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PREFETCH WITH LOCALITIES AND
PERFORMANCE MONITORING

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 62/031,742 entitled PREFETCH AND

CACHE MANAGEM JNT 10 IMPROVE STORAGE
READ RESPONSE TIME filed Jul. 31, 2014 which 1s

incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Generally speaking, prefetching 1s a technique where the
system predicts what read address(es) will be requested 1n

the future and reads those predicted read address(es) even
though the host or application has not yet asked for those
address(es). Although prefetch techniques exist, it would be
desirable 11 better prefetch techniques could be developed
(c.g., as measured by hit rate and/or ease of implementa-
tion). In particular, solid state storage systems (such as
NAND Flash) may have some performance metrics that are
not of concern to other types of storage, such as hard disk
drive (HDD) storage. It would be desirable 1f such new
prefetch techniques took 1nto account performance metrics
or concerns that are of interest to solid state storage.

BRIEF DESCRIPTION OF THE

DRAWINGS

Various embodiments of the mnvention are disclosed 1n the
tollowing detailed description and the accompanying draw-
Ings.

FIG. 1 1s a flowchart illustrating an embodiment of a
prefetch process that uses localities and performance moni-
toring.

FIG. 2 1s a diagram illustrating an embodiment of two
localities as associated logical block addresses.

FIG. 3 1s a diagram showing an embodiment of a system
which prefetches data using localities and performance
monitoring.

FIG. 4A 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a utilization metric.

FIG. 4B 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a hit rate metric.

FIG. 4C 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a read amplification metric.

FIG. 4D 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a utilization metric, a hit rate
metric, and a read amplification metric.

FIG. 5 1s a diagram illustrating an embodiment of a
prefetch cache that 1s divided up so that each locality has a
corresponding portion of the prefetch cache.

FIG. 6 1s a flowchart illustrating an embodiment of a
cache eviction process when a prefetch cache 1s divided up
so that each locality has a corresponding portion of the
prefetch cache.

FIGS. 7A and 7B are a flowchart 1llustrating an embodi-
ment of a locality tracking process.

DETAILED DESCRIPTION

The 1mvention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
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2

tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such
as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the mvention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that 1s tem-
porarily configured to perform the task at a given time or a
specific component that 1s manufactured to perform the task.
As used herein, the term ‘processor’ refers to one or more
devices, circuits, and/or processing cores configured to
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention 1s provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention 1s described in connection with such embodi-
ments, but the mvention 1s not limited to any embodiment.
The scope of the invention 1s limited only by the claims and
the mvention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth 1n the following description 1 order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the mnvention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clanty, technical
material that 1s known in the technical fields related to the
invention has not been described in detail so that the
invention 1s not unnecessarily obscured.

FIG. 1 1s a flowchart illustrating an embodiment of a
prefetch process that uses localities and performance moni-
toring. In some embodiments, the process 1s performed by a
read processor within a solid state storage controller. The
read processor may, for example, control read-related opera-
tions on one or more associated solid state storage media
(e.g., one or more NAND Flash “chips”). In some embodi-
ments, a (e.g., solid state) storage controller which performs
the process of FIG. 1 1s implemented as a semiconductor
device, such as an application-specific integrated circuit
(ASIC) or a field-programmable gate array (FPGA). In some
embodiments, the process of FIG. 1 1s triggered when a read
request 1s recerved from a host.

At 100, a locality associated with a read request is
identified based at least 1n part on a read address included 1n
the read request. For example, a locality table may be used
to store information about known or previously-identified
localities. Step 100 may 1nclude accessing the information 1n
the locality table and determining i the read request falls
into or otherwise matches one of the localities stored 1n the
locality table, or if the read request 1s associated with a new
locality. An example 1s described in further detail below
where the locality table stores a read address for each
locality. In that example, 11 the read address included 1n the
read request 1s within some predefined distance of a stored
read address, the system decides that the read request falls
in that locality.

Conceptually, a given locality may be thought of as a
group of historic or previously received read addresses that
are close to each other (e.g., at the logical level) and thus are
believed to correspond to a same access stream or pattern.
For example, a host may be 1ssuing read requests to a solid
state storage controller for or on behalf of two applications
or users which causes two access patterns or streams having
different characteristics (e.g., one 1s sequential while the
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other 1s random, one 1s 1n the 400-500 address range while
the other 1s 1n the 800 address range, etc.) to be funneled or
otherwise combined together mnto a single stream that i1s
received by the solid state storage controller.

