US009529829B1

a2 United States Patent (10) Patent No.: US 9,529,829 B1

Pendharkar 45) Date of Patent: Dec. 27, 2016

(54) SYSTEM AND METHOD TO FACILITATE 2006/0161507 Al* 7/2006 Reisman 706/12

THE USE OF PROCESSED DATA FROM A 2006/0259949 Al* 11/2006 Schaefer et al. 726/1

2007/0156730 Al* 7/2007 Rothermel et al. 707/101

STORAGE SYSTEM 1O PERFORM TASKS 2007/0179955 Al* 82007 Croftetal.ccccoeonee..... 707/9

2007/0185926 Al* 82007 Prahlad et al. 707/202

(75) Inventor: Niranjan Pendharkar, Maharashtra 2007/0203938 Al* 8/2007 Prahlad et al. 707/102

(IN) 2007/0239818 Al* 10/2007 Liou et al.cco.......... 709/201

2008/0195677 Al* 82008 Sudhakar et al. 707/204

(73) Assignee: Veritas Technologies LL.C, Mountain 2008/0294696 Al* 11/2008 Frandzel 707/200

View, CA (US) 2009/0070356 Al* 3/2009 Mimatsuc........ 707/101

’ 2009/0144285 Al* 6/2009 Chatley et al. 707/10

) | | o | 2009/0204649 Al* 82009 Wong et al. 707/204

(*) Notice: Subject to any disclaimer, the term of this 2009/0224941 Al* 9/2009 Kansal et al. 340/870.06

patent 1s extended or adjusted under 35 2009/0319585 Al* 12/2009 Gokhalec........ 707/205

U.S.C. 154(b) by 449 days. 2010/0169273 Al* 7/2010 Callanan et al. 707/609

2010/0241615 Al* 9/2010 Marshall et al. 707/661

| 2010/0250624 Al1* 9/2010 Mayer et al. 707/809

(21) Appl. No.: 13/299,681 2010/0332479 Al* 12/2010 Prahlad et al. 707/741
(22) Filed: Nov. 18, 2011 (Continued)

Primary Examiner — Hosain Alam

(51) Int. CI. Assistant Examiner — Nicholas Allen

gggﬁ 17/7(;30 88828; (74) Attorney, Agent, or Firm — Campbell Stephenson
GO6F 17/30 (2006.01) LLP
5 I(j’OStﬂ?Ci’/(M84 (2013.01) (57) ABRSTRACT
CPC GOG6F 17/30303 (2013.01); GO6F 3/0484 A system and method for facilitating the use of use pro-
| (2013.01) cessed data from a storage system to perform one or more
(58) Field of Classification Search tasks are disclosed. For example, the method can include
USPC 707/609. 654. 661. 692, 737. T41. {27 identifying data, stored within a storage system, and needed

to perform a task. Such data can be stored in a processed

See application file for complete search history. form, as a result of such data having been previously

(56) References Cited procesged by the storage system. A dgtenninat%on 1s made to
determine whether the identified data is stored in a processed

U.S. PATENT DOCUMENTS form. If so, a subsequent determination 1s made to determine

whether the data in the processed form 1s usable to perform

6,560,772 B1* 5/2003 Slinger GO6F73/; ‘E;? the task. If the data in the processed form 1s usable to

perform the task, a request 1s generated to request the data

3
7996,571 Bl 82011 Deshmuldh ook 1%37%32 in the processed form. The processed data can then be used
2004/0024720 Al1* 2/2004 Fairweather 706/46 to perform the task.
2006/0059230 Al1* 3/2006 Dykascc..... G06Q 10/10
709/206 22 Claims, 9 Drawing Sheets
System Primary Computing Device Secondary Computing Device
Architecture 105 160

10 ‘ Application 110 ‘ Application 170 \
\ ‘ File System 115 ‘ File System 175 '

|-— Volume Manager 120 \ Volume Manager 180
‘ Dala Processing Sub-Module 130(a) \ | Data Processing Sub-Module 130{c) ‘
L ‘

Storage Systemn 133 |

Storage Controller 140

| Data Processing Sub-Module 13000 \
| Processing Informalion 145 \

< > >
Siorage Slorage
Volume ¢ & & Volume

*-_1_5:'-2__(11.--' '-..___.-"M

US 9,529,829 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0016082 Al1* 1/2011 Acedoetal. 707/610
2011/0016091 A1* 1/2011 Prahlad et al. 707/654
2011/0016124 A1* 1/2011 Isaacson et al. 707/737
2011/0035410 A1* 2/2011 Takano et al. 707/790
2011/0047195 A1* 2/2011 Leetal. ...cocvvvviviniiin., 707/827
2011/0131225 Al1* 6/2011 Mayeretal. 707/758
2012/0124014 Al1* 5/2012 Provenzano 707/692

* cited by examiner

} Ol

US 9,529,829 B1

Sheet 1 of 9

Dec. 27, 2016

U.S. Patent

(DJOEL 2INPo-gnS bulsssaoid eleq
0Ql tabeuep swnjop

[waisAs a1

0Z} uoielddy

09t
391A9(] Aunndwon Alepuoasg

1)0G1
BUIN[OA
abelo)g

(NJOS1

aWNJOA

Gl uoneuLo| BuISs8201d

[aQI0E1 8Inpo-ans buissa0.4 Ele(

Bl 19jjonuos abelo)s

1 WajsAs abelols

(E)OC | 3|npoW-qng buissanoid ejeq

071 Jobeuepy swnjop

Gl 1 WajsAg 314

01} uoneat|ddy

GOl
391A8(] Bunyndiion Alewilg

/

001
YR TTRI)Y
WdSAS

US 9,529,829 B1

Sheet 2 of 9

Dec. 27, 2016

U.S. Patent

¢ Old
(NJSZ2
321A3(]
abeln)s
0JZ uolewlojul Buissasosd 0CZ uonewuoju) buissanoid
PIOCT s|npoN-ans Buissanoid ejeq qJOE| |Inpop-Qns buissaz0id ejeq
GQz Jaj|onuon) abelo)s Gee J9||onuon abelo)s
£0z Wa)sAg sbesn)s tec Wajshs abelo)s
(3I0CT aInpon-ans Buissasold eleq (BJOET ainpon-qns Huissannid ejeq
092 Jebeuepy awn|op 0Z¢ Jabeuepy atun|oA
0¥¢ JomaN

GGZ Wa)sAg 9|14 Gz Wa)sAs a4

0G¢ uoneoyddy 01z uoneaddy

g0
291Ina(] Bundwon Alewuy

474
aanag Bunndwon Alepuodss

N

00¢
21n}oa)Iydly
WA)SAS

U.S. Patent Dec. 27, 2016 Sheet 3 of 9 US 9.,529.829 B1

Data Processing Module 130

Data Identification Module

310

Data Analysis Module
320

Request Generation Module

330

Data Retrieval Module
340

Processing Module
350

FIG. 3

U.S. Patent Dec. 27, 2016 Sheet 4 of 9 US 9.,529.829 B1

Start

Identify data
410

previously processed?

