specific information,

US 9,531,829 Bl

7

the performance differences and capacity limitations of the
various storage mechanisms, and the like.

In some embodiments, the HCache 1s implemented as a
JavaScript object, and the HCache JavaScript object 1is
instantiated at the beginning of a webpage load. The 1nstan-
tiation of the HCache includes determining the types of
storage mechanisms available. The instantiation further
includes using the performance and capacity information of
different storage mechanmisms to determine how the storage
mechanisms are utilized to replace or augment the browser
caches under different conditions, including the types of
storage mechamisms used for storing different types of
resource, the order/hierarchy 1n which the different types of
storage mechanisms are filled given the type of browser and
the type of device that the browser 1s running on, and the
like.

For example, the performance data as shown in FIG. 1A
may be used to determine the cache hierarchy when the
platform 1s a Chrome browser running on a laptop computer
as follows. For object sizes less than 100 kB, the cache
hierarchy (from highest priority/most preferred to lowest
priority/least preferred) may be set as localStorage, session-
Storage, indexDB, and fileSystem. For object sizes of ~1000
kB, fileSystem performs better than mmdexDB. Thus, the
hierarchy may be set as localStorage, sessionStorage, file-
System, and indexDB.

In another example, the performance data as shown in
FIG. 1C may be used to determine the cache hierarchy when
the platform 1s a Chrome browser running on an Android
smartphone. Since fileSystem performs better than indexDB
for all object sizes, the cache hierarchy (from highest
priority/most preferred to lowest priority/least preferred)
may be set as localStorage, sessionStorage, fileSystem, and
indexDB.

As shown 1n FIG. 3, the HCache includes a number of
modules. Module 302 1s a module for storing the cached
resources and their corresponding metadata. This module
maps opaque keys to JavaScript objects for storing the
cached value. Each of the cached object 1s associated with
a corresponding set of metadata for managing cache expiry,
validation, and eviction. Module 304 1s a policy module for
determining the storage hierarchy and object eviction poli-
cies. Module 306 1s a storage backends module. This module
encapsulates the different types of storage mechanisms
available to a web application, and handles the serialization
and deserialization of the cached value into a format that 1s
suitable for a given storage mechanism. The module further
includes an in-memory cache above the storage backends.
The in-memory cache 1s used to store cached values that are
most frequently used.

A cached resource 1s stored as an object 1n the HCache.
Each object 1s a tuple of metadata with a value. The metadata
includes three sets of properties. One set of properties
includes application-dependent properties such as the prior-
ity, which 1s used by the eviction algorithm to determine
which object to evict when the storage backends are full.
Another set of properties includes content dependent prop-
erties, such as the size of the object (e.g., 1n bytes) and
MIME types (internet media types). Another set of proper-
ties includes server dependent properties, such as expiry and
validity. The expiry and validity fields may be used to

implement HTTP (Hypertext Transier Protocol) expiry and
revalidation semantics.

The HCache includes a number of APIs. Table 3 illus-
trates three APIs provided by the HCache. The new() API
instantiates and initiates the HCache. The get() API 1s used
to load objects from the cache. The put() API 1s used to store

10

15

20

25

30

35

40

45

50

55

60

65

8

objects 1nto the cache. The put() API may also evict objects
from a storage mechanism when the capacity of that storage
mechanism has reached its limit. In some embodiments, the
put() operations may be queued until the webpage 1s loaded
(1.e., after the window.onload event has fired). Both the
get() and the put() APIs may be implemented as asynchro-
nous JavaScript functions, such that the result of each
operation 1s passed to a callback rather than being returned
at function exit.

TABLE 3
API method Function Other description
hcache = new Construct an 1. onGetMetadata 1s a
(7onGetMetadata, HCache callback of type object
7onM.iss) onGetMetadata(key)
2. onMiss 1s a callback
of type void (key, 7oby).
It 1s called when the
object must be retrieved
from the browser cache
void hcache.get Asynchronously c¢b 1s a callback of type

(key, cb) void cb(oby) that is
invoked when the get

operation has completed

retrieve the
object corre-
sponding to

the key.
void hache.put Asynchronously Metadata 1s an optional
(key, value, store key, value parameter containing
?“metadata) pair into the extra information that

can be used by the
application developer to
control how the object
is placed 1n the cache
hierarchy

cache.

