12 United States Patent

US009530004B2

(10) Patent No.: US 9.530,004 B2

Yajima et al. 45) Date of Patent: Dec. 27, 2016
(54) SECURE BOOT METHOD, 2001/0016927 Al1* 8/2001 Poisner GOG6F 11/1004
SEMICONDUCTOR DEVICE AND 714/718
RECORDING MEDIUM 2003/0084298 Al* 5/2003 Messerges ... HO41. 9/3236
713/176
: : ot 2004/0177354 Al 9/2004 Gunyakti et al.
(71) " Appheant Isgngllggfég) INC., Yokohama-sh, 2006/0161761 Al* 7/2006 SCAWAIZ GOGE 21/52
8 711/216
_ 2008/0244553 Al* 10/2008 Cromer GO6F 21/572
(72) Inventors: Jup Yajima, Ka}wasakl (JP); Kenji O 717/168
Saito, Hachiouj1 (JP) 2014/0043059 Al* 2/2014 SPeers HO3K. 19/003
326/9
(73) Assignee: SOCIONEXT INC., Yokohama (JP) 2014/0281354 Al* 9/2014 Tkacik GOG6F 12/1009
711/206
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 101 days.
JP 2004-265422 9/2004
(21) Appl. No.: 14/471,280 ¥ cited by examiner
(22) Filed: Aug. 28, 2014 _ _ .
Primary Examiner — Saleh Nayjar
(65) Prior Publication Data Assistant Examiner — Khang Do
US 2015/0074384 Al Mar. 12. 2015 (74) AﬁO}"’ﬂE"yJ Agﬁi’ﬂf} or Firm — Staas & Halsey LLLP
(30) Foreign Application Priority Data (57) ABSTRACT
A secure boot method for a system, the system 1ncluding a
Sep. 10, 2013 (IP) oo 2013-187064 processor and a storage medium configured to store a
(51) Int. Cl program, a plurality of first partial hash values calculated
GOGF 21/57 (2013.01) based on a plurality of first partial programs into which the
(52) U.S. CL. program 1s divided, and a first legitimate hash value which
CPC GO6F 21/575 (2013.01); GOGF 2221/2109 1s a hash value calculated based on a plurality of first
(2013.01) legitimate partial hash values, the plurality of first legitimate
(58) Field of Classification Search partial hash values being calculated based on a plurality of
CPC oo e GOGF 21/575 legitimate partial programs. The secure boot method
See application file for complete search history. includes calculating, a second calculated hash value based
on the plurality of first partial hash values, and determining,
(56) References Cited whether or not the second calculated hash value matches the

U.S. PATENT DOCUMENTS

first legitimate hash value to continue the start-up processing
of the system when the determination indicates match, and
suspend the start-up processing of the system when the

6,463,535 B1* 10/2002 Drewsc.coeenne. GO6F 9/4416)) Al
T13/176 determination does not indicate match.
8,971,538 B1™ 3/2015 Marrooovvnvinnnn. HO41. 63/145
380/285 20 Claims, 15 Drawing Sheets
10
_-51
11 12 _ 13 NPUT
‘ II"*FI'ERFACE CPU INTERFACE
17
14 15 16
FLASH MEMORY OUTPUT
BOOT ROM — RAM DEVICE
L 0S N
90
FIRMWARE ~~52
e ———— .80
PARTIAL HASH VALUE ' ~-—01Ha~9nHa
OF PARTIAL HASH VALUES

US 9,530,004 B2

Sheet 1 of 15

Dec. 27, 2016

U.S. Patent

S3AMTVA HSVH TVILEvd 40

®SH INTVA HSYH JLYNILIOTT

EHU6~BHIG6 I VA HSVH 1VIRvd

08
7C JAVMINYIA
NV INO¥ 1004
AHOWIN HSV1

J0IAdd
1Nd1f0O

0T ST b1
(1
IOV-I NI
m._mmm_,w_m v NdD IOVALNI -

Cl It

1S

O1

'OI

US 9,530,004 B2

JHVMINAIL 4O dNTVA HSVH JLVINLLIO AT

WOY 1004

SO 40 AMVA HSYH JLVINILLIOAT

Sheet 2 of 15

JAVMIN AL

Dec. 27, 2016

¢ Ol

U.S. Patent

llllllllllllllllllllllllllllllllllll

mm:._<> HSVH ._<H._.~_<n_ u_O

US 9,530,004 B2

_ eHUG eSH -zua.é HSVH MJP«__\,,__.F__.U_M__J_ i
_ U INIVA HSVH TYLLV |77
SANTVA HSVH TVILdVd li.........immmmmm_,,mmmmammmmmm___._.”*.._”_.ﬁm___mm#m”m”mmm”m”m RO aRRRaR!
40 INTVA HSVH mmmmmmmmmmmmmmmwmm N .mmmmmmmmmmﬁmmmmmmmm mmmmmm.ﬂmmmmmmmmmmmmmam“. nnnLnnnnn
Tg D d. ... g
- SH : T ANTYA HSYH VISV | T 3NTVA HSVH TVLLYYd
................ 4
= BHZ6 eHT6~
=
e e N
-
< U 1M4Vd
=
06 -6 ¢ 1vd T 1¥vd ;f 16

¢ DI

U.S. Patent

U.S. Patent Dec. 27,2016 Sheet 4 of 15 US 9,530,004 B2

FIG.4
(" START)
l 511

CPU READS/EXECUTES BOOT ROM

512

CPU CALCULATES HASH VALUE OF
_ FIRMWARE

513

HASH
VALUE EQUAL TO LEGITIMATE
HASH VALUE?

NO

Yes

514

READ/EXECUTE FIRMWARE

S15

CPU CALCULATES HASH VALUE OF
PARTIAL HASH VALUES OF OS

HASH 516
VALUE OF PARTIAL

HASH VALUES EQUAL TO LEGITIMATE
HASH VALUE OF PARTIAL
HASH VALUES?

No

Yes

S17 518

READ/EXECUTE OS SUSPEND START-UP

US 9,530,004 B2

Sheet 5 of 15

Dec. 27, 2016

U.S. Patent

PHUG \/
U INIVA HSVH TVILNVd OnIIIII
mmh<_>__._._ow._u B S RN

--

ii
lll

ll

lll
ii
lll

--
--

--

Z INTVA HSVH TVLLMVd | T 3NTVA HSVH VLAV
(FLvNILIO3T) - mEs__.com_.c

ll
ll

U d(1TVA HSVH TVILYVd

¢ ANVA HSVH IVLLAVYd I AN1VA HSVYH 1vILdvd

INm\\ HI6

06

U RN
U | ¥Vd
¢ 1¥vd T 13vd
p H
Nm\\ I6
GOl

US 9,530,004 B2

Sheet 6 of 15

Dec. 27, 2016

U.S. Patent

df1-1dV1LS ANIdSNS

SO 40 DNISSIO0dd INNILNOD

PCS

SOA

(AAVMINAILS
NI 43015 SINTVA HSVH

VIV OL TvnO3 iV SANTVA
HSVH TVILdVvd

ON

WA

SO 40 14V¥d HOV3 404 dNTVA HSVYH 1VILEVYd S3LVINDTIVO
NOLLYOI'lddV NOLLVOI4I™3A dNTVA HSVH VLAV

CCS

ONIWIL d3¥iS34a 1V NOLLYOI1ddV NOLLYDIATHAA
OV IVA HSVH TVILAEVd 1HVYILS

1ZS |

(ws) 9’014

- SANTVA HSYH TVLLYVd 40 -
*INTIVA HSYH JLVNILIDTT -

llllllllllllllllllllllllllllll

eSH

llllllllllllllllllllllllllllll

US 9,530,004 B2

PHUG \/
U AAAWA LG AT (ML o e T T
” m:m“.ﬁ.(ﬂﬂ%_.__._wwmw_ﬁ(n_ o TN b SAMNIVA HSVYH VI LdvYd
mmwmﬂ_ﬁ”_uM“_”“““_““_“_H“_“_ﬁM“_m”mm”m_mmm 1]..1..1 40 3TVA HS5VH
- - =
g " Z3INIVA HSVH TVILNYd T 3NTVA HSYH TVILdVd
E Gwmuon F @vwean) u§ —
= [
7 PHZH EHT6
~ HUBTA U 1dvd
> U 3N1VYA HSYH 1TYILMVYd _
m .
~ . { _
g
“ |
= Z AMTYA HSYH TVILNVd | T 3nTVA HSVH TVILYYd
IN@\\ _.:m\k ¢ 1dvd _ 1 1dVvd
76— 16—
06 adl =

U.S. Patent

U.S. Patent Dec. 27,2016 Sheet 8 of 15 US 9,530,004 B2

FIGS

S31

ACQUIRE PARTIAL HASH VALUES,
AND LEGITIMATE HASH VALUE OF

PARTIAL HASH VALUES,
BY OFFICIAL ROUTE
S32
UPDATE OS
533

CALCULATE PARTIAL HASH VALUES
FOR EACH PART OF 0OS

S34

EQUAL
TO LEGITIMATE PARTIAL

ASH VALUES?
Yes

NO

S35

CALCULATE HASH VALUE OF
PARTIAL HASH VALUES

EQUAL TO 536
LEGITIMATE HASH VALUE OF
PARTIAL HASH
VALUES?

