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CYBER SECURITY ADAPTIVE ANALYTICS
THREAT MONITORING SYSTEM AND
METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a Continuation of U.S. patent appli-
cation Ser. No. 14/149,598, filed Jan. 7, 2014, titled, “Cyber
Security Adaptive Analytics Threat Monitoring System and
Method,” the disclosure of which 1s imncorporated herein by
reference.

TECHNICAL FIELD

The subject matter described herein relates to computer
network security, and more particularly to a system and
method for cyber security adaptive analytics threat moni-
toring.

BACKGROUND

The malicious threats accessible via the Internet cannot be
completely blocked by network admimstrators without
severely curtailing a user’s access to the Internet for legiti-
mate purposes. In any large organization, 1t 1s inevitable that
a user of an internal computer will install malware and
compromise the securnity of the computer with malware
which may, on its own, subsequently infect other computers
of the organization’s computer network. Some malware tries
to extract valuable information from the compromised com-
puter, and also, through the use of a botnet (a collection of
“zombie” computers under control by malicious attackers),
leverage the compromised computer to enhance the distrib-
uted botnet infrastructure associated with the malware. A
botnet 1s an amalgamation of infected computers that differ
in purpose and geographical location and as such the
infected hosts have a variety of times when they are avail-
able to be contacted by malware.

To achieve this, the malware must communicate with the
threat’s instigator and signal that the computer has been
compromised. The malware sets up a Command and Control
channel (C&C) from the compromised internal computer to
an external network infrastructure operated by the perpetra-
tors. Once a line of communication 1s set up, the malware
can hand over control of the computer to an unauthorized
perpetrator, send valuable information accessible by the
compromised host, or in turn become part of the network of
compromised computers and facilitate the communication
with other infected hosts.

As the malware and its delivery mechanisms change, 1t 1s
necessary to consider networks as already compromised and
ivest resources nto detecting where on the network the
malware 1s located and the malware’s communication des-
tination. Once the C&C channel between compromised
internal computer and external suspicious hosts 1s 1dentified,
the outbound communication can be cut, thereby protecting
sensitive mformation and preventing the botnet from gaining
additional resources. Details of any discovered C&C 1nfor-
mation can also be reported by responsible network admin-
1strators to security orgamizations so that other networks can
pre-empt the same threat.

Although malware technology continually evolves 1n 1ts
attempts to avoid detection and being blocked, the malware
still needs to find a way to communicate to the outside world
to perform tasks for 1ts controllers. A common 1nitial step in
the detection process 1s to perform Domain Name System
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(DNS) queries on static or dynamically generated domain
names associated with a botnet. To 1dentity the C&C chan-

nel, DNS messages are focused on to determine which
Internet Protocol (IP) addresses and domain names pose the
greatest risk of being under malware control. FIG. 1 shows
an example dynamic DNS.

Malware uses DNS messages for several reasons: 1t 1s a
umversally used protocol and so malware C&C usage 1s
hidden within a large volume of legitimate DNS queries;
DNS 1s distributed and publically accessible which provides
an easy and robust method for local malware to contact 1ts
external C&C servers; the DNS port 1s often open 1n
firewalls, allowing compromised computers to become
name servers under malware control in order to enhance the
strength of the botnet; and DNS resource records can be
added and updated frequently allowing the malware to find
botnet servers while making detection and tracking by
network security stail more dithcult.

Even though botnets continue to evolve overtime to evade
detection and countermeasures, malware can still function
under many older C&C paradigms and so it 1s important for
a comprehensive real-time solution to detect modern, older
and unknown schemes 1n addition to new unknown evolving
methods.

SUMMARY

In one aspect, a method of detecting command and control
behavior of malware on a client computer 1s disclosed. The
method mncludes the steps of monitoring one or more domain
name system (DNS) messages from one or more client
computers to a DNS server to determine a risk that one or
more client computers 1s communicating with a botnet,
where each of the one or more client computers has an IP
address. The method further includes generating a real-time
entity profiles for at least one of each of the one or more
client computers, DNS domain query names, resolved IP
addresses of query domain names, client computer-query
domain name pairs, pairs of query domain name and cor-
responding resolved IP address, or query domain name-IP
address cliques based on each of the one or more DNS
messages.

In another aspect, the method further includes determin-
ing, using the real-time entity profiles, a risk that any of the
one or more client computers 1s 1nfected by malware that
utilizes DNS messages for command and control or illegiti-
mate data transmission purposes. The method further
includes generating, using real-time calibration profiles to
determine the risk, one or more scores representing prob-
abilities that one or more client computers i1s infected by
malware.

In another aspect, one or more entity profiles 1s seli-
calibrated. Self-calibration scales one or more profile values
based on peer group distributions of DNS messages from the
one or more client computers. The real-time scores can be
generated using seli-calibrated profiling technology applied
to scores.

In another aspect, a method described above further
includes aggregating the monitoring from two or more
monitoring systems to generate aggregated entity profiles,
and generating aggregated scores based on the aggregated
entity profiles.

The entity profiles can contain variables that calculate the
empirical variance or entropy of the intervals between
successive DNS query messages. In some aspects, a “white
l1st” can be dynamically determined by dynamically keeping
track of the most frequently queried domain names (fully
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qualified or different levels), or “cliques” across a consor-
tium network, as further described herein. Queried domain
name profiles and/or client computer profiles can contain
variables that measure the DNS response message error
rates, which can be momitored by a system or according to
a method described herein. Alternatively, or additionally,
entity profiles containing variables that measure the simi-
larity between DNS query domain names can be used. The
similarity metrics include but are not restricted to Leven-
shtein and Jaccard distances.