Process data?
420

Retrieve data as-is from

Yes storage system

R d 3
equest data processing

Retrieve data in processed form
from storage system
450

processed form usable?

Yes

Retrieve data in processed form

from storage system
470

Refrieve data in unprocessed

form from storage system
460

FIG. 4

U.S. Patent Dec. 27, 2016 Sheet 5 of 9 US 9.,529.829 B1

Identify data for task
510

Retrieve
data in processed form?
515

Generate request for data in un-

Nc processed form
220

Yes

Generate request for data in processed form &

information regarding processing (if applicable)
530

Send request for data to storage system
240

Await receipt of data & information (if applicable)
550

Data and No

information received?
295

Yes

Perform task
260

FIG. 5A

U.S. Patent Dec. 27, 2016 Sheet 6 of 9 US 9.,529.829 B1

Analyze data to determine if data has

been previously processed
570

Analysis
of data indicates previous
processing?
575

Analyze processing information {P1) to
determine if data has been previously

processed
289

Pl indicales

previous processing?
290

Yes

No

Indicate data is in un-

processed form
595

Indicate data is in processed form Yes
280

FIG. 5B

U.S. Patent Dec. 27, 2016 Sheet 7 of 9 US 9.,529.829 B1

ldentify requested data
610

Search storage volume(s) for identified data
620

Send error message to requesting
application
630

N Send data to re%L;eDstmg applicaiton ®

De-process requested data & send to
C requesting application ()
650

Data found?
625

Yes

Data in
processed form?
635

Yes

Data in
processed form usable?

645

Yes

Yes

Send processed data to requesting
application
660

Further

data to retrieve?

665 No

—_ Ed FIG. 6

US 9,529,829 B1

Sheet 8 of 9

Dec. 27, 2016

U.S. Patent

__ L 9Ol4
A4
si |eond Y
4810 1eddo 567
}IOMION
[puUBYD
— 2.1ql]
7]
02z 9AUQ %siq [eondo
WaSAS
foyeads 5 27) 9% 24,
/ sng 1SN 3SI] poxi4 pJeoqfoy asno 93108 Aejdsi(
511994 VaeL v/ o] 8¢l 9¢l
90E}ie|l] oipny vEH vaH goepa)y) ebeio)g | | Jojjonuon preoghey, HOd [ensg 19)depy Ae|dsiQ

I | 717
FA%) 0¢/ n

Jun ¥siq Addo)4 U0 [BLIAS

[71
gJELSU| YIO0M)aN

gLz
18][0U07) O]

0gl
8|NPOA]
buissanoid ejeq

1Y
Aowsp ws)sAS

571
e oL/

bEL
J0SS32014 |B)U9)

ez
¥s1q Addoj4

\
as
3
2 8 Ol
-
N
)
=
).
-
=)
2 Gv8
JaAIDS
=)
~
L
L
=
s 9,
078 058
JLGE] NYS HOMEN
o 08
m JETVETS
r~
2 —
: — 0EL
J c68 o0y
g o Buissasol eleq

afeu0]s Juabijis

U.S. Patent

028
sl

A

2INJISYYIIY YIOMION

US 9,529,829 Bl

1

SYSTEM AND METHOD TO FACILITATE
THE USE OF PROCESSED DATA FROM A
STORAGE SYSTEM TO PERFORM TASKS

FIELD OF THE INVENTION

This invention relates to storage systems, and more par-
ticularly, to utilizing processed data from a storage system to
perform tasks.

DESCRIPTION OF THE RELATED ART

Storage systems sometimes process data, using one or
more processing techniques, prior to storing such data. For
example, a storage system may perform data compression,
data deduplication, data encryption on data prior to storing
such data in the storage system’s storage units. This type of
processing can be performed in order to minimize the
storage space required when storing data in the storage
system.

However, the processing performed by a storage system
on a given set of data 1s typically performed in a manner that
1s seamless and, frequently, the details of which are
unknown to an application accessing the storage system.
However, an application may perform a task that might
otherwise benefit from data 1mn a processed form. In such
cases, lack of such recognition, as well as information
regarding the details of such processing techniques, leads to
inefliciencies 1n the use of computing resources to perform
such tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 1s a block diagram illustrating system architecture
that facilitates the use of processed data to perform tasks,
according to one embodiment of the present invention.

FIG. 2 1s a block diagram illustrating alternative system
architecture that facilitates the use of processed data to
perform tasks, according to one embodiment of the present
invention.

FIG. 3 1llustrates a data processing module, according to
one embodiment of the present invention.

FIG. 4 15 a flowchart 1llustrating an example of a process
for analyzing data, according to one embodiment of the
present mvention.

FI1G. 5A 1s a tflowchart illustrating an example of a process
for requesting data from a storage system, according to one
embodiment of the present invention.

FI1G. 5B 1s a flowchart illustrating an example of a process
for determining whether data has been previously processed.,
according to one embodiment of the present invention.

FIG. 6 1s a flowchart 1llustrating an example of a process
for retrieving data from a storage system, according to one
embodiment of the present invention.

FIG. 7 1s a block diagram of a computing system, accord-
ing to one embodiment of the present invention.

FIG. 8 1s a block diagram of a network system, according
to one embodiment of the present invention.

While the invention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments of the
invention are provided as examples in the drawings and
detailed description. It should be understood that the draw-
ings and detailed description are not intended to limit the

10

15

20

25

30

35

40

45

50

55

60

65

2

invention to the particular form disclosed. Instead, the
intention 1s to cover all modifications, equivalents, and

alternatives falling within the spirit and scope of the inven-
tion defined by the appended claims.

