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Figure 8
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Figure 9

902

An “open block™ 1s partially programmed

Request to continue programming the open block

Perform modified Erase Verity (EV) operation

$04

908
Identify boundary of open block
910 o .
Set EV bias voltage for unprogrammed wordlines
below the boundary

906

912 Set BV read voltage for programmed wordlines above

the boundary
914
Pertorm erase verify operation with different voltages
Check for read disturb (RD) problems with unprogrammed wordlines
918 | . o
Count bits/cell in the erase state

916

Above - —~— Below
Threshold - W/threshold =" Threshold
924 * R
922 v - Read disturb problem
—\'NO r}i?‘)?)lifﬁu b identitied - stop open
et block programming




US 9,530,517 B2

1

READ DISTURB DETECTION IN OPEN
BLOCKS

TECHNICAL FIELD

This application relates generally to memory devices.
More specifically, this application relates to a process for
allowing read operations 1n open blocks by detecting read
disturb for unprogrammed wordlines.

BACKGROUND

Non-volatile memory systems, such as flash memory,
have been widely adopted for use in consumer products.
Flash memory may be found 1in different forms, for example
in the form of a portable memory card that can be carried
between host devices or as a solid state disk (SSD) embed-
ded 1n a host device. Flash memory may have read disturb
(RD) errors caused when the programming of one cell
modifies a neighboring cell. This may occur when one
wordline 1s programmed and that programming voltage
leaks to a neighboring wordline. Read disturb may be a
problem when attempting to read from an open block.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of an example non-volatile
memory system.

FIG. 1B 1s a block diagram of a storage module that
includes a plurality of non-volatile memory systems.

FIG. 1C 1s a block diagram of a hierarchical storage
system.

FIG. 2A 1s a block diagram of exemplary components of
a controller of a non-volatile memory system.

FIG. 2B 1s a block diagram of exemplary components of
a non-volatile memory of a non-volatile memory storage
system.

FIG. 3 1s an example physical memory organization of the
system of FIGS. 1A-2B.

FIG. 4 1s an expanded view of a portion of the physical
memory of FIG. 3.

FIG. 5 1s a diagram 1llustrating charge levels 1n a multi-
level cell memory operated to store two bits of data in a
memory cell.

FIG. 6 1s a diagram 1llustrating charge levels 1n a multi-
level cell memory operated to store three bits of data 1n a
memory cell.

FIG. 7 1s a diagram of an erase verily operation on
wordlines using a bias voltage.

FIG. 8 1s a diagram of a modified erase verily operation
that uses a different voltages for programmed wordlines.

FIG. 9 1s a flowchart describing read disturb detection in
an open block using the modified erase verity operation.

DESCRIPTION OF TH.

(L.
1]

EMBODIMENTS

Read scrub may be used to refresh the existing data to
prevent a natural degradation of the data content. The natural
degradation may be caused by reads being performed on the
flash (1.e. read disturb), or by data sitting for a long time (1.¢.
data retention). To prevent this degradation, the system
would like to detect which data 1s about to go bad, then read
it, ECC correct 1t, and write it to a new location. Detection
of before data goes bad 1s dithicult because over-detection
may result in excessive data movement. Upon detection, a
read scrub 1s not part of the user operation, so an internal
read scrub should avoid occupying user observed time by
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2

being 1n the background or during idle time. For a removable
product, 1dle time may be sparse because users may remove
the “removable” flash from the host, so power 1s not present.

A storage device with a memory may include read disturb
(RD) detection when reading open blocks. Read disturb
errors may be caused when cells in a memory block change
over time (e.g. become programmed unintentionally). An
open or partially programmed block that 1s read frequently
may have read disturb errors of the unprogrammed cells/
wordlines. The detection of any read disturb effects may be
necessary before continuing to program an open block.

Alter every erase attempt, an erase verily operation 1s
needed to determine whether all the cells have been suc-
cessiully erased. If erase verily fails, another erase pulse 1s
needed. A modified erase verily operation for the open block
1s used 1n which programmed wordlines are subject to a
higher erase verily voltage (e.g. read voltage), while the
unprogrammed wordlines are subject to the usual erase
verily bias voltage. This modified erase verily operation can
be used to detect any defects or read disturb errors from the
unprogrammed wordlines. As a single operation, the modi-
fied erase verily operation does not result in a speed loss or
require significant processing time/resources.

An open block 1s any block that has been partially
programmed. The programming of the block was started, but
not finished such that a portion of the wordlines are pro-
grammed, while the remaiming wordlines are unpro-
grammed. Conversely, an erased block 1s a block that
includes all unprogrammed wordlines and a closed block 1s
a block that 1s programmed with valid data and without any
open cells/wordlines. Read operations of the programmed
wordline of an open block may disturb (read disturb) the
unprogrammed wordlines. As block sizes increase, program-
ming of an entire block may be more dithicult, which
requires more reads from open blocks. In other words, 1t may
be more eflicient to only partially program a block and
access the partially programmed portion of the open block.
Accordingly, the modified erase verity operation described
below can be used to ensure data accuracy and reduce read
disturb errors when reading open blocks.