In yet another aspect, fluxes of keys such as IP addresses,
query domain names, ASN, and country of IP addresses can
be determined by tracking how often new keys appear in the
lists of the most frequently observed keys or key tuples for
the underlying profiled entity. Entity profiles can be used
containing variables using similar techniques for analyzing
IP addresses with other Internet traflic such as email and
downloads.

In some aspects, external inputs can be used. For instance,
in a method as described above, certain subsets of data used
to form entity profiles are associated with or influenced by
externally determined risk quantifications, whether corre-
sponding to known or suspected malicious entities (black-
list), or, known or suspected legitimate entities (whitelist).
Risk quantification may be binary or continuous. In some
aspects, the externally determined risk quantification influ-
ences the computation of the entity profiles or risk scores. In
some aspects, ground-truth feedback determined from users
or administrators of the monitored systems comprises some
or all of the externally determined risk quantification.

In some aspects, beliel propagation techniques can be
employed. For instance, 1n a method as described above,
quantities related to riskiness ol entities are propagated
using graph-theoretical algorithms across a directed or undi-
rected graph of one or more profiled entities which are
connected to one another by electronic communications.
Examples of profiled entities forming the nodes of the graph
comprise without limitation: IP addresses of source or
destination of messages, queried domain names or portions
thereot, IP addresses of returned DNS query, and autono-
mous system number (ASN) or country associated with an
IP address. Examples of electronic communications forming
the edges of the graph include without limitation: UDP
packets such as DNS queries or responses, TCP/IP connec-
tions, local area network packets and wide-area telecom
network connections. The propagated quantities are used to
improve performance of one or more risk scores associated
with one or more client computers being monitored, or to
improve utility of entity profiles used to mform such risk
scores. In an aspect, the graph-theoretical algorithm 1s a
Bayesian belief propagation.

Certain subsets of entities comprising either nodes or
edges on the graph are associated with or influenced by
externally determined risk quantifications, whether corre-
sponding to known or suspected malicious entities (black-
list), or, known or suspected legitimate entities (whitelist).
The propagation of riskiness across nodes may be influenced
by or weighted by computations arising from values deter-
mined by entity profiles at each node, properties of each
node, or properties of the commumication forming the edge.
In some aspects, the propagated quantity 1s a risk score.

In some aspects, a method includes aggregating entity
profiles, 1n which one or more of the transaction histories,
entity profiles or risk scores are aggregated across multiple
monitoring systems in a consorfium view to determine
additional quantities, and which are communicated back to
the individual monitoring systems to increase the usefulness
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4

of their entity profiles, their risk scores, or become addi-
tional elements used in the computation of risk scores for the
monitored systems. The additional quantities being com-
puted influence the weighting of individual risk elements for
determining one or more risk scores, and/or influence the
calibration of entity profiles or risk scores, and/or improve
the usefulness of the Internet clique computations. In some
aspects, the additional quantities being computed result from
an extended graph determined from the aggregated consor-
tium view of the data, and/or are determined from aggre-
gates ol ground-truth C&C feedback across multiple moni-
toring systems, and/or are updated in real-time or batch at
one or more centralized computational assets associated
with the consorttum. In yet other aspects, the additional
quantities being computed are refreshed so that more
recently occurring events or more recently updated profiles
have greater influence than events or profiles from more
historically distant periods. The additional quantities may be
determined over multiple time scales which quantity the
period or rate for lowering the influence of past information.

The methods and systems described herein can be imple-
mented 1nside a consortium member’s firewall or hosted at
another site (1.e., in the cloud).

Implementations of the current subject matter can include,
but are not limited to, methods consistent with the descrip-
tions provided herein, as well as articles that comprise a
tangibly embodied machine-readable medium operable to
cause one or more machines (e.g., computers, etc.) to result
in operations described herein. Similarly, computer systems
are also described that may include one or more processors
and one or more memories coupled to the one or more
processors. A memory, which can include a computer-
readable storage medium, may include, encode, store, or the
like one or more programs that cause one or more processors
to perform one or more of the operations described herein.
Computer implemented methods consistent with one or
more 1implementations of the current subject matter can be
implemented by one or more data processors residing 1n a
single computing system or multiple computing systems.
Such multiple computing systems can be connected and can
exchange data and/or commands or other instructions or the
like via one or more connections, icluding but not limited
to a connection over a network (e.g. the Internet, a wireless
wide area network, a local area network, a wide area
network, a wired network, or the like), via a direct connec-
tion between one or more of the multiple computing sys-
tems, etc.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims. While cer-
tain features of the currently disclosed subject matter are
described for 1llustrative purposes 1n relation to an enterprise
resource software system or other business software solution
or architecture, 1t should be readily understood that such
features are not mtended to be limiting. The claims that

tollow this disclosure are intended to define the scope of the
protected subject matter.

DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of this specification, show certain
aspects of the subject matter disclosed herein and, together
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with the description, help explain some of the principles
associated with the disclosed implementations. In the draw-
ngs,

FIG. 1 shows an example domain name system (DNS);

FIG. 2 1s a system block diagram to illustrate optimal
DNS message collection;

FIG. 3 illustrates a monitoring system consistent with
implementations disclosed herein;

FIG. 4 illustrate transactional behaviors of normal and
compromised computer systems;

FIG. 5 shows a variable distribution in accordance with a
risk analysis technique;

FI1G. 6 1llustrates a multi-layered self-calibrating analytics
system and method;

FIG. 7 shows a behavior sorted list example;

FI1G. 8 illustrates an example of cliques clustering sets of
domain names and IP addresses:

FIG. 9 1s an example of belief propagation on an internal
computer and domain name graph; and

FIG. 10 shows simple beaconing.

When practical, similar reference numbers denote similar
structures, features, or elements.