DETAILED DESCRIPTION

Data can be processed by a storage system in one of
several different ways. For example, data can be processed
in an efort to reduce the amount of storage space needed to
store the data. Data processing can include data compression
techniques 1n which data 1s compressed according to an
algorithm, data deduplication techniques 1n which duplicate
copies ol data are removed, and other similar approaches. In
other examples, data can also be processed to organize data
in a particular order, to encrypt data, to divide a set of data
into subsets of data, and so on. Techniques such as data
compression, data deduplication, data organization, data
encryption, and data division are herein after referred to as
data processing techniques.

Data, as 1t exists prior to processing, 1s referred to herein
as unprocessed data, or data 1n an unprocessed form. Data,
as 1t exists after processing, 1s referred to herein as processed
data, or data 1n a processed form. An application may be able
to use processed data 1n a processed form to perform various
operations. These operations can include operations such as
backups, replication, archiving, and so on. Performing these
types ol operations are referred to herein as performing
tasks.

FIG. 1 1llustrates a system architecture 100, which facili-
tates the use of processed data to perform tasks. System
architecture 100 includes a primary computing device 105.
Primary computing device 105 includes an application 110,
a file system 115, a volume manager 120, and a data
processing sub-module 130(a). Primary computing device
105 1s shown as being coupled to a storage system 133 via
a network 135. Storage system 133 includes a storage
controller 140 (which further includes a data processing
sub-module 130(b)), processing information 145, and one or
more storage volumes (depicted i FIG. 1 as storage vol-
umes 150(1)-(N)). System architecture 100 further includes
a secondary computing device 160. Secondary computing
device 160 includes an application 170, a file system 175, a
volume manager 180, and a data processing sub-module
130(¢). Secondary computing device 160 1s also coupled to
the same storage system 133 via network 135.

Primary computing device 105 and secondary computing,
device 160 can be any type of computing device, such as a
desktop computer, a laptop computer, a smart-phone, a
portable computing device, a server, and so on. Application
110 1s executed by primary computing device 105 and
application 170 1s executed by computing device 160. These
applications access data via respective file systems, such as
file systems 115 and 175. Applications 110 and 170 can
generate and/or consume data organized by the file systems.
Applications 110 and 170 can mitiate tasks such as replica-
tion, backups, organization, encryption, and so on.

File systems 115 and 175 {facilitate the organization of
data into files and/or folders (e.g., special files that can
contain additional files and/or folders) and allow applica-
tions, such as applications 110 and 170, to access the
organized data. This data can be stored within storage
volumes 150(1)-(N). Typically, applications 110 and 170
access data as files and folders presented by file systems 115
and 175. File systems 115 and 175 thus provide organization
to the data accessed by applications 110 and 170 allowing
such data to be found, retrieved, accessed, and modified

US 9,529,829 Bl

3

within file systems 1135 and 1735. File systems 115 and 175
can use one of several possible file system architectures for
organizing data into files and folders. Examples of file
system architectures include File Allocation Table (EAT),
New Technology File System (NTFS), Hierarchical File
System (HFS), High-Performance File System (HPFS),
Unix File System (UFS), Veritas File System (VxFS), and so
on.

Volume managers 120 and 180 organize the physical
clements of a storage system (e.g., storage system 133) into
one or more logical volumes. These logical volumes include
the files and folders represented by file systems 115 and 1785.

A data processing module 130 (illustrated, for example, as
some combination of data processing sub-modules 130{(a)
and 130(b), or data processing sub-modules 130(c¢) and
130(5), which are referred to in the aggregate as data
processing module 130) identifies, analyzes, requests,
retrieves, and transmits processed and un-processed data
from storage volumes 150(1)-(N). Thus, the functionality
provided by a data processing module, such as data pro-
cessing module 130 can be divided into two sub-modules,
data processing sub-module 130(a) and data processing
sub-module 130(») or data processing sub-module 130(c)
and data processing sub-module 130(5). Alternatively, the
functionality of data processing module 130 can be imple-
mented solely 1n data processing sub-modules 130(a) or
130(c), or solely 1n data processing sub-module 130(5).

Data processing module 130 1dentifies data to be used as
part of performing a task. Some or all of this data may have
been previously processed by storage system 133 prior to the
data being stored. Data processing module 130 can perform
an analysis of the identified data, or alternatively processing
information pertaining to such data, to determine i1 the data
has been previously processed.

Determining whether data has been previously processed
can be advantageous to an application performing tasks.
This 1s because such tasks may involve copying and sending
data from one location (e.g., primary computing device 105)
to another location (e.g., secondary computing device 160)
for storage. The amount of data copied and transmitted from
one computing device to another aflects the amount of
computing resources necessary to perform such tasks. For
example, 1f a task involves copying a large amount of data
from one computing device to another, the amount of
network bandwidth and processing needed to perform such
a task can quite significant.

Often, data 1s processed 1n some manner by a storage
system (e.g., storage system 133), prior to such data being
stored. Information regarding the details of such processing,
however, 1s frequently unavailable to an application that
performs a task. Thus, data needed for a task i1s processed
prior to storing such data in a storage system (to which a
primary computing device 1s coupled), un-processed when
such data 1s retrieved for the application, transmitted to a
secondary computing device, and re-processed by the stor-
age system to which the secondary computing device 1is
coupled, prior to storing such data. However, in some cases,
the storage systems may be the same, as 1s the case i FIG.
1. Alternatively, the primary and secondary computing
devices may be coupled to diflerent storage systems, where
the two storage systems process data similarly (e.g., using
similar processing techniques) prior to storing data.

In these types of scenarios, performing certain tasks can
be made more eflicient by providing information to an
application that indicates the data has been previously
processed. This 1s because an application can use informa-
tion regarding the details of such processing to determine

10

15

20

25

30

35

40

45

50

55

60

65

4

whether using data 1n a processed form would be advanta-
geous for completing a task. For example, data processing
module 130 can determine that retrieving data in a processed
form reduces the amount of data to be transmitted from a
primary computing device to a secondary computing device
and reduces the amount of network bandwidth consumed 1n

transmitting such data.