FIG. 1A 1s a block diagram illustrating a non-volatile
memory system. The non-volatile memory system 100
includes a controller 102 and non-volatile memory that may
be made up of one or more non-volatile memory die 104. As
used herein, the term die refers to the set of non-volatile
memory cells, and associated circuitry for managing the
physical operation of those non-volatile memory cells, that
are Tormed on a single semiconductor substrate. Controller
102 interfaces with a host system and transmits command
sequences for read, program, and erase operations to non-
volatile memory die 104. The non-volatile memory die 104
may store an operating system for the host.

Examples of host systems include, but are not limited to,
personal computers (PCs), such as desktop or laptop and
other portable computers, tablets, mobile devices, cellular
telephones, smartphones, personal digital assistants (PDAs),
gaming devices, digital still cameras, digital movie cameras,
and portable media players. For portable memory card
applications, a host may include a built-in receptacle for one
or more types of memory cards or flash drives, or a host may
require adapters into which a memory card 1s plugged. The
memory system may include 1ts own memory controller and
drivers but there may also be some memory-only systems
that are instead controlled by software executed by the host
to which the memory 1s connected. In some memory systems
containing the controller, especially those embedded within
a host, the memory, controller and drivers are often formed
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on a single integrated circuit chip. The host may commu-
nicate with the memory card using any communication
protocol such as but not limited to Secure Digital (SD)
protocol, Memory Stick (MS) protocol and Universal Serial
Bus (USB) protocol.

The controller 102 (which may be a flash memory con-
troller) can take the form of processing circuitry, a micro-
processor or processor, and a computer-readable medium
that stores computer-readable program code (e.g., software
or firmware) executable by the (micro)processor, logic
gates, switches, an application specific integrated circuit
(ASIC), a programmable logic controller, and an embedded
microcontroller, for example. The controller 102 can be
configured with hardware and/or firmware to perform the
various functions described below and shown in the flow
diagrams. Also, some of the components shown as being
internal to the controller can also be stored external to the
controller, and other components can be used. Additionally,
the phrase “operatively in communication with” could mean
directly 1n communication with or indirectly (wired or
wireless) 1 communication with through one or more
components, which may or may not be shown or described
herein.

As used herein, a flash memory controller 1s a device that
manages data stored on flash memory and communicates
with a host, such as a computer or electronic device. A flash
memory controller can have various functionality 1n addition
to the specific functionality described herein. For example,
the flash memory controller can format the flash memory to
ensure the memory 1s operating properly, map out bad flash
memory cells, and allocate spare cells to be substituted for
tuture failed cells. Some part of the spare cells can be used
to hold firmware to operate the flash memory controller and
implement other features. In operation, when a host needs to
read data from or write data to the flash memory, 1t will
communicate with the flash memory controller. If the host
provides a logical address to which data is to be read/written,
the flash memory controller can convert the logical address
received from the host to a physical address 1n the flash
memory. (Alternatively, the host can provide the physical
address). The flash memory controller can also perform
various memory management functions, such as, but not
limited to, wear leveling (distributing writes to avoid wear-
ing out specific blocks of memory that would otherwise be
repeatedly written to) and garbage collection (after a block
1s full, moving only the valid pages of data to a new block,
so the full block can be erased and reused).

Non-volatile memory die 104 may include any suitable
non-volatile storage medium, including NAND flash
memory cells and/or NOR flash memory cells. The memory
cells can take the form of solid-state (e.g., flash) memory
cells and can be one-time programmable, few-time program-
mable, or many-time programmable. The memory cells can
also be single-level cells (SLC), multiple-level cells (MLC),
triple-level cells (TLC), or use other memory cell level
technologies, now known or later developed. Also, the
memory cells can be fabricated in a two-dimensional or
three-dimensional fashion.

The interface between controller 102 and non-volatile
memory die 104 may be any suitable flash interface, such as
Toggle Mode 200, 400, or 800. In one embodiment, memory
system 100 may be a card based system, such as a secure
digital (SD) or a micro secure digital (micro-SD) card. In an
alternate embodiment, memory system 100 may be part of
an embedded memory system. For example, the flash
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4

memory may be embedded within the host, such as in the
form of a solid state disk (SSD) drive installed 1n a personal
computer.

Although 1 the example illustrated in FIG. 1A, non-
volatile memory system 100 includes a single channel
between controller 102 and non-volatile memory die 104,
the subject matter described herein 1s not limited to having
a single memory channel. For example, in some NAND
memory system architectures, such as in FIGS. 1B and 1C,
2, 4, 8 or more NAND channels may exist between the
controller and the NAND memory device, depending on
controller capabilities. In any of the embodiments described
herein, more than a single channel may exist between the
controller and the memory die, even 1f a single channel 1s
shown 1n the drawings.

FIG. 1B 1illustrates a storage module 200 that includes
plural non-volatile memory systems 100. As such, storage
module 200 may include a storage controller 202 that
interfaces with a host and with storage system 204, which
includes a plurality of non-volatile memory systems 100.
The interface between storage controller 202 and non-
volatile memory systems 100 may be a bus interface, such
as a serial advanced technology attachment (SATA) or
peripheral component interface express (PCle) interface.
Storage module 200, 1n one embodiment, may be a solid
state drive (SSD), such as found in portable computing
devices, such as laptop computers, and tablet computers.

FIG. 1C 1s a block diagram illustrating a hierarchical
storage system. A hierarchical storage system 210 includes
a plurality of storage controllers 202, each of which control
a respective storage system 204. Host systems 212 may
access memories within the hierarchical storage system via
a bus interface. In one embodiment, the bus interface may be
a non-volatile memory express (NVMe) or a fiber channel
over Ethernet (FCoE) interface. In one embodiment, the
system 1llustrated in FIG. 1C may be a rack mountable mass
storage system that 1s accessible by multiple host computers,
such as would be found 1n a data center or other location
where mass storage 1s needed.