DETAILED DESCRIPTION

To address these and potentially other 1ssues with cur-
rently available solutions, methods, systems, articles of
manufacture, and the like consistent with one or more
implementations of the current subject matter can, among
other possible advantages, provide systems and methods to
process streaming transactions by maintaining real-time
entity profiles, which include real-time recursively updated
variables, and to utilize real-time updated calibration pro-
files to scale individual variables as well as transform this
multitude of attributes 1into a single score that retlects the
probability of a C&C communication being malicious or
associated with malware.

In 1mplementations consistent with the subject matter
described herein, a Cyber Security Adaptive Analytics
Threat Monitoring (CAATM) System (the “monitoring sys-
tem™) 1s provided. Transactions used to build profiles and
scoring models may or may not contain labels distinguishing
the transactions from good or bad sources. In the case of
unlabeled data, the generated score represents a probability
that the transaction occurred given the transactions for that
entity, as well as the transactional trafhic of all entities. In this
scenari1o, transactions with low probabilities are considered
rare and suspicious. For labeled (e.g., malicious or bemign
behavior) data, the generated score represents a probability
of the transaction belonging to a category. Labeled data can
be fed back into the momtoring system to update model
welghts. In one implementation, real-time DNS messages
are the unlabeled streaming transactions. However, data
from other protocols (email, downloads, etc.) could be
processed separately or 1n conjunction with DNS messages
to build profiles and self-calibrating models. Also, batch
(non-streaming) data can easily be converted for use in the
monitoring system as streaming data by reading batch data
from files or database tables periodically and sending them
on to the monitoring system.

A single comprehensive score 1s much simpler for end
users to manage and build rules around rather than trying to
manually manage interactions of multiple scores and manu-
ally determine their relationship to malicious C&C activity.
As such, network administrators can have a set of cases
ranked by their scores, allowing the administrators to more
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clliciently focus resources on the most suspicious entities
and prevent data loss as well as the growth of the botnets.

I'he monitoring system can employ a number of modeling
and profiling technologies, including entity transaction Pro-
files, Behavior Sorted Lists, Global Intelligent Profiles
(GIP), Self-Calibrating Outlier models, Adaptive Analytics
and Collaborative Profiles. These and other modeling and
profiling technologies have been pioneered by Fair Isaac
Corporation of San Jose, Calif., and are explained 1n further
detail below. The monitoring system can also use other
technologies, such as determimng C&C beaconing second
order moments and entropy metrics, belief networks, con-
structing bipartite graphs for clique identification, and pro-
active requests for additional data to enhance consortium
risk of features to produce interesting bases for real-time
self-calibrating outlier analysis. The features discussed
below can be used to detect C&C activity, and many features
can be combined 1nto a single score to improve detection and
reduce false positives.

Profiling and GIP technology provide an eflicient means
to update real-time streaming C&C features without having
to explicitly store historical DNS messages or rely on high
latency databases. The streaming analytics approach 1s fun-
damental to be able to stop or limit the C&C activity quickly
by detecting these activities in real-time. As shown in FIG.
2, profiling technology can be applied at many levels to
quantily whether behavior of an mdividual entity 1s within
the norms of the peer groups to which their activity 1s
compared. The profiling levels include, but are not restricted
to, the source IP within the DNS message that initiates the
query (source IP), the combination source IP and the domain
or host name the source 1s trying to have resolved (query
name), the query name, the IP address of the resolved query
name, and the set of IP addresses and query names that
belong to one organization or group (internet clique). Col-
lection of DNS messages prior to network address transla-
tion (NAT) allows for each computer internal to an organi-
zation to be profiled and monitored for changes 1n behavior.
After NAT, the internal computer’s IP address(es) are not
available, 1n which case the malware signal may be more
difficult to detect due to mixing of requests from one or more
computers under the NAT.

The monitoring system can also be implemented exclu-
sively 1n the cloud, 1.e. maintaining profiles, updating vari-
ables, scoring, case management and other processing of
data from the consortium and external sources can be done
outside of a consortium member’s computer network and
firewall. The consortium (a group of organizations that send
DNS messages to the monitoring system and use the result-
ing scores) stream anonymized DNS messages to the cloud-
based monitoring system, which bulds real-time profiles
and provides scoring, provides case management capabili-
ties and adaptive model updates based on labeled cases.
When an internal computer behaves suspiciously, the moni-
toring system sends alerts to the network administrators
within the appropriate organization. Cases are sets of DNS
messages that are grouped by profile entity (e.g., source IP,
internet clique, etc.). Administrators can interact with cases
specific to their own organization via a case manager, and
can label or designate which query names or resolved IP
addresses are potentially part of a botnet and which query
names are false positives (legitimate domains or host names
that scored high because of behavior similar to botnet
behavior).

The labeled and unlabeled data sets collected within the
cloud-based monitoring system are periodically processed
by a batch processing engine, such as Hadoop, for tasks that

e
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are not appropriate for streaming, and the monitoring system
model parameters are updated. The consortium data in the
cloud-based monitoring system presents a large-scale col-
lective view, which improves model scoring so that suspi-
clous query names score higher, and false positives are
suppressed based on a variety of individual CAATM model
installations. For instance, the most popular domains could
be considered legitimate due to the persistently high and
stable volumes of DNS traflic when viewed globally, which
would not be a signature of malware. When viewed within
one organization, the evidence of malicious behavior for
some external IP addresses or query names may be weak or
equivocal. However, the behavior may become more clearly
distinguishable as malicious when the evidence 1s accumu-
lated over a larger set ol observations across multiple
installations of the monitoring system. Although many orga-
nizations may contribute to the consortium and benefit from
the resulting improvements 1n scoring, any given organiza-
tion would not be able to see other organization’s DNS
messages explicitly, thereby securing privacy.