FIG. 4 illustrates an embodiment of the pseudocode for a
get() API. A cached object 1s searched by iteratively walking
through the different levels of the cache hierarchy (1.e., the
hierarchy of storage mechanisms). If the cached object 1s
found, the validity of the cached object 1s determined. For
example, the function 1sValid() may be used. The validity 1s
determined according to HITP caching semantics using the
expires timestamp and the validity portions of the object’s
metadata. If the cached object 1s expired, the cached copy 1s
re-validated by sending an XHR HEAD request using the
original object URL. If a valid object cannot be found 1n any
of the storage mechanisms, the onMiss callback handler
configured 1n the HCache 1s 1invoked to retrieve the object
from the browser cache. In some embodiments, the onMiss
callback uses an XHR or a special browser object (e.g., an
image) to request and retrieve an object from the browser
cache. If the object 1s not found in the browser cache, then
it will be fetched from the network, and after the object 1s
fetched from the network, the browser may decide to cache
it 1n the browser cache. In some embodiments, the onMiss
callback may be customized (e.g., by the application devel-
oper) to use specific loading mechanisms. Note that for ease
of presentation, FIG. 4 illustrates the pseudocode for a
synchronous 1mplementation of backend storage mecha-
nisms. The portions of the pseudocode indicated with a “*”
may be modified for an asynchronous implementation of the
backend storage mechanism.

FIG. 5 illustrates an embodiment of the pseudocode for a
put() API. Objects are stored into the HCache explicitly via
the put() API call. In some embodiments, the put()
operations are queued and delayed until the performance-
critical portion of the load operation has been completed. In
some embodiments, the onload browser event 1s used to
trigger the delayed processing of the queued put() opera-
tions. The objects of each storage mechamsms in the hier-

US 9,531,829 Bl

9

archy are organized into a set of cascading heaps sorted by
the numerical priority (higher being more preferred)
returned by the onGetMetadata callback. Eviction from the
HCache occurs when an object with a higher numerical
priority evicts an object with a lower numerical priority from
a higher level to a lower level of the hierarchy. Evictions
cascade through the hierarchy such that the highest priority
objects stay in the cache hierarchy. In some embodiments,
the priority of the stored objects may be set to 1ts last access
time to simulate the LRU (Least Recently Used) cache
algorithm.

The HCache can be used directly by a web developer of
a web application. The HCache can be used to load resources
explicitly and asynchronously. The HCache can also be used
to load 1mages dynamically.

The HCache may be used to load resources explicitly and
asynchronously. For example, the HCache APIs may be used
to replace the functionalities related to a XHR request.
XMLHttpRequest (XHR) 1s an API available to web
browser scripting languages such as JavaScript. It 1s used to
send HT'TP or HT'TPS (Hypertext Transier Procotol Secure)
requests to a web server and asynchronously load the server
response data back into the script. In one example, a web
developer may continue to use most of the methods of the
XHR request, but replace the methods of the window. XM-
LHttpRequest object with a set of methods that first call the
HCache get() API. If the requested resource 1s not stored 1n
the HCache, the get() API may sequentially pass the request
onto the browser cache/network stack. If an object 1s fetched
from the browser cache or through the network, the callback
response may be intercepted by the HCache such that the
tetched object may be stored into the HCache via the put()
API. The tercepted response may also be used to set the
expiry information included in the metadata associated with
the cached object. For example, XHRresponseHeader() may
be used to retrieve the “Cache-Control” and “Expires”
headers from the response and they can be used to set the
metadata of the cached object.

The HCache can also be used to load images dynamically.
FIG. 6 illustrates an embodiment of a piece of JavaScript
code that has been modified to use the HCache to load
images dynamically. In the absence of the HCache, when the
DOM (Document Object Model) property 1s set
(img.src="1mg.jpg”’), the web browser schedules a network
request for the 1mage resource and the 1mage resource 1s
tetched asynchronously in the background. With the HCache
employed, the code “img.src="1mg.jpg” 1s commented out
and replaced by calling the HCache get() API. As shown 1n
FIG. 6, a small stub function 1s used to set the appropriate
DOM element when the object 1s loaded by the HCache.