FIG. 2A 1s a block diagram illustrating exemplary com-
ponents ol controller 102 1n more detail. Controller 102

includes a front end module 108 that interfaces with a host,
a back end module 110 that interfaces with the one or more
non-volatile memory die 104, and various other modules
that perform functions which will now be described 1n detail.

A module may take the form of a packaged functional
hardware unit designed for use with other components, a
portion of a program code (e.g., software or firmware)
executable by a (micro)processor or processing circuitry that
usually performs a particular function of related functions,
or a seli-contained hardware or software component that
interfaces with a larger system, for example. For example,
cach module may include an application specific integrated
circuit (ASIC), a Field Programmable Gate Array (FPGA),
a circuit, a digital logic circuit, an analog circuit, a combi-
nation of discrete circuits, gates, or any other type of
hardware or combination thereof. Alternatively or i addi-
tion, each module may include memory hardware, such as a
portion of the memory 104, for example, that comprises
instructions executable with a processor to implement one or
more of the features of the module. When any one of the
modules includes the portion of the memory that comprises
instructions executable with the processor, the module may
or may not include the processor. In some examples, each
module may just be the portion of the memory 104 or other
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physical memory that comprises instructions executable
with the processor to implement the features of the corre-
sponding module.

Modules of the controller 102 may include an erase
verification module 112 and/or a read disturb detection
module 113 present on the die of the controller 102. As
explained in more detail below 1n conjunction with FIGS.
7-8, the erase verification module 112 performs a modified
version of an erase verily operation on an open block for
determining when unprogrammed cells are properly erased.
This erase modification may be used with the read disturb
detection module 113, which utilizes the results from the
modified erase verily operation to determine 1f there are any
read disturb errors in the unprogrammed cells/wordlines of
an open block. The operation of the erase verification
module 112 and the read disturb detection module 113 are
explained 1 more detail below 1n conjunction with FIG. 9.
The erase modification algorithm may be 1n the firmware
and executed by the controller.

Referring again to modules of the controller 102, a bufler
manager/bus controller 114 manages buflers 1 random
access memory (RAM) 116 and controls the internal bus
arbitration of controller 102. A read only memory (ROM)
118 stores system boot code. Although illustrated 1n FIG. 2A
as located separately from the controller 102, in other
embodiments one or both of the RAM 116 and ROM 118
may be located within the controller. In yet other embodi-
ments, portions of RAM and ROM may be located both
within the controller 102 and outside the controller. Further,
in some 1implementations, the controller 102, RAM 116, and
ROM 118 may be located on separate semiconductor die.

Front end module 108 includes a host interface 120 and a
physical layer mterface (PHY) 122 that provide the electri-
cal interface with the host or next level storage controller.
The choice of the type of host interface 120 can depend on
the type ol memory being used. Examples of host interfaces
120 include, but are not limited to, SATA, SATA Express,
SAS, Fibre Channel, USB, PCle, and NVMe. The host
interface 120 typically facilitates transfer for data, control
signals, and timing signals.

Back end module 110 includes an error correction con-
troller (ECC) engine 124 that encodes the data bytes
recetved from the host, and decodes and error corrects the
data bytes read from the non-volatile memory. A command
sequencer 126 generates command sequences, such as pro-
gram and erase command sequences, to be transmitted to
non-volatile memory die 104. A RAID (Redundant Array of
Independent Drives) module 128 manages generation of
RAID parity and recovery of failed data. The RAID parity
may be used as an additional level of integrity protection for
the data being written into the non-volatile memory system
100. In some cases, the RAID module 128 may be a part of
the ECC engine 124. A memory interface 130 provides the
command sequences to non-volatile memory die 104 and
receives status information from non-volatile memory die
104. In one embodiment, memory interface 130 may be a
double data rate (DDR) interface, such as a Toggle Mode
200, 400, or 800 interface. A flash control layer 132 controls
the overall operation of back end module 110.

Additional components of system 100 1llustrated 1n FIG.
2A include media management layer 138, which performs
wear leveling of memory cells of non-volatile memory die
104. System 100 also includes other discrete components
140, such as external electrical interfaces, external RAM.,
resistors, capacitors, or other components that may interface
with controller 102. In alternative embodiments, one or
more of the physical layer interface 122, RAID module 128,
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6

media management layer 138 and buller management/bus
controller 114 are optional components that are not neces-
sary 1n the controller 102.

The FTL or MML 138 may be imtegrated as part of the
flash management that may handle flash errors and interfac-
ing with the host. In particular, MML may be a module 1n
flash management and may be responsible for the internals
of NAND management. In particular, the MML 138 may
include an algorithm 1n the memory device firmware which
translates writes from the host into writes to the flash
memory 104. The MML 138 may be needed because: 1) the
flash memory may have limited endurance; 2) the flash
memory 104 may only be written in multiples of pages;
and/or 3) the flash memory 104 may not be written unless 1t
1s erased as a block. The MML 138 understands these
potential limitations of the flash memory 104 which may not
be visible to the host. Accordingly, the MML 138 attempts
to translate the writes from host mto writes into the flash
memory 104. As described below, erratic bits may be
identified and recorded using the MML 138. This recording
of erratic bits can be used for evaluating the health of blocks.