External data sources may be used to enhance scoring,
decisions and batch processing analytics. Some external data
sources may be reserved for the lower volume high scoring
transactions to limit bandwidth or computational expenses.
If a transaction scores high, additional information such as
the “whois” protocol may be used to obtain registration
information, telemetry data to determine resolved IP geo-
graphical location or proprietary information from external
private vendors. External sources may also provide labels of
botnets found independently of the monitoring system.
Email monitoring, file downloads, and SMS may be used to
supplement the monitoring system to further enhance the
score, and/or alert to bots that have yet to activated or found
C&C.

In some implementations, and as illustrated in FI1G. 3, the
monitoring system 1s implemented as cloud-based analytics
(1.e., distributed computing and analytics conducted over a
network such as the Internet, or a collection of networks),
where aggregated consortium data 1s used to provide a
holistic view across more than one CAATM model 1nstal-
lations. The aggregate results of the analysis strengthen
alerts/cases on certain domain names or resolved IP
addresses. The cloud 1s an eflicient way of aggregating
information from disparate monitors.

Variations of the monitoring system include locating one
or more ol the monitoring components within the consor-
titum member’s network rather than in the cloud. For
example, the profiling, scoring and case manager capabili-
ties can be relocated to the member’s network. The members
can still contribute labeled cases and DNS messages to the
cloud-based monitoring system and receive updates from the
cloud i the form of alerts or parameters to update the
models.

By examining the internal computer prior to being
infected with malware, deviations from a normal behavior,
as defined by the internal computer, can be detected and
ranked according to riskiness. For an internal computer that
has already been compromised, its behavior can be com-
pared to that defined by consortium profiles and profiles of
previously infected computers. Methods for profiling enti-
ties include multiple quernies of databases, or maintaining a
history within the mput message to determine 1f long term
entity behavior differs from short term entity behavior.
While these methods do not enable real-time detection of
threats or low latency decisions, transaction profiling tech-
nology, on the other hand, does not require explicit storage
ol a transaction history, and instead utilizes recursive for-
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mulas to decay and adjust variable estimates smoothly over
events or physical timescales. As an example:

pv=(1-ppv, +a7fix,)

where

pv ~=current value of profile vanable

pv, ,=previous value of profile variable
{(x =function of current input transaction
B=coeflicient

a=coellicient

The above recursive variable example allows a current
estimated value pv, to be based on the past estimate pv,_, and
on a function of the current transaction being processed.
Transaction profiles are computationally eflicient and pro-
vide real-time predictive scores for low-latency decisions
such as fraud decisions on credit card authorizations. Trans-
action profiles represent transaction behavioral features
deemed most predictive. Profiled entities can be applied
globally or on per-entity bases such as source IP, resolved IP
address or query name. Using transaction profiles allows for
updating profiles and scoring for every DNS message, which
leads to greater insight into the entity’s behavior and 1n a low
latency time frame to enable disruption of malware C&C
betore loss of information occurs 1n a cyber-application, as
shown 1 FIG. 4.

For example, a work computer may be on 24/7 but not
used during nights or weekends. By profiling on DNS error
responses over time, non-existent-domain (NXDOMAIN)
errors would be unusual at night for the internal computer
(since the computer 1s not used at that time), and therefore
these variables would increase the overall monitoring sys-
tem score.

Self-Calibrating Outlier Analytics

Unsupervised models are models built on data that does
not have labels (1.e., transactions are not categorized as good
or bad). In this situation, variables can be constructed such
that observations 1n the right side of the varniable’s distribu-
tion are considered more risky. In order to automatically
determine 1f an observation 1s an outlier, and have the
definition of outlier adjust 1n real-time to fluctuations 1n a
variable’s finite time rolling distribution, Selt-Calibrating,
Outlier Analytics has been introduced by FICO. As
described 1n U.S. patent application Ser. No. 11/532,859,
entitled Self-Calibrating Fraud Detection, the contents of
which are incorporated by reference herein for all purposes,
a sequential quantile estimation algorithm i1s used which
requires only one pass of the input stream, uses constant
memory and does not require any persistence of transaction
values. The resulting outlier values have a common scaling
for combining multiple variables into an outlier scale g, to
form a single score, m, as shown 1n FIG. 5.

Self-Calibrating Outlier Analytics adjusts the three esti-
mates S;, S, and S for each incoming observation X. The
observation value 1s then centered and scaled according to
S, and (S5z-S;), respectively. A more general and more
computationally expensive approach 1s to determine obser-
vation values at all quantiles from S; to 1 to ensure the
outlier features are better aligned prior to combining the
features to produce a score.

In accordance with some implementations consistent with
subject matter described herein, once a DNS message 1s
processed, 1ts transaction profile variable features are scaled
by the seli-calibrating analytics and combined to form a
score that 1s proportional to the message’s riskiness. Factor
analysis can be applied to the self-calibrated features to
reduce 1mpact of dependent mputs as well as limiting the
model’s degrees of freedom. For unsupervised models,
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features can be combined using uniform or expertly selected
weights. If some labels do exist, then supervised methods
can be used to determine the weightings applied to the
features to produce a score, as 1illustrated i FIG. 6.

The weights and resulting score can be further modified
by adding oflline learming. This adaptive component utilizes
labels applied by administrators to DNS messages and
propagates the information to the main model’s weights or
updates a separate model whose score can be combined with
the main model. The oflline learning can help the model
adjust more quickly to new malware patterns or help to
calibrate the model when the deployment environment dii-
ters significantly from that of the development. This ofiline
learning approach 1s described in further detail in U.S. patent
application Ser. No. 12/040,796, entitled “Adaptive Analyt-
ics,” the contents of which are incorporated by reference
herein for all purposes.