Yes

NO

537

STORE PARTIAL HASH VALUES AND
HASH VALUE OF PARTIAL HASH |
VALUES, IN FIRMWARE

S39

S38
SUSPEND
UPDATING OF OS COMPLETED UPDATING OF OS

US 9,530,004 B2

Sheet 9 of 15

Dec. 27, 2016

U.S. Patent

1AVIS-J

1472

TAVMIWAILA NI * SANTVA HSYH TVILIVd 40 3NTVA HSYH
A1VINILID AT ANV S3NTVA HSVH TVLLYVYd 2H01S

ebS

SO d1vddn

[4 25

31N0Y TVIDI4H40 A9 ‘SANTVYA HSYH TVILavd 40 INTVA
HSVH 3LVYNILIDAT ANV S3INTVA HSYH TVILEYd 3HINODY

IPS

1AV1S

6 DI4

US 9,530,004 B2

Sheet 10 of 15

Dec. 27, 2016

U.S. Patent

] L SIMTIVA HSVH %:.mi. 10
- WU ANTYA HSYH | ,m_Eonu.c. - TEXSH

_ o SIMIVA HSVH TVILYVd 40 i
' AMIVA HSVH Ambq_\,__h_ow._v_ o ~BZSH

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ll

mm:._<> HSVH ._dH._.mda 40

lllll

01 IMIVA HSYH (2UVWILIDTT) i

40 E\: ANTVA HSVH

SANTVA Im«f VI1vd
40 ¢ JNTVA HSVH

SANIVA HSVH TV11dVd
40 T ANTVYA HSVH

* SAMTVA HSYH TYLLNVd _

TSH

e - ~
:mL U 1dvd _

[+W 1vd

06
m W 1dvd TLdVd -1

o , 01 914

U.S. Patent Dec. 27, 2016 Sheet 11 of 15

FIG.11

START

511

CPU READS/EXECUTES
BOOT ROM

g gl g g g oo o g g g g g g g g gy g g sy

S12
CPU CALCULATES HASH VALUE
OF FIRMWARE

HASH VALUE 213
EQUAL TO LEGITIMATE HASH

VALUE?

NO

Yes 514

‘ READ/EXECUTE FIRMWARE
S55

CPU CALCULATES HASH VALUE OF
PARTIAL HASH VALUES OF OS

556

HASH
VALUE OF PARTIAL
HASH VALUES EQUAL TO LEGITIMATE
HASH VALUE OF PARTIAL
HASH VALUES?

NO

Yes

557

ASH VALUE OF
ALL (n/m) PARTIAL HASH
ALUES VERIFIED?

NO

Yes

558
READ/EXECUTE OS

US 9,530,004 B2

559

SUSPEND
START-UP

--

ll

US 9,530,004 B2
(O
T
o
o
|

U FMIVA HSYH VLYY it
T (Fvwiean) _mmmmmmmﬂmmmmmmmmmmm_w.”_“.ammmmmmmm#mm
ST R T IV HSVH T LLMVd
sy GSYNIRID
S w IMIVA rwgp_iwa ST 3TVA HSYH VLIV
- Glywiiean) w7 QELVNILDIY U6 ~,

U 1dvd

Sheet 12 of 15

.-

|

h
1%
I
-~
G
(U
a1
v
o)

U JM1VA HSVH TVILdvd

m F+W dMN1IYA HSYH TVI1vYd _ T+ | ¥Vvd
N |
m W 4NTVA HSVH 1VI1dVd T AN1VA HSYH TVLLdvd
: Hwe — HT6 — Z L¥vd
e
g 2191

U.S. Patent

US 9,530,004 B2

Sheet 13 of 15

Dec. 27, 2016

U.S. Patent

GE_\,_:._Om_._

...............................

llllllllllllllll

_ : ANTIVA HSVYH VI ~_<n_

iiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lll

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii
llllllllllllllllllllllllll
lllllllllllll
iiiiiiiiiiiii
lllllllllll
iiiiiiiiiiii
lllllllllllll
hhhhhhhhhhhhh
lllllllllllll

iiiiiiiiiiiiii

IIIIIIIIIIIII

lllllllllllllllllllllllllllllll
iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

lllllllllllllllllllllllllllllll

.............

iiiiiiiiiiiii

1111111111111

iiiiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

llllllllllllllllllllllllllllll

I:@ —\

.....................
...............................

iiiiiiiiiiiiii

B H+E m ._<> _l_m,qI ._<H._.m§_

iiiiiiiiiiiiii

J1IVINLLIOTT)

--

llllllllllllllllllllllllllllll

W 3INTYA HSYH |_<w._.w_<m - T ANTVYA HSVH TVIYVd
”.” RREIL NI o) IS (FLYWILID3T) g
PHWE — eHT6—

U 3 1VA HSYH 1TVLLYVd

T+W INVA HSYH TVLLAVd | [>

W 3INTVA HSYH TWLLAVd | T INTVA HSYH WLV | [
 Hwe ® HI6 —
ug — U .1dvd

weg _ W 1dvd

T+W 1¥vd TWwe /ﬁ
06

I 1dvd 16

SAMTVA HSVH TTVILavd 40

SAMIVA HSVH TVILYVd “_o
T 3NTVA HSYH (3LVALLIDTT) 5

_ RTSH -

| SINTVA HSVH VLYY 4O W/U VA HSVH|
XGH — o

SANTVA HSVH TVILvVd 4O W INTVA HSVH

|S3MYA HSYH TYLLHVd 40 T 3NTVA HSVH
TSH —

AWIIE

U.S. Patent Dec. 27,2016 Sheet 14 of 15 US 9,530,004 B2

FIG.14
531

ACOUIRE PARTIAL HASH VALUES
AND LEGITIMATE HASH VALUE OF PARTIAL
HASH VALUES, BY OFFICIAL ROUTE

532

UPDATE OS

533
CALCULATE PARTIAL HASH
VALUES FOR EACH PART OF OS5

534 NG

ACQUIRED PARTIAL HASH
VALUES?

Yes S65

CALCULATE HASH VALUE OF
iTH PARTIAL HASH VALUE

FQUAL TO S66
ACQUIRED HASH VALUE

OF iTH PARTIAL HAS NO
VALUE?
Yes
HASH VALUES 567

NO

OF ALL PARTIAL HASH
VALUES VERIFIED?

Yes 568

STORE PARTIAL HASH VALUES AND HASH VALUE
OF PARTIAL HASH VALUES, IN FIRMWARE

! 569 570

— — N i , A
i i SUSPEND ‘

JDIAIA NOLLYINDIVD
8¢ ANTYA HSVYH et AHOWHIIN HSY 4

US 9,530,004 B2

€ ot 143
IDIAIA NOLLYIND YD IDIAIC
IDIAIA NOLLYDIANAA
INTVA HSYH NOLLYTNDTVD INTVA
) | AVIVA HSVH TVILdvd a3aLvinoIvd HSYH TVILaVd WOY 1004
\: IAJQ NOLLYDIATYAA
5 (—] INTVAHSYH GAIVINOTVD | 1¢ SOVAuINT
i
2 0¢ o -
° ¢33~ IDINIQ
= FRAad VY B IDV4HILINI
ﬂ., Q¢ 87
e — LC
m i
=) ANEIN)
1NANI 0 —
€T i ¥4
07 :
GI OI

U.S. Patent

US 9,530,004 B2

1

SECURE BOOT METHOD,
SEMICONDUCTOR DEVICE AND

RECORDING MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s based upon and claims the benefit of

priority of the prior Japanese Patent Application No. 2013-
187064, filed on Sep. 10, 2013, the entire contents of which

are 1ncorporated herein by reference.

FIELD

The embodiment discussed herein is related to a secure
boot method, a semiconductor device and a non-transitory
computer-readable recording medium.

BACKGROUND

In an increasing number of situations, important data 1s
processed, for instance, 1n automobiles designed from the
perspective of human life protection, embedded terminals
for handling electronic money, or embedded devices such as
game machines which handle content data. In devices such
as these, there 1s a risk of manipulation of the OS or
firmware by a malicious third-party, giving rise to unex-
pected operations. In response to this, a secure boot method
exists as a technique for enabling only the OS and firmware
intended by the developer to be operated.

Furthermore, when a general embedded device 1s started
up, lirstly, the boot ROM 1s called up and the prescribed
code 1s executed 1n sequence. Thereupon, a detailed process
1s called up by a boot ROM of the firmware, or the like, and
complex processing of the OS, or the like, 1s also called up.
In this way, more complex processing 1s called up succes-
sively 1n the call-up sequence.

Therelore, 1n a secure boot of an embedded device, a part
which cannot be rewritten, such as the ROM (boot ROM),
serves as a reliable operation starting point, and a firmware
hash value 1s calculated each time firmware 1s called up as
a child process. If the calculated hash value matches a
legitimate hash value for the firmware which has been stored
previously in the ROM, then the firmware 1s considered to
be authentic firmware and is started up. Thereupon, when the
OS 1s called up as a grandchild process, a hash value 1is
calculated for the OS program. If the calculated hash value
matches a legitimate hash value for the OS program which
has been stored previously in the child process, then the OS
1s considered to be an authentic OS and 1s started up.

By repeating a process of this kind 1n the secure boot step,
it 1s possible to execute only the program intended by the
developer. A system using hash wvalues 1s described 1n
Japanese Patent Application Publication No. 2004-265422,
for example.