FIG. 2B 1s a block diagram illustrating exemplary com-
ponents of non-volatile memory die 104 1n more detail.
Non-volatile memory die 104 includes peripheral circuitry
141 and non-volatile memory array 142. Non-volatile
memory array 142 includes the non-volatile memory cells
used to store data. The non-volatile memory cells may be
any suitable non-volatile memory cells, including NAND
flash memory cells and/or NOR flash memory cells in a two
dimensional and/or three dimensional configuration. Periph-
eral circuitry 141 includes a state machine 152 that provides
status 1information to controller 102. Non-volatile memory
die 104 further includes a data cache 156 that caches data.

FIG. 3 conceptually 1llustrates an organization of the flash
memory 116 (FIG. 1) as a cell array. The flash memory 116
may include multiple memory cell arrays which are each
separately controlled by a single or multiple memory con-
trollers 118. Four planes or sub-arrays 302, 304, 306, and
308 of memory cells may be on a single integrated memory
cell chip, on two chips (two of the planes on each chip) or
on four separate chips. The specific arrangement 1s not
important to the discussion below. Of course, other numbers
of planes, such as 1, 2, 8, 16 or more may exist 1n a system.
The planes are individually divided into groups of memory
cells that form the minimum unit of erase, hereinafter
referred to as blocks. Blocks of memory cells are shown in
FIG. 3 by rectangles, such as blocks 310, 312, 314, and 316,
located in respective planes 302, 304, 306, and 308. There
can be any number of blocks in each plane.

The block of memory cells 1s the unit of erase, and the
smallest number of memory cells that are physically eras-
able together. For increased parallelism, however, the blocks
may be operated 1n larger metablock units. One block from
cach plane 1s logically linked together to form a metablock.
The four blocks 310, 312, 314, and 316 are shown to form
one metablock 318. All of the cells within a metablock are
typically erased together. The blocks used to form a meta-
block need not be restricted to the same relative locations
within their respective planes, as 1s shown in a second
metablock 320 made up of blocks 322, 324, 326, and 328.
Although it 1s usually preferable to extend the metablocks
across all of the planes, for high system performance, the
memory system can be operated with the ability to dynami-
cally form metablocks of any or all of one, two or three
blocks in different planes. This allows the size of the
metablock to be more closely matched with the amount of
data available for storage 1n one programming operation. As
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described below, the sentinel blocks may be an individual
block or a combination of blocks, including one or more
metablocks.

The individual blocks are 1 turn divided for operational
purposes 1nto pages ol memory cells, as illustrated i FIG.
4. The memory cells of each of the blocks 310, 312, 314, and
316, for example, are each divided into eight pages PO-P7.
Alternatively, there may be 16, 32 or more pages of memory
cells within each block. The page 1s the umit of data
programming and reading within a block, containing the
mimmum amount of data that are programmed or read at one
time. However, in order to increase the memory system
operational parallelism, such pages within two or more
blocks may be logically linked into metapages. A metapage
402 1s 1llustrated 1n FIG. 4, being formed of one physical
page from each of the four blocks 310, 312, 314, and 316.
The metapage 402, for example, includes the page P2 1n
cach of the four blocks but the pages of a metapage need not
necessarily have the same relative position within each of
the blocks. A metapage may be the maximum unit of
programming.

As described, an open block 1s any memory group that 1s
partially programmed. The reference to a block 1s merely
exemplary and an open block may include sizes other than
a block. Specifically, references to a block are merely one
example of a size of a group of memory, but are utilized
throughout this specification for simplicity. In other words,
the embodiments including the modified erase verity opera-
tion and read disturb detection are not limited to the block
size and the reference to an open block may include sizes
that are smaller or larger than the block size. For example,
an open block may be any of the metablocks described with
respect to FIGS. 3-4 or may be smaller than the block size,
such as the page size. An open block 1s a group of memory
that 1s partially programmed.

The memory cells may be operated to store two levels of
charge so that a single bit of data 1s stored in each cell. This
1s typically referred to as a binary or single level cell (SLC)
memory. SLC memory may store two states: 0 or 1. Alter-
natively, the memory cells may be operated to store more
than two detectable levels of charge in each charge storage
clement or region, thereby to store more than one bit of data
in each. This latter configuration 1s referred to as multi-level
cell (MLC) memory. For example, MLC memory may store
four states and can retain two bits of data: 00 or 01 and 10
or 11. Alternatively, MLC memory may store eight states for
retaiming three bits of data. FIG. 5 1llustrates MLC memory
with two bits of data (four states) and FIG. 6 1llustrates MLC
memory with three bits of data (eight states). The charge
storage elements of the memory cells are most commonly
conductive floating gates but may alternatively be non-
conductive dielectric charge trapping materal.

FIG. 5 illustrates one implementation of the four charge
levels used to represent two bits of data 1n a memory cell. In
implementations of MLC memory operated to store two bits
of data in each memory cell, each memory cell 1s configured
to store four levels of charge corresponding to values of
“11,” “01,” ““10,” and “00.” Each bit of the two bits of data
may represent a page bit of a lower page or a page bit of an
upper page, where the lower page and upper page span
across a series of memory cells sharing a common word line.
Typically, the less significant bit of the two bits of data
represents a page bit ol a lower page and the more significant
bit of the two bits of data represents a page bit of an upper
page.