Modifications to the above system can include projecting
features onto other bases to produce more 1nteresting output
teatures. For example, 11 the input features are numerous and
some with significant dependence on each other, techmques
such Principle Component Analysis as described in U.S.
patent application Ser. No. 13/367,344, entitled “Multi-
Layered Self-Calibrating Analytics” the contents of which
are incorporated by reference herein for all purposes, to
determine factor groups and reduce over-influence of any
one feature. Other methods such as Independent Component
Analysis (ICA) may be applied to reduce the dimensionality
and generating output features that may be more interpre-
table.

Collaborative Filtering algorithms, such as those devel-
oped by FICO, provide a probabilistic framework for defin-
ing archetypes and assigning an entity’s membership to each
archetype based on the entity’s DNS message history. Given
the entity’s archetype membership, FICO’s proprietary vari-
ables measure the probability that a new DNS message was
generated by that entity. If malware infected an internal
computer and began to make DNS queries, 1t 1s likely that
the malware’s DNS message pattern did not fit the pattern of
topic allocations of DNS history of the internal computer’s
normal behavior and those DNS messages would be given a
low probability pointing to a higher risk of botnet.

Alternatively, 1if enough labeled data was present during
model development, malware archetypes can be developed
and DNS patterns matched against that behavior. One
example 1s to create “words” 1n the document history by
combining sequences ol Autonomous System Numbers
(ASNs) from the IP addresses in the DNS response mes-
sages. Bursts of DNS queries can be associated with legiti-
mate activity such as visiting a website which hosts many
ads or malicious activity mixed in normal activity. The
ASNs of the visited website and the associated marketing,
service providers are commonly seen together and certain
internal computers tend to go to these types of sites more
often than others. Collaborative Filtering can be used to
determine 1f an ASN combination 1s rare, given the internal
computer’s history, and i1dentify that the malware query
names do not fit 1n with the surrounding legitimate DNS
queries.

Some compromised hosts may be a home computer that
1s on 1n the evening and on weekends, while others may be
a work computer on during weekdays, and still others might
belong to a web service provider and are on 24 hours a day,
7 days a week. Over time, many of the compromised hosts
are removed from the bot network when they are cleansed of
malware or have their IP addresses blocked. To compensate
for unreliable uptimes, a botnet may perform a task called IP
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flux, 1n which many IP addresses are rotated for a single
domain name to ensure newly infected computers are able to
connect to the botnet. The low Time To Live (ITTL) on
Resource Records (RR) as well as constantly changing IP
addresses are not only a characteristic for botnets, but also
for legitimate Content Delivery Networks (CDNs) since
both are trying to present a robust load balancing server
infrastructure.

To 1dentity IP Flux, a technique known as a Behavior
Sorted List (BSL), such as that provided by FICO, can be
used to store IP addresses associated with a domain name or
Internet clique. As illustrated 1in FIG. 7, IP addresses that
occur often are given a larger weight and stay on the list,
whereas less frequently occurring IP addresses fall off the
list to make room for new observations. Model variables
take 1nto account the number of IP address entries in the list
as well as the rate at which new IP addresses enter the list.
As mentioned above, legitimate CDNs can rotate through
IPs for load balancing and high availability purposes.

To differentiate between the good and bad networks the
number of entries and rates are normalized by the overall
query volume associated with the domain name or Internet
clique. As CDNs or other service providers increase in size,
larger IP flux values are justified to handle the larger traflic
volumes. However, the traflic associated with a botnet will
not be congruous to the ratios seen in legitimate CDNs.

Normalized IP flux variables alone may lead to many false
positives due to Web Service providers, such as Amazon
Web Services, which have low TTL (~60 seconds) for
domains and dynamically assign new IP addresses upon
expiration of the resource record. This 1s why this 1s one of
many variables used 1n the momtoring system score.

Domain Flux

An additional layer of complexity botnets can implement
1s domain fluxing, which 1s the generation of many domains
at rates 1n the thousands per day. In domain fluxing, the
botnet owner only registers a few domain names, and the
malware sends multiple queries throughout the day until an
answer 1s provided. Note that if the botnet owner 1s only
registering a few of the domain names produced, the mal-
ware will incur a high rate of NXDOMAIN errors. Profiles
that are assembled can be used to measure the rate of
NXDOMAIN and compare that to the internal computer’s
long term NXDOMAIN rates as well as rates at other
aggregated levels such as the subnet, organization or con-
sorttum. In addition to a higher error rate, the domain names
will be exceedingly rare at any aggregated level and may
show differences in name construction compared to valid
domain names.

The query name 1tself can be examined to see whether the
name appears normal or if its temporal neighbors have
similar structure using Levenshtein and Jaccard distances,
for example. These are text analytics methods that determine
the distance, or number of characters apart, between two
different strings such as “google.com™ and “gooogle.com.”
For example, the Levenshtein distance would count the
number of letters that need to change for the two domains to
match. The Jaccard distance looks at shared substrings in the
text strings, such as, for example ‘goo’ 1n both, ‘.com’ in
both, ‘gle’ 1n both, etc. Each of these substrings are called
N-grams, the Jaccard technique uses these to find that these
two are close by comparing the union on N-grams without
counting the number of atomic changes to make them the
same.

Also, associated with the domain flux 1s the “throw away”™
nature of the domain names. A domain name may be
registered only hours prior to the malware trying to resolve
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it and then after a short time, such as 24 hours, the domain
1s never used again. Domains can be post processed and
submitted to a pool of suspect names for further analysis.

