US009530404B2

12 United States Patent (10) Patent No.: US 9.530.404 B2

Hofer et al. 45) Date of Patent: Dec. 27, 2016
(54) SYSTEM AND METHOD OF AUTOMATIC (56) References Cited
SPEECH RECOGNITION USING ~
ON-THE-FLY WORD LATTICE u.5. PALENT DOCUMENIS

GENERATION WITH WORD HISTORIES 5.870.706 A 21099 Alshawi

7,257,533 B2 8/2007 Charlesworth et al.

(71) Applicant: Intel Corporation, Santa Clara, CA 7,725,319 B2 5/2010 Aronowitz
(US) 8,738,360 B2* 5/2014 Bonnet ... GOGF 17/271
704/1
: : . 8,832,589 B2* 9/2014 Zhat GO6F 3/0237
(72) Inventors: Joachim Hofer, Munich (DE); Georg . 345/ 173
Stemmer, Miinchen (DE) 9,075,792 B2* 7/2015 Dai ..ccoccvvvrevrecn... GO6F 17/2755
9,134,906 B2* 9/2015 Zhai GO6F 3/04886
(73) Assignee: Intel Corporation, Santa Clara, CA 2004/0143436 Al 7/2004 Huang et al
(US) 2009/0306964 A1 12/2009 Bonnet et al.
2014/0149119 Al1* 5/2014 Sakcccoeveiin, GO6F 17/2775
704/260
(*) Notice: Subject to any disclaimer, the term of this 2014/0236575 Al 82014 Tur et al.
patent is extended or adjusted under 35 2014/0280210 A1~ 9/2014 Rutchie et al.
U.S.C. 154(b) by 0 days 2015/0269933 Al1* 9/2015 Yu ...cooooviiiiiinnninn, GI10L 15/16
S | 704/232
(21) Appl. No.: 14/506,844 FOREIGN PATENT DOCUMENTS
(22) Filed: Oct. 6, 2014 T™W 200413961 8/2004
WO 2012-076895 Al 6/2012

(65) Prior Publication Data
US 2016/0098986 Al Apr. 7, 2016

OTHER PUBLICATTIONS

>

Ljolje et al., “Efficient General Lattice Generation and Rescoring,’

(51) Int. CL Conference: Sixth European Conference on Speech Communication
GO6F 17727 (2006.01) and Technology, Eurospeech 1999, Budapest, Hungary, Sep. 5-9,
G10L 15/08 (2006.01) 1999, 4 pages. |

(52) U.S. CL (Continued)

CPC s GI10L 15/083 (2013.01) Primary Examiner — Marivelisse Santiago Cordero

(58) Field of Classification Search Assistant Examiner — Stephen Brinich

CPC G10L 15/24; G10L 15/083; G10L 15/00; (74) Attorney, Agent, or Firm — Green, Howard &

G10L 15/02; G10L 15/063; G10L 15/193; Mughal LLP
G10L 15/34; G10L 15/183; G10L 15/19; (57) ABRSTRACT

G10L 15/32; G10L 15/187; GO6K 9/6883; _ .
GO6K 9/6297: GO6K 9/726 A systems, article, and method of automatic speech recog-

nition using on-the-fly word lattice generation with word

USPC ..., 704/9, 243-251, 254-256, 270, histor:
704/230-231, 275 ISIOHES:
See application file for complete search history. 25 Claims, 12 Drawing Sheets

—10
) b
Acoustic Acoustic
> Front-end SCoring
Unit Unit
18 20
Liser
12 | Speaker]
“*—(((| Component
I 26 |
_———— Language
——— — Interpreter
Display Execution |
- Component | Unit
28 24
C End
Device |

US 9,530,404 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Aubert, et al., “Optimization of Weighted Finite State Transducer

for Speech Recognition,” IEEE Transactions on Computers, vol. 62,
No. 8, Aug. 2013, 9 pages.

Chong, et al., “Scalable Parallelization of Automatic Speech Rec-
ognition,” book chapter, Scaling Up Machine Learning, 2011, 30
pages, Cambridge University Press.

Moore, et al., “Juicer: A Weighted Finite-State Transducer speech
decoder,” 3rd Joint Workshop on Multimodal Interaction and
Related Machine LEarning Algorithms MLMI’06, 2006, 12 pages.
You et al., “Parallel Scalability in Speech Recognition,” IEEE
Signal Processing Magazine, Nov. 2009, pp. 124-135.

Povey, et al., “Generating Exact Lattices 1 the WEFST
Framewoerk,” IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4213-4216, Mar. 25-30, 2012.
Horl, et al., “Eflicient WFST-Based One-Pass Decoding With On-

The-Fly Hypothesis Rescoring in Extremely Large Vocabulary

Continuous Speech Recognition,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 15. No. 4, pp. 1352-1365,
May 2007.

Rybach, et al. “Lexical Prefix Tree and WEFST: A Comparison of

Two Dynamic Search Concepts for LVCSR,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 21, No. 6, pp.
1295-1307, Feb. 25, 2013.

Sak, et al., “On-the-fly Lattice Rescoring for Real Time Automatic
Speech Recognition,” Eleventh Annual Conference of the Interna-
tional Speech Communication Association (Interspeech), 4 pages,
2010.

International Search Report and Written Opinion for PCT/US2015/

049174, mailed Dec. 9, 2015, 10 pages.

Ortmanns, et al., “A word graph algorithm for large vocabulary
continuous speech recognition,” Computer Speech and Language
(1997) 11, 43-72.

Search Report for Taiwan Patent Application No. 104128797,
issued on Aug. 29, 2016.

* cited by examiner

U.S. Patent Dec. 27,2016 Sheet 1 of 12 US 9,530,404 B2

U.S. Patent Dec. 27,2016 Sheet 2 of 12 US 9,530,404 B2

FIG. 2

200

PROPAGATE A TOKEN THROUGH A WEIGHTED FINITE STATE
TRANSDUCER (WFST) HAVING ARCS AND WORD OR WORD
IDENTIFIERS AS OUTPUT LABELS OF THE WFST, AND COMPRISING
PLACING WORD SEQUENCES INTO AWORD LATTICE

202

GENERATE A WORD HISTORY DESIGNATION FOR INDIVIDUAL
TOKENS WHEN A WORD IS ESTABLISHED AT A TOKEN
PROPAGATING ALONG ONE OF THE ARCS WITH AN OUTPUT
SYMBOL, WHEREIN THE WORD HISTORY DESIGNATION INDICATES A

WORD SEQUENCE
204

DETERMINE WHETHER OR NOT TWO OR MORE TOKENS SHOULD
BE COMBINED TO FORM A SINGLE TOKEN IN A STATE OF THE
WEFST BY USING, AT LEAST IN PART, THE WORD HISTORY
DESIGNATIONS

206

U.S. Patent Dec. 27,2016 Sheet 3 of 12 US 9,530,404 B2

FIG. 3A

| 300
Obtain Acoustic Signal
Data 302

Put initial token in
current token buffer
304

Calculate acoustic features for
next time frame 306
g Take next token from current
@ token buffer 308

Propagate token through next arc
of token's state using acoustic

scores 310

Does the arc
have an output word?
212

yes

1o

Create new node in
output lattice 314
Update token's word history
hash 316

U.S. Patent Dec. 27,2016 Sheet 4 of 12 US 9,530,404 B2

FIG. 3B

Does Token
with the same word history hash
exist in designation state?
318

Nno

Create new
token in next

| yes
token buffer 320

Recombine tokens
in next token

buffer 322

Are
more arcs in

token’s state?
324

IS
current token
buffer empty?
326

ves

End of

utterance detected?
330

U.S. Patent Dec. 27,2016 Sheet 5 of 12 US 9,530,404 B2

KEY
() WFST State

@ \WFST State with active
token

@ WFST Final state

_ Word Lattice node

—> WFSTArC

_____ » Word Lattice edge

US 9,530,404 B2

999

Sheet 6 of 12

Dec. 27, 2016

A0S

Tohm WS ey e sy S e

U.S. Patent

US 9,530,404 B2

are
/"

Sheet 7 of 12

Dec. 27, 2016

.Y
L] [] L o] Ny L o] AL o [o L o [] b L] L o b o

FIG. 9

U.S. Patent

U.S. Patent Dec. 27,2016 Sheet 8 of 12 US 9,530,404 B2

FIG. 10

(> Active token

| Y Graph node

1000
FIG. 11 1}
»
Word lattice update due to token recombination

Recombination

O Active token

™ Graph node

U.S. Patent Dec. 27,2016 Sheet 9 of 12 US 9,530,404 B2

—1000

FIG. 12 /

i Word lattice update at end of utterance

. Active final
token

Active non-
O final token

U.S. Patent

Dec. 27, 2016

Sheet 10 of 12

FIG. 13

CAPTURE DEVICE(S)

AUDIO

1302

SPEECH RECOGNITION UNIT 1306

PROCESSOR(S) 1320

| ASR ACCELERATOR
' 1322 |

—

MEMORY STORE(S)
1324

TOKEN BUFFER(S)
1326

US 9,530,404 B2

LOGIC UNITS/MODULES 1304

SPEAKER
UNIT DISPLAY
1328 1330
OTHER TEXT
END IMAGE
DEVICE(S) 1330
1332
Hello, How
ANTENNA are you?
1334

SPEECH RECOGNITION PROCESSING SYSTEM

1300

U.S. Patent Dec. 27, 2016

¥

Sheet 11 of 12

FIG. 14

Q _:E:f’ v"]—'?::)j

US 9,530,404 B2

DISPLAY 1420

USER INTERFACE 1422

Antenna

ﬁ

Radio 1418

]

Memory
1412 Chipset 1405

Storage
1414

Applications
14106

Processor Audio

1404

1410 Subsystem Subsystem

Graphics

1415

—-———

Network Fr
1465 1

Microphone
1470

Speaker
Subsystem
1460

Content Delivery
Device(s)
1440

Content
Services
Device(s)
1430

U.S. Patent Dec. 27,2016 Sheet 12 of 12 US 9,530,404 B2

FIG. 15
1500
Y
1508
- 110
1504
1510
1502
) — 1512
(IO~
<7

1506

Us 9,530,404 B2

1

SYSTEM AND METHOD OF AUTOMATIC
SPEECH RECOGNITION USING
ON-THE-FLY WORD LATTICE
GENERATION WITH WORD HISTORIES

BACKGROUND

Speech recognition systems, or automatic speech recog-
nizers (ASRs), have become increasingly important as more
and more computer-based devices use speech recognition to
receive commands from a user in order to perform some
action as well as to convert speech nto text for dictation
applications or even hold conversations with a user where
information 1s exchanged in one or both directions. Such
systems may be speaker-dependent, where the system 1s
trained by having the user repeat words, or speaker-inde-
pendent where anyone may provide immediately recognized
words. Some systems also may be configured to understand
a fixed set of single word commands, such as for operating
a mobile phone that understands the terms call or answer, or
for stmple data entry phone calls for example. Other ASRs
use a natural language understanding (NLU) module that
understands grammar and definitions of words to recognize
a word from the context of the uftterance (the words or
sentences that were spoken) for more complex conversations
or exchanges of information. For integrating an Automatic
Speech Recognizer (ASR) with a Natural Language Under-
standing (NLU) module 1n a conversational system, confi-
dence measures and/or alternative results are often required.
One popular way to generate this data 1s to create a word
lattice, 1.e., a network of likely word hypotheses. The
generation of word lattices, however, may slow down the
speech recognition process resulting in a relatively nefl-
cient process.