FIG. 5 15 labeled as LM mode which may be referred to
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regarding the lower at middle or lower-middle intermediate
state. The LM intermediate state may also be referred to as
a lower page programmed stage. A value of “11” corre-
sponds to an un-programmed state of the memory cell.
When programming pulses are applied to the memory cell to
program a page bit of the lower page, the level of charge 1s
increased to represent a value of “10” corresponding to a
programmed state of the page bit of the lower page. The
lower page may be considered a logical concept that repre-
sents a location on a multi-level cell (MLC). If the MLC 1s
two bits per cell, a logical page may include all the least
significant bits of the cells on the wordline that are grouped
together. In other words, the lower page 1s the least signifi-
cant bits. For a page bit of an upper page, when the page bit
of the lower page 1s programmed (a value of “107), pro-
gramming pulses are applied to the memory cell for the page
bit of the upper page to increase the level of charge to
correspond to a value of “00” or “10” depending on the
desired value of the page bit of the upper page. However, 1f
the page bit of the lower page 1s not programmed such that
the memory cell 1s 1n an un-programmed state (a value of
“117), applying programming pulses to the memory cell to
program the page bit of the upper page increases the level of
charge to represent a value of “01” corresponding to a
programmed state of the page bit of the upper page.

FIG. 6 1s a diagram 1llustrating charge levels 1n a multi-
level cell memory operated to store three bits of data 1n a
memory cell. FIG. 6 illustrates MLC memory with three bits
of data which are stored 1n a single cell by establishing eight
states or voltage level distinctions. This memory may be
referred to as X3 memory. FIG. 6 illustrates the stages that
may be used for programming three bit memory. In a first
stage, the voltage levels are divided out at two levels, and at
the second stage (i.e. foggy program), those two levels are
divided up 1nto the eight states without setting the distinct
levels between states. At the third stage (1.e. fine program),
the voltage levels for each of the eight states are separated
and distinct. The fine programming establishes the voltage
levels for each of the states. As compared with two bit
memory, the three bit memory 1n FIG. 6 requires more exact
programming voltages to avoid errors.

Electron movement or loss from the charge values may
result 1n problems (e.g. data retention problems or read
disturb errors). Read disturb (RD) errors may be caused
when cells mm a memory block change over time (e.g.
become programmed unintentionally). It may be due to a
particular cell being excessively read which may cause the
read disturb error for neighboring cells. In particular, a cell
that 1s not being read, but receives elevated voltage stress
because a neighboring cell 1s being read. Charge may collect
on tloating gates, which may cause a cell to appear to be
programmed. Read disturb may move the read voltage to
higher values. The read disturb error may result 1n a data
loss. ECC may correct the error and an erase cycle can reset
the programming of the cell.

Specifically, read disturb may include an inadvertent
transition from the erase state to the next state (sometimes
referred to as the A state). For example, in FIG. 5, this would
be a transition from 11 to 01, or in FIG. 6, this would be a
transition from 111 to 011. This mnadvertent transition may
be caused by voltage applied to neighboring wordlines/cells
that cause the erased state (e.g. 111) to have enough charge
to pass the next voltage level and into a different state (e.g.
011). Frequent read operations to the programmed word-
lines/cells may result 1n this 1nadvertent transition from the
erase state.
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The modified erase verily operation and read disturb
detection may be useful for any type of memory (including
2 bit per cell and 3 bit per cell memory). However, this
detection may be most useful for MLC memory with a
higher bit per cell. For example, with the finer voltage levels
of 3 bit per cell memory (shown in FIG. 6), there 1s an
increased likelihood of leakage and/or read disturb errors.
Accordingly, open block reading 1n three bit per cell MLC
memory 1s more likely to result 1 errors than open block
reading i 2 bit per cell memory.

FIG. 7 1s a diagram of an erase verily operation on
wordlines using a bias voltage. After every erase attempt, an
erase verily operation may be used to determine whether all
the cells have been successiully erased. In particular, an
erase verily operation confirms that unprogrammed/erased
wordlines are 1n fact unprogrammed or in the erase state.
The erase verily operation may provide an indication of how
many bits or cells are i1n the erase state. As mentioned,
frequent read operations of an open block may result 1n a
high bit error rate or even data corruption that 1s at least
partially due to read disturb.

The erase verily operation 1s applied to all wordlines at
substantially the same time as a single voltage pulse that 1s
applied across all the wordlines. If the erase verity operation
tails, another erase pulse may be needed. The erase pulse
may be low voltage level that 1s applied (e.g. -2 Volts) to set
the cells to the erase state. After an erase operation 1s
performed on a typical NAND string, an erase verily opera-
tion 1s performed by turning on the string-select and ground-
select transistors, applying a non-negative erase verily volt-
age to each control gate of memory transistors between two
select transistors, applying a bias voltage to the source of the
ground-select transistor, and determining i any current
flows through the NAND string. The erase verily voltage
minus the bias voltage, which 1s the voltage drop across the
gate and source (Vgs), should be slightly greater than the
crased threshold voltage of the worst case transistor to
ensure proper erase verification. FIG. 7 illustrates wordlines
of a block. In an erase verily operation, the erase verity bias
voltage 1s applied to every wordline in the block.