If having the data in a processed form 1s usetful for
performing a task, data processing module 130 can then
specifically request that the data needed for performing the
task be provided to the application 1n 1ts processed form.
Doing so leads to a more eflicient use of computing
resources. This 1s because, for example, 1n the case of data
compression and deduplication techniques, the application
will need less storage space, less network bandwidth when
transmitting the processed data, and less processing
resources by avoiding the need to de-process (e.g., de-
compress) and re-process (e.g., re-compress) data that
already existed in a processed form (e.g., was already
available 1n a compressed form).

An application can map the 1dentified data needed for a
task to underlying logical unit numbers (LUNs) within
storage system 133. Doing so allows storage system 133 to
locate and retrieve data within storage volumes 150(1)-(N).
The application can further invoke an application program-
ming interface (API) to read the requested data in the
processed form. Data processing module can thus generate
a request for the data mapped to the specific LUNSs 1n storage
system 133.

Data processing module 130 can also generate a request
for information describing the processing technique used to
process data. This information can indicate whether data has
been processed and can indicate what, 1f any, processing
technique and algorithms were employed. For example, the
information provided to an application can include an 1ndi-
cation that the data has been processed, an indication that the
information was processed according to a compression
technique, and an indication of the compression algorithm
used to compress the data. This type of information can be
determined by analyzing the data itself or by analyzing
processing information 145 within storage controller 140.
An example of processing information 145 can be metadata.

In some cases, data needed for a task may not have been
previously processed. However, having the data 1n a pro-
cessed form can still advantageous. In these cases, data
processing module 130 can request that storage system 133
perform a processing technique on the data, prior to provid-
ing such data to the application.

Data processing module 130 receives data retrieved by
storage system 133 and prepares to provide such data to the
requesting application via an API invoked for receiving such
data. Additionally, data processing module 130 can also
receive mformation regarding the details of a processing
technique and may prepare to provide such data to the
application via the same API or a secondary API dedicated
to recerving such information.

Data processing module 130 also receives data (e.g., via
data processing subm-module 130(c¢)) from primary com-
puting device 105. This data can be received 1n a processed
or un-processed form. In addition, data processing module
130 can also receive information describing one or more
processing techniques applied to the data. For example, data
processing module 130 can receive miformation indicating
that the received data has been processed according to a
compression technique using a particular compression algo-
rithm. Data processing module 130 can then identify the data

US 9,529,829 Bl

S

(in 1ts current form) and the corresponding information for
storage 1n a secondary storage system.

Network 1335 provides a communication path from pri-
mary computing device 105 to secondary computing device
160 and storage controller 140 to facilitate transporting data
(iIn a processed or un-processed form) between primary
computing device 105, secondary computing device 160,
and storage system 133. In some cases, network 135 also
provides a communication path to facilitate transporting
information describing the details of a processing technique.
Network 135 can be any type of network, such as an intranet,
a wide area network (WAN), a local area network (LAN), a
personal area network (PAN), or the Internet.

As shown, network 133 1s 1llustrated as a single commu-
nication medium for providing all types of communication
between primary client device 105, secondary computing
device 160, and storage system 133. Alternatively, although
not shown, network 135 can also be divided into two or more
communication mediums. In such cases, at least one com-
munication medium 1s used to send data in a processed or
un-processed form and at least one other communication
medium 1s used to send information describing the details of
a processing technique.

As shown, storage system 133 provides a data storage
mechanism shared by primary computing device 105 and
secondary computing device 160. Storage system 133
includes a storage controller 140, processing information
145, and one or more storage volumes 1llustrated as storage

volumes 150(1)-(N). Examples of storage system 133
include a disk array, just a bunch of disks (JBOD), a

redundant array of independent disks (RAID), a DVD/CD
jukebox, a tape array, and other types of media.

Storage controller 140 provides a mechanism for orga-
nizing, communicating with, and accessing data stored
within storage volumes 150(1)-(N). Storage controller 140
organizes data in storage volumes 150(1)-(N) into logical
blocks. A LUN 1s used to represent each logical block.
Storage controller 140 typically locates data within a logical
block of storage system 133 by referencing a LUN that
corresponds to such a logical block.

Storage volumes 150(1)-(N) are storage volumes of a
fixed size. In addition, storage volumes 150(1)-(N) provide
data storage for primary computing device 105 and second-
ary computing device 160. Thus, storage volumes 150(1)-
(N) provide storage for data and corresponding attributes of
the data (e.g., attributes describing the details of the pro-
cessing techniques applied to such data). Each storage
volume 150 can include one or more storage media, such as
hard disks, compact discs (CDs), digital versatile discs
(DVDs), magnetic tapes, solid state memory, or the like.

FIG. 2 illustrates alternative system architecture that
tacilitates the use of processed data to perform a task.
System architecture 200 1s similar to system architecture 100
of FIG. 1. However, system architecture 200 provides for
two (or more) storage systems. As shown, primary comput-
ing device 205 1s coupled to storage system 223, which
includes storage controller 225 (which further includes data
processing sub-module 130(5)), processing mformation 230,
and storage devices 235(1)-(N). Secondary computing
device 245 1s coupled to storage system 263, which includes
storage controller 265 (which further includes data process-
ing sub-module 130(¢)), processing information 270, and
storage volumes 275(1)-(N).

Storage system 223 and storage system 263 can perform
similar processing techniques on data to be stored, prior to
storing the data. In such cases, a task can be made more
ellicient by using data 1n a processed form. This 1s because

10

15

20

25

30

35

40

45

50

55

60

65

6

processing the same data at storage system 223 and storage
system 263 will vield the same processed data in the same
processed form. Thus, processed data from storage system
223 can be sent as-1s (e.g., 1n a processed form) from
primary computing device 205 to secondary computing
device 245.

However, 1n scenarios where storage system 223 and
storage system 263 do not perform similar processing tech-
niques before storing data, the data requested by an appli-
cation may need to be un-processed by storage system 223
prior to providing such data to an application performing a
task.

FIG. 3 1illustrates a data processing module 130. Data
processing module 130 includes a data identification module
310, a data analysis module 320, a request generation
module 330, a data retrieval module 340, and a processing
module 350. The functionality provided by data processing
module 310 can be further divided into two sub-modules,
with one sub-module located within a computing device and
a second sub-module located within a storage system.