Also, word lattices are often built 1n a second step from
state or phone lattices which were generated on the fly
during speech decoding. Since state and phone lattices can
become relatively large, and usually significantly larger than
word lattices, this approach requires a large amount of
RAM. A more eflicient system 1s desirable.

DESCRIPTION OF THE FIGURES

The material described herein i1s illustrated by way of
example and not by way of limitation in the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated 1n the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be
exaggerated relative to other elements for clanity. Further,
where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements. In the figures:

FIG. 1 1s a schematic diagram showing an automatic
speech recognition system;

FIG. 2 1s a flow chart of a speech recognition process to
generate a word lattice using word histories;

FIGS. 3A-3B 1s a detailed flow chart of a speech recog-
nition process to generate a word lattice using word histo-
ries;

FIG. 4 1s a graph of an example weighted fimite state
transducer (WFST) used for speech decoding;

FIG. 5 1s a graph of an example static and dynamic search
space 1ncluding an intermediate word lattice using the
WEST from FIG. 4;

FIG. 6 1s another graph of an example static and dynamic
search space;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 1s another graph of an example static and dynamic
search space;

FIG. 8 1s another graph an example static and dynamic
search space;

FIG. 9 1s a graph of an example word lattice;

FIG. 10 1s a graph of an example intermediate word
lattice;

FIG. 11 1s another graph of the example intermediate
word lattice of FIG. 10;

FIG. 12 1s another graph of the example intermediate
word lattice of FIG. 10;

FIG. 13 1s an illustrative diagram of an example system:;

FIG. 14 1s an 1illustrative diagram of another example
system; and

FIG. 15 illustrates another example device, all arranged 1n

accordance with at least some implementations of the pres-
ent disclosure.

DETAILED DESCRIPTION

One or more implementations are now described with
reference to the enclosed figures. While specific configura-
tions and arrangements are discussed, 1t should be under-
stood that this 1s performed for illustrative purposes only.
Persons skilled 1n the relevant art will recognize that other
configurations and arrangements may be employed without
departing from the spirit and scope of the description. It will
be apparent to those skilled 1n the relevant art that techniques
and/or arrangements described herein may also be employed
in a variety of other systems and applications other than
what 1s described herein.

While the following description sets forth various imple-
mentations that may be manifested in architectures such as
system-on-a-chip (SoC) architectures for example, imple-
mentation of the techniques and/or arrangements described
herein are not restricted to particular architectures and/or
computing systems and may be implemented by any archi-
tecture and/or computing system for similar purposes. For
instance, various architectures employing, for example, mul-
tiple integrated circuit (IC) chips and/or packages, and/or
various computing devices and/or consumer electronic (CE)
devices such as laptop or desktop computers, mobile devices
such as smart phones, video game panels or consoles,
television set top boxes, on-board vehicle systems, dictation
machines, security and environment control systems for
buildings, and so forth, may implement the techniques
and/or arrangements described herein. Further, while the
following description may set forth numerous specific
details such as logic implementations, types and interrela-
tionships of system components, logic partitioning/integra-
tion choices, and so forth, claimed subject matter may be
practiced without such specific details. In other instances,
some material such as, for example, control structures and
full software instruction sequences, may not be shown 1n
detail 1n order not to obscure the material disclosed herein.
The material disclosed herein may be implemented 1n hard-
ware, firmware, software, or any combination thereof.

The matenal disclosed herein may also be implemented as
instructions stored on a machine-readable medium or
memory, which may be read and executed by one or more
processors. A machine-readable medium may include any
medium and/or mechanism for storing or transmitting infor-
mation 1 a form readable by a machine (for example, a
computing device). For example, a machine-readable
medium may include read-only memory (ROM); random
access memory (RAM); magnetic disk storage media; opti-
cal storage media; tlash memory devices; electrical, optical,

Us 9,530,404 B2

3

acoustical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, and so forth), and
others. In another form, a non-transitory article, such as a
non-transitory computer readable medium, may be used
with any of the examples mentioned above or other
examples except that 1t does not include a transitory signal
per se. It does include those elements other than a signal per
se that may hold data temporanly 1n a “transitory” fashion
such as RAM and so forth.

References in the specification to “one implementation”,

“an 1mplementation”, “an example implementation”, and so
forth, indicate that the implementation described may
include a particular feature, structure, or characteristic, but
every implementation may not necessarily include the par-
ticular feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same 1implemen-
tation. Further, when a particular feature, structure, or char-
acteristic 1s described in connection with an implementation,
it 1s submitted that 1t 1s within the knowledge of one skilled
in the art to aflect such feature, structure, or characteristic in
connection with other implementations whether or not
explicitly described herein.

Systems, articles, and methods of automatic speech rec-
ognition using on-the-fly word lattice generation with word
histories.

As mentioned above, for integrating an Automatic Speech
Recognizer (ASR) with a Natural Language Understanding
(NLU) module 1 a conversational system confidence mea-
sures and/or alternative results are often required. One
popular way to generate this data 1s to create a word lattice,
1.e. a network of likely word hypotheses. Word lattices are
usually generated in a second step after the utterance was
spoken from a dynamically generated state or phone lattice.
As state and phone lattices can become quite large and are
always significantly larger than word lattices, this approach
requires a lot of RAM. See, for example, “Eflicient General
Lattice Generation and Rescoring” (Ljolje et al., Proc.
Eurospeech 99) for a method to generate a word lattice using
a phoneme lattice, and which 1s fully incorporated herein.

The ASR system and method described herein addresses
the problem to generate word lattices efliciently with less
memory and without slowing down the speech recognition
process compared to first-best decoding. To accomplish this,
a speech recognition decoder creates a word lattice 1n a
single pass during decoding without needing to build an
intermediate state or phone lattice or word boundary lists.
Instead, the word lattice 1s generated in a single pass during
decoding. The approach has no significant negative impact
on the decoding speed. The decoder used to perform the
disclosed methods may be a weighted finite-state transducer
(WFEFST) based speech decoder, e.g., one as described 1n
“Juicer: A Weighted Finite-State Transducer Speech
Decoder” (Moore et al., 3™ Joint Workshop on Multimodal
Interaction and Related Machine Learning Algorithms
MLMI'06). The generation of the word lattice 1s independent
of the approach used for WFST decoding, e.g. the decoder
may either use static or dynamic WEST composition.

A hypothetical word sequence or word lattice may be
formed by the weighted finite state transducer (WFST)
decoder that utilizes acoustic scores (scores of context
dependent phonemes based on GMMs, DNNs or other
acoustic models 1n an utterance being analyzed) and forms
utterance hypotheses by utilizing a token passing algorithm.
A single token represents one hypothesis of a spoken utter-
ance including a word history designation that represents the
words that were spoken according to that hypothesis. During
decoding, several tokens are placed in the states of the

10

15

20

25

30

35

40

45

50

55

60

65

4

WFST, each of them representing a diflerent possible utter-
ance that may have been spoken up to that point 1n time. At
the beginning of decoding, a single token 1s placed in the
start state of the WFST. Additionally, an empty intermediate
word lattice 1s created with the token referencing the start
node of the lattice. During discrete points 1n time (so called
frames), each token is transmitted along the arcs of the
WFST. Thus, the token 1s said to propagate along the arcs of
the WEFST. If a WFST state has more than one outgoing arc,

the token 1s duplicated, creating one token for each desti-
nation state. I the token 1s passed along an arc 1n the WEST
that has a non-epsilon output symbol (i.e. the output 1s not
empty, so that there 1s a word hypothesis attached to the arc),
a new node for that output symbol 1s created in the inter-
mediate word lattice and 1s attached to the node referenced
by the token. The token then references the newly created
node. In a single-best decoding environment, 1t 1s suili

icient
to only consider the best token 1n each state of the WFEST. IT
more than one token 1s propagated nto the same state, all but
one of those tokens are removed from the active search
space. This process 1s called recombination, as several
different utterance hypotheses are recombined into a single
one. If a token 1s dropped due to recombination, the corre-
sponding node in the intermediate word lattice 1s also
deleted if 1t 1s not referenced by any other token or any other
node 1n the lattice. If more than one utterance hypothesis
shall be considered at the end of decoding, as 1s the case for
generating a word lattice, this approach may drop significant
information. If recombination takes place for tokens with
different word histories (i.e. the tokens represent different
spoken word sequences), then some utterance hypotheses
are dropped during recombination and may not be present 1n
the final decoding result, reducing the benefit of a word
lattice.