FIG. 8 1s a diagram of a modified erase verily operation
that uses a different voltages for programmed wordlines.
This modified erase verily operation may also be referred to
as a partial erase verily operation or a partial erase verify. An
open block includes programmed and unprogrammed word-
lines. The boundary illustrates where the programmed word-
lines are separated from the unprogrammed (erased) word-
lines. In this case, the boundary 1s at WL[n] where the nth
wordline 1s the first unprogrammed/erased wordline. All
wordlines before WL[n] are programmed (wordlines O
through n-1) and all wordlines from n through the last
wordline are unprogrammed or erased. The wordline WL[n]
may be referred to as the first open wordline and may be
used to 1dentily the boundary because the memory controller
(c.g. mapping) knows how many wordlines of the open
block have already been programmed. Identification of the
boundary can be performed on an open block because the
last programmed wordline for the open block i1s known.
Future programming of the open block would be occurring
at wordline n. Accordingly, the modified erase verily opera-
tion utilizes the boundary.

The modified erase verily operation utilizes a diflerent
voltage level for the programmed wordlines than the voltage
level that 1s used for the unprogrammed/erased wordlines.
As shown 1n FIG. 7, an erase verily bias voltage (e.g. -2
Volts) 1s applied. In FIG. 8, this erase verily bias voltage 1s
only applied to the unprogrammed/erased wordlines. Con-
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versely, an erase verily read voltage 1s applied to the
programmed wordlines (wordlines 0 through n-1). In one
embodiment, the erase verily read voltage 1s just the read
voltage level, which 1s a higher voltage, such as 7 Volts. The
crase verily read voltage can be any voltage level that does
not change the programmed value.

The modified erase verily operation shown 1n FIG. 8 may
be a single operation that substantially simultaneously
applies the two different voltages (to different wordlines).
The erase verily voltages could be applied to individual
wordlines, but that operation may be slower than applying
that voltage to multiple wordlines, or to all of the wordlines.
In other words, all wordlines may be verified at the same
time rather than one-by-one. Further, since the traditional
erase verily operation (e.g. FIG. 7) 1s applied to all of the
wordlines of a block simultaneously, there are fewer
memory changes that need to be implemented to utilize the
modified erase verily operation (FIG. 8) on all the wordlines
of a block. As described, the diflerences include 1dentifying
the boundary between programmed and unprogrammed, and
then applying two diflerent voltage levels for the modified
erase verily operation.

In one embodiment, the modified erase verily operation
may be performed on an open block before the open block
1s programmed again. In other words, before continuing or
fimshing the programming of an open block, the modified
erase verily operation can confirm that the unprogrammed/
crased wordlines in the open block are in fact unpro-
grammed and 1n the erased state. The modified erase verily
operation can provide a real-time detection of any 1ssues
with the unprogrammed wordlines. Conversely, a hot count
or counter method which counts reads i1s an attempt to
predict problems, whereas the modified erase verily opera-
tion reveals any problems in real-time.

FIG. 9 1s a flowchart describing read disturb detection 1n
an open block using the modified erase verily operation. In
block 902, a block 1s partially programmed (1.e. an “open
block™). The open block includes wordlines and cells that
are programmed and includes wordlines and cells that are
not programmed or 1n the erase state. In block 904, there
may be a programming request to continue programming in
the open block. The open block includes unprogrammed/
erased wordlines that can still be programmed, however, due
to read disturb concerns, the modified erase verily operation
906 may be performed before continuing to program the
open block. The modified erase verily operation 906 1is
further described with respect to FIG. 8 and may include
identifying the boundary 908 of the open block as shown 1n
FIG. 8. The erase verily bias voltage 1s set 910 of the
unprogrammed wordlines which are below the boundary (as
shown 1n FIG. 8) and the erase verily read voltage 1s set 912
for the programmed wordlines which are above the bound-
ary (as shown 1n FIG. 8). The erase verily operation with the
two voltage levels (bias voltage for unprogrammed word-
lines and read voltage for programmed wordlines) 1s per-
formed 914. This erase verily operation can be performed on
all wordlines together so that 1t does not slow down the
memory.

The modified erase verily operation 906 can be used for
checking for any read disturb problems with the unpro-
grammed wordlines 916. Using the modified erase verily
operation, the bits or cells 1n the erase state can be counted
918. The bits 1n the erase state are compared with a threshold
920. When the count of the bits in the erase state are above
the required threshold, there 1s no read disturb problem 922
and the open block can continue to be programmed by the
request 1n block 904. When the count of the bits in the erase
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state are below the required threshold, then 1t 1s indicative
that the unprogrammed wordlines are not 1n the erase state,
and a read disturb problem 1s identified 924. In block 924,
the request to continue programming the open block (904) 1s
denied because the unprogrammed wordlines cannot be
properly programmed. IT any wordlines fail the erase verily
operation, then the block may be considered to have failed
and the data may need to be transferred to another block. The
programmed data in the open block may be transferred to
another block or may remain in the open block, but the
unprogrammed wordlines of that open block will not be
programmed because of the detected problems. The thresh-
old value may be varied and may depend on the type, usage,
or age of the memory. For example, older memory may have
a higher threshold because 1t may be more prone to errors.
Other empirical data may be used for determinming the
threshold. In one embodiment, since the behavior of one
generation of memory may be more or less similar, the
threshold may be determined by initial characterization of
cach memory generation.