SUMMARY

In general, the size of a program becomes progressively
larger 1n the sequence of call up, from the boot ROM, to the
firmware to the OS. Therefore, the size of the OS program,
for example, may be several hundred megabytes. However,
il the size of the program 1s large, then since a CPU 1n an
embedded device environment generally has a poor process-
ing capacity, the processing for calculating the hash values
for the programs represents a large load, and 1t takes a very
long time 1ndeed to start up the OS.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to a first aspect of the embodiment, a secure
boot method for a system, the system including a processor
and a storage medium configured to store a program, a
plurality of first partial hash values calculated based on a
plurality of first partial programs into which the program 1s
divided, and a first legitimate hash value which 1s a hash
value calculated based on a plurality of first legitimate
partial hash values, the plurality of first legitimate partial
hash values being calculated based on a plurality of legiti-
mate partial programs into which a legitimate program 1s
divided, the legitimate program corresponding to the pro-
gram, the secure boot method including, calculating, by the
processor, during start-up of the system, a second calculated
hash value based on the plurality of first partial hash values
stored 1n the storage medium, and determining, by the
processor, whether or not the second calculated hash value
matches the first legitimate hash value to continue the
start-up processing ol the system when the determination
indicates match, and suspend the start-up processing of the
system when the determination does not idicate match.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out 1n the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-

plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram depicting one example of the con-
figuration of a semiconductor device according to an
embodiment of the invention.

FIG. 2 1s a diagram depicting a tlow of a general secure
boot operation.

FIG. 3 1s a diagram for illustrating an overview of steps
during start-up of a secure boot method according to an
embodiment of the invention.

FIG. 4 1s a flowchart illustrating start-up steps in a secure
boot method according to the present embodiment.

FIG. 5 1s a diagram 1illustrating an overview of steps after
start-up 1n a secure boot method according to the present
embodiment.

FIG. 6 1s a flowchart illustrating steps after start-up in the
secure boot method according to the present embodiment.

FIG. 7 1s a diagram depicting an overview of an updating
process 1 a secure boot method according to the present
embodiment.

FIG. 8 1s a tlowchart depicting an updating process 1n a
secure boot method according to the present embodiment.

FIG. 9 1s a second flowchart illustrating an updating
process 1 a secure boot method according to the present
embodiment.

FIG. 10 1s a diagram 1illustrating an overview of the steps
during start-up 1 a secure boot method according to the
second embodiment.

FIG. 11 1s a flowchart illustrating steps during start-up of
a secure boot method according to the second embodiment.

FIG. 12 1s a diagram 1llustrating an overview of steps after
start-up 1n the secure boot method according to the second
embodiment.

FIG. 13 1s a diagram depicting an overview of an updating,
process 1n the secure boot method according to the second
embodiment.

FIG. 14 15 a flowchart 1llustrating an updating process in
a secure boot method according to the second embodiment.

US 9,530,004 B2

3

FIG. 15 1s one example of the composition of a semicon-
ductor device 1n a case where the secure boot method

according to the present embodiment 1s achieved by hard-
ware.

DESCRIPTION OF EMBODIMENTS

|Configuration of Semiconductor Device]

FIG. 1 1s a diagram depicting one example of the con-
figuration of a semiconductor device 10 according to an
embodiment of the invention. The semiconductor device 10
1s a semiconductor device 10 of an embedded device, for
example. The semiconductor device 10 in FIG. 1 comprises,
for example, a central processing unit (CPU) 12, a boot read
only memory (ROM) 14, a flash memory 15, a random
access memory (RAM) 16, an interface 11, and an external
interface 13. These units are connected to each other via a
bus 17.

The boot ROM 14 stores an initial program loader (IPL)
which runs 1mitially when the power supply of the semicon-
ductor device 10 1s turned on and a program for starting up
the device driver of the flash memory 15. Furthermore, the
flash memory 15 stores an operating system (hereinafter
called “OS”) 90, a firmware 80 program, secure boot hash
values 91Ha to 91zHa, HSa, etc. The tlash memory 15 may
be a separate storage medium, such as HDD. The interface
11 controls mput and output of data from and to external
devices. For example, update data for the OS program 90,
and the like, 1s mput via the interface 11. Moreover, the
external interface 13 controls mput and output of data from
and to the input device 51 and the output device 52.

[Flow of Secure Boot]

FIG. 2 1s a diagram depicting a flow of a general secure
boot operation. In a secure boot, 11 1t has confirmed that the
firmware 80 or OS 90 to be started up 1s trustworthy, then a
start-up process 1s carried out. Therefore, for instance, the
boot ROM 14 stores a legitimate hash value H1 for the
firmware 1n order to verify that the firmware 80 1s authentic.
Furthermore, the firmware 80 stores a legitimate hash value
H2 for the OS 90 in order to verify that the OS 90 has not
been manipulated.

The hash values indicate data of a fixed length which 1s
output by computing data of an arbitrary length by a hash
function. When the same input data 1s used, the hash
function calculates the same hash value. The length of the
hash values calculated by the same hash function 1s a fixed
length, regardless of the length of the input data. The hash
functions include, for instance, SHA-1, SHA-256, SHA-
384, SHA-512, SHA-224, Wirlpool, MD3, SHA-3, and so
on. The length of the hash values varies with the hash
function, but may be, for example, 128 bits, 160 bits, 224
bits, 256 bits, 384 bits, 512 bits, or 1024 bits, etc.

In FIG. 2, when the power supply to the embedded device
1s turned on, the CPU 12 executes a boot loader which 1s
written to the boot ROM 14. Consequently, the IPL 1s
executed, and the legitimate hash value H1 for the firmware
80 1s read out. The CPU 12 then calculates a hash value on
the basis of the firmware 80 stored 1n the flash memory 15,
or the like, and compares this hash value with the legitimate
hash value H1. If the hash values match each other, then the
firmware 80 1s started up, and 1f the hash values do not match
cach other, then the start-up of the firmware 80 1s suspended.
Theretore, 1f the firmware 80 stored 1n the flash memory 135
has been manipulated, the start-up of the firmware 80 1s
suspended. In other words, the CPU 12 only continues
start-up process of the firmware 80, if the firmware 80 1s
authentic.

10

15

20

25

30

35

40

45

50

55

60

65

4

When start-up of the firmware 80 has been completed, the
CPU 12 then verifies whether or not the program of the OS
90 15 authentic. The legitimate hash value H2 of the OS 90
1s stored, for example, 1nside the firmware 80 (in the flash
memory 15). The CPU 12 calculates a hash value on the
basis of the program of the OS 90, and compares this hash
value with the legitimate hash value H2. If the hash values
are matching, then the CPU 12 starts up the OS 90, whereas
if the hash values are not matching, then the CPU 12
suspends start-up of the OS 90. Therefore, 11 the program of
the OS 90 has been manipulated, the start-up of the OS 90
1s suspended. Consequently, the CPU 12 only continues
start-up process of the OS 90, 1t the OS 90 1s authentic.

In this way, the OS 90 1s finally started up by repeatedly
calling up a second-level program (the OS 90 1n the example
in FIG. 2), from a first-level program (the firmware 80 1n the
example 1n FIG. 2). By processing 1n this way, for example,
the secure booting of the system may take time due to the
time taken by the process to calculate the hash values for the
OS 90 program which has a large size.

Therefore, with the secure boot method according to the
present embodiment, the system includes a processor, and a
storage medium which stores a program, a plurality of first
partial hash values calculated based on a plurality of first
partial programs mto which the program 1s divided, and a
first legitimate hash value. The first legitimate hash value 1s
a hash value calculated based on a plurality of first legitimate
partial hash values, the plurality of first legitimate partial
hash values being calculated based on a plurality of legiti-
mate partial programs into which a legitimate program 1s
divided, the legitimate program corresponding to the pro-
gram.

T'he secure boot method includes a calculating 1n
which the processor iputs the plurality of first partial hash
values stored on the storage medium, and calculates a
second calculated hash value based on the plurality of first
partial hash values, and a determining. In the determining,
the processor determines whether or not the second calcu-
lated hash value matches the first legitimate hash value, and
continues the start-up process of the system, when the
determination indicates match, or suspends the start-up
process of the system, when the determination does not
indicate match.

According to the secure boot method of the present
embodiment, a secure system 1s started up by rapid execu-
tion of the hash value calculation process, and furthermore,
the system start-up time 1s shortened. Next, the secure boot
method according to the present embodiment will be
described in sequence.

|Overview of Processing: Start-Up]

FIG. 3 1s a diagram for illustrating an overview of steps
during start-up of a secure boot method according to an
embodiment of the mnvention. This example discloses start-
up steps for the OS 90. The secure boot method in the
present embodiment 1s not limited to application to the
start-up steps for the OS 90, and may also be applied to
start-up steps for firmware 80 or an application.

In the present embodiment, as illustrated in FIG. 3, the
program of the OS 90 1s divided 1nto a plurality of partial
programs 91 to 97, in order to generate hash values. In this
example, the program of the OS 90 1s divided, for example,
into n partial programs 91 to 9», from part 1 to part n.
Respective hash values for each of the n divided partial
programs 91 to 9n (called *““partial hash values™ below) 91Ha
to 9nHa are stored previously in the firmware 80. In this
example, the n partial hash values 91Ha to 9»zHa are stored
in the flash memory 15. Furthermore, the hash value HSa
which 1s calculated by mputting n partial hash values 91Ha

US 9,530,004 B2

S

to 9zHa 1n a case where the n partial hash values 91Ha to
91Ha correspond to the programs 91 to 9z (the hash value
HSa 1s called the “legitimate hash value of the partial hash
values” below) 1s stored 1n the firmware 80. In this embodi-
ment, there 1s one legitimate hash value HSa with respect to
partial hash values.