In order to resolve the problems of recombination, other
approaches often use phone or state lattices during decoding
in order to be able to create a word lattice, see e.g. “Eflicient
General Lattice Generation and Rescoring” (Ljolje et al.,
Proc. Eurospeech 99). The approach described herein elimi-
nates the need of a phone (or state) lattice, by limiting the
circumstances when the recombination of tokens 1s possible.
This 1s accomplished by encoding the word history of each
token 1n a word designation, such as a hash value, that 1s
stored 1n conjunction with each token. During recombina-
tion, the word history designations of competing tokens are
compared to determine whether a recombination 1s war-
ranted. Only if the designations are equal, then a recombi-
nation takes place. If the designations, and 1n turn the word
histories, difler, both tokens are kept 1n the same state of the
WFST, and no recombination takes place. A word history 1s
a hypothetical whole or part of an utterance established up
to the current point in time of decoding. The word history of
a token 1s made up of the output labels of WEFST arcs which
the token was passed along during decoding. The word
history and word sequence as used herein refers to specific
words placed 1n a specific order. Thus, “I am here” 1s not the
same word sequence, and word history, as “Here I am”.
Tokens with the same word history designation or hash value
represent the same complete or partial utterance including
the same word, and/or sequence of words. The word history
hashes are stored 1n tokens to be able to determine whether
two tokens have the same word history by using a single
integer comparison by one example. Tokens with the same
word history value may be recombined, and one of the
tokens 1s dropped. Tokens with different word histories
representing different hypothetical word sequences at the

same state are both maintained 1n the active search space.

Us 9,530,404 B2

S

In order to limit the number of active tokens, tokens
placed 1n the same state but with different word histories still
occasionally may be recombined resulting 1n an update of
the intermediate word lattice. This update of the word lattice
may take significantly more computation time than a regular
token recombination. Thus, this update i1s not performed for
every token recombination but 1s rather performed either on
regular time intervals (e.g. every 100 ms) or when the
demand for such an update arises (e.g. because the active
search space grows too large).

These approaches are explained in greater detail below,
and are provided to avoid losing lattice information during
token recombination without much computational overhead
thereby significantly reducing the RAM used compared to a
system that uses a {irst stage with phone lattices and a second
stage with word lattices.

Referring to FIG. 1, an automatic speech recognition
system 10, such as a speech enabled human machine inter-
tace (HMI), may have an audio capture or receiving device
14, such as a microphone for example, to receive sound
waves from a user 12, and that converts the waves 1into a raw
clectrical acoustical signal that may be recorded i a
memory. The system 10 may have an analog/digital (A/D)
converter 16 to provide a digital acoustic signal to an
acoustic front-end umit 18. The acoustic front-end unit 18
may perform pre-processing which may include noise can-
celling, pre-emphasis filtration to flatten the signal, and/or
voice activation detection (VAD) to identily the endpoints of
utterances as well as linear prediction, mel-cepstrum, and/or
additives such as energy measures, and delta and accelera-
tion coeflicients, and other processing operations such as
welght functions, feature vector stacking and transforma-
tions, dimensionality reduction and normalization. The
front-end unit 18 also may divide the acoustic signal into
frames, by 10 ms frames by one example, and extracts
acoustic features or feature vectors from the acoustic signal
using fourier transforms and so forth to identily phonemes
provided in the signal. An acoustic scoring unit 20 then
determines a probability score for the context dependent
phonemes that are to be 1dentified.

A weighted finite state transducer (WFST) unit or decoder
22 uses the acoustic scores to 1dentity utterance hypotheses
and compute their scores. Additionally, the WFST decoder
22 dynamically creates a word lattice 1n a single pass during
decoding that provides confidence measures and/or alterna-
tive results. The WEFST decoder 22 uses calculations that
may be represented as a network of arcs and states that 1s
referred to as a WEST. The WFST may be used to generate
word history designations, and by one example by using
hash functions. The word history designations are used to
control the token combinations (or recombinations) and
limit the number of active tokens also as described 1n detail
below. The WFST may be a deterministic or a non-deter-
ministic finite state transducer that may or may not contain
epsilon arcs. The WFST may contain one or more final states
that may or may not have individual weights. The WFST
may contain one or more initial states. The WEST may be
statically or dynamically composed from a lexicon WFEST
(L) and a language model or a grammar WEFST (G). Alter-
natively, it may consist of the lexicon WFST (L) which may
or may not be implemented as a tree without an additional
grammar or language model. The WFST may or may not be
statically or dynamically composed with a context sensitiv-

ity WEST (C). The WFST may or may not be statically or
dynamically composed with an HMM WFST (H) that may
have HMM transitions, HMM state IDs, GMM densities or
DNN output state IDs as mput symbols. The WEFST may or

10

15

20

25

30

35

40

45

50

55

60

65

6

may not be determinized, minimized, weight or label pushed
or otherwise transformed (e.g. by sorting the arcs by weight,
input or output symbol) 1n any order before being used for
decoding. The WFST decoder 22 uses known specific rules,
construction, operation, and properties for single-best
speech decoding, and the details of these that are not
relevant here are not explained further 1n order to provide a
clear description of the arrangement of the new {features
described herein.

The output word lattices are made available to a language
interpreter and execution unit (or interpretation engine) 24 to
determine the user intent. This intent determination or
spoken utterance classification may be based on decision
trees, form filling algorithms or statistical classification (e.g.
using SVNs or DNNs).

Once the user intent 1s determined for an utterance, the
interpretation engine 24 also may output a response or
initiate an action. The response may be in audio form
through a speaker component 26, or 1n visual form as text on
a display component 28 for example. Otherwise, an action
may be 1nmitiated to control another end device 30 (whether
or not considered as part of, or within, the same device as the
speech recognition system 10). For example, a user may
state “call home” to activate a phone call on a telephonic
device, the user may start a vehicle by stating words 1nto a
vehicle fob, or a voice mode on a smart phone may perform
certain tasks on the smart phone. The end device 30 may
simply be software 1nstead of a physical device or hardware
or any combination thereof, and 1s not particularly limited to
anything except to have the ability to understand a command
or request resulting from a speech recognition determination
and to perform or initiate an action 1n light of that command
or request.

Referring to FIG. 2, an example process 200 for a
computer-implemented method of speech recognition 1is
provided. In the illustrated implementation, process 200 may
include one or more operations, functions or actions as
illustrated by one or more of operations 202 to 206 num-
bered evenly. By way of non-limiting example, process 200
may be described herein with reference to example speech
recognition devices described herein with any of FIGS. 1
and 4-13, and where relevant.

Process 200 may include “propagate tokens through a
weighted finite state transducer (WFST) having arcs and
words or word 1dentifiers as output labels of the WFST, and
comprising placing word sequences into a word lattice™ 202.
In other words, this operation 1s directed to the performance
of speech decoding with a token passing algorithm utilizing
a weighted fimite state transducer (WEFST) and to generate
the word lattice.

Process 200 also may include “generate a word history
designation for individual tokens when a word 1s established
at a token propagating along one of the arcs with an output
symbol, wherein the word history designation indicates a
word sequence” 204. This includes generating the word
history designation when an arc with a non-epsilon output
label 1s passed by the token. As explained below, the
designation may be an integer or other alpha-numeric value
that 1s a hash value created by using a hash function by one
example. Also, each designation indicates a sequence of
certain words 1n a certain order, and by one example the
designation 1s associated with values that are assigned to
words (I=4, am=>5, and so forth).

Process 200 also may include “determine whether or not
two or more tokens should be combined to form a single
token 1n a state of the WFST by using, at least in part, the
word history designations™ 206. As explained in detail

Us 9,530,404 B2

7

below, a combination, also referred to as a recombination,
may be performed when the word history designations of
two tokens are the same, indicating they both have the same
word history. The treatment of the tokens during a recom-
bination, an uncombined but shared state, and a dynamic
word lattice update are described below.

Referring to FIGS. 3A-3B, an example computer-imple-
mented process 300 for automatic speech recognition using,
on-the-fly word lattice generation with word histories 1s
provided. In the illustrated implementation, process 300 may
include one or more operations, functions or actions as
illustrated by one or more of operations 302 to 332 num-
bered evenly. By way of non-limiting example, process 300
may be described herein with reference to example speech
recognition devices described herein with any of FIGS. 1-2
and 4-13, and where relevant.

Process 300 may include obtaining 302 acoustic signal
data. As mentioned above, this may include the use of a
sound or audio capture device, pre-processing of the acous-
tic signal, and feature extraction by a front-end unit, and
acoustic scoring by an acoustic scoring unit. By one
approach, the feature extraction and acoustic scoring occurs
betore the WFS'T decoding begins. By another example, the
acoustic scoring may occur just i time. If scoring 1s done
just 1n time, 1t may be done on demand, 1.e. only scores that
are needed during WFST decoding are computed.

Referring to FIGS. 4-9, 1in order to assist with explaining,
process 300, a speech decoding WEST 400 which 1s used to
generate a word lattice 402 1s shown at diflerent time periods
corresponding to different frames. The WEFST 400 1s shown
here with states A to J connected by arcs (the arrows)
between the states. Of the arcs, only the output labels are
shown 11 they are not epsilon. All mput labels and weights
are omitted to simplify the figure. The arcs are referred to
herein by labeling the source state and then the destination
state of the arc ({or example arc AB extends from state A to
state B). The explanation of other features of the graphs are
explained along with the description of process 300. A key
1s provided with FIG. 4 that applies to all of FIGS. 5-9.

To begin constructing the word lattice, process 300 may
include putting 304 an mitial token in current token bufler.
In one form, the token will be placed in the initial state of
the WEST which corresponds to state A 1n the example of
WFST 400. Also included 1n this operation, as shown 1n FIG.
5, the token 1n start state A includes a start word history
designation (999) that means an empty sentence and a
reference to the start node of the empty intermediate word
lattice 402. The designation 999 i1s merely used as an
example but can be many different values. By one approach
detailed below, the word history designations are hash
values determined from a hash function, and in one form
may be hexadecimal values that are formed by using inte-
gers assigned to different words 1n the vocabulary being used
and stored in a memory on the ASR system.

A token bufler, such as bufler 1326 (FIG. 13), may hold
the tokens for the frames to be analyzed. Thus, there may be
multiple token butlers such as one bufler for each frame. By
one approach, this includes at least two token butlers includ-
ing a current token bufler holding active tokens of the
current frame, and a next token bufler holding the tokens of
the next frame to be activated. In a different approach there
may be only one token bufler which may be orgamized as a
ring that holds both, tokens for the current and the next
frame. This bulfler may include a marker that separates
current tokens from future tokens.

The process 300 may include calculate 306 acoustic
teatures for the next time frame. Thus, one or more possible

10

15

20

25

30

35

40

45

50

55

60

65

8

extracted features are determined, and 1in the present
example, based on WEFST operations, 1t 1s determined that
there are three different destination states (B, C, and D). The
token at state A 1s then taken 308 from the token buller, and
propagated 310 through each arc, and in this case the arcs
AB, AC, and AD, using acoustic scores. Thus, 1t may be said
that the token simultaneously propagates along three differ-
ent possible pathways or sequences from the utterance start
state which results 1n three created tokens that are placed 1n
the token builer for the next frame.