Data i1dentification module 310 i1dentifies data needed to
perform a task. Data needed for a task can be i1dentified
based on blocks, data segments, files, and/or applications.
The data can then be further identified by mapping the data
to underlying LUNs of a storage system. Doing so allows
data 1n logical units to be identified and retrieved. Data
analysis module 320 then determines whether the identified
data has been previously processed by a storage system. This
determination can be made by analyzing the data or by
analyzing information (e.g., metadata) describing the details
of a processing technique applied to the data.

Request generation module 330 generates requests for
retrieving data from a storage system. These requests are
requests for data corresponding to underlying LUNSs in a
storage system. The request may include a request for
information indicating that the data should be returned to the
requesting application 1n a processed or un-processed form.
Data retrieval module 340 initiates a search of such data.
Once located, the data 1s retrieved and provided to the
requesting application. Moreover, data retrieval module 340
can also mitiate the storage of data and information (e.g.,
attributes) describing the processing techniques applied to
such data within a secondary storage system. Processing
module 350 1nitiates the processing of data according to a
processing technique. Processing module 350 can also 1ni-
tiate a reversal of the processing performed on the data.

FIG. 4 1s a flowchart illustrating an example of a process
for analyzing data. This process can be performed by a data
processing module (e.g. such as data processing module 130
of FIG. 3). Data can be analyzed by the process of FIG. 4 to
help determine whether data has been previously processed
and to determine whether having data in a processed form
could be helpftul when performing a given task.

The process begins at 410 where the data to be accessed
to perform a task 1s identified. The identified data can
include subsets of data, files, or a combination of both. Data
identified at 410 can be i1dentified by an application refer-
encing a file system to select certain data subsets or files. In
addition, the application can map the identified data to
identily corresponding LLUNs 1n a storage system.

Once the data has been 1identified, the process continues to
415 where a determination 1s made as to whether the
identified data has been previously processed. Determining
whether data has been previously processed 1s a determina-
tion that can be made by analyzing the data itsell or by
analyzing processing information regarding the details of a
processing technique applied to the data. Processing infor-

US 9,529,829 Bl

7

mation can facilitate identification of a processing technique
and a specific algorithm used when performing the process-
ing technique. For example, processing information can
indicate that the i1dentified data was previously processed,
can indicate that the data was processed according to a
compression technique, and can indicate the compression
algorithm employed.

In the event that the data has not been processed previ-
ously, the process continues to 420 where a determination 1s
made as to whether the data should be processed. Data can
be processed at this point if an application determines that
using the identified data in 1ts processed form would be
advantageous in performing a task. If a determination 1is
made at 420 that the data 1s not to be processed (e.g., because
having the data in the processed form would not be advan-
tageous to perform a task), a determination 1s made at 430
that the 1dentified data should be retrieved as-1s from the
storage system. Alternatively, 1f a determination 1s made at
420 that the data should be processed (e.g., because having
the data i the processed form would be advantageous to
perform a task), the process continues to 440 where a request
1s 1ssued to the storage system requesting that the identified
data be processed accordingly. Once the data 1s processed, a
determination 1s made at 450 that the identified data should
be retrieved 1n the processed form from the storage system.

Referring back to 415, 1f a determination 1s made that the
data has been previously processed, the process continues to
455. At 455, a determination 1s made as to whether the data
in a processed form can be used 1n performing a task. For
example, data 1n a processed form can be used to perform a
task 1n cases where a secondary computing device and/or
secondary storage system are able to receive data in the
processed form and are able to reverse a processing tech-
nique to re-create the data in the un-processed form, as
needed, as part of completing a task. This might be the case,
for example, where a primary and secondary computing
devices share the same storage system or where the primary
and secondary computing devices and/or the primary and
secondary storage devices employ similar processing tech-
niques (e.g., the same techniques for compression, dedupli-
cation, encryption, and so on).

If a determination 1s made at 455 that the data in the
processed form cannot be used to perform a task, the process
continues to 460 where a determination 1s made that the data
should be retrieved 1n an un-processed form from the storage
system. Alternatively, 11 a determination 1s made at 455 that
the data in the processed form can be used to perform a task,
a determination 1s made at 470 that the data should be
retrieved 1n a processed form from a storage system. At this
point, the process ends.

FIG. 5A 1llustrates an example of a process for requesting,
and receiving data from a storage system. The process of
FIG. SA can be performed by a data process module, such
as the data processing module 130 in FIG. 3. The process
begins at 510 where the data to be accessed 1s 1dentified.
This data can be 1dentified at a block level, a file level, or an
application level. Once 1dentified, the process continues to
515, where a determination 1s made as to whether the
identified data should be retrieved in a processed form.

An analysis of whether data should be retrieved 1n a
processed form can be performed, for example, by the
process of FIG. 4. If a determination 1s made at 515 that the
identified data should not be retrieved 1n a processed form,
the process continues to 520. At 520, a request 1s generated
to request the 1dentified data in a processed form.

Alternatively, 11 the determination made at 515 1ndicates
that the identified data should be retrieved 1n a processed

10

15

20

25

30

35

40

45

50

55

60

65

8

form, the process continues to 530. At 530, a request 1is
generated to request the identified data in the processed
form. An additional request may also be generated to request
information regarding a processing technique used to pro-
cess the data. The request for information regarding the
processing technique can be part of the same request for
information or 1t can be a separate request.

The level of information that 1s needed to describe a
processing technique can vary depending on system archi-
tecture. For example, 1f primary and secondary computing
devices share the same storage system, the information
requested at 530 1s fairly minimal. In this case, the infor-
mation requested at 530 need only describe that a processing
technique has been utilized and need only identity the
processing technique. The same would apply for an archi-
tecture 1n which the two computing devices are coupled to
different storage systems, but the two storage systems
employ similar processing techniques. By contrast, i the
two computing devices are coupled to different storage
systems, the mnformation requested at 530 may need to be
more significant. For example, the information regarding the
processing technique may need to include an indication that
a processing technique has been employed and may also
need to provide the processing algorithm used to employ
such a technique.

Once a request has been generated at either 520 or 530,
the process continues to 540, where the request 1s sent to a
primary storage system for processing. At 550, the process
awaits receipt of the requested data and information regard-
ing a processing technique, 1t applicable. At 555, a deter-
mination 1s made as to whether the data and the optional
information requested have been received. It the data and the
information have not been received, the process reverts back
to 550 where the process continues to wait for the receipt of
the data and the information. However, 1f the data and the
information have been received, the process continues to
560, where the task 1s performed. Performing the task may
involve sending the data and the information regarding a
processing technique to a secondary computing device for
storage within a secondary storage system. At this point, the
process ends.