In FIG. 3, at the start-up of the OS 90, the n partial hash
values 91Ha to 9nHa stored previously in the flash memory
15 are mput to the hash function in a prescribed sequence,
and one hash value HS of the partial hash values 1s calcu-
lated. For example, the partial hash values 91Ha to 9zHa are
input to the hash function, in the sequence: partial hash value
91Ha of part 1, partial hash value 92Ha of part 2, . . ., partial
hash value 9»Ha of part n. The calculated hash value HS of
the partial hash values 1s then compared with the legitimate
hash value HSa of the partial hash values, which 1s stored
previously. I the values are the same, then the OS 90 1s
started up and if they are not the same, then the start-up of
the OS 90 1s suspended.

[Flowchart: Start-Up]

FI1G. 4 1s a flowchart 1llustrating start-up steps 1n a secure
boot method according to the present embodiment. When
the power supply of the embedded device 1s switched on, the

CPU 12 reads 1n the boot ROM 14 and executes the IPL
(S11). In this case, the CPU 12 reads out the legitimate hash
value for the firmware 80 stored in the boot ROM 14.

Subsequently, the CPU 12 calculates the hash value for
the firmware 80 (S12). More specifically, the CPU 12 mputs
the firmware 80 program, and calculates the hash value of
the firmware 80 on the basis of the hash function. There-
upon, the CPU 12 determines whether or not the calculated
hash value matches the legitimate hash value read out from
the boot ROM 14 (S13). I1 the values are not matching (NO
at S13), then the CPU 12 suspends the system start-up
process (S18). In other words, the CPU 12 does not execute
the firmware 80. If the values are matching (YES at S13),
then the CPU 12 reads 1n the firmware 80 from the flash
memory 15 and executes the firmware 80 (514).

When the firmware 80 1s executed, the CPU 12 then
calculates a hash value based on the partial hash values 91Ha
to 9zHa of the OS 90 program, in other words, the hash
value HS of the partial hash values (S15). More specifically,
the CPU 12 reads out the partial hash values 91Ha to 9zHa
of the plurality of partial programs 91 to 9% mto which the
program of the OS 90 1s divided, from the flash memory 15,
and taking the partial hash values 91Ha to 9»Ha as input, and
calculates the hash value HS of the partial hash values on the
basis of the hash function. Thereupon, the CPU 12 deter-
mines whether or not the calculated hash value HS of the
partial hash values matches the legitimate hash value HSa of
the partial hash values read out from the flash memory 15
(S16). If the values are not matching (NO at S16), then the
CPU 12 suspends the system start-up process (S18). In other
words, the CPU 12 does not execute the OS 90 program. IT
the values are matching (YES at S16), then the CPU 12 reads
out and executes the OS 90 program (S17).

In this way, based on a secure boot method according to
the present embodiment, the CPU 12 does not calculate hash
values based on the whole of the program of the OS 90, but
rather inputs a plurality of partial hash values 91Ha to 9zHa
corresponding to the partial programs 91 to 92 of the OS 90,
and calculates the hash value HS of these partial hash values.
The CPU 12 continues the start-up of the OS 90 11 the hash
value HS calculated by imnputting the partial hash values
91Ha to 9nHa corresponding to the partial programs 91 to 9
of the OS 90 1s the legitimate value as calculated by
iputting legitimate partial hash values 91Ha to 9zHa.

10

15

20

25

30

35

40

45

50

55

60

65

6

In other words, based on the secure boot method accord-
ing to the present embodiment, it 1s verified whether or not
the hash value HS of the partial hash values which 1s
calculated by mputting the plurality of partial hash values
91Ha to 9nHa corresponding to the partial programs 91 to 9%
of the OS 90 1s legitimate. If the value 1s legitimate, then 1t
can be verified that the partial hash values 91Ha to 9»zHa
have not been manipulated. By veritying that the partial hash
values 91Ha to 9zHa have not been manipulated, 1t 1s
possible to consider that the program of the OS 90 which 1s
expected to correspond to the partial hash values has not
been manipulated.

Furthermore, based on the secure boot method according
to the present embodiment, the CPU 12 does not calculate
hash values by inputting the whole of the OS 90 program.
Consequently, the load on the CPU 12 durning start-up of the
system 1s restricted, and the time required to calculate the
hash values 1s greatly reduced. Therefore, the time taken by
the secure boot 1s shortened. In general, a CPU mounted in
embedded devices may not have a high processing capacity.
However, with the secure boot method according to the
present embodiment, 1t 1s possible to carry out a highly
reliable start-up process, rapidly, even in an embedded
device, by restricting the load on the CPU 12 during system
start-up.

In this way, based on the secure boot method according to
the present embodiment, 1t 1s possible to verity, rapidly and
ciliciently, that the program of an OS 90 that 1s to be stared
up has not been manipulated. Furthermore, with the secure
boot method according to the present embodiment, n partial
hash values, and one legitimate hash value of the partial hash
values (1n other words, a total of n+1 values) are stored in
the storage medium, such as a flash memory. In a general
secure boot method, by contrast, one hash value 1s stored 1n
the storage medium, such as a flash memory. With the secure
boot according to the present embodiment, only n hash
values need to be stored additionally 1n the storage medium,
and therefore 1t 1s possible to achieve a rapid secure boot of
the system by storing only a minimum amount of data 1n the
storage medium.

The hash values of the plurality of partial programs 91 to
91, and the legitimate hash value HSa, are acquired via an
oflicial route by a developer, or the like, when the OS 90 1s
updated, and are stored in a storage medium, such as the
flash memory 15. If the program of the OS 90 has been
mampulated by a third party, then the plurality of partial
hash values 91Ha to 9zHa will not be synchronized with the
program ol the OS 90. Therefore, in the steps aiter start-up
of the OS 90, 1t 1s verified whether or not the plurality of
partial hash values 91Ha to 9nzHa are synchronized with the
program of the OS 90 that 1s being started up. In other words,
in the steps after start-up, verification 1s carried out to
complement the verification accuracy during start-up. Here,
the steps after start up by the secure boot method will be
described.

|Overview of Processing: After Start-Up]

FIG. 5 1s a diagram 1illustrating an overview of steps after
start-up 1n a secure boot method according to the present
embodiment. As 1illustrated in FIG. 3, the secure boot
method according to the present embodiment can be applied
to steps alter start-up of firmware 80 or an application.

In FIG. 5, 1n the present embodiment, after system start-
up, the partial hash values 91H to 9»H of each of the n
divided partial programs 91 to 9» are calculated. For
example, 11 the OS 90 1s divided into part 1 to part n, then
the partial hash values of each part are calculated, as the
partial hash value 91H of part 1, the partial hash value 92H

US 9,530,004 B2

7

of part 2, . . ., and the partial hash value 92H of part n. The
calculated partial hash values 91H to 9»zH are then compared
with partial hash values 91Ha to 9»zHa stored previously in
the flash memory 15, and if the values are the same, the
execution processing ol the OS 90 1s continued. If the values
are not the same, the execution processing of the OS 90 1s
suspended.

For example, a partial hash value verification application
carries out the verification process for the partial hash values
91Ha to 9nzHa 1llustrated 1n FI1G. 5. The CPU 12 executes the
partial hash value verification application at a desired timing,
after system start-up. The desired timing 1s, for example, a
time when the system 1s 1dle, or timing when the system has
terminated, etc. The system 1s 1dle when, for example, other
processes are not running on the CPU 12 and the CPU 12 1s
under a light load. For instance, it the partial hash value
verification application 1s executed when the system termi-
nates, then the time taken for the system termination pro-
cessing may become longer. The fact that the system termi-
nation processing takes a long time has little eflect on
performance compared to a case where the system start-up
processing takes a long time. Furthermore, for example, i
the partial hash value verification application 1s executed
when the system 1s 1dle, then 1t 1s possible to verily the
partial hash values 91Ha to 9nzHa without having any effect
on other processes.

|[Flowchart: After Start-Up]

FIG. 6 1s a flowchart 1llustrating steps after start-up in the
secure boot method according to the present embodiment.
The partial hash value verification application 1s started up
at a desired timing after system start-up, when the system 1s
idle, or when the system terminates (S21). Thereupon, the
partial hash value verification application calculates the
partial hash values 91H to 9»H for each of the partial
programs 91 to 9z ito which the OS 90 program 1s divided
(S22). For example, 1f the OS 90 program has been divided
into n parts, then n partial hash values 91H to 9»H are
calculated.

Next, the partial hash value verification application deter-
mines whether or not the calculated plurality of partial hash
values 91H to 9»H and the legitimate plurality of partial
hash values 91Ha to 9zHa stored in the flash memory 15 are
matching (523). If the values are not matching (NO at S23),
then the partial hash value venfication application suspends
the system execution processing (S25). On the other hand, 1T
the values are matchuing (YES at S23), then the system
execution processing continues (S24). Accordingly, 1t 1s
possible to verily that the plurality of partial hash values
91Ha to 9»Ha stored 1n the tlash memory 15 are synchro-
nized with the OS 90 that 1s being executed.