In the present application, semiconductor memory
devices such as those described 1n the present application
may include volatile memory devices, such as dynamic
random access memory (“DRAM”) or static random access
memory (“SRAM™) devices, non-volatile memory devices,
such as resistive random access memory (“ReRAM”), elec-
trically erasable programmable read only memory (“EE-
PROM?”), flash memory (which can also be considered a
subset of EEPROM), ferroelectric random access memory
(“FRAM?”), and magneto-resistive random access memory
(“MRAM™), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, flash memory devices
may be configured 1n a NAND or a NOR configuration.

The memory devices can be formed from passive and/or
active elements, in any combinations. By way of non-
limiting example, passive semiconductor memory elements
include ReRAM device elements, which 1n some embodi-
ments mclude a resistivity switching storage element, such
as an anti-fuse, phase change material, etc., and optionally a
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele-
ments include EEPROM and flash memory device elements,
which 1n some embodiments include elements containing a
charge storage region, such as a floating gate, conductive
nanoparticles, or a charge storage dielectric matenal.

Multiple memory elements may be configured so that they
are connected 1n series or so that each element 1s individu-
ally accessible. By way of non-limiting example, flash
memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. A NAND memory array may be configured so that the
array 1s composed of multiple strings of memory 1n which a
string 1s composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively,
memory elements may be configured so that each element 1s
individually accessible, e.g., a NOR memory array. NAND
and NOR memory configurations are exemplary, and
memory elements may be otherwise configured.

The semiconductor memory elements located within and/
or over a substrate may be arranged 1n two or three dimen-
s10ms, such as a two dimensional memory structure or a three
dimensional memory structure. In a two dimensional
memory structure, the semiconductor memory elements are
arranged 1n a single plane or a single memory device level.
Typically, in a two dimensional memory structure, memory
clements are arranged in a plane (e.g., 1n an x-z direction
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plane) which extends substantially parallel to a major sur-
face of a substrate that supports the memory elements. The
substrate may be a waler over or 1n which the layer of the
memory elements are formed or 1t may be a carrier substrate
which 1s attached to the memory elements after they are
formed. As a non-limiting example, the substrate may
include a semiconductor such as silicon.

The memory elements may be arranged in the single
memory device level mn an ordered array, such as i a
plurality of rows and/or columns. However, the memory
clements may be arrayed 1n non-regular or non-orthogonal
configurations. The memory elements may each have two or
more electrodes or contact lines, such as bit lines and word
lines.

A three dimensional memory array 1s arranged so that
memory e¢lements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (1.e., 1 the X, v and z directions, where the y
direction 1s substantially perpendicular and the x and z
directions are substantially parallel to the major surface of
the substrate). As a non-limiting example, a three dimen-
sional memory structure may be vertically arranged as a
stack of multiple two dimensional memory device levels. As
another non-limiting example, a three dimensional memory
array may be arranged as multiple vertical columns (e.g.,
columns extending substantially perpendicular to the major
surface of the substrate, 1.e., 1 the y direction) with each
column having multiple memory elements 1n each column.
The columns may be arranged in a two dimensional con-
figuration, e.g., 1n an x-z plane, resulting in a three dimen-
sional arrangement of memory elements with elements on
multiple vertically stacked memory planes. Other configu-
rations ol memory elements 1n three dimensions can also
constitute a three dimensional memory array.

By way of non-limiting example, 1n a three dimensional
NAND memory array, the memory elements may be coupled
together to form a NAND string within a single horizontal
(e.g., Xx-z) memory device levels. Alternatively, the memory
clements may be coupled together to form a vertical NAND
string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
clements in a single memory level while other strings
contain memory elements which span through multiple
memory levels. Three dimensional memory arrays may also
be designed 1n a NOR configuration and in a ReRAM
coniiguration.

Typically, in a monolithic three dimensional memory
array, one or more memory device levels are formed above
a single substrate. Optionally, the monolithic three dimen-
sional memory array may also have one or more memory
layers at least partially within the single substrate. As a
non-limiting example, the substrate may include a semicon-
ductor such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of
the array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of
adjacent memory device levels of a monolithic three dimen-
sional memory array may be shared or have intervening
layers between memory device levels.

Then again, two dimensional arrays may be formed
separately and then packaged together to form a non-
monolithic memory device having multiple layers of
memory. For example, non-monolithic stacked memories
can be constructed by forming memory levels on separate
substrates and then stacking the memory levels atop each
other. The substrates may be thinned or removed from the
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memory device levels betfore stacking, but as the memory
device levels are imitially formed over separate substrates,
the resulting memory arrays are not monolithic three dimen-
sional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (Imono-
lithic or non-monolithic) may be formed on separate chips
and then packaged together to form a stacked-chip memory
device.

Associated circuitry 1s typically required for operation of
the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program-
ming and reading. This associated circuitry may be on the
same substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip
and/or on the same substrate as the memory clements.

One of skill in the art will recognize that this invention 1s
not limited to the two dimensional and three dimensional
exemplary structures described but cover all relevant
memory structures within the spirit and scope of the inven-
tion as described herein and as understood by one of skill in
the art.