More specifically, the mput labels of an arc may be the
possibly context dependent phoneme, HMM, GMM density,
DNN state or other acoustic ID, depending on the type of
WFST used for decoding. The inputs are used to determine
the acoustic score applied to a token that 1s propagated along
the arc. The output labels of the arcs represent spoken words
or other sentence fragments. IT an output label of an arc 1s
not epsilon (empty), and a token 1s passed along said arc,
then the corresponding word or sentence fragment 1s
appended to the utterance hypothesis of the token. Thus, for
example, the output of arc AB 1s the word “I” meaning that
i a token i1s passed along arc AB, then the underlying
utterance hypothesis contains the word “I”.

Thus, for the process 300, the next operation may be to
determine “does the arc have an output label?” 312. If vyes,
as 1n the case of arc AB, a new node 1s created in the
intermediate word lattice 314, and the token’s word history
hash 1s updated 316 as shown on first frame 600 of FIG. 6
for one example. The word history 1s provided with a
designation 103 since a word was outputted, and the edge 1s
formed placing the word “I” in the word lattice 402. The
newly created node 1n the word lattice references the node
in the lattice that was originally referenced by the token by
placing an edge from the new node to the original. In the
example of FIG. 6 this edge goes from the new node for “I”
to the sentence start node. The token reference 1s updated to
point to the newly created node. If there 1s no output label
on the arc that the token 1s propagated along, as 1s e.g. the
case for arc AC 1n FIG. 6, then neither the intermediate word
lattice, the reference from the token to the node 1n the lattice,
nor the word history designation are modified. Thus, in the
example of FIG. 6, the token in state C references the
sentence start node in the lattice and keeps the word history
designation 999.

Skipping the operations for recombining tokens (318-
322) for now, the process 300 checks for more arcs 324. In
the present example, the process 300 loops so that arcs AC
and AD can be analyzed 1n turn, and the tokens at states C
and D would be established as well as establishing the
starting word history designations 999 for each of the two
tokens (FIG. 6). When there are no more arcs to analyze for
the current active token, process 300 checks 326 to deter-
mine whether there are more tokens 1n the current token
bufler. IT so, the process 300 loops to take 308 the next token
from the current token bufler, and the process 300 proceeds
as mentioned before. Once the token bufler 1s empty for the
current frame 326, the process 300 swaps 328 the current
token bufler for the next frame token bufler. If the end of the
utterance 1s not reached 330, the process 300 loops back to
repeat the lattice building for the next frame, which becomes
the current frame, and calculates 306 acoustic features again.
In this case, the tokens 1n the states B, C, and D become the
active tokens on the WFST 400 for first frame condition 600.
The process repeats for each frame until either the audio
input 1s completely processed or the end of the utterance was
detected. End of utterance detection may be done by voice
activity detection (VAD), stable times of utterance hypoth-

Us 9,530,404 B2

9

eses, timeouts or any other methods that are suitable to
determine 11 a speaker has finished talking.
Referring again to FIGS. 6-7 showing the search space in

first frame (condition) 600 where active tokens are in the
states B, C, and D of the WFST 400, nodes for the word

“are” are placed in the intermediate word lattice 402 (as
shown 1n the second frame 700) when tokens are passed
along arcs CF and DG, their word history designations are
updated to 378. The process 300 then may continue as

explained above.
When the process 300 reaches the third frame 700 (FIG.

7) and the tokens 1n state B and C are passed along arcs BF
and CF respectively 1n the WEST 400, there 1s a possible
recombination because both tokens are 1n the same state F.
According to the operation to check 318 whether the same
word history hash exists 1n the destination state, a recom-
bination 1s avoided because the tokens have the word history
designations 378 and 103 respectively. Thus, both tokens

remain in state F. More specifically, the word history des-
ignation values are propagated along with the tokens when
no new word 1s formed. Thus, in the present example at
frame condition 600 (FIG. 6), the token passed along arc BF
has word history designation 103 from the previous frame
while the token passed along arc CF outputting the word
“are” has updated word history designation 378. To recom-
bine 1n the conventional systems, the token with the worse
acoustic score would have been dropped 1t both tokens are
propagated 1nto the same state F regardless of previous word
history. In this case, however, both tokens are maintained
because the two tokens being compared have different word
history designations (103 versus 378).

Referring to FI1G. 8, the fourth frame 800 1s shown where
tokens are propagated into states A, F, G, H, I and J. Here,
tour different tokens are propagated into state 1. Two tokens
are propagated over arc FI and one token each over arcs El
and GI. There 1s no recombination taking place because all
four word history designations are different (816, 103, 78
and 378).

In one case, the token which 1s propagated along arc DG
1s now removed due to recombination because the token that
1s propagated along path FG has the same destination state,
the same word designation (378) and 1n our example the
better score. As mentioned, 1n this case, the token with the
worse score 1s dropped.

Also on WFEFST 400 (frame condition 800), two word
lattice nodes for “am” are formed from the two tokens that
are propagated along arc FI. One of the tokens had the word
designation 103 (representing “I””) in the previous frame.
The token’s word history designation 1s updated to 816
(representing “I am™). The other token had the word history
designation 378 (representing “are”) and 1s updated to 78
(representing “are am”).

Once the end of the utterance 1s detected 330, the process
300 then may include “output best utterance hypothesis™
332, and particularly provide the completed word lattice 402
to the interpretation engine to determine the best word
sequence from those presented by the word lattice.

Referring to FIG. 9, the generated and completed word
lattice 402 1s shown. The word lattice 1s generated by taking
all tokens which are 1n a final state (at the final states I and
] for example) as possible sentence end hypotheses. Also,
the direction of the edges are reversed now to show the flow
from start of utterance to the end of the utterance, which has
the symbol </s>. Any node that does not reach the end of the
utterance node 1s deleted. Thus, the second “are” that was
dropped due to recombination 1s now deleted from the word

10

15

20

25

30

35

40

45

50

55

60

65

10

lattice 402 as shown. The lattice represents the sentences
“are”, “are am™, “I”, “I am”, and “you”.

Referring to FIGS. 10-12, further details for generating a
word lattice 1000 1s provided. Another way to show the
generation of the word lattice 1s to show the word lattice
with active tokens integrated with the graph of the word
lattice being generated, showing the insertion of word nodes
at the nodes that tokens point to. The word lattice generated
by the approaches once again 1s a directed graph. The nodes
of the graph represent hypotheses of single words while the
edges of the graph represent a *““1s successor of” property, 1.¢.
the graph 1s directed from the end of the utterance to the
beginning of the utterance as explained above for word
lattice 402. During decoding, each token has one or more
references to nodes in the word lattice 1000 that represent
the history of the word output hypotheses as shown in FIG.
10. When a token update results 1n a new output word, the
word 1s 1nserted into the word lattice with the same edges
that the token had. The updated token references the new
node. The word history hash of the token 1s updated using
the recursive hashing function explained below. An example
of a word output “h1” that 1s added to the word lattice 1000
during decoding 1s shown 1n FIG. 10.

As explained above, token recombination 1s handled
differently than the conventional process that does not
perform on-the-fly word lattice generation. Normally, tokens
are recombined 11 they merely correspond to the same WEFST
state. As explained above, herein tokens are only recom-
bined, or mainly, or usually only recombined, i1 the tokens
correspond to the same WFST state and also have the same
word history designation or hash for example. That way, the
loss of lattice information 1s minimized during token recoms-
bination without much computational overhead.

Referring to FIG. 11, the disclosed recombination pro-
cesses have an exception. In order to keep the number of
active tokens small, tokens corresponding to the same state
but with different word histories (and 1n turn ditferent word
history designations) are occasionally recombined anyway
resulting 1 a lattice update. When tokens with different
word histories are recombined for this purpose, all refer-
ences to lattice nodes that are present in either of the two
tokens are combined into the new token in order to retain
word lattice information. If a reference to a node 1s present
in both tokens, the reference with the worse score 1s dis-
carded. Such an update 1s exemplified 1n FIG. 11 showing
the word sequences ending at “there”, “this”, and “h1” are
combined to a single active token despite each clearly
having different word history designations. This update
should not be performed too often since such a lattice update
may be relatively costly compared to the other recombina-
tions since all references to lattice nodes of both tokens have
to be compared 1n order to find duplicates. Such a dynamic
update may be limited by time interval (such as approxi-
mately one every 100 ms) or 1f a target number of active
tokens 1s reached. This exception update 1s not necessary for
the word lattice generation to be accurate and may not be
needed 1f only single sentences are recognized. It may be
used only when recognition 1s running for a long time (e.g.
dictation) in order to reduce the number of active tokens.

Referring to FIG. 12, at the end of the utterance, there 1s
usually more than one active token representing the end of
the utterance. Instead of taking the best token as i1s per-
formed 1n {first best decoding, all active tokens that corre-
spond to final nodes in the WFST are combined 1nto one
utterance end node of the word lattice. The end of utterance
processing can be seen 1n FI1G. 12 where the “there” and “h1”
tokens are combined 1nto a single final node. This results in

Us 9,530,404 B2

11

alternative word sequences on the word lattice (some that
end 1 “there”, others that end 1n “h1”) that may be consid-
ered by the interpretation engine 1n contrast to the conven-
tional processes that would only consider one best final
word.

Returming now to the generation of word history desig-
nations, by one approach the designations are hash values
(or stmply hashes) formed by using a hash function. By one
example, the assignment of the word history designations
relies on integer values that represent word sequences.
Hashing 1s used 1n order to generate those integers. The
hashing can be seen as a function h from strings of words to
a single integer. For the lattice generation, the hash function
needs to be recursive, such that for the empty sentence £ and

every sequence of words (w,, w,, . .., W,)
hie)=ho (1)
hwpwy, .., Wn):}}(k(wl: Wo vy Wy 1), W) (2)

There are several ways to build hash values recursively.
One property 1s that there are few collisions (1n other words,
it 1s very unlikely that different inputs will result in the same
output). As mentioned above, the word history hash is stored
in every active token during decoding, and it 1s used to avoid
token recombination with those tokens with different word
histories as explained above. Thus, 11 two different word
histories result in the same hash values, information may be
lost 1n the lattice due to token recombination.