Internet Graph Analytics: Clique Identification and
Bayesian Belief Propagation

Legitimate providers of large-scale robust distributed
internet services, such as Akamai, or Google, show signifi-
cant “domain flux” and “IP flux” behavior 1n their normal
operation, mimicking botnet behavior. Organizations often
have many aliases due to mergers, for providing hosting
services or to prevent URL typos from being used for
malicious purposes. Bipartite graphs are constructed where

nodes represent queried domain names and corresponding IP
addresses (or ASNs). An edge indicates that a DNS query

was 1mitiated or DNS response was recorded connecting one
node to another. To consolidate IP fluxing and domain
aliases 1nto a single entity, and potentially cluster common
communication of compromised computers as being part of
a botnet, we examine the “cliques” (connected components)
of the graph. When clustered 1n this fashion the legitimacy
or illegitimacy of a set of connected hosts and IP’s become
more apparent. For instance, a Google internet application
such as Gmail might talk to a substantial set of associated IP
addresses, but viewed globally they are all part of the
“Google” or “Gmail” clique. Similarly, a botnet will show
communication from a set of domain names generated
randomly by the perpetrator to a set of compromised com-
puters, and this set 1s clustered in the clique analysis.

For an established clique, the addition of a new domain
names could be risky and indicate that a botnet owner may
have mapped a new domain name to the IP of a newly
infected computer, which may happen more rapidly than
legitimate Internet content providers. Cliques help to reduce
the domain-IP complexity and allow for all nodes to con-
tribute to the profile variables of a clique which can be used
to score the riskiness of the domain names and IP addresses
associated with i1t. Hosts for well-known legitimate content
delivery networks often are “whitelisted” to reduced {false
positives, but these whitelists are never complete and cannot
be updated suiliciently rapidly to account for the infrastruc-
tural and technological changes at every content provider.
Most of the time many nodes will remain 1n the whitelist (for
instance www.google.com will never be dropped and 1is
frequently queried), and their obvious legitimacy on the
whitelist can be propagated to other more transient inira-
structural domains and IP’s operated by the content provider

which are tightly bound 1n the same clique, as shown in FIG.
8.

In the clique technology described, nodes forming a
binary relationship are either connected or not connected.
An extension to this 1idea provides for a continuous-valued
weilght associated with each edge 1n order to propagate some
measurement of risk from one node to another. In this
scenario one set of nodes corresponds to the individual
computers being monitored and the other set of nodes either
the queried hostname or IP addresses returned by the que-
ries. In distinction to a content delivery network (where all
IP addresses and domains connected are legitimate) or a
botnet (where all IP addresses and domains connected are
malicious), 1n this case a compromised internal computer
will make queries to both legitimate and malicious hosts.
Frequently a small number of IP addresses and domains
corresponding to a botnet may be positively identified, but
because of aggressive domain and IP fluxing the botnet 1s
continuously updating and moving. There are a multiple of
methods to combine risky C&C {from one or more 1nstalla-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions of the monitor, one example being a Bayesian Belief
Propagation algorithm on a bipartite host computer to
domain (or IP) graph.

Once a domain/IP 1s positively 1dentified as malicious it
1s assigned a large risk value, and host computer’s which
have connected to 1t have the niskiness propagate through
edges of the graph and are thus risky. An internal computer
at high risk which also has communicated with a domain of
unknown risk thereby propagates some of its risk factor to
all nodes 1t has connected with. These domains with elevated
(but not certain) risk, propagate their risk level to new
computers which have communicated with it. Any other
computer which communicates with this same domain 1s
thus at elevated risk. Other well connected domains which
communicate with a large variety of computers are much
less likely to be nisky since at a global level that vast
majority ol computers are not malicious and have not gone
to malicious sites. Risk 1s propagated from known detected
malicious domains across the network using the Bayesian
beliel propagation algorithm to inform and score internal
computers by their interconnectedness to risk. The network
1s “seeded” with some ground truth nisk levels (known
positive and negative domains) and riskiness propagated
until equilibrium 1s reached. A global consortium view of the
data provides elevated performance as compromises
detected 1n one organization, with a set of domains manually
confirmed to be malicious, yields information which can be
propagated to other organizations to score their internal
computers for riskiness if they connected to high risk
domains. In this scenario 1t 1s necessary to distinguish
queries emanating from distinct 1nternal computers being
protected, 1.e. prior to any internal NAT service 1n a router
which aggregates multiple IP streams 1nto one. This scenario
1s 1llustrated in FIG. 9.

Autonomous System Number (ASN) and Country Flux

An Autonomous System Number (ASN) represents one or
more ranges of IP address and enables a well-defined routing
structure for the Internet as tratlic 1s routed between major
network blocks. Within a legitimate organization, public IP
addresses typically belong to distinct ranges of addresses
which fall under an ASN assigned to larger organizations or
institutions that are a significant portion of the Internet (e.g.,
Internet service providers). An ASN 1s associated with a
distinct region such as a country.

The principles applied to quantitying IP flux can also be
applied to the ASNs and the host countries. ASN flux tends
to be more significant due to the higher diversity of infected
computers compared with the more structured assigned IP
addresses within a legitimate organization. As a result, the IP
addresses of a botnet tend to belong to many different ASNs
and countries while the legitimate organizations IP addresses
fall under a single ASN or for very large organizations a few
ASNSs.

Global Intelligent Profile (GIP) Whitelist

Many domains that are heavily utilized or labeled as false
positives via a case manager can be filtered out of the scored
domain list. The heavily utilized domains can be automati-
cally identified using a Global Intelligent Profile (GIP)
which dynamically keeps track of query frequency ifor
domains across the entire consortium and ages ofl the
domains which are less popular. By filtering out the most
commonly used domains, resources can be directed else-
where and additional false positives avoided. Instead of
applying a binary filter to the domain list, the score could
incorporate a feature whose value 1s inversely proportional
to the query volume for a domain. For example, I=-log(m+
X) where X 1s volume and m 1s median volume of all domain
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names. This seli-learning whitelist table 1s very important
for timely identification and retirement of whitelisted
domains/IP addresses and be a big improvement over the
static white lists 1n use today.