A “computer-readable medium,” “machine readable
medium,” “‘propagated-signal” medium, and/or “signal-
bearing medium”™ may comprise any device that includes,
stores, communicates, propagates, or transports software for
use by or 1n connection with an instruction executable
system, apparatus, or device. The machine-readable medium
may selectively be, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. A non-
exhaustive list of examples of a machine-readable medium
would include: an electrical connection “electronic” having,
one or more wires, a portable magnetic or optical disk, a

volatile memory such as a Random Access Memory
“RAM”, a Read-Only Memory “ROM?”, an Erasable Pro-

grammable Read-Only Memory (EPROM or Flash
memory), or an optical fiber. A machine-readable medium
may also include a tangible medium upon which software 1s
printed, as the software may be electronically stored as an
image or in another format (e.g., through an optical scan),
then compiled, and/or interpreted or otherwise processed.
The processed medium may then be stored 1n a computer
and/or machine memory. In an alternative embodiment,
dedicated hardware implementations, such as application
specific integrated circuits, programmable logic arrays and
other hardware devices, can be constructed to implement
one or more of the methods described herein. Applications
that may include the apparatus and systems of various
embodiments can broadly include a variety of electronic and
computer systems. One or more embodiments described
herein may implement functions using two or more specific
interconnected hardware modules or devices with related
control and data signals that can be communicated between
and through the modules, or as portions of an application-
specific integrated circuit. Accordingly, the present system
encompasses soltware, firmware, and hardware implemen-
tations.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the various embodiments. The illustrations are not
intended to serve as a complete description of all of the
clements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill in the art
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upon reviewing the disclosure. Other embodiments may be
utilized and derived from the disclosure, such that structural
and logical substitutions and changes may be made without
departing from the scope of the disclosure. Additionally, the
illustrations are merely representational and may not be
drawn to scale. Certain proportions within the illustrations
may be exaggerated, while other proportions may be mini-
mized. Accordingly, the disclosure and the figures are to be
regarded as 1illustrative rather than restrictive.

It 1s mtended that the foregoing detailed description be
understood as an illustration of selected forms that the
invention can take and not as a definition of the invention.
It 1s only the following claims, including all equivalents that
are mtended to define the scope of the claimed invention.
Finally, 1t should be noted that any aspect of any of the
preferred embodiments described herein can be used alone
or 1n combination with one another.

We claim:

1. A method for programming a block comprising:

programming the block such that some wordlines are

programmed and some wordlines are not programmed;
recerving a request to continue programming of the word-
lines that are not programmed; and

performing a block level erase verily operation on all of

the wordlines, wherein the erase verily operation biases
the programmed wordlines differently from the not
programmed wordlines.

2. The method of claim 1 wherein the block level erase
verily operation 1s performed for the block and not per-
formed wordline by wordline.

3. The method of claim 1 wherein the block comprises an
open block until all wordlines in the block are programmed.

4. The method of claam 1 wherein the programmed
wordlines are biased at a higher voltage.

5. The method of claim 4 wherein the higher voltage 1s a
read voltage.

6. The method of claim 1 wherein the not programmed
wordlines are biased at an erase voltage.

7. The method of claim 6 wherein the erase voltage 1s a
negative voltage level.

8. The method of claim 1 further comprising:

counting, from the erase verily operation, a number of

cells from the non-programmed wordlines that are not
1n an erase state; and

determining whether the counted number of cells exceeds

a threshold.

9. The method of claim 8 further comprising:

continuing, in response to the request, the programming

of the block when the counted number of cells 1s less
than the threshold.

10. The method of claim 8 further comprising:

preventing further programming of the block when the

counted number of cells exceeds the threshold by
declining the request to continue programming.
11. The method of claim 1 wherein the method 1s per-
formed with flash memory and the tflash memory comprises
a three-dimensional (3D) memory configuration, and
wherein a controller 1s associated with operation of and
storing to the flash memory.
12. A storage device comprising:
a non-volatile memory with blocks of memory, wherein at
least one of the blocks 1s a partially programmed block;

an erase verification module that performs an erase veri-
fication operation on the partially programmed block
with two different voltage levels depending on whether
a wordline 1n the partially programmed block 1s pro-
grammed or not programmed; and
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a read disturb detection module that prevents continued
programming of the partially programmed block when
the erase verification operation fails.

13. The storage device of claim 12 wherein the erase
verification operation includes a read voltage applied to
programmed wordlines of the partially programmed block
and an erase verification voltage applied to non-programmed
wordlines of the partially programmed block.

14. The storage device of claim 13 wherein the erase
verification operation fails when a number of cells from the
non-programmed wordlines of the partially programmed
block that are not 1n an erase state exceeds a threshold.

15. The storage device of claim 14 wherein read opera-
tions for programmed wordlines of the partially pro-
grammed block cause a read disturb of non-programmed
wordlines of the partially programmed block.

16. The storage device of claim 12 wherein the non-
volatile memory 1s three bit per cell memory.

17. A method for detecting read disturb 1 a block
comprising;
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partially programming the block;

performing, prior to continuing programming of the par-
tially programmed block, a modified erase verily
operation on the block that determines a number of
unprogrammed cells of the block that are not 1n an erase
state; and

determining the read disturb of the block 1s excessive

when the number of the unprogrammed cells of the
block that are not 1n an erase state exceeds a threshold.

18. The method of claaim 17 wherein the modified erase
verily operation comprises biasing programmed wordlines
from the block at a high voltage and biasing non-pro-
grammed wordlines from the block at a low voltage.

19. The method of claim 18 wherein the low voltage
comprises an erase voltage level and the high voltage
comprises a read voltage level.

20. The method of claim 17 wherein the threshold
depends on a type of memory of the block or an intended
usage of the block.
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