In this way, with the secure boot method according to the
present embodiment, after system start-up, 1t 1s possible to
verily whether or not the plurality of partial hash values
91Ha to 9nHa stored 1n a storage medium, such as the flash
memory 15, correspond to the program of the OS 90 to be
started up. In this way, 1t 1s possible to verity that the OS 90
that 1s being started up has not been manipulated, by
veritying only partial hash values during system start-up. In
other words, verification 1s performed rapidly on the basis of
the partial hash values 91Ha to 92Ha when the system 1s
started up, and furthermore, after the system has started up,
it 1s verified that the partial hash values 91Ha to 9zHa are
synchronized with the OS 90 being executed. Therefore, a
secure boot can be achieved safely and rapidly in a com-
prehensive perspective.

In the example of the flowchart in FIG. 6, the partial hash
value verification application simultaneously verifies

10

15

20

25

30

35

40

45

50

55

60

65

8

whether or not all of the plurality of partial hash values 91Ha
to 9nHa correspond to the program of the OS 90 being
started up. However, the partial hash value verification
application may also divide up the plurality of partial hash
values 91Ha to 9»zHa, at multiple timings, to verily whether
or not these values correspond to the program of the OS 90
being started up. In this case, the partial hash value verifi-
cation application verifies a portion of the plurality of partial
hash values 91Ha to 9nzHa, when the system has become
idle, for example. The partial hash value verification appli-
cation then successively verifies the other partial hash val-
ues, when the system becomes 1dle again.

Consequently, since a calculation process for all of the
hash values of the plurality of partial programs 91 to 9 1s
not carried out 1n the same time band, then the load on the
system caused by the calculation of partial hash values 91H
to 9nH 1s reduced. In other words, the partial hash value
verification application can verily whether or not the partial
hash values 91Ha to 9»zHa correspond to the program of the
OS 90 being started up, while further restricting the efiects
on other processes.

Next, an updating process for a program 1n the secure boot
method will be described. The updating process means the
steps carried out when the program of the OS 90 1s updated.

[Overview of Processing: Updating]

FIG. 7 1s a diagram depicting an overview ol an updating,
process 1n a secure boot method according to the present
embodiment. In the example in FIG. 7, an updating process
for the OS 90 1s 1llustrated. Similarly to FIG. 3, the secure
boot method according to the present application can also be
applied to an updating process for firmware 80 or an
application.

In FIG. 7, in the present embodiment, the CPU 12
acquires the legitimate partial hash values 91Ha to 9»Ha and
the legitimate hash value HSa of the partial hash values, by
a secure method according to a an oflicial route, when
updating the OS 90. Furthermore, 1n the updating process,
the CPU 12 calculates the plurality of partial hash values
91H to 9»2H on the basis of the partial programs 91 to 9» of
the updated program of the OS 90, and verifies whether or
not these calculated values match the acquired plurality of
partial hash values 91Ha to 9»zHa. If the values do not match,
then 1t 1s determined that the updating process has failed. I
the values do not match, then this means that 1n the course
of updating, the new program of the OS 90, or the partial
hash values 91Ha to 9»Ha, have been manipulated. On the
other hand, 11 the values are matching, then the plurality of
partial hash values 91H to 9»zH are stored inside the firm-
ware 80.

Furthermore, the CPU 12 also calculates the hash value
HS of the partial hash values, on the basis of the calculated
partial hash values 91H to 92H, and venfies whether or not
this calculated value matches the legitimate hash value HSa
of the partial hash values that has been acquired. If the
values do not match, then this means that, in the course of
updating, the new program of the OS 90, and the acquired
partial hash values 91Ha to 9zHa, or the legitimate hash
value HSa of the partial hash values, have been manipulated.
It the values are matching, then the hash value HS of the
partial hash values 1s stored inside the firmware 80.

| Flowchart: Updating]

FIG. 8 1s a tlowchart depicting an updating process 1n a
secure boot method according to the present embodiment. In
the updating process, firstly, the CPU 12 1nputs legitimate
partial hash values 91Ha to 9nHa corresponding to the
program of the OS 90 o be updated, and the legitimate hash

US 9,530,004 B2

9

value HSa of the partial hash values, by means of an ofiicial
route (S31). Thereupon, the program of the OS 90 1s updated
(S32).

Thereupon, the CPU 12 calculates the partial hash values
91H to 9»H, for each of the new partial programs 91 to 9
into which the new program of the OS 90 1s divided (S33).
The CPU 12 then determines whether or not the calculated
plurality of partial hash values 91H to 92H and the legiti-
mate plurality of partial hash values 91Ha to 9zHa stored in
a storage medium, such as the flash memory 13, are match-
ing (S34). If the values are not matching (NO at S34), then
the CPU 12 suspends the updating process for the OS 90
(S39). On the other hand, 1t the values are matching (YES
at S34), then the CPU 12 calculates a hash value for the
plurality of partial hash values 91H to 92H, in other words,
a hash value HS of the partial hash values (S35).

The CPU 12 then determines whether or not the calcu-
lated hash value HS of the partial hash values and the
legitimate hash value HSa of the partial hash values stored
in the storage medium, such as the flash memory 15, are
matching (836). If the values are not matching (NO at S36),
then the CPU 12 suspends the updating process for the OS
90 (539). On the other hand, 11 the values are matching (YES
at S36), then the CPU 12 stores the partial hash values 91H
to 9zH, and the hash value HS of the partial hash values, in
the firmware 80 (S37). Thereby, the updating process for the
OS 90 1s completed (S38).

In the example of the flowchart illustrated in FIG. 8, the
CPU 12 calculates the partial hash values 91H to 9»H and
the hash value HS of the partial hash values, and determines
whether or not these respectively match the legitimate
partial hash values 91Ha to 9»Ha and the legitimate hash
value HSa of the partial hash values which have been
obtained by an oflicial route. However, the CPU 12 may also
carry out verification of the partial hash values 91H to 92H
and the legitimate hash value HS of the partial hash values,
in a step after re-start following the updating process.

FIG. 9 1s a second flowchart illustrating an updating
process 1 a secure boot method according to the present
embodiment. Similarly to the flowchart depicted in FIG. 8,
in the updating process, firstly, the CPU 12 acquires a
plurality of partial hash values 91H to 9zH corresponding to
the program of the OS 90 that 1s to be updated, and the
legitimate hash value HSa of the partial hash values, by an
oflicial route (S41). Thereupon, the CPU 12 updates the OGN
90 program (S42). The acquired legitimate plurality of
partial hash values 91Ha to 9»Ha and the legitimate hash
value HSa of the partial hash values are then stored in a
storage medium, such as the flash memory 15 (5S43). Sub-
sequently, the OS 90 1s re-started (S44).

In the flowchart in FIG. 9, verification of the partial hash
values 91H to 9»zH and the hash value HS of the partial hash
values 1s not carried out. However, when the OS 90 1s
re-started (S44), the CPU 12, 1n the start-up process for the
OS 90, calculates the hash value HS of the partial hash
values on the basis of the updated plurality of partial hash
values 91Ha to 9»Ha, and verifies whether or not this
calculated value matches the legitimate hash value HSa of
the updated partial hash values. Thereupon, 1n a step after
start-up of the OS 90, the CPU 12 verifies whether or not the
updated plurality of partial hash values 91Ha to 9»nHa
correspond to the program of the OS 90 being started up, by
a partial hash value verification application.

In this way, based on the secure boot method according to
the present embodiment, the partial hash values 91H to 9»H
and the hash value HS of the partial hash values, which have
been updated by the updating process, may be verified in the

10

15

20

25

30

35

40

45

50

55

60

65

10

updating process, or may be verified after re-start. Conse-
quently, even if the program has been updated, 1t 1s possible
to achieve a safe and rapid secure boot on the basis of the
new program and a new plurality of partial hash values 91Ha
to 9Ha and a new legitimate hash value HSa of the partial
hash values.

As described above, 1n the secure boot method according
to the present embodiment, the system 1ncludes a processor
(CPU) 12, and a storage medium which stores a program, a
plurality of first partial hash values 91Ha to 9»Ha of a
plurality of partial programs into which the program 1s
divided, and a (first) legitimate hash value HSa which 1s a
hash value calculated based on a plurality of first legitimate
partial hash values which are calculated based on a plurality
of legitimate partial programs into which a legitimate pro-
gram 1s divided. Furthermore, at system start-up, the secure
boot method includes calculation step for calculating a
(second) calculated hash value HS based on the first partial
hash values, namely, the hash value of the plurality of first
partial hash values 91Ha to 9nHa stored in the storage
medium, and determining step. In the determining step, the
processor 12 determines whether or not the (second) calcu-
lated hash value HS of the partial hash values matches the
(first) legitimate hash value HSa of the partial hash values,
and continues the system start-up process when the deter-
mination indicates match, or suspends the system start-up
process when the determination does not indicate match.

In this way, based on the secure boot method according to
the present embodiment, the CPU 12 verifies whether or not
the hash value HS of the partial hash values, which 1s the
hash value of the plurality of partial hash values 91Ha to
9nHa corresponding to the partial programs 91 to 9» of the
OS 90, 15 legitimate. By this means, it 1s possible to verily
whether or not the partial hash values have been manipu-
lated. By veriiying that the partial hash values 91Ha to 9zHa
have not been manipulated, it 1s possible to consider that the
program ol the OS 90 which 1s expected to correspond to the
partial hash values has not been manipulated.