TTL Daversity

Some servers are more valuable to the botnet owner than
others based on the host’s uptime and network status.
Servers that are on all the time and with IP addresses that are
static or change infrequently are not only more reliable for
the botnet’s purposes but can also have resource records
with longer TTLs. The longer the TTL, the longer the
malware’s host can cache the resource record thereby reduc-
ing the number of times the malware exposes itself to
detection via DNS queries. On the other hand, botnet servers
with shorter uptimes and dynamic IP addresses require the
botnet owner to lower the TTLs to improve the malware’s
chances of connecting. A high diversity of TTLs would be
less common for web service providers or other companies
with large cliques since their servers tend to have a more
uniform configuration. Thus high TTL diversity 1s an addi-
tional factor when calculating the riskiness of query names.

Beaconing

Beaconing 1s the malware’s DNS querying behavior as 1t
tries to contact a botnet server to set up C&C. Beaconing can
simply be a repetition of queries from the malware until a
botnet server IP address 1s obtained and after a successtul
connection to the server. Another scenario 1s for the botnet
server to have the responding DNS message carry the
communication payload. Note that TCP 1s used by DNS for
messages that are greater than 512 bytes 1n size and mes-
sages ol the DNS message type ‘TX'T’ can carry machine
readable data.

Malware 1mitiates a C&C by first querying for one more
domain names that are hard coded or dynamically generated.
In the scenarios above, the name servers or hosts associated
with the resolved IP addresses may be offline and do not
respond. In such a case, the malware may sleep for a period
of time and then try to connect again. If the TTLs of the
domain names have expired, then additional DNS queries
will be made by the malware. The delta time between
queries to legitimate domains could match that of the TTL
since queries to a name server are not needed until the
resource record in the client cache expires. Of course, the
query delta time for malware could be designed to match the
TTL of the botnet resource records.

The beaconing signal can be detected by 1ts time interval
pattern since it 1s not trivial for software to emulate human
behavior. A simple beaconing signal would repeat at a
constant interval and 1s easily detected by the second order
moment (e.g., standard deviation) of delta time which goes
to zero as the delta time becomes constant. If the malware
were to use a uniform random number generator to deter-
mine the interval between queries, then an entropy measure,
1.€.,

H(X)=-) plxlogp(x)
k=0

of the mterval would obtain 1ts maximum value. Predefined
regular intervals (e.g., 60 seconds or patterns such as 30, 60,
120, 30, 60, 120, . . . ) increase the structure of the delta time
probability distribution and produce much lower entropy
measures. Also, profiling allows for query intervals for the
internal computer to be quantified and compared to any new
queries from the internal computer. Additionally, the queried
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domain’s historical profile as well as queries for similar
domains across the subnet, network or consortium can
provide a benchmark against which the new query can be
compared.

One or more aspects or features of the subject matter
described herein can be realized in digital electronic cir-
cuitry, integrated circuitry, specially designed application
specific 1ntegrated circuits (ASICs), field programmable
gate arrays (FPGAs) computer hardware, firmware, sofit-
ware, and/or combinations thereof. These various aspects or
features can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which can be special or general purpose, coupled
to recelve data and instructions from, and to transmit data
and 1nstructions to, a storage system, at least one input
device, and at least one output device. The programmable
system or computing system may include clients and serv-
ers. A client and server are generally remote from each other
and typically interact through a communication network.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

These computer programs, which can also be referred to
as programs, software, software applications, applications,
components, or code, mclude machine instructions for a
programmable processor, and can be implemented 1n a
high-level procedural and/or object-oriented programming
language, and/or 1n assembly/machine language. As used
herein, the term “machine-readable medium™ refers to any
computer program product, apparatus and/or device, such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine 1nstructions and/or data to a programmable proces-
sor, including a machine-readable medium that receives
machine mstructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store such
machine instructions non-transitorily, such as for example as
would a non-transient solid-state memory or a magnetic hard
drive or any equivalent storage medium. The machine-
readable medium can alternatively or additionally store such
machine instructions i1n a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
cores.

To provide for interaction with a user, one or more aspects
or features of the subject matter described herein can be
implemented on a computer having a display device, such as
for example a cathode ray tube (CRT), a liquid crystal
display (LCD) or a light emitting diode (LED) monitor for
displaying information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,
by which the user may provide mput to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received 1 any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible mput devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni-
tion hardware and software, optical scanners, optical point-
ers, digital image capture devices and associated interpre-
tation software, and the like.
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The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa-
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few wvariations have been described in detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided in addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina-
tions and subcombinations of several further features dis-
closed above. In addition, the logic tlows depicted in the
accompanying figures and/or described herein do not nec-
essarilly require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.
What 1s claimed 1s:
1. A method of detecting a cyber security threat risk 1n a
computer network, the method comprising:
monitoring one or more network messages or events
associated with one or more client computers that
clectronically communicate with at least one server,
cach of the one or more client computers and the at
least one server having an IP address;
generating a real-time entity profile for at least one of the
one or more client computers, the real-time entity
profile comprising one or more variables associated
with electronic communication between the one or
more client computers and the at least one server, the
one or more variables including at least IP addresses
associated with the momitored one or more network
messages or events;
determining a variance from the real-time entity profile
containing one or more cyber threat features for each of
the at least one or more client computers, the variance
representing cyber security threat risk that the security
ol any of the one or more client computers 1s compro-
mised and the client computer network message or
event traflic represents 1llegitimate data transmission;

generating a real time calibration profile for the at least
one of the one or more client computers based on the
real time entity profile varniable values and the deter-
mined variance; and

generating, using the real-time calibration profiles and the

real time entity profile and associated one or more
variables, one or more scores, each of the one or more
scores representing a probability of the cyber-security
threat risk.