The hash function that may be used to determine word
history designations may include cyclic redundancy check
(CRC) hash functions, hash functions called checksums that
are sum type of functions, non-cryptographic hash functions,
cryptographic hash functions and others. For hardware
implementations, cyclic redundancy checks (CRCs) are bet-
ter because there are very eflicient. For software implemen-
tations, non-cryptographic hash functions are usually best
suited because they are often very fast to compute and have
reasonably good key distributions. Checksums may not be
as accurate as these other hash functions because they
usually are position independent, 1.e. the sentences “I am
here” and “am I here” result 1n the same checksum. Also,
cryptographic hash functions can be computationally expen-
sive, but still may be suitable as well.

By one example, the hash function may be a 32-bit
version ol the hash function implementation in sdbm (a
public-domain reimplementation of ndbm (new database
manager)) and 1s used with an sdbm database library. As a
hashing function, 1t 1s computationally eflicient and appears
to be suflicient 1n terms ol key distribution. The actual
function 1s h(1)=h(1-1)-635399+str[1] for a string str at char-
acter 1. The constant 65599 (0x1003F in hexadecimal) as
multiplicative value was picked randomly and found to be
suflicient. Possible pseudo code for the sdbm hash tag
function 1s as follows (below 1n pseudo code 1s a fast version
used 1n gawk that uses bit shift operations to implement the
multiplication):

static unsigned long
sdbm (str)

unsigned char *str;
{
unsigned long hash = 0;
int c;
while (¢ = *str++)
hash = ¢ + (hash << 6) + (hash << 16) — hash;
return hash;

10

15

20

25

30

35

40

45

50

55

60

65

12

Other hash functions hike MurmurHash might deliver as
good as or better results.

To create a hash for an utterance, a 1:1 mapping of words
to integers may be established and stored for the vocabulary
that 1s being used, for example.

yes 1
here 2
there 3
I 4
aIm 5

For this example, the sentence “I am here” 1s represented by
“45 27,

The hashing process also may use common hexadecimal
notation with values 1-9 and A-F corresponding to values
10-15. For an empty utterance and the initial token that 1s
created at the beginning of an uftterance, the hash value
OxFFFFFFFF may be used. Many other values could work
as well. All tokens that are created from this token copy the
hash value as long as no word 1s hypothesized during token
creation propagating the hash value (or word history desig-
nation) along the arcs in the lattice as well.

When for example the first word “I” 1s hypothesized, the
word history hash value of the corresponding token 1s
updated:

h(” f”) = moduloy, rrrrrrer(wy + A(e) - Ox1003F)

= mgdHZGDxFFFFFFFF(OX4 + OxFFFFFFFF-0x1 OOSF)
= m{?dHZGDIFFFFFFFF(OXlOOBEFFFEFFCS)

= OxFFEFF(S

When the next word “am” appears for a token that had the
hash value OxFFFEFFC3S, the hash value 1s updated again:

h(“:[ELII]")ZdeUIDDxFFFFFFFF(Ox5+
OxFFEFFCS-0x1003F)=0xFF85F180

k(“I aITl hBI‘E")ZdeulDGxFFFFFFFF(Ox2+
OxFEFR5F180-0x1003F)=0xD3766E82

The combination of operators 1n the hash function equa-
tion results 1in different designation values depending on the
order of the words 1n the sequence even though two word
sequences may include the same words. It there 1s another
token 1n the same node but that has the word history “am 1
here” istead of “I am here”, 1t has the word history hash
value OxD3F37DC4 which 1s different from OxD3766ER2,
and the two tokens are not normally combined 1n the present
process. In this case, both tokens and both word history
designations are maintained at the same state unless an
exception update occurs as described above.

The processes described above do not need to build an
intermediate phone or state lattice which requires more
RAM than an efhicient word lattice. Thus, the approach
described herein requires less memory to operate. Also,
performance measurements did not show a measurable
reduction 1n decoding speed using the approach herein
compared to a single-best Viterb1 decoding. As single-best
Viterb1 decoding 1s considered to be one of the easiest and
fastest ways to decode an utterance, 1t 1s assumed that the
present approach 1s not sigmificantly slower than any other
known method to generate word lattices.

It will be appreciated that processes 200 and/or 300 may
be provided by sample ASR systems 10 and/or 1300 to

Us 9,530,404 B2

13

operate at least some 1implementations of the present disclo-
sure. This includes operation of an acoustic front-end unit

1308, acoustic scoring unit 1310, WEFST decoder 1312, and

language interpreter execution unit 1314, as well as others,
in speech recognition processing system 1300 (FIG. 13) and
similarly for system 10 (FIG. 1).

In addition, any one or more of the operations of FIGS.
2-3 may be undertaken 1n response to instructions provided
by one or more computer program products. Such program
products may include signal bearing media providing
instructions that, when executed by, for example, a proces-
sor, may provide the functionality described herein. The
computer program products may be provided in any form of
one or more machine-readable media. Thus, for example, a
processor including one or more processor core(s) may
undertake one or more of the operations of the example
processes herein 1n response to program code and/or mstruc-
tions or mstruction sets conveyed to the processor by one or
more computer or machine-readable media. In general, a
machine-readable medium may convey software 1n the form
of program code and/or instructions or mnstruction sets that
may cause any of the devices and/or systems to perform as
described herein. The machine or computer readable media
may be a non-transitory article or medium, such as a
non-transitory computer readable medium, and may be used
with any of the examples mentioned above or other
examples except that it does not include a transitory signal
per se. It does mclude those elements other than a signal per
se that may hold data temporanly 1n a “transitory” fashion
such as RAM and so forth.

As used 1n any implementation described herein, the term
“module” refers to any combination ol software logic,
firmware logic and/or hardware logic configured to provide
the functionality described herein. The software may be
embodied as a soltware package, code and/or instruction set
or mstructions, and “hardware”, as used in any 1mplemen-
tation described herein, may include, for example, singly or
in any combination, hardwired circuitry, programmable cir-
cuitry, state machine circuitry, and/or firmware that stores
istructions executed by programmable circuitry. The mod-
ules may, collectively or individually, be embodied as cir-
cuitry that forms part of a larger system, for example, an
integrated circuit (IC), system on-chip (SoC), and so forth.
For example, a module may be embodied 1n logic circuitry
for the implementation via software, firmware, or hardware
of the coding systems discussed herein.

As used 1n any implementation described herein, the term
“logic unit” refers to any combination of firmware logic
and/or hardware logic configured to provide the functional-
ity described herein. The “hardware”, as used 1n any imple-
mentation described herein, may include, for example, sin-
gly or 1 any combination, hardwired -circuitry,
programmable circuitry, state machine circuitry, and/or firm-
ware that stores instructions executed by programmable
circuitry. The logic units may, collectively or individually,
be embodied as circuitry that forms part of a larger system,
for example, an integrated circuit (IC), system on-chip
(SoC), and so forth. For example, a logic unit may be
embodied in logic circuitry for the implementation firmware
or hardware of the coding systems discussed herein. One of
ordinary skill i the art will appreciate that operations
performed by hardware and/or firmware may alternatively
be implemented via software, which may be embodied as a
soltware package, code and/or 1nstruction set or mstructions,
and also appreciate that logic unit may also utilize a portion
of software to implement its functionality.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

As used 1n any implementation described herein, the term
“component” may refer to a module or to a logic unit, as
these terms are described above. Accordingly, the term
“component” may refer to any combination ol software
logic, firmware logic, and/or hardware logic configured to
provide the functionality described herein. For example, one
of ordinary skill in the art will appreciate that operations
performed by hardware and/or firmware may alternatively
be implemented via a software module, which may be
embodied as a software package, code and/or mstruction set,
and also appreciate that a logic unit may also utilize a
portion of software to implement 1ts functionality.

Referring to FIG. 13, an example image processing sys-
tem 1300 1s arranged in accordance with at least some
implementations of the present disclosure. In various imple-
mentations, the example speech recognition processing sys-
tem 1300 may have an audio capture device(s) 1302 to form
or recerve acoustical signal data. This can be implemented 1n
vartous ways. Thus, 1n one form, the speech recogmition
processing system 1300 may be an audio capture device
such as a microphone, and audio capture device 1302, 1n this
case, may be the microphone hardware and sensor software,
module, or component. In other examples, speech recogni-
tion processing system 1300 may have an audio capture
device 1302 that includes or may be a microphone, and logic
modules 1304 may communicate remotely with, or other-
wise may be communicatively coupled to, the audio capture
device 1302 for turther processing of the acoustic data.

In either case, such technology may include a telephone,
a smart phone, a dictation machine, other sound recording
machine, a mobile device or an on-board device, or any
combination of these. Thus, 1n one form, audio capture
device 1302 may include audio capture hardware including
one or more sensors as well as actuator controls. These
controls may be part of a sensor module or component for
operating the sensor. The sensor component may be part of
the audio capture device 1302, or may be part of the logical
modules 1304 or both. Such sensor component can be used
to convert sound waves 1nto an electrical acoustic signal.
The audio capture device 1302 also may have an A/D
converter, other filters, and so forth to provide a digital
signal for speech recognition processing.

In the illustrated example, the logic modules 1304 may
include an acoustic front-end unit 1308 that provides pre-
processing as described with unit 18 (FIG. 1) and that
identifies acoustic features, an acoustic score unit 1310 that
provides acoustic scores for the acoustic features, a WEST
decoder 1312 that provides a word lattice as described
herein, and a language interpreter execution unit 1314 that
determines a best word sequence to match the acoustic
signal. The WFST decoder unit 1312 may be operated by, or
even entirely or partially located at, processor(s) 1320, and
which may include, or connect to, an accelerator 1322 to
perform at least the WEST decoding with word history
sensitivity or acoustic scoring or both. The logic modules
may be communicatively coupled to the components of the
audio capture device 1302 1n order to receive raw acoustic
data. The logic modules 1304 may or may not be considered
to be part of the audio capture device.