Furthermore, the CPU 12 does not calculate hash values
by mputting the whole of the program of the OS 90, and
therefore the load on the CPU 12 1n the system start-up 1s
suppressed. Consequently, the time taken to calculate the
hash values can be reduced greatly, and a secure boot can be
performed rapidly. In general, a CPU nstalled 1n an embed-
ded device may not have a high processing capacity, but by
suppressing the load on the CPU 12 during system start-up,
it 1s possible to achieve rapid and secure start-up, even in an
embedded device.

In this way, based on the secure boot method according to
the present embodiment, 1t 1s possible to verily, in a rapid
and simple fashion, that the program of the OS 90 to be
started up has not been manipulated. Therefore, the security
of the boot can be guaranteed by veritying the authenticity
of the program 1n question, as well as shortening the start-up
time.

Furthermore, the secure boot method according to the
present embodiment includes, after system start-up, calcu-
lation step 1n which the processor calculates a plurality of
second partial hash values 91H to 9»H, which are hash
values calculated based on a plurality of second partial
programs 91 to 9» into which the program of the system that
1s being started up 1s divided, and a determiming step. In the
determining step, the processor determines whether or not
the calculated plurality of second partial hash values 91H to
92H match the plurality of first partial hash values 91Ha to
9nHa stored in the storage medium, and continues the
system execution processing when the determination indi-

US 9,530,004 B2

11

cates match, or suspends the system execution processing
when the determination does not indicate match.

In this way, according to the secure boot method of the

present embodiment, after system start-up, it 1s verified that
the plurality of the partial hash values 91Ha to 9»Ha stored
in the system are synchromized with the program that is
being started up. Consequently, with the secure boot method
according to the present embodiment, 1t 1s possible to
achieve a relatively rapid secure boot, by veritying that the
partial hash values 91Ha to 9»Ha correspond to the program
being started up, after system start-up, while enabling rapid
verification on the basis of the stored partial hash values
91Ha to 92Ha during system start-up.

In the secure boot method according to the present
embodiment, the calculation step and the determiming step
are carried out 1n a time-divided manner, with respect to all
of the plurality of second partial programs. Therefore, for
example, 1I the steps are carried out 1 the time-divided
manner, then the system 1s prevented from calculating hash
values for all of the plurality of partial programs 91 to 9z in
the same time band, and consequently the load on the system
relating to the partial hash values 91H to 9»zH i1s reduced.

Furthermore, 1n the secure boot method according to the
present embodiment, the calculation step and the determin-
ing step are carried out after system start-up when the system
1s 1n a low-load state. The system 1s 1n the low-load state
when the system 1s 1n an idle state and/or when the system
has terminated. Therefore, the secure boot method according
to the present embodiment enables verification of the partial
hash values 91Ha to 9nzHa, without placing a load on the
system ailter start-up, while achieving a rapid secure boot. In
other words, a rapid secure boot can be achieved without
allecting other processes.

Moreover, the secure boot method according to the pres-
ent embodiment includes updating step in which the pro-
cessor (CPU) 12 updates the program of the system to a new
program, acquisition step in which the processor acquires
the plurality of first partial hash values 91Ha to 9»nHa
corresponding to the new program, and a (first) legitimate
hash value HSa, corresponding to the new program, calcu-
lation step and determining step. In the calculation step, the
processor calculates a plurality of third partial hash values
91H to 9»H based on a plurality of third partial programs 91
to 9» 1nto which the updated new program 1s divided, and a
(third) calculated hash value HS based on the calculated
plurality of third partial hash values. In the determining step,

the processor determines both whether or not the calculated
plurality of third partial hash values 91H to 92H match the
acquired plurality of first partial hash values 91Ha to 9zHa,
and whether or not the (third) calculated hash value HS
matches the (first) legitimate hash value HSa, continues an
updating process of the system when both of the two
determinations indicate match, and suspends the updating
process of the system when at least one of the two deter-
minations does not indicate match.

Consequently, based on the secure boot method according,
to the present embodiment, in the updating process, the
plurality of partial hash values 91Ha to 9zHa corresponding
to a new program, and the legitimate hash values HSa of the
partial hash values, are acquired. It 1s then verified whether
or not the acquired plurality of partial hash values 91Ha to
9rHa and the legitimate hash value HSa of the partial hash
values correspond to the updated program in the updating
process. By this means, even after the program has been
updated, a rapid and safe secure boot can be achieved on the
basis of the new program, a plurality of partial hash values

10

15

20

25

30

35

40

45

50

55

60

65

12

91Ha to 9n2Ha corresponding to the new program, and a
legitimate hash value HSa of the partial hash values.

Furthermore, the secure boot method according to the
present embodiment includes updating step in which the
processor updates the program of the system to a new
program, acquisition step in which the processor acquires
the plurality of first partial hash values 91Ha to 9zHa and a
(first) legitimate hash value HSa, corresponding to the new
program, and instructing step in which the processor
instructs a re-start of the system.

Consequently, based on the secure boot method according,
to the present embodiment, 1n an updating process, the
plurality of partial hash values 91Ha to 9zHa corresponding
to the new program and the legitimate hash value HSa of the
partial hash values, are acquired and are verified during
re-start. More specifically, 1n a start-up step of the program
during re-start, it 1s verified whether or not the plurality of
partial hash values 91Ha to 9zHa correspond to the legiti-
mate hash value HSa of the partial hash values. Furthermore,
in a step after system start-up, it 1s verified whether or not
the plurality of partial hash values 91Ha to 9zHa correspond
to the program being executed. Consequently, it 1s possible
to achieve a rapid and safe secure boot on the basis of the
new program, the plurality of partial hash values 91Ha to
9nHa corresponding to the new program, and the legitimate
hash value HSa of the partial hash values, as well as
performing a rapid updating process.

The present embodiment has been described with refer-
ence to an example 1n which an OS started up after firmware
1s verified on the basis of the hash values of partial programs.
However, 1t 1s also possible to carry out verification in a
similar fashion for firmware also, on the basis of hash values
for partial programs. Consequently, the start-up time for the
firmware can also be shortened, 1n addition to the OS 90, and
therefore an even more rapid system start-up time can be
achieved.

[Second Embodiment |

In the first embodiment, a case 1s described in which n
partial hash values 91Ha to 9nzHa correspond to one calcu-
lated hash value HS of the partial hash values. However, the
invention 1s not limited to this example. For example, 1t 1s
also possible to calculate one hash value of the partial hash
values, respectively, by mputting m partial hash values, of
the n partial hash values 91Ha to 9zHa. In other words, 1n
this case, a plurality of hash values HS of the partial hash
values are calculated, 1n respect of the n partial hash values
91Ha to 9rHa.

FIG. 10 1s a diagram 1llustrating an overview of the steps
during start-up 1n a secure boot method according to the
second embodiment. As illustrated 1in FIG. 10, 1n the second
embodiment, n partial hash values 91Ha to 92Ha and n/m
legitimate hash values HS1 to HSx of the partial hash values
are stored inside the firmware 80. For example, 1n the second
embodiment, m partial hash values are mput to the hash
function, and one hash value of these partial hash values 1s
calculated. The n/m hash values HS1 to HSx of the partial
hash values thus calculated are compared with the previ-
ously stored n/m legitimate hash values HS1a to HSxa of the
partial hash values, and 11 the values are matching, the OS
90 1s started up.

More specifically, for example, a case where n=6 and m=2
will now be explamned. In this case, six legitimate partial
hash values corresponding to the OS 90 program that has
been divided into six parts are previously stored inside the
firmware 80. In the start-up process of the OS 90, one hash
value of the partial hash values 1s calculated respectively for
two partial hash values. Consequently, three hash values of

US 9,530,004 B2

13

the partial hash values are calculated, 1n respect of the six
partial hash values, and these are compared with three
legitimate hash values of the partial hash values which are
stored inside the firmware 80. If all of the hash values of the
partial hash values are matching, then the OS 90 1s started

up.

However, the mvention 1s not limited to this example. IT
n=6, then, for example, then 1t 1s also possible to calculate
one hash value of the partial hash values 1n respect of four
of the partial hash values, and to calculate one hash value of
the partial hash values 1n respect of two of the partial hash
values. Consequently, two hash values of the partial hash
values are calculated 1n respect of the six partial hash values,
and are compared with two legitimate hash values of the
partial hash values stored inside the firmware 80. It all of the
hash values of the partial hash values are matching, then the
OS 90 1s started up.

[Flowchart: Start-Up]

FI1G. 11 1s a flowchart illustrating steps during start-up of
a secure boot method according to the second embodiment.
The processing 1n steps S11 to S14 1n the flowchart in FIG.
11 1s similar to the flowchart in FIG. 4 relating to the first
embodiment.

In the flowchart in FIG. 11, the CPU 12 repeats a
calculation step (S55) for calculating the hash values HS1 to
HSx of the partial hash values, and a comparison step (S56)
for comparing with the legitimate hash values HS1a to HSxa
of the partial hash values, and the number of repetitions
performed by the CPU 12 corresponds to the number of hash
values of the partial hash values. Theretfore, the CPU 12
determines whether or not the calculated hash value matches
the legitimate hash value of the partial hash values, in
respect ol all of the (n/m) hash values of the partial hash
values (S57). If venfication has been completed (YES at
S57), then the CPU 12 reads 1n and executes the program of
the OS 90 (S58). On the other hand, 11 the verification 1s not
yet completed (NO at S57), then the CPU 12 calculates the
hash values of the partial hash values that have not yet been
verified (S55), and then performs verification thereot (856).