2. The method 1n accordance with claim 1, wherein the
real-time entity profile further comprises DNS domain query
names, resolved IP addresses of query domain names, client
computer-query domain name pairs, pairs of query domain
name and corresponding resolved IP address, or query
domain name-IP address cliques based on each of the one or
more messages.

3. The method 1n accordance with claim 1, wherein the
real-time entity profile further comprises network flow
directed to server IPs, identification of the transport layer
teatures including IP, UDP, and TCP data tflows, fluxing of
the domain name to associated server IP, client-server IP
pairs and associated typical event time, data size, and port
numbers, favorite server IP and domain names for associated
network tlows, or network flow port activity associated with
the client and server IP.
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4. The method 1n accordance with claim 1, wherein the
real-time entity profile further comprises application layer
protocols associated with the one or more network messages
or events.
5. The method 1n accordance with claim 1, further com-
prising aggregating the monitoring from two or more moni-
toring systems to generate aggregated entity profiles.
6. The method 1n accordance with claim 5, further com-
prising generating aggregated scores based on the aggre-
gated entity profiles.
7. A computer program product comprising a non-transi-
tory machine-readable medium storing instructions that,
when executed by at least one programmable processor,
cause the at least one programmable processor to perform
operations comprising:
monitoring, by the at least one programmable processor,
one or more network messages or events associated
with one or more client computers that electronically
communicate with at least one server, each of the one
or more client computers and the at least one server
having an IP address;
generating, by the at least one programmable processor, a
real-time entity profile for at least one of the one or
more client computers, the real-time entity profile com-
prising one or more variables associated with electronic
communication between the one or more client com-
puters and the at least one server, the one or more
variables including at least IP addresses associated with
the monitored one or more network messages or events;

determining, by the at least one programmable processor,
a variance from the real-time entity profile containing
one or more cyber threat features for each of the at least
one or more client computers, the variance representing
cyber security threat risk that the security of any of the
one or more client computers 1s compromised and the
client computer network message or event traflic rep-
resents illegitimate data transmission;

generating, by the at least one programmable processor, a

real time calibration profile for the at least one of the
one or more client computers based on the real time
entity profile variable values and the determined vari-
ance; and

generating, by the at least one programmable processor

using the real-time calibration profiles and the real time
entity profile and associated one or more variables, one
or more scores, each of the one or more scores repre-
senting a probability of the cyber-security threat risk.

8. The computer program product i accordance with
claiam 7, wherein the real-time entity profile further com-
prises DNS domain query names, resolved IP addresses of
query domain names, client computer-query domain name
pairs, pairs of query domain name and corresponding
resolved IP address, or query domain name-IP address
cliques based on each of the one or more messages.

9. The computer program product in accordance with
claiam 7, wherein the real-time entity profile further com-
prises network flow directed to server IPs, identification of
the transport layer features including 1P, UDP, and TCP data
flows, fluxing of the domain name to associated server IP,
client-server IP pairs and associated typical event time, data
s1ze, and port numbers, favorite server IP and domain names
for associated network flows, or network flow port activity
associated with the client and server IP.

10. The computer program product in accordance with
claiam 7, wherein the real-time entity profile further com-
prises application layer protocols associated with the one or
more network messages or events.
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11. The computer program product in accordance with
claim 7, further comprising aggregating the monitoring from
two or more monitoring systems to generate aggregated
entity profiles.

12. The computer program product in accordance with
claim 11, further comprising generating aggregated scores
based on the aggregated entity profiles.

13. A system comprising:
at least one programmable processor; and

a machine-readable medium storing instructions that,
when executed by the at least one processor, cause the
at least one programmable processor to perform opera-
tions comprising:
monitor one or more network messages or events

associated with one or more client computers that
electronically communicate with at least one server,

cach of the one or more client computers and the at
least one server having an IP address;

generate a real-time entity profile for at least one of the
one or more client computers, the real-time entity
profile comprising one or more variables associated
with electronic communication between the one or
more client computers and the at least one server, the
one or more variables including at least IP addresses
associated with the monitored one or more network
messages or events;

determine a variance from the real-time entity profile
containing one or more cyber threat features for each
of the at least one or more client computers, the
variance representing cyber security threat risk that
the security of any of the one or more client com-
puters 1s compromised and the client computer net-
work message or event traflic represents 1llegitimate
data transmission;
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generate a real time calibration profile for the at least
one of the one or more client computers based on the
real time entity profile variable values and the deter-
mined variance; and

generate, using the real-time calibration profiles and the
real time enfity profile and associated one or more
variables, one or more scores, each of the one or
more scores representing a probability of the cyber-
security threat risk.

14. The system 1n accordance with claim 13, wherein the
real-time entity profile further comprises DNS domain query
names, resolved IP addresses of query domain names, client
computer-query domain name pairs, pairs of query domain
name and corresponding resolved IP address, or query
domain name-IP address cliques based on each of the one or
more messages.

15. The system 1n accordance with claim 13, wherein the
real-time entity profile further comprises network flow
directed to server IPs, identification of the transport layer
teatures including 1P, UDP, and TCP data flows, fluxing of
the domain name to associated server IP, client-server IP
pairs and associated typical event time, data size, and port
numbers, favorite server IP and domain names for associated
network tlows, or network flow port activity associated with
the client and server IP.

16. The system 1n accordance with claim 13, wherein the
real-time enftity profile further comprises application layer
protocols associated with the one or more network messages
or events.

17. The system 1n accordance with claim 13, wherein the
operations further comprise aggregate the monitoring from
two or more monitoring systems to generate aggregated
entity profiles.

18. The system 1n accordance with claim 17, wherein the
operations further comprise generate aggregated scores

based on the aggregated entity profiles.
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