FIG. 5B illustrates an example of a process for determin-
ing whether data has been previously processed. The process
of FIG. 5B can be performed by a data process module, such
as the data processing module 130 in FIG. 3. In addition, the
process of FIG. 5B illustrates an example of the determina-
tion analysis performed at 415 1n FIG. 4.

The process begins at 570, where 1dentified data 1s ana-
lyzed to determine 11 the data has been previously processed.
The data 1tself, or information associated with the data, may
include an indication that the data has been previously
processed. At 575, a determination 1s made as to whether the
analysis of the data indicates that the data has been previ-
ously processed. If a determination 1s made at 575 that the
data has been previously processed, an indication 1s pro-
vided to 1ndicate that the data 1s 1n a processed form at 580.

Alternatively, 1f the analysis of the data does not provide
an indication that the data has been previously processed, the
process continues to 585. At 585, a further analysis 1s
performed to analyze processing information pertaining to
the data, to determine 11 the processing information indicates
previous processing of the data. Processing information can
be information such as metadata and can include informa-
tion describing processing techniques and algorithms used to
process data. A determination as to whether the processing
information indicates previous processing ol the data is
performed at 590. If a determination 1s made at 390 that the

US 9,529,829 Bl

9

data has been previously processed, the process continues to
580 where an indication 1s provided to indicate that the data
1s 1n a processed form. On the contrary, 1f the processing
information does not indicate previous processing, the pro-
cess continues to 595 where an indication 1s provided to
indicate that the data 1s 1n an un-processed form. At this
point, the process ends.

Alternatively, the process of FIG. 3B can make a deter-
mination as to whether data has been previously processed
by analyzing processing information first. If no determina-
tion can be made from the processing information, a sub-
sequent analysis can then be performed to analyze the data
and 1ts form. If the analysis of the processing information
and the data are unable to provide an indication as to
whether the data has been previously processed, further
analysis can also then be performed.

FIG. 6 illustrates a process for retrieving data from a
storage system. The process begins at 610 where the data
requested by a data processing module 1s 1dentified. At 620,
the 1dentified data 1s searched for within one or more storage
volumes. At 625, a determination 1s made as to whether the
identified data 1s found within the storage system.

In the event that the data 1s not found in the storage
system, an error message 1s sent to the requesting application
at 630. The process then continues to 663. In the event that
the data 1s found 1n a storage system, a further determination
1s made at 635 to determine whether the data found 1s 1n a
processed form. If the data 1s not 1n a processed form, the
process continues to 640 where the data 1s retrieved and sent
to the requesting application 1n its current form. The process
then continues to 665. Alternatively, 1f the data 1s 1n a
processed form, the process continues to 645 where a
determination 1s made to determine whether the data 1n the
processed form 1s usable to perform a task.

If a determination 1s made that the 1dentified data 1n usable
for performing a task, the process continues to 6350. At 650,
the 1dentified data 1s un-processed and subsequently sent to
the requesting application 1n the unprocessed form. The
process then continues to 663. If the determination at 645
indicates that the data in the processed form 1s usable to
perform a task, the data 1n its current processed form, along
with processing techmque information, are sent to the
requesting application at 660. The process then continues to
665 where a determination 1s made as to whether any further
requested data remains to be retrieved. If more data 1s to be
retrieved, the process loops back to 625. However, 11 there
1s no further data to be retrieved from a storage system, the
process ends.

FI1G. 7 1s a block diagram of a computing system suitable
for facilitating the use of processed data to perform ethicient
tasks. Computer system 710 includes a bus 712 which
interconnects major subsystems of computer system 710,
such as a central processor 714 (which can also include
software such as data processing module 130), a system
memory 717 (typically RAM, but which can also include
ROM, flash RAM, or the like), an mput/output controller
718, an external audio device, such as a speaker system 720
via an audio output interface 722, an external device, such
as a display screen 724 via display adapter 726, serial ports
728 and 730, a keyboard 732 (interfaced with a keyboard
controller 733), a storage interface 734, a tloppy disk unit
737 operative to recerve a tloppy disk 738, a host bus adapter
(HBA) interface card 735 A operative to connect with a Fibre
Channel network 790, a host bus adapter (HBA) interface
card 735B operative to connect to a SCSI bus 739, and an
optical disk drive 740 operative to receive an optical disk
742. Also included are a mouse 746 (or other point-and-click

10

15

20

25

30

35

40

45

50

55

60

65

10

device, coupled to bus 712 via serial port 728), a modem 747
(coupled to bus 712 via serial port 730), and a network
interface 748 (coupled directly to bus 712).

Bus 712 allows data communication between central
processor 714 and system memory 717, which can include
read-only memory (ROM) or flash memory (neither shown),
and random access memory (RAM) (not shown), as previ-
ously noted. The RAM 1s generally the main memory into
which the operating system and application programs are
loaded. The ROM or flash memory can contain, among other
code, the Basic Input-Output system (BIOS) which controls
basic hardware operation such as the interaction with periph-
cral components. Applications resident with computer sys-
tem 710 are generally stored on and accessed via a com-
puter-readable medium, such as a hard disk dnive (e.g., fixed
disk 744), an optical drive (e.g., optical disk drive 740), a
floppy disk unit 737, or other storage medium. Additionally,
applications can be 1n the form of electronic signals modu-
lated 1n accordance with the application and data commu-
nication technology when accessed via modem 747 or
network interface 748.

Storage interface 734, as with the other storage interfaces
of computer system 710, can connect to a standard com-
puter-readable medium for storage and/or retrieval of infor-
mation, such as a fixed disk drive 744. Fixed disk drive 744
can be a part of computer system 710 or can be separate and
accessed through other interface systems. Modem 747 can
provide a direct connection to a remote server via a tele-
phone link or to the Internet via an internet service provider
(ISP). Network 1nterface 748 can provide a direct connection
to a remote server via a direct network link to the Internet via
a POP (point of presence). Network interface 748 can
provide such connection using wireless techniques, 1nclud-
ing digital cellular telephone connection, Cellular Digital
Packet Data (CDPD) connection, digital satellite data con-
nection or the like.