The speech recognmition processing system 1300 may have
one or more processors 1320 which may include a dedicated
accelerator 1322 such as the Intel Atom, memory stores
1324 which may or may not hold the token buflers 1326 as
well as vocabulary, word history tables, and so forth men-
tioned herein, at least one speaker unit 1328 to provide
auditory responses to the input acoustic signals, one or more
displays 1328 to provide images 1330 of text as a visual

Us 9,530,404 B2

15

response to the acoustic signals, other end device(s) 1332 to
perform actions in response to the acoustic signal, and
antenna 1334. In one example implementation, the image
processing system 1300 may have the display 1328, at least
one processor 1320 communicatively coupled to the display,
at least one memory 1324 communicatively coupled to the
processor and having a token bufler 1326 by one example
for storing the tokens as explained above. The antenna 1334
may be provided for transmission of the best word sequence
matched to the iput acoustic signal or other relevant
commands to other devices that may act upon such a
determination. Otherwise, the results of the speech recog-
nition process may be stored in memory 1324. As 1llustrated,
any of these components may be capable of communication
with one another and/or communication with portions of
logic modules 1304 and/or audio capture device 1302. Thus,
processors 1320 may be communicatively coupled to both
the audio capture device 1302 and the logic modules 1304
for operating those components. By one approach, although
image processing system 1300, as shown in FIG. 13, may
include one particular set of blocks or actions associated
with particular components or modules, these blocks or
actions may be associated with different components or

modules than the particular component or module illustrated
here.

Referring to FIG. 14, an example system 1400 1n accor-
dance with the present disclosure operates one or more
aspects of the image processing system described herein. It
will be understood from the nature of the system compo-
nents described below that such components may be asso-
ciated with, or used to operate, certain part or parts of the
image processing system described above. In various imple-
mentations, system 1400 may be a media system although
system 1400 1s not limited to this context. For example,
system 1400 may be incorporated into a microphone, per-
sonal computer (PC), laptop computer, ultra-laptop com-
puter, tablet, touch pad, portable computer, handheld com-
puter, palmtop computer, personal digital assistant (PDA),
cellular telephone, combination cellular telephone/PDA,
television, smart device (e.g., smart phone, smart tablet or
smart television), mobile internet device (MID), messaging
device, data communication device, and so forth.

In various implementations, system 1400 includes a plat-
form 1402 coupled to a display 1420. Platform 1402 may
receive content from a content device such as content
services device(s) 1430 or content delivery device(s) 1440
or other similar content sources. A navigation controller
1450 including one or more navigation features may be used
to 1nteract with, for example, platiorm 1402, speaker 1470,
microphone 1470, and/or display 1420. Each of these com-
ponents 1s described 1n greater detail below.

In various implementations, platform 1402 may include
any combination of a chipset 1403, processor 1410, memory
1412, storage 1414, audio subsystem 1404, graphics sub-
system 1413, applications 1416 and/or radio 1418. Chipset
1405 may provide intercommunication among processor
1410, memory 1412, storage 1414, audio subsystem 1404,
graphics subsystem 1415, applications 1416 and/or radio
1418. For example, chipset 1405 may include a storage
adapter (not depicted) capable of providing itercommuni-
cation with storage 1414.

Processor 1410 may be implemented as a Complex
Instruction Set Computer (CISC) or Reduced Instruction Set
Computer (RISC) processors; x86 instruction set compatible
processors, multi-core, or any other microprocessor or cen-
tral processing unit (CPU). In various implementations,

10

15

20

25

30

35

40

45

50

55

60

65

16

processor 1410 may be dual-core processor(s), dual-core
mobile processor(s), and so forth.
Memory 1412 may be implemented as a volatile memory

device such as, but not limited to, a Random Access Memory
(RAM), Dynamic Random Access Memory (DRAM), or

Static RAM (SRAM).

Storage 1414 may be mmplemented as a non-volatile
storage device such as, but not limited to, a magnetic disk
drive, optical disk drive, tape drive, an internal storage
device, an attached storage device, flash memory, battery
backed-up SDRAM (synchronous DRAM), and/or a net-
work accessible storage device. In various implementations,
storage 1414 may include technology to increase the storage
performance enhanced protection for valuable digital media
when multiple hard drives are included, for example.

Audio subsystem 1404 may perform processing of audio
such as acoustic signals for speech recognition as described
herein and/or voice recognition. The audio subsystem 1404
may comprise one or more processing units and accelerators.
Such an audio subsystem may be integrated 1nto processor
1410 or chipset 1405. In some 1implementations, the audio
subsystem 1404 may be a stand-alone card communicatively
coupled to chipset 1405. An interface may be used to
communicatively couple the audio subsystem 1404 to a
speaker 1460, microphone 1470, and/or display 1420.

Graphics subsystem 1415 may perform processing of
images such as still or video for display. Graphics subsystem
1415 may be a graphics processing umt (GPU) or a visual
processing unit (VPU), for example. An analog or digital
interface may be used to communicatively couple graphics
subsystem 1415 and display 1420. For example, the inter-
face may be any of a High-Definition Multimedia Interface,
Display Port, wireless HDMI, and/or wireless HD compliant
techniques. Graphics subsystem 1415 may be integrated into
processor 1410 or chipset 1405. In some 1mplementations,
graphics subsystem 1415 may be a stand-alone card com-
municatively coupled to chipset 1403.

The audio processing techniques described herein may be
implemented 1n various hardware architectures. For
example, audio functionality may be integrated within a
chipset. Alternatively, a discrete audio processor may be
used. As still another implementation, the audio functions
may be provided by a general purpose processor, including
a multi-core processor. In further embodiments, the func-
tions may be implemented 1n a consumer electronics device.

Radio 1418 may include one or more radios capable of
transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net-
works. Example wireless networks include (but are not
limited to) wireless local area networks (WL ANSs), wireless
personal area networks (WPANs), wireless metropolitan
area network (WMANSs), cellular networks, and satellite
networks. In communicating across such networks, radio
1418 may operate 1n accordance with one or more applicable
standards 1n any version.

In various implementations, display 1420 may include
any television type monitor or display. Display 1420 may
include, for example, a computer display screen, touch
screen display, video monitor, television-like device, and/or
a television. Display 1420 may be digital and/or analog. In
vartous 1mplementations, display 1420 may be a holo-
graphic display. Also, display 1420 may be a transparent
surface that may receive a visual projection. Such projec-
tions may convey various forms of information, images,
and/or objects. For example, such projections may be a
visual overlay for a mobile augmented reality (MAR) appli-

Us 9,530,404 B2

17

cation. Under the control of one or more software applica-
tions 1416, platform 1402 may display user interface 1422
on display 1420.

In various implementations, content services device(s)
1430 may be hosted by any national, international and/or
independent service and thus accessible to platform 1402 via
the Internet, for example. Content services device(s) 1430
may be coupled to platform 1402 and/or to display 1420,
speaker 1460, and microphone 1470. Platform 1402 and/or
content services device(s) 1430 may be coupled to a network
1465 to communicate (e.g., send and/or receive) media
information to and from network 1465. Content delivery
device(s) 1440 also may be coupled to platiorm 1402,
speaker 1460, microphone 1470, and/or to display 1420.

In various implementations, content services device(s)
1430 may include a microphone, a cable television box,
personal computer, network, telephone, Internet enabled
devices or appliance capable of delivering digital informa-
tion and/or content, and any other similar device capable of
unidirectionally or bidirectionally communicating content
between content providers and platform 1402 and speaker
subsystem 1460, microphone 1470, and/or display 1420, via
network 1465 or directly. It will be appreciated that the
content may be communicated unidirectionally and/or bidi-
rectionally to and from any one of the components 1n system
1400 and a content provider via network 1460. Examples of
content may include any media information including, for
example, video, music, medical and gaming information,
and so forth.

Content services device(s) 1430 may receive content such
as cable television programming including media informa-
tion, digital information, and/or other content. Examples of
content providers may include any cable or satellite televi-
sion or radio or Internet content providers. The provided
examples are not meant to limit implementations 1n accor-
dance with the present disclosure in any way.

In various implementations, plattorm 1402 may receive
control signals from navigation controller 1450 having one
or more navigation features. The navigation features of
controller 1450 may be used to interact with user interface
1422, for example. In embodiments, navigation controller
1450 may be a pointing device that may be a computer
hardware component (specifically, a human interface
device) that allows a user to 1mput spatial (e.g., continuous
and multi-dimensional) data into a computer. Many systems
such as graphical user interfaces (GUI), and televisions and
monitors allow the user to control and provide data to the
computer or television using physical gestures. The audio
subsystem 1404 also may be used to control the motion of
articles or selection of commands on the interface 1422.

Movements of the navigation features of controller 1450
may be replicated on a display (e.g., display 1420) by
movements of a pointer, cursor, focus ring, or other visual
indicators displayed on the display or by audio commands.
For example, under the control of software applications
1416, the navigation features located on navigation control-
ler 1450 may be mapped to virtual navigation features
displayed on user interface 1422, for example. In embodi-
ments, controller 1450 may not be a separate component but
may be integrated into platform 1402, speaker subsystem
1260, microphone 1470, and/or display 1420. The present

disclosure, however, 1s not limited to the elements or in the
context shown or described herein.

In various implementations, drivers (not shown) may
include technology to enable users to instantly turn on and
ofl platform 1402 like a television with the touch of a button
after mitial boot-up, when enabled, for example, or by

10

15

20

25

30

35

40

45

50

55

60

65

18

auditory command. Program logic may allow platiorm 1402
to stream content to media adaptors or other content services
device(s) 1430 or content delivery device(s) 1440 even
when the platform 1s turned “off” In addition, chipset 1405
may include hardware and/or soiftware support for 8.1 sur-
round sound audio and/or high definition (7.1) surround
sound audio, for example. Drivers may include an auditory
or graphics driver for integrated auditory or graphics plat-
forms. In embodiments, the auditory or graphics driver may
comprise a peripheral component interconnect (PCI)
Express graphics card.

In various implementations, any one or more ol the
components shown in system 1400 may be integrated. For
example, platform 1402 and content services device(s) 1430
may be integrated, or platiorm 1402 and content delivery
device(s) 1440 may be integrated, or platform 1402, content
services device(s) 1430, and content delivery device(s) 1440
may be integrated, for example. In various embodiments,
plattorm 1402, speaker 1460, microphone 1470, and/or
display 1420 may be an integrated unit. Display 1420,
speaker 1460, and/or microphone 1470 and content service
device(s) 1430 may be integrated, or display 1420, speaker
1460, and/or microphone 1470 and content delivery
device(s) 1440 may be integrated, for example. These
examples are not meant to limit the present disclosure.