Next, an overview of the steps alfter start-up 1n the secure
boot method according to the second embodiment will be
described.

|[Overview of Processing: After Start-Up]

FIG. 12 1s a diagram 1illustrating an overview of steps after
start-up in the secure boot method according to the second
embodiment. The processing after system start-up in the
second embodiment 1s similar to the first embodiment. After
system start-up, the CPU 12 calculates n partial hash values
91H to 92H on the basis of the n divided partial programs 91
to 9n. The CPU 12 compares the calculated n partial hash
values 91H to 9»H, with n partial hash values 91Ha to 9zHa
stored previously 1n the flash memory 15. If the hash values
are the same, then the execution process of the OS 90 1s
continued, and 1f the hash values are not the same, then the
execution process of the OS 90 1s suspended. The flowchart
for describing the processing aiter start-up 1n the secure boot
method according to the second embodiment 1s similar to the
flowchart 1n FIG. 6 relating to the first embodiment.

Next, an overview ol a program updating process 1n a
secure boot method according to the second embodiment
will be described.

[Overview of Processing: Updating]

FI1G. 13 1s a diagram depicting an overview of an updating
process 1n the secure boot method according to the second
embodiment. In the second embodiment, the CPU 12
acquires n partial hash values 91Ha to 9»Ha, and n/m
legitimate hash values HS1a to HSxa of the partial hash
values, by an oflicial route, when the OS 90 1s updated.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Furthermore, for example, in the updating process, the CPU
12 calculates n partial hash values 91H to 92H on the basis
of the partial programs 91 to 9» of the updated program of
the OS 90, and verifies whether or not these calculated
values match the acquired n partial hash values 91Ha to

9nHa. The CPU 12 then calculates n/m hash values HS1 to

HSx of the partial hash values on the basis of the calculated

n partial hash values 91H to 9»H, and venfies whether or not

these calculated values match the acquired n/m legitimate

hash values HS1a to HSxa of the partial hash values.
|Flowchart: Updating]

FIG. 14 1s a tlowchart illustrating an updating process in
a secure boot method according to the second embodiment.
The processes 1n steps S31 to S34 1n the flowchart 1n FIG.
14 are similar to the flowchart 1n FIG. 8 according to the first
embodiment.

If the calculated plurality of partial hash values 91H to
912H and the plurality of partial hash values 91Ha to 9»zHa
corresponding to the new program are matching in the
flowchart 1n FIG. 14 (YES at S34), then the CPU 12
calculates a hash value of the 1th partial hash value (565).
The CPU 12 determines whether or not the calculated hash
value of the i1th partial hash value and the legitimate hash
value of the 1th partial hash value corresponding to the new
program are matching (S66). If the values are not matching,

(NO at S66), then the updating process of the OS 90 1s
suspended (S70).

On the other hand, 1f the values are matching (YES at
S566), then the CPU 12 determines whether or not verifica-
tion has been completed in respect of the hash values of all
of the partial hash values (S67). If verification has been
completed (YES at S67), then the CPU 12 stores the n partial
hash values 91H to 9»2H and the n/m hash values HS1 to HSx
of the partial hash values, 1n the firmware 80 (S68). Thereby,
the updating process of the OS 90 1s completed (569). On the

other hand, 1f the verification has not yet been completed
(NO at S67), then the CPU 12 calculates the hash values of

the partial hash values that have not vet been verified (S65),
and carries out verification (566).
Furthermore, similarly to the first embodiment, the partial

hash values 91H to 9zH and the hash value HS of the partial
hash values may also be verified after re-start following an
updating process. The flowchart in the case of verification
alter re-start 1s similar to the flowchart 1n FIG. 9 according
to the first embodiment.

In this way, n/m calculated hash values HS1 to HSx of the
partial hash values may correspond to the n partial hash
values 91Ha to 9nHa. In the second embodiment also,
similarly to the first embodiment, 1t 1s possible to verily, 1n
a rapid and simple fashion, that the program of the OS 90 to
be started up has not been manipulated. Thereby, the security
of the boot 1s guaranteed by verifying the authenticity of the
program 1n question, and the start-up time can also be
shortened.

Furthermore, 1n the second embodiment also, after system
start-up, the CPU 12 determines whether or not the plurality
of partial hash values 91Ha to 9zHa stored in the system
correspond legitimately to the program being started up.
Thereby, the secure boot method according to the present
embodiment can achieve a rapid secure boot 1n a compre-
hensive perspective, by enabling rapid verification on the
basis of the partial hash values 91Ha to 9zHa during system
start-up, while veritying that the partial hash values 91Ha to
9nHa correspond to the program being started up, after
system start-up.

US 9,530,004 B2

15

Furthermore, 1n the second embodiment also, 1in the
updating step, n partial hash values 91Ha to 9nzHa corre-
sponding to the new program, and n/m legitimate hash
values of these partial hash values, are acquired. It 1s then
verified, 1 the updating step, whether or not the n partial
hash values 91Ha to 92Ha and n/m legitimate hash values of
the hash values correspond to the updated program. Alter-
natively, 1t can be verified whether or not the n partial hash
values 91Ha to 9zHa correspond to the n/m legitimate hash
values of the hash values, and whether or not the n partial
hash values 91Ha to 9»Ha correspond to the program being,
executed, during re-start following the updating step. Con-
sequently, even if the program has been updated, it 1s
possible to achieve a safe and rapid secure boot on the basis
of the new program, the plurality of partial hash values 91Ha
to 9zHa corresponding to the new program, and the legiti-
mate hash values HS1a to HSxa of the partial hash values.

The respective steps of the secure boot method according
to the present embodiment may be achieved by hardware.

FIG. 15 15 one example of the composition of a semicon-
ductor device 1n a case where the secure boot method
according to the present embodiment 1s achieved by hard-
ware. The semiconductor device 1n FIG. 15 includes two
semiconductor devices 20 and 30, for example. The first
semiconductor device 20 1ncludes, for example, a CPU 22,
a RAM 26, an interface 21, an external interface 23, and an
interface 28 with the second semiconductor device 30. These
respective units are mutually connected via a bus 27. The
interface 21 controls mput and output of data from and to
external devices, and the external interface 23 controls mnput
and output of data from and to an input device 51 and an
output device 52.

Furthermore, the second semiconductor device 30 in FIG.
15 includes, for example, a boot ROM 32, a flash memory
33, a partial hash value calculation device 34, a calculated
hash value calculation device 36, a partial hash value
verification device 35, a calculated hash value verification
device 37, and a hash value calculation device 38. The
respective units are mutually connected via a bus 39. As
illustrated above 1n FIG. 1, the boot ROM 32 stores an IPL
program, and a device driver start-up program for the tlash
memory 33, and the like. Furthermore, the flash memory 33
stores firmware 80 and OS 90 programs, and hash values for
the secure boot, and so on.

The partial hash value calculation device 34 1n FIG. 15
calculates the hash values of the plurality of partial pro-
grams, in other words, the partial hash values. The partial
hash value verification device 35 verifies whether or not the
plurality of partial hash values correspond to the programs.
Furthermore, the calculated hash value calculation device 36
calculates a hash value for a plurality of partial hash values.
The calculated hash value verification device 37 verifies
whether or not the partial hash values have been manipu-
lated. The hash value calculation device 38 1s a device for
calculating hash values, and 1s controlled by the partial hash
value calculation device 34 and the calculated hash value
calculation device 36.

In the second semiconductor device 30, when 1t 1s
detected via the interface 31 that the power to the embedded
device has been switched on, the IPL 1s executed on the basis
of a boot loader of the boot ROM 32, and furthermore the
processing during start-up as described 1n relation to the first
and second embodiments 1s carried out 1n accordance with
the calculated hash value calculation device 36, and the
calculated hash value verification device 37. Furthermore,
after start-up, the processing after start-up as described 1n
relation to the first and second embodiments 1s carried out in

5

10

15

20

25

30

35

40

45

50

55

60

65

16

accordance with the partial hash value calculation device 34
and the partial hash value verification device 385.

As FI1G. 15, by achieving the respective steps of the secure
boot method according to the present embodiment by hard-
ware, the load on the CPU 12 1s lightened. Consequently, the
CPU 12 1s able to execute other processes during system
start-up, and therefore a secure boot can be carried out more
rapidly. Therefore, the semiconductor device can achieve a
more rapid secure boot, as well as being able to verily, 1n a
simple fashion, that the program to be started up has not
been mamipulated, on the basis of the partial hash values.