Many other devices or subsystems (not shown) can be
connected 1n a similar manner (e.g., document scanners,
digital cameras, and so on). Conversely, all of the devices
shown 1n FIG. 7 need not be present to practice the present
invention. The devices and subsystems can be intercon-
nected in different ways from that shown m FIG. 7. The
operation of a computer system 1s readily known in the art
and 1s not discussed 1n detail 1n this application. Code to
implement the present invention can be stored 1n computer-
readable storage media such as one or more of system
memory 717, fixed disk 744, optical disk 742, or tfloppy disk
738. The operating system provided on computer system
710 can be MS-DOS®, MS-WINDOWS®, OS/2®,
UNIX®, Linux®, or another known operating system.

Moreover, regarding the signals described herein, those
skilled 1n the art will recognize that a signal can be directly
transmitted from a first block to a second block, or a signal
can be modified (e.g., amplified, attenuated, delayed,
latched, buflered, mverted, filtered, or otherwise modified)
between the blocks. Although the signals of the above
described embodiment are characterized as transmaitted from
one block to the next, other embodiments of the present
invention can include modified signals 1n place of such
directly transmitted signals as long as the informational
and/or functional aspect of the signal 1s transmitted between
blocks. To some extent, a signal input at a second block can
be conceptualized as a second signal derived from a first
signal output from a first block due to physical limitations of
the circuitry ivolved (e.g., there will mnevitably be some
attenuation and delay). Therefore, as used herein, a second
signal derived from a first signal includes the first signal or

US 9,529,829 Bl

11

any modifications to the first signal, whether due to circuit
limitations or due to passage through other circuit elements
which do not change the informational and/or final func-
tional aspect of the first signal.

FIG. 8 1s a block diagram of a network architecture 800
in which client systems 810, 820, and 830 and servers 840
and 845 can be coupled to a network 850. Client systems
810, 820, and 830 generally represent any type or form of
computing device or system, such as computing system 710
in FIG. 7. In one example, client system 810 can include a
data processing module 130, as shown i FIG. 3.

Similarly, servers 840 and 845 generally represent com-
puting devices or systems, such as application servers or
database servers, configured to provide various database
services and/or run certain software applications. Network
850 generally represents any telecommunication or com-
puter network including, for example, an intranet, a wide
area network (WAN), a local area network (LAN), a per-
sonal area network (PAN), or the Internet. In one example,
client systems 810, 820, and/or 830 can include a data
processing module 130, as shown 1n FIG. 3.

As 1llustrated 1 FIG. 8, one or more storage devices
860(1)-(N) can be directly attached to server 840. Similarly,
one or more storage devices 870(1)-(N) can be directly
attached to server 8435. Storage devices 860(1)-(N) and

storage devices 870(1)-(N) generally represent any type or
form of storage device or medium capable of storing data
and/or other computer-readable instructions. In certain
embodiments, storage devices 860(1)-(N) and storage
devices 870(1)-(IN) can represent network-attached storage
(NAS) devices configured to commumnicate with servers 840
and 845 using various protocols, such as Network File
System (NFS), Server Message Block (SMB), or Common
Internet File System (CIFS).

Servers 840 and 845 can also be connected to a storage
area network (SAN) fabric 880. SAN fabric 880 generally
represents any type or form of computer network or archi-
tecture capable of facilitating communication between mul-
tiple storage devices. SAN fabric 880 can facilitate commu-
nication between servers 840 and 845 and a plurality of
storage devices 890(1)-(N) and/or an telligent storage
array 895. SAN {fabric 880 can also facilitate, via network
850 and servers 840 and 845, communication between client
systems 810, 820, and 830 and storage devices 890(1)-(N)
and/or intelligent storage array 893 1n such a manner that
devices 890(1)-(IN) and array 893 appear as locally attached
devices to client systems 810, 820, and 830. As with storage
devices 860(1)-(N) and storage devices 870(1)-(IN), storage
devices 890(1)-(N) and intelligent storage array 895 gener-
ally represent any type or form of storage device or medium
capable of storing data and/or other computer-readable
instructions.

In certain embodiments, and with reference to computing,
system 710 of FIG. 7, a communication interface can be
used to provide connectivity between each client system
810, 820, and 830 and network 850. Client systems 810,
820, and 830 can be able to access information on server 840
or 845 using, for example, a web browser or other client
soltware. Such software can allow client systems 810, 820,
and 830 to access data hosted by server 840, server 845,
storage devices 860(1)-(IN), storage devices 870(1)-(N),
storage devices 890(1)-(IN), or intelligent storage array 895.
Although FIG. 8 depicts the use of a network (such as the
Internet) for exchanging data, the embodiments described
and/or 1llustrated herein are not limited to the Internet or any
particular network-based environment.

10

15

20

25

30

35

40

45

50

55

60

65

12

In at least one embodiment, all or a portion of one or more
ol the embodiments disclosed herein can be encoded as a
computer program and loaded onto and executed by server
840, server 845, storage devices 860(1)-(N), storage devices
870(1)-(N), storage devices 890(1)-(N), intelligent storage

array 895, or any combination thereof. All or a portion of
one or more of the embodiments disclosed herein can also be

encoded as a computer program, stored in server 840, run by
server 845, and distributed to client systems 810, 820, and
830 over network 850.

In some examples, all or a portion of the computing
devices 1n FIGS. 1, 2, 3, 7, and 8 can represent portions of
a cloud-computing or network-based environment. Cloud-
computing environments can provide various services and
applications via the Internet. These cloud-based services
(e.g., soltware as a service, platform as a service, infrastruc-
ture as a service, etc.) can be accessible through a web
browser or other remote interface. Various Ifunctions
described herein can be provided through a remote desktop
environment or any other cloud-based computing environ-
ment.

In addition, one or more of the components described
herein can transform data, physical devices, and/or repre-
sentations of physical devices from one form to another. For
example, a data processing module 130 mm FIG. 3 can
transform processed data into de-processed data and vice
versa.