In various embodiments, system 1400 may be imple-
mented as a wireless system, a wired system, or a combi-
nation of both. When implemented as a wireless system,
system 1400 may include components and interfaces suit-
able for communicating over a wireless shared media, such
as one or more antennas, transmitters, receivers, transceiv-
ers, amplifiers, filters, control logic, and so forth. An
example of wireless shared media may include portions of a
wireless spectrum, such as the RF spectrum and so forth.
When implemented as a wired system, system 1400 may
include components and interfaces suitable for communi-
cating over wired commumnications media, such as mput/
output (I/0) adapters, physical connectors to connect the I/O
adapter with a corresponding wired communications
medium, a network interface card (NIC), disc controller,
video controller, audio controller, and the like. Examples of
wired communications media may include a wire, cable,
metal leads, printed circuit board (PCB), backplane, switch
fabric, semiconductor material, twisted-pair wire, co-axial
cable, fiber optics, and so forth.

Platform 1402 may establish one or more logical or

.

physical channels to communicate information. The nfor-
mation may include media information and control infor-
mation. Media information may refer to any data represent-
ing content meant for a user. Examples of content may
include, for example, data from a voice conversation, vid-
coconference, streaming video and audio, electronic mail
(“email”) message, voice mail message, alphanumeric sym-
bols, graphics, image, video, audio, text and so forth. Data
from a voice conversation may be, for example, speech
information, silence periods, background noise, comiort
noise, tones and so forth. Control information may refer to
any data representing commands, instructions or control
words meant for an automated system. For example, control
information may be used to route media information through
a system, or 1struct a node to process the media information

in a predetermined manner. The implementations, however,
are not limited to the elements or in the context shown or
described 1 FIG. 14.

Referring to FIG. 15, a small form factor device 1500 1s
one example of the varying physical styles or form factors
in which system 1400 may be embodied. By this approach,

Us 9,530,404 B2

19

device 1500 may be implemented as a mobile computing
device having wireless capabilities. A mobile computing
device may refer to any device having a processing system
and a mobile power source or supply, such as one or more
batteries, for example. 5

As described above, examples of a mobile computing
device may include any device with an audio sub-system
such as a personal computer (PC), laptop computer, ultra-
laptop computer, tablet, touch pad, portable computer, hand-
held computer, palmtop computer, personal digital assistant 10
(PDA), cellular telephone, combination cellular telephone/
PDA, television, smart device (e.g., smart phone, smart
tablet or smart television), mobile mternet device (MID),
messaging device, data communication device, and so forth,
and any other on-board (such as on a vehicle) computer that 15
may accept audio commands.

Examples of a mobile computing device also may include
computers that are arranged to be worn by a person, such as
a head-phone, head band, hearing aide, wrist computer,
finger computer, ring computer, eyeglass computer, belt-clip 20
computer, arm-band computer, shoe computers, clothing
computers, and other wearable computers. In various
embodiments, for example, a mobile computing device may
be mmplemented as a smart phone capable of executing
computer applications, as well as voice communications 25
and/or data communications. Although some embodiments
may be described with a mobile computing device imple-
mented as a smart phone by way of example, 1t may be
appreciated that other embodiments may be implemented
using other wireless mobile computing devices as well. The 30
embodiments are not limited in this context.

As shown 1n FIG. 15, device 1000 may include a housing
1502, a display 1504 including a screen 1510, an input/
output (I/O) device 1506, and an antenna 1508. Device 1500
also may include navigation features 1015. Display 1504 35
may include any suitable display unit for displaying infor-
mation appropriate for a mobile computing device. /O
device 1506 may include any suitable 1/O device for enter-
ing mformation nto a mobile computing device. Examples
for I/0 device 1506 may include an alphanumeric keyboard, 40
a numeric keypad, a touch pad, mput keys, buttons,
switches, rocker switches, software and so forth. Informa-
tion also may be entered into device 1500 by way of
microphone 1514. Such mformation may be digitized by a
speech recognition device as described herein as well as a 45
voice recognition devices and as part of the device 1500, and
may provide audio responses via a speaker 1516 or visual
responses via screen 1210. The embodiments are not limited
in this context.

Various forms of the devices and processes described 50
herein may be implemented using hardware elements, soft-
ware elements, or a combination of both. Examples of
hardware elements may include processors, microproces-
sors, circuits, circuit elements (e.g., transistors, resistors,
capacitors, inductors, and so {forth), integrated circuits, 55
application specific integrated circuits (ASIC), program-
mable logic devices (PLD), digital signal processors (DSP),
field programmable gate array (FPGA), logic gates, regis-
ters, semiconductor device, chips, microchips, chip sets, and
so forth. Examples of software may include software com- 60
ponents, programs, applications, computer programs, appli-
cation programs, system programs, machine programs, oper-
ating system software, middleware, firmware, soltware
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces 65
(API), mstruction sets, computing code, computer code,
code segments, computer code segments, words, values,

20

symbols, or any combination thereof. Determining whether
an 1implementation 1s implemented using hardware elements
and/or soitware elements may vary in accordance with any
number of factors, such as desired computational rate, power
levels, heat tolerances, processing cycle budget, input data
rates, output data rates, memory resources, data bus speeds
and other design or performance constraints.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load 1nto the fabrication machines that actually make the
logic or processor.

While certain {features set forth herein have been
described with reference to various implementations, this
description 1s not intended to be construed 1n a limiting
sense. Hence, various modifications of the implementations
described herein, as well as other implementations, which
are apparent to persons skilled in the art to which the present
disclosure pertains are deemed to lie within the spirit and
scope of the present disclosure.

The following examples pertain to further implementa-
tions.

By one example, a computer-implemented method of
speech recognition comprises propagating tokens through a
weighted finite state transducer (WFST) having arcs and
words or word 1dentifiers as output labels of the WFST, and
comprising placing word sequences nto a word lattice. The
method also comprises generating a word history designa-
tion for individual tokens when a word 1s established at a
token propagating along one of the arcs with an output
symbol, wherein the word history designation indicates a
word sequence, and determining whether or not two or more
tokens should be combined to form a single token 1n a state
of the WFST by using, at least in part, the word history
designations.

By another implementation, the method also may com-
prise recombining two or more tokens in the same node of
the WEFST when the word history designations of the tokens
are the same and avoiding a recombination when the word
history designations of two or more tokens are not the same,
and placing the word established at an arc of the WFST with
an output label mto a word lattice as the tokens are being
propagated, as well as performing an exception update of the
word lattice by recombining multiple tokens into a single
new active token when the word history designations of the
multiple tokens are different. This may comprise placing
word lattice node references of the multiple tokens into the
new active token when the references are unique to other
references from other ones of the multiple tokens, and
maintaining the reference with the best score for the new
active token when the reference 1s the same among more
than one of the multiple tokens. The method further may
comprise assigning a different value to individual words 1n
a vocabulary of possible words to be used as output symbols
of the WFST, and using multiple values corresponding to
multiple words to determine the word history designation,
and combiming multiple final end tokens into a single
utterance end token, wherein the designation 1s a hash tag
formed by using a recursive hash function, and wherein the
word history designation 1s different depending on the order
of the words within the word sequence.

Us 9,530,404 B2

21

By yet another implementation, a computer-implemented
system of speech recognition comprises at least one acoustic
signal receiving unit, at least one processor communica-
tively connected to the acoustic signal receiving unit, at least
one memory communicatively coupled to the at least one
processor, and a weighted fimite state transducer (WEFST)
decoder communicatively coupled to the processor, and to
propagate tokens through a weighted finite state transducer
(WFST) having words or word 1dentifiers as output labels of
the WFEFST. This may comprise placing word sequences 1nto
a word lattice. The WFST decoder also may be provided to
generate a word history designation for individual tokens
when a word 1s established at an arc of the WFST with an
output symbol, wherein the word history designation indi-
cates a word sequence, and to determine whether or not two
or more tokens should be combined to form a single token
in a state of the WFST by using, at least 1n part, the word
history designations.

By another example, the system provides the WEST
decoder 1s to recombine two or more tokens 1n the same state
of the WFST when the word history designations of the
tokens are the same, avoid a recombination when the word
history designations of two or more tokens are not the same,
place the word established at an arc of the WFST with an
output label into a word lattice as tokens are being propa-
gated, perform an exception update of the word lattice by
recombiming multiple tokens 1nto a single new active token
when the word history designations of the multiple tokens
are different. This last operation may comprise having the
WEFST decoder place word lattice node references of the
multiple tokens into the new active token when the refer-
ences are unique to other references from other ones of the
multiple tokens, and maintain the reference with the best
score for the new active token when the reference 1s the
same among more than one of the multiple tokens. Other-
wise, the WFST decoder may be prowded to assign a
different value to individual words 1n a vocabulary of
possible words to be used as output symbols of the WEFST,
and using multiple values corresponding to multiple words
to determine the word history designation, and combine
multiple final end tokens into a single utterance end token,
wherein the designation 1s a hash tag formed by using a
recursive hash function, and wherein the word history des-
ignation 1s different depending on the order of the words
within the word sequence.

By one approach, at least one computer readable medium
comprises a plurality of instructions that in response to being
executed on a computing device, causes the computing
device to propagate tokens through the weighted finite state
transducer (WFST) having words or word identifiers as
output labels of the WFST, and comprises placing word
sequences mto a word lattice. The computing device 1s
computed to generate a word history designation for indi-
vidual tokens when a word 1s established at a token propa-
gating along an arc with an output symbol, wherein the word
history designation indicates a word sequence, and deter-
mine whether or not two or more tokens should be combined
to form a single token 1n a state of the WEFST by using, at
least 1in part, the word history designations.

By another approach, the instructions cause the comput-
ing device to recombine two or more tokens 1n the same state
of the WFST when the word history designations of the
tokens are the same and avoid a recombination when the
word history designations of two or more tokens are not the
same, place the word established at an arc of the WEFST with
an output label mto a word lattice as tokens are being
propagated, perform an exception update of the word lattice

10

15

20

25

30

35

40

45

50

55

60

65

22

by recombiming multiple tokens into a single new active
token when the word history designations of the multiple
tokens are different, and comprising placing word lattice
node references of the multiple tokens into the new active
token when the references are umque to other references
from other ones of the multiple tokens, and maintaiming the
reference with the best score for the new active token when
the reference 1s the same among more than one of the
multiple tokens. The WFST also may be provided to assign
a different value to individual words 1 a vocabulary of
possible words to be used as output symbols of the WEFST,
and use multiple values corresponding to multiple words to
determine the word history designation, as well as combine
multiple final end tokens into a single utterance end token,
wherein the designation 1s a hash tag formed by using a
recursive hash function, and wherein the word history des-
ignation 1s different depending on the order of the words
within the word sequence.