The HCache can also be used by a proxy server (e.g., an
Instart edge server) that serves webpages and other
resources to a web browser. The proxy server injects code
(also referred to as a nanovisor) that virtualizes the Docu-
ment Object Model (DOM) tree. DOM 1s a standardized
model supported by different web browsers, e.g., Internet
Explorer, Firefox, and Google Chrome, to represent the
various components of a webpage. The DOM 1s a cross-
plattorm and language-independent convention for repre-
senting and interacting with objects in HITML documents, as
well as XHTML and XML documents. Objects 1n a DOM
tree may be addressed and manipulated using methods on
the objects. The public mterface of a DOM 1s specified 1n its
application programming interfaces (APIs). Because the
DOM objects are virtualized, access to the objects may be
intercepted by the nanovisor, which 1n turn may access the
objects via HCache.

10

15

20

25

30

35

40

45

50

55

60

65

10

The HCache may also include configurable parameters
and policy. For example, these configurable parameters and
policy may be specified by the developer.

The mm-memory cache may be specified as a storage for
certain cached objects. The in-memory cache 1s used to store
cached values that are most frequently used. Therefore, 11 a
webpage refers to certain objects multiple times, the devel-
oper may specily that these objects be written to in-memory
cache only.

In some embodiments, the put() operations are queued
and delayed until the performance-critical portion of the
load operation has been completed (1.e., after the windo-
w.onload event has fired). The order in which the queued
objects are stored into the HCache may be determined by a
policy (e.g., based on the size of the objects) configured by
the developer. In one example, the policy specifies that the
objects are written to the HCache 1n the order that they are
loaded in the webpage. In another example, the policy
specifies that the objects are sorted by size 1n descending
order and that higher priority 1s given to larger objects: the
rationale 1s that larger objects may impact the onload time
more, thus fast loading of these objects can lead to improve-
ment 1 onload time. By specitying higher priority for larger
objects, the HCache stores the larger objects using faster
storage mechanisms. In another example, the policy speci-
fies that the objects are sorted by size 1n ascending order and
that higher priority 1s given to smaller objects. In this
instance, the rationale 1s that smaller objects are likely to be
present across related webpages, and that by ensuring that
these objects get served from HCache, the developer can
optimize across multiple webpages.

In some embodiments, the loading priority assigned to
different objects 1s configurable. When a webpage 1s visited
again, the objects are loaded from the HCache. By assigning
appropriate priority values to various objects, the developers
can control the order 1n which objects are loaded.

In some embodiments, the HCache 1s configurable to
store multiple versions of a cached object, and the different
versions ol the cached object may be loaded at different
times. For example, betfore the onload event, the HCache can
be used to load lower resolution 1images for faster loading,
while after the onload event 1s fired, high resolution 1images
can be loaded.

In some embodiments, the HCache further includes
enhanced cache control mechanisms that improve the per-
formance of HITP liveness determination. A cached HTTP
object can be 1n one of two liveness states: fresh or stale. A
fresh object can be used immediately without contacting the
remote server. A stale object requires a revalidation round-
trip before the object can be used. The stale object latency
penalty can be {further compounded by dependencies
between objects, e.g., objects that are dynamically loaded
via JavaScript. The HCache may provide pretfetch revalida-
tion, lazy revalidation, and aggregate revalidation.

In prefetch revalidation, upon the imitial load of the
webpage, the server may send validation information for
objects that are likely to be in the client HCache. This
technique can reduce the number of subsequent revalidation
messages.

In lazy revalidation, the HCache shifts the liveness deter-
mination from the critical path to the background, 1.e.,
objects 1n the HCache are not validated during webpage
load. Instead, objects 1n the HCache (that are not yet stale)
can be revalidated after the initial load of the objects without
impacting the performance of the page. Further, these
objects can be revalidated only when they are close to expiry
deadline.

US 9,531,829 Bl

11

In aggregate revalidation, revalidation request messages
for objects stored 1n the HCache are batched together and
sent as a single message to the server, thus saving round-trip
time between the client and the server.