Although the present invention has been described 1in
connection with several embodiments, the invention 1s not
intended to be limited to the specific forms set forth herein.
On the contrary, 1t 1s intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

What 1s claimed 1s:
1. A method comprising:
identitying data, wherein
the data was previously stored 1n a first storage system
ol a first system,
if the data 1s 1n a processed form, the data was pro-
cessed by the first system, according to a processing
technique, before the 1dentitying,
the first system comprises a first computing device and
the first storage system, and
the first storage system 1s coupled to the first computing
device;
determining whether the data 1s 1n the processed form;
i1 the data 1s 1n the processed form, determining whether
the data 1n the processed form 1s usable by an appli-
cation executing on a second computing device to
perform a task, without reversing processing performed
by the first system, wherein
the data 1s 1n the processed form as a result of the data
being processed according to the processing tech-
nique; and
in response to determining that the data in the processed
form 1s usable by the application executing on the
second computing device to perform the task without
reversing the processing performed by the first system,
generating a request for the data 1n the processed form,
wherein
the 1dentitying, the determiming whether the data 1s 1n
the processed form, the determining whether the data
in the processed form 1s usable by the application
executing on the second computing device without
reversing the processing performed by the first sys-

US 9,529,829 Bl

13

tem, and the generating the request are performed by
a first data processing sub-module of the first com-
puting device, and

the data in the processed form 1s configured to be
transmitted to a second data processing sub-module
of the second computing device without reversing
the processing performed by the first system.

2. The method of claim 1, wherein

the determining whether the data 1s 1n the processed form

1s performed by analyzing processing information cor-
responding to the data.

3. The method of claim 1, wherein

a second system comprises the second computing device

and a second storage system.

4. The method of claim 3, further comprising:

generating another request for information regarding the

processing technmque.

5. The method of claim 4, further comprising;:

transmitting the data in the processed form and the

information regarding the processing techmque to the
second data processing sub-module of the second com-
puting device.
6. The method of claim 5, further comprising:
receiving the data and the information regarding the
processing technique at the second storage system; and

storing the data 1n the processed form and the information
regarding the processing technique in the second stor-
age system.

7. The method of claim 3, further comprising;:

if the data 1n the processed form 1s not usable by the

application executing on the second computing device
to perform the task, generating another request for the
data 1n an un-processed form.

8. The method of claim 1, wherein the processing tech-
nique 1s at least one of a compression technique, a dedupli-
cation technique, an organizational techmque, an encryption
technique, or a data divisional technique.

9. The method of claim 1, wherein the task 1s at least one
of a backup operation, a replication operation, or an archive
operation.

10. A non-transitory computer readable storage medium
comprising program instructions executable to cause a first
data processing sub-module of a first computing device to:

identify data, wherein

the data was previously stored 1n a first storage system
of a first system,

if the data 1s 1 a processed form, the data was pro-
cessed by the first system, according to a processing
technique, before the 1dentifying,

the first system comprises the first computing device
and the first storage system, and

the first storage system 1s coupled to the first computing
device;

determine whether the data 1s in the processed form;

determine whether the data in the processed form 1s

usable by an application executing on a second com-

puting device to perform a task, without reversing

processing performed by the first system, i1 the data 1s

in the processed form, wherein

the data 1s in the processed form as a result of the data
being processed according to the processing tech-
nique; and

generate a request for the data in the processed form, in

response to determining that the data 1in the processed
form 1s usable by the application executing on the

10

15

20

25

30

35

40

45

50

55

60

65

14

second computing device to perform the task without

reversing the processing performed by the first system,

wherein

the data 1n the processed form 1s configured to be
transmitted to a second data processing sub-module
of the second computing device without reversing
the processing performed by the first system.

11. The non-transitory computer readable storage medium
of claim 10, wherein the program instructions are further
executable to:

analyze processing information corresponding to the data

to determine whether the data 1s 1n the processed form.

12. The non-transitory computer readable storage medium
of claim 10, wherein

a second system comprises the second computing device

and a second storage system.

13. The non-transitory computer readable storage medium
of claim 12, wherein the program instructions are further
executable to:

generate another request for imformation regarding the

processing technique, if the data i1s 1n the processed
form and 1s usable by the application executing on the
second computing device to perform the task.

14. The non-transitory computer readable storage medium
of claim 13, wherein the program instructions are further
executable to:

transmit the data 1n the processed form and the informa-

tion regarding the processing technique to the second
data processing sub-module of the second computing
device.

15. The non-transitory computer readable storage medium
of claim 14, wherein the program instructions are further
executable to:

store the data in the processed form and the information

regarding the processing technique at the second stor-
age system.

16. A system comprising:

one or more processors; and

memory coupled to the one or more processors, wherein

the memory stores program instructions executable by
the one or more processors to cause a first data pro-
cessing sub-module of a first computing device to:
identily data, wherein

the data was previously stored in a first storage
system of a first system,

i the data 1s 1n a processed form, the data was
processed by the first system, according to a
processing technique, before the identifying,

the first system comprises the first computing device
and the first storage system, and

the first storage system 1s coupled to the first com-
puting device,

determine whether the data 1s in the processed form,

determine whether the data in the processed form 1s
usable by an application executing on a second
computing device to perform a task, without revers-
ing processing performed by the first system, 1f the
data 1s 1n the processed form, wherein

the data 1s 1n the processed form as a result of the
data being processed according to the processing
technique; and

generate a request for the data 1in the processed form, 1n
response to determining that the data in the pro-
cessed form 1s usable by the application executing on
the second computing device to perform the task
without reversing the processing performed by the
first system, wherein

US 9,529,829 Bl

15

the data 1n the processed form 1s configured to be
transmitted to a second data processing sub-mod-
ule of the second computing device without
reversing the processing performed by the first
system.
17. The system of claim 16, wherein the program instruc-
tions are further executable to:
analyze processing information corresponding to the data
to determine whether the data 1s 1n the processed form.
18. The system of claim 16, wherein
a second system comprises the second computing device
and a second storage system.
19. The system of claim 18, wherein the program instruc-
tions are further executable to:
generate another request for information regarding the
processing technique, 1f the data 1s 1n the processed
form and 1s usable by the application executing on the
second computing device to perform the task.
20. The system of claim 19, wherein the program instruc-
tions are further executable to:
store the data 1n the processed form and the information
regarding the processing techmique at the second stor-
age system.
21. The method of claim 3, wherein
the determining whether the data 1s 1n the processed form
1s performed before the first system sends the data
towards the second system.
22. The method of claim 1, wherein the determining
whether the data 1s 1in the processed form comprises:
determining whether the data was processed by the first
system.

10

15

20

25

30

16

	Front Page
	Drawings
	Specification
	Claims