In a further example, at least one machine readable
medium may include a plurality of instructions that in
response to being executed on a computing device, causes
the computing device to perform the method according to
any one of the above examples.

In a still further example, an apparatus may include means
for performing the methods according to any one of the
above examples.

The above examples may include specific combination of
teatures. However, the above examples are not limited 1n
this regard and, 1n various implementations, the above
examples may include undertaking only a subset of such
features, undertaking a different order of such features,
undertaking a different combination of such features, and/or
undertaking additional features than those features exphcnly
listed. For example, all features described with respect to
any example methods herein may be implemented with
respect to any example apparatus, example systems, and/or
example articles, and vice versa.

What 1s claimed 1s:

1. A computer-implemented method of automatic speech
recognition, comprising;:

propagating, by at least one processor, tokens that are

cach associated with one or more sounds from a
recording of a person talking and that 1s at least part of
a word, through a weighted finite state transducer
(WEFST) having arcs and words or word 1dentifiers as
output labels of the WFST, and comprising placing
word sequences 1mto a word lattice;

generating, by at least one processor, a word history

designation for individual tokens when a word 1s estab-
lished at a token propagating along one of the arcs with
an output symbol, wherein the word history designation
indicates a word sequence; and

determining, by at least one processor, whether or not two

or more tokens should be combined to form a single
token 1n a state of the WEFST by using, at least in part,
the word history designations so that the recorded
sounds are transiformed into data that indicates recog-
nition of an utterance by using, at least 1n part, the word
history designations.

2. The method of claim 1 comprising recombining two or
more tokens in the same node of the WFST when the word
history designations of the tokens are the same and avoiding
a recombination when the word history designations of two
or more tokens are not the same.

3. The method of claim 1 comprising placing the word
established at an arc of the WFST with an output label into
a word lattice as the tokens are being propagated.

Us 9,530,404 B2

23

4. The method of claim 3 comprising performing an
exception update of the word lattice by recombining mul-
tiple tokens into a single new active token when the word
history designations of the multiple tokens are different, and
comprising;

placing word lattice node references of the multiple

tokens into the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaiming the reference with the best score for the new

active token when the reference 1s the same among
more than one of the multiple tokens.

5. The method of claim 1 wherein the designation 1s a
hash tag formed by using a recursive hash function.

6. The method of claim 1 comprising assigning a different
value to individual words 1n a vocabulary of possible words
to be used as output symbols of the WFST, and using
multiple values corresponding to multiple words to deter-
mine the word history designation.

7. The method of claam 1 wheremn the word history
designation 1s different depending on the order of the words
within the word sequence.

8. The method of claim 1 comprising combining multiple
final end tokens into a single utterance end token.

9. The method of claim 1 comprising

recombining two or more tokens in the same node of the

WFST when the word history designations of the
tokens are the same and avoiding a recombination
when the word history designations of two or more
tokens are not the same;

placing the word established at an arc of the WFST with

an output label into a word lattice as the tokens are
being propagated;

performing an exception update of the word lattice by

recombining multiple tokens into a single new active

token when the word history designations of the mul-

tiple tokens are diflerent, and comprising:

placing word lattice node references of the multiple
tokens into the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaining the reference with the best score for the
new active token when the reference 1s the same
among more than one of the multiple tokens;

assigning a different value to individual words in a

vocabulary of possible words to be used as output
symbols of the WFST, and using multiple values cor-
responding to multiple words to determine the word
history designation; and

combining multiple final end tokens into a single utter-

ance end token;

wherein the designation 1s a hash tag formed by using a

recursive hash function; and

wherein the word history designation 1s different depend-

ing on the order of the words within the word sequence.

10. A computer-implemented system of automatic speech
recognition comprising:

at least one acoustic signal receiving unit;

at least one processor communicatively connected to the

acoustic signal receiving unit;

at least one memory communicatively coupled to the at

least one processor; and

a weighted finite state transducer (WFST) decoder com-

municatively coupled to, and operated by, the proces-

sor, and to:

propagate tokens that are each associated with a sound
from a recording of a person talking and that 1s at

10

15

20

25

30

35

40

45

50

55

60

65

24

least part of a word, by at least one processor,
through a weighted finite state transducer (WFST)
having words or word 1dentifiers as output labels of
the WFST, and comprising placing word sequences
into a word lattice;

generate a word history designation for individual
tokens when a word 1s established at an arc of the
WEFST with an output symbol, wherein the word
history designation indicates a word sequence; and

determine whether or not two or more tokens should be
combined to form a single token 1n a state of the
WEFST by using, at least in part, the word history
designations so that the recorded sounds are trans-
formed into data that indicates recognition of an
utterance by using, at least 1n part, the word history
designations.

11. The system of claim 10 wherein the WEFS'T decoder 1s

to recombine two or more tokens 1n the same state of the
WFST when the word history designations of the tokens are
the same and avoiding a recombination when the word
history designations of two or more tokens are not the same.

12. The system of claim 10 wherein the WFS'T decoder 1s
to place the word established at an arc of the WFST with an
output label into a word lattice as tokens are being propa-
gated.

13. The system of claim 12 wherein the WEFST decoder 1s

to perform an exception update of the word lattice by
recombining multiple tokens into a single new active token
when the word history designations of the multiple tokens
are different, and comprising:

placing word lattice node references of the multiple
tokens into the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaining the reference with the best score for the new
active token when the reference 1s the same among
more than one of the multiple tokens.

14. The system of claim 10 wherein the designation 1s a
hash tag formed by using a recursive hash function.

15. The system of claim 10 wherein the WFS'T decoder 1s

to assign a different value to mdividual words 1n a vocabu-
lary of possible words to be used as output symbols of the
WFST, and using multiple values corresponding to multiple
words to determine the word history designation.

16. The system of claim 10 wherein the word history
designation 1s different depending on the order of the words
within the word sequence.

17. The system of claim 10 wherein the WEFST decoder 1s
to combine multiple final end tokens 1nto a single utterance
end token.

18. The system of claim 10 wherein the WFST decoder 1s
to:

recombine two or more tokens i the same state of the
WEFST when the word history designations of the
tokens are the same and avoiding a recombination
when the word history designations of two or more
tokens are not the same;

place the word established at an arc of the WFST with an
output label 1nto a word lattice as tokens are being
propagated;

perform an exception update of the word lattice by
recombining multiple tokens into a single new active

Us 9,530,404 B2

25

token when the word history designations of the mul-

tiple tokens are different, and comprising:

placing word lattice node references of the multiple
tokens 1nto the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaining the reference with the best score for the
new active token when the reference 1s the same
among more than one of the multiple tokens;

assign a different value to individual words 1n a vocabu-

lary of possible words to be used as output symbols of

the WFEFST, and using multiple values corresponding to

multiple words to determine the word history designa-

tion; and

combine multiple final end tokens into a single utterance

end token;

wherein the designation 1s a hash tag formed by using a

recursive hash function, and

wherein the word history designation 1s different depend-

ing on the order of the words within the word sequence.
19. At least one computer readable medium comprising a
plurality of instructions that 1n response to being executed
on an automatic speech recognition computing device,
causes the speech recognition computing device to:
propagate tokens, by at least one processor, that are each
associated with a sound from a recording of a person
talking and that is at least part of a word, through the
weilghted finite state transducer (WFST) having words
or word 1dentifiers as output labels of the WFST, and
comprising placing word sequences into a word lattice;

generate, by at least one processor, a word history des-
ignation for individual tokens when a word 1s estab-
lished at a token propagating along an arc with an
output symbol, wherein the word history designation
indicates a word sequence; and

determine, by at least one processor, whether or not two

or more tokens should be combined to form a single
token 1n a state of the WFST by using, at least in part,
the word history designations so that the recorded
sounds are transformed into data that indicates recog-
nition of an utterance by using, at least 1n part, the word
history designations.

20. The medium of claim 19 wherein the instructions
cause the computing device to recombine two or more
tokens 1n the same state of the WFST when the word history
designations of the tokens are the same and avoiding a
recombination when the word history designations of two or
more tokens are not the same.

21. The medium of claim 19 wherein the instructions
cause the computing device to place the word established at
an arc of the WFS'T with an output label into a word lattice
as the tokens are being propagated.

10

15

20

25

30

35

40

45

50

26

22. The medium of claim 21 wherein the instructions
cause the computing device to perform an exception update
of the word lattice by recombining multiple tokens into a
single new active token when the word history designations
of the multiple tokens are different, and comprising:

placing word lattice node references of the multiple

tokens into the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaining the reference with the best score for the new

active token when the reference 1s the same among
more than one of the multiple tokens.

23. The system of claim 19 wherein the designation 1s a
hash tag formed by using a recursive hash function.

24. The system of claim 19 wherein the instructions cause
the computing device to assign a different value to individual
words 1n a vocabulary of possible words to be used as output
symbols of the WFST, and using multiple values corre-
sponding to multiple words to determine the word history
designation.

25. The medium of claim 19, wherein the instructions
cause the computing device to recombine two or more
tokens 1n the same state of the WFST when the word history
designations of the tokens are the same and avoiding a
recombination when the word history designations of two or
more tokens are not the same;

place the word established at an arc of the WFST with an

output label 1nto a word lattice as tokens are being
propagated;

perform an exception update of the word lattice by

recombining multiple tokens into a single new active

token when the word history designations of the mul-

tiple tokens are different, and comprising:

placing word lattice node references of the multiple
tokens into the new active token when the references
are unique to other references from other ones of the
multiple tokens, and

maintaining the reference with the best score for the
new active token when the reference 1s the same
among more than one of the multiple tokens;

assign a diflerent value to individual words 1n a vocabu-

lary of possible words to be used as output symbols of

the WEFST, and using multiple values corresponding to

multiple words to determine the word history designa-

tion; and

combine multiple final end tokens 1nto a single utterance

end token;

wherein the designation 1s a hash tag formed by using a

recursive hash function, and

wherein the word history designation 1s different depend-

ing on the order of the words within the word sequence.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