Although the {foregoing embodiments have been
described 1n some detail for purposes of clarity of under-
standing, the mvention 1s not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What 1s claimed 1s:

1. A method of caching resources corresponding to a
webpage on a client, comprising:

determining by a processor a hierarchy of a plurality of

storage mechanisms available on the client based at
least 1n part on performance of the plurality of storage
mechanisms, the hierarchy comprising a plurality of
levels to which each storage mechanism may be
assigned;

receiving a request to cache a first resource corresponding

to a webpage;

selecting one of the plurality of storage mechamisms for

caching the first resource based at least in part on the
hierarchy;

storing the first resource 1n the selected storage mecha-

nism of the hierarchy;

receiving a request to retrieve a second resource; and

retrieving the second resource from the hierarchy of the

plurality of storage mechanisms, wherein retrieving the
second resource comprises searching for the second
resource by iteratively walking through at least some of
the plurality of levels of the hierarchy, wherein 1n the
event that the second resource 1s not found by itera-
tively walking through at least some of the plurality of
levels of the hierarchy, the second resource 1s retrieved
from the browser cache, and the second resource
retrieved from the browser cache i1s stored in the
hierarchy of the plurality of storage mechanisms.

2. The method of claim 1, wherein storing the first
resource Comprises:

queuing the storing of the first resource 1n a queue and

delaying the storing of the first resource 1n the selected
storage mechanism until a later time.

3. The method of claim 2, wherein an order in which
resources in the queue are stored 1n the hierarchy is based on
a configurable policy.

4. The method of claim 1, wherein storing the first
resource Comprises:

determining another stored resource in the hierarchy

needs to be evicted from the hierarchy based on a
priority associated with the first resource;

evicting the determined another stored resource from the

hierarchy; and

storing the first resource 1n the hierarchy.

5. The method of claim 1, wherein the performance
comprises performance corresponding to time required to
load resources of different sizes to a particular storage
mechanism.

6. The method of claim 1, wherein the performance
comprises performance corresponding to time required to
store resources of different sizes to a particular storage
mechanism.

7. The method of claim 1, wherein the performance
comprises performance corresponding to a plurality of plat-
forms, the platform comprising a particular type of browser,
device, and operating system.

10

15

20

25

30

35

40

45

50

55

60

65

12

8. The method of claam 1, wherein selecting one of the
plurality of storage mechanisms for caching the first
resource comprises selecting further based at least 1n part on
capacities of the plurality of storage mechanisms.

9. The method of claim 1, wherein selecting one of the
plurality of storage mechanisms for caching the first
resource comprises selecting further based at least 1n part on
application-specific information of an application associated
with the webpage.

10. The method of claim 1, wheremn the plurality of
storage mechanisms comprises one ol more of the following
HTMLS storage mechanisms: localStorage, sessionStorage,
indexDB, and fileSystem.

11. The method of claim 1, further comprising instanti-
ating a JavaScript object comprising the hierarchy 1n
response to a loading of the webpage.

12. The method of claim 1, where the hierarchy further
comprises an in-memory cache, the method further com-
prises determining whether the first resource 1s stored 1n the
in-memory cache based at least 1n part on frequency of use
of the first resource.

13. The method of claim 1, wherein storing the first
resource comprises storing the first resource and metadata
associated with the first resource, the metadata comprising
information corresponding to expiry and revalidation of the
first resource.

14. A system for caching resources corresponding to a
webpage on a client, comprising;:

a processor configured to:

determine a hierarchy of a plurality of storage mecha-
nisms available on the client based at least 1n part on
performance of the plurality of storage mechanisms,
the hierarchy comprising a plurality of levels to
which each storage mechanism may be assigned;

receive a request to cache a first resource corresponding
to a webpage;

select one of the plurality of storage mechanisms for
caching the first resource based at least 1n part on the
hierarchy;

store the first resource 1n the selected storage mecha-
nism of the hierarchy;

receive a request to retrieve a second resource; and

retrieve the second resource from the hierarchy of the
plurality of storage mechanmisms, wherein retrieving
the second resource comprises searching for the
second resource by iteratively walking through at
least some of the plurality of levels of the hierarchy,
wherein 1n the event that the second resource 1s not
found by 1teratively walking through at least some of
the plurality of levels of the hierarchy, the second
resource 1s retrieved from the browser cache, and the
second resource retrieved from the browser cache 1s
stored 1n the hierarchy of the plurality of storage
mechanisms; and

a memory coupled to the processor and configured to

provide the processor with instructions.