A case has been described here 1n which a secure boot
method according to the present embodiment 1s applied to an
embedded device, but the secure boot method according to
the present embodiment can also be applied to a general PC,
or the like.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader 1n understanding the invention and the concepts
contributed by the mventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples 1n the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described 1n detail, 1t should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What 1s claimed 1s:

1. A secure boot method for a system, the system includ-
ing: a processor; and a storage medium configured to store
a program, a plurality of first partial hash values calculated
based on a plurality of first partial programs into which the
program 1s divided, and a first legitimate hash value which
1s a hash value calculated based on a plurality of first
legitimate partial hash values, the plurality of first legitimate
partial hash values being calculated based on a plurality of
legitimate partial programs into which a legitimate program
1s divided, the legitimate program corresponding to the
program;

the secure boot method comprising;:

calculating, by the processor, during start-up of the sys-

tem, a second calculated hash value based on the
plurality of first partial hash values which has been
already calculated and stored 1n the storage medium
betfore the start-up of the system; and

determining, by the processor, during the start-up of the

system, whether or not the second calculated hash
value matches the first legitimate hash value to con-
tinue the start-up processing of the system when the
determination indicates match, and suspend the start-up
processing of the system when the determination does
not indicate match.

2. The secure boot method according to claim 1, further
comprising:

calculating, by the processor, after the start-up of the

system, a plurality of second partial hash values, which
are hash values calculated based on a plurality of
second partial programs nto which the program of the
system being started up 1s divided; and

determining, by the processor, after the start-up of the

system, whether or not the calculated plurality of
second partial hash values match the plurality of first
partial hash values which has been already calculated
and stored 1n the storage medium before the start-up of
the system to continue execution processing of the
system when the determination indicates match, and

US 9,530,004 B2

17

suspend the execution processing of the system when
the determination does not indicate match.

3. The secure boot method according to claim 2, wherein
the calculating the plurality of second partial hash values
and the determining whether or not the calculated plurality
of second partial hash values match the plurality of first
partial hash values are carried out 1n a time-division manner
with respect to all of the plurality of second partial pro-
grams.

4. The secure boot method according to claim 2, wherein
the calculating the plurality of second partial hash values
and the determining whether or not the calculated plurality
of second partial hash values match the plurality of first
partial hash values are carried out after start-up of the system
and when the system 1s 1n a low-load state.

5. The secure boot method according to claim 4, wherein
when the system 1s 1n the low-load state the system 1s 1n an
idle state or when operation of the system has been termi-
nated.

6. The secure boot method according to claim 1, further
comprising;

updating, by the processor, the program of the system to
a new program;

acquiring, by the processor, a plurality of first new partial
hash values, and the first new legitimate hash value
corresponding to the new program;

calculating, by the processor, a plurality of third partial
hash values based on a plurality of third partial pro-
grams 1nto which the updated new program 1s divided,
and a third calculated hash value based on the calcu-
lated plurality of third partial hash values; and

determining, by the processor, both whether or not the
calculated plurality of third partial hash values match
the acquired plurality of first new partial hash values,
and whether or not the third calculated hash value
match the acquired first new legitimate hash value to
continue an updating process of the system when both
of the two determinations indicate match, and suspend
the updating process of the system when at least one of
the two determinations does not indicate match.

7. The secure boot method according to claim 1, further

comprising:

updating, by the processor, the program of the system to
a new program;

acquiring, by the processor, a plurality of first new partial
hash values and the first new legitimate hash value,
corresponding to the new program; and

instructing, by the processor, a re-start of the system.

8. The secure boot method according to claim 1, wherein
the number of the plurality of first partial hash values 1s n,
and one second calculated hash value 1s calculated on the
basis of the n first partial hash values.

9. The secure boot method according to claim 1, wherein
the number of the plurality of first partial hash values 1s n,
one second calculated hash value 1s calculated on the basis
of m first partial hash values among the n first partial hash
values, and n/m second calculated hash values are calculated
on the basis of the n first partial hash values.

10. A semiconductor device, comprising:

a storage device configured to store a program, a plurality
of first partial hash values calculated based on a plu-
rality of first partial programs into which the program
1s divided, and a first legitimate hash value, which 1s a

hash value calculated based on a plurality of first partial
hash values, the plurality of first partial hash values
being calculated based on a plurality of legitimate

10

15

20

25

30

35

40

45

50

55

60

65

18

partial programs into which a legitimate program 1is
divided, the legitimate program corresponding to the
program; and
a computer processor configured to execute a process
including:
calculating, during start-up of the system, a second
calculated hash value based on the plurality of first
partial hash values which has been already calculated
and stored 1n the storage device before the start-up of
the system, and
determining, during the start-up of the system, whether or
not the second calculated hash value matches the first
legitimate hash value to continue the start-up process-
ing of the system when the determination indicates
match, and suspend the start-up processing of the
system when the determination does not indicate
match.
11. The semiconductor device according to claim 10,
wherein the process includes:
calculating, after the start-up of the system, a plurality of
second partial hash values, which are hash wvalues
calculated based on a plurality of second partial pro-
grams into which the program of the system being
started up 1s divided, and
determining, after the start-up of the system, whether or
not the calculated plurality of second partial hash
values match the plurality of first partial hash values
which has been already calculated and stored in the
storage device before the start-up of the system to
continue processing of executing the system when the
determination indicates match, and suspend processing
of executing the system when the determination does
not idicate match.
12. The semiconductor device according to claim 11,
wherein
the computer processor executes the calculating the plu-
rality of second partial hash values and the determining
whether or not the calculated plurality of second partial
hash values match the plurality of first partial hash
values 1n a time-division manner with respect to all of
the plurality of partial programs.
13. The semiconductor device according to claim 10,
wherein the process includes:
updating the program of the system to a new program,
acquiring a plurality of first new partial hash values and
the first new legitimate hash value, corresponding to
the new program,
calculating a plurality of third partial hash values based on
a plurality of third partial programs into which the
updated new program 1s divided, and a third calculated
hash value based on the calculated plurality of third
partial hash values, and
determining both whether or not the calculated plurality
of third partial hash values match the acquired plurality
of first new partial hash values, and whether or not the
third calculated hash value match the acquired first new
legitimate hash value to continue an updating process
of the system when both of the two determinations
indicate match, and suspend the updating process of the
system when at least one of the two determinations
does not indicate match.
14. The semiconductor device according to claim 10,
wherein the process includes:
updating the program of the system to a new program,
acquiring a plurality of first new partial hash values and
the first new legitimate hash value, corresponding to
the new program, and
instructing a re-start of the system.

US 9,530,004 B2

19

15. The semiconductor device according to claim 10,
wherein the number of the plurality of first partial hash
values 1s n, and one second calculated hash value 1s calcu-
lated on the basis of the n first partial hash values.

16. The semiconductor device according to claim 10,
wherein the number of the plurality of first partial hash
values 1s n, one second calculated hash value 1s calculated on
the basis of m first partial hash values among the n first
partial hash values, and n/m second calculated hash values
are calculated on the basis of the first n partial hash values.

17. A non-transitory computer-readable recording
medium having stored therein a program for causing a
computer to execute a secure boot process of a system, the
system 1ncluding: a processor; and a storage medium con-
figured to store a program, a plurality of first partial hash
values calculated based on a plurality of first partial pro-
grams 1nto which the program i1s divided, and a first legiti-
mate hash value which 1s a hash value calculated based on
a plurality of first legitimate partial hash values, the plurality
of first legitimate partial hash values being calculated based
on a plurality of legitimate partial programs into which a
legitimate program 1s divided, the legitimate program cor-
responding to the program;

the secure boot method comprising:

calculating, by the processor, during start-up of the sys-

tem, a second calculated hash value based on the
plurality of first partial hash values which has been
already calculated and stored in the storage medium
betfore the start-up of the system; and

determining, by the processor, during the start-up of the

system, whether or not the second calculated hash
value matches the first legitimate hash value to con-
tinue the start-up processing of the system when the
determination indicates match, and suspend the start-up
processing ol the system when the determination does
not indicate match.

18. The non-transitory computer-readable recording
medium having stored therein the program according to
claim 17, wherein the secure boot process further compris-
ng:

calculating, by the processor, after the start-up of the

system, a plurality of second partial hash values, which
are hash values calculated based on a plurality of

10

15

20

25

30

35

40

20

second partial programs into which the program of the
system being started up 1s divided; and
determining, by the processor, after the start-up of the
system, whether or not the calculated plurality of
second partial hash values match the plurality of first
partial hash values which has been already calculated
and stored 1n the storage medium before the start-up of
the system to continue execution processing of the
system when the determination indicates match, and
suspend the execution processing of the system when
the determination does not indicate match.
19. The non-transitory computer-readable recording
medium having stored therein the program according to
claiam 18, wherein the calculating the plurality of second
partial hash values and the determining whether or not the
calculated plurality of second partial hash values match the
plurality of first partial hash values are carried out 1n a
time-division manner with respect to all of the plurality of
second partial programs.
20. The non-transitory computer-readable recording
medium having stored therein the program according to
claim 17, wherein the secure boot process further compris-
ng:
updating, by the processor, the program of the system to
a new program;

acquiring, by the processor, a plurality of first new partial
hash values, and the first new legitimate hash value
corresponding to the new program;
calculating, by the processor, a plurality of third partial
hash values based on a plurality of third partial pro-
grams 1nto which the updated new program 1s divided,
and a third calculated hash value based on the calcu-
lated plurality of third partial hash values; and

determining, by the processor, both whether or not the
calculated plurality of third partial hash values match
the acquired plurality of first partial new hash values,
and whether or not the third calculated hash value
match the acquired first new legitimate hash value to
continue an updating process of the system when both
of the two determinations indicate match, and suspend
the updating process of the system when at least one of
the two determinations does not indicate match.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