15. The system of claim 14, wherein storing the first
resource Comprises:

queuing the storing of the first resource 1n a queue and

delaying the storing of the first resource 1n the selected
storage mechanism until a later time.

16. The system of claim 135, wherein an order in which
resources in the queue are stored 1n the hierarchy is based on
a configurable policy.

17. The system of claim 16, wherein the order comprises
one of the following:

US 9,531,829 Bl

13

sorted by size i ascending order, sorted by size 1n
descending order, and sorted based on contribution to
visual completeness.

18. The system of claim 14, wherein storing the first
resource Comprises:

determining another stored resource in the hierarchy

needs to be evicted from the hierarchy based on a
priority associated with the first resource;

evicting the determined another stored resource from the

hierarchy; and

storing the first resource 1n the hierarchy.

19. The system of claim 14, wherein the performance
comprises the performance corresponding to time required
to load resources of different sizes to a particular storage
mechanism.

20. The system of claim 14, wherein the performance
comprises the performance corresponding to time required
to store resources of diflerent sizes to a particular storage
mechanism.

21. The system of claim 14, wherein the performance
comprises the performance corresponding to a plurality of
platforms, the platform comprising a particular type of
browser, device, and operating system.

22. The system of claim 14, wherein selecting one of the
plurality of storage mechanisms for caching the first
resource comprises selecting further based at least 1n part on
capacities of the plurality of storage mechanisms.

23. The system of claim 14, wherein selecting one of the
plurality of storage mechanisms for caching the first
resource comprises selecting further based at least 1n part on
application-specific information of an application associated
with the webpage.

24. The system of claim 14, wherein the plurality of
storage mechanisms comprises one of more of the following
HTMLS storage mechanisms: localStorage, sessionStorage,
indexDB, and fileSystem.

25. The system of claim 14, wherein the memory 1s
turther configured to provide the processor with instructions
which when executed cause the processor to instantiate a
JavaScript object comprising the hierarchy in response to
loading of the webpage.

26. The system of claim 14, where the hierarchy further
comprises an mm-memory cache, wherein the memory 1is
turther configured to provide the processor with istructions

10

15

20

25

30

35

40

14

which when executed cause the processor to determine
whether the first resource i1s stored in the in-memory cache
based at least in part on frequency of use of the first resource.

27. The system of claim 14, wherein storing the first
resource comprises storing the first resource and metadata
associated with the first resource, the metadata comprising
information corresponding to expiry and revalidation of the
first resource.

28. The system of claim 14, wherein the memory 1s
turther configured to provide the processor with instructions
which when executed cause the processor to:

delay a validation of the first resource until loading of the

webpage 1s completed.

29. A computer program product for caching resources
corresponding to a webpage on a client, the computer
program product being embodied in a non-transitory com-
puter readable storage medium and comprising computer
instructions for:
determining by a processor a hierarchy of a plurality of

storage mechanisms available on the client based at

least 1n part on performance of the plurality of storage
mechanisms, the hierarchy comprising a plurality of
levels to which each storage mechanism may be
assigned;

recerving a request to cache a first resource corresponding
to a webpage;

selecting one of the plurality of storage mechanisms for
cachung the first resource based at least in part on the
hierarchy;

storing the first resource in the selected storage mecha-
nism of the hierarchy;

recerving a request to retrieve a second resource; and

retrieving the second resource from the hierarchy of the
plurality of storage mechanisms, wherein retrieving the
second resource comprises searching for the second
resource by iteratively walking through at least some of
the plurality of levels of the hierarchy, wherein in the
event that the second resource 1s not found by itera-
tively walking through at least some of the plurality of
levels of the hierarchy, the second resource 1s retrieved
from the browser cache, and the second resource
retrieved from the browser cache 1s stored in the
hierarchy of the plurality of storage mechanisms.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