The solid state storage controller cannot see or observe
the mndividual streams before they were combined, so 1t does
not know how many streams there are, or which read
requests (both historic and the one just received) are asso-
ciated with each stream, but keeps track of localities 1n an
attempt to both determine the number of such streams and
the read addresses associated with each stream/locality. Put
another way, a locality 1s a guess as to an access stream or
pattern and 1deally the number of localities 1dentified at step
100 corresponds to the number of access streams or patterns
that the host 1s combining together.

In some embodiments, a locality table only includes
recent information (e.g., recent read requests). To put 1t
another way, localities are i1dentified or otherwise deter-
mined using a sliding window where old mmformation 1s
forgotten and new information takes 1ts place. For example,
only the last N read requests are used to 1dentity localities.
Or, 11 the read requests are time stamped, then whatever read
requests are received over some window of time are used.

At 102, a predicted read address i1s generated based at
least in part on the locality. For example, the locality
identified at step 100 may be passed to some read address
predictor. The read address predictor takes the locality as
input and outputs a predicted read address. In some embodi-
ments, other information 1s used to generate the predicted
read address. In some embodiments, a predicted length 1s
also output (e.g., so that a “chunk™ of data beginning at the
predicted read address and having a length specified by the
predicted length 1s prefetched, 1 permitted).

At 104, 1t 1s decided whether to permit the predicted read
address to be prefetched. Generally speaking, a performance
monitor uses one or more metrics to decide whether to let a
predicted read address be prefetched. In some embodiments,
the decision 1s based on current system conditions that are
global and are not specific to a particular locality (e.g.,
whether the storage controller 1s already very busy with host
access requests and thus should not perform a prefetch
which would slow down those host access requests). In some
embodiments, the decision 1s based on locality-specific
information, such as the past performance of that particular
locality. For example, one locality may be producing good
predictions while another locality 1s generating poor pre-
dicts. Some examples of metrics used by a performance
monitor are described in further detail below.

IT 1t 1s decided at step 104 to permit the prefetch, data 1s
prefetched from the predicted read address at 106. For
example, the data may be prefetched from one or more solid
state storage devices or “chips.”

At 108, the prefetched data is stored 1n a prefetch cache.
In some embodiments, a prefetch cache 1s divided up such
that the first and second localities have dedicated portions.
An example of this 1s described 1n more detail below.

One benefit to the process of FIG. 1 1s that predicted read
addresses which are believed to be good (e.g., because they
are associated with localities which have been historically
good predictors) are permitted to be prefetched, whereas
predicted read addresses which are believed to be not as
good (e.g., because they are associated with localities which
have been historically poor predictors) are not permitted to
be prefetched. In contrast, a system which does not use
localities and does not use performance monitoring may not
perform as well. For example, 1f most of the trathic 1s
associated with a random access pattern (for which predic-
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tion tends to be poor), then other systems which fail to use
localities and fail to use performance monitoring would
simply let all predicted read addresses be prefetched, which
would result 1n a low cache hit rate (since most of the
prefetched data would not be accurate predictions).

Another benefit to thus technique 1s that 1t reduces read
amplification, which is related to the number of extra read a
system does and 1s a system performance metric of concern
to solid state storage systems because of read disturb. In
solid state storage systems, reads to the solid state storage
media introduce noise to word line(s) that are adjacent to the
word line being read; this 1s referred to as read disturb. A
higher read amplification value contributes more read dis-
turb to the system. Thus, a higher read amplification value
while not getting much benefit from the prefetching 1s
undesirable. Read disturb noise 1s not an 1ssue with other
types of storage systems (such as hard disk drive systems),
so for other types of storage systems, this may not be an
1ssue, but for solid state storage systems, extra reads that are
not helptul are undesirable.

Another benefit to the process of FIG. 1 1s that in some
embodiments, the process takes into account current system
conditions so that prefetching does not interfere with host
access. For example, as will be described 1n more detail
below, the decision at steps 104 may use a utilization metric
which represents a degree or amount which the host 1s
(currently) accessing the storage. For example, 1f the metric
1s high, then there are currently a lot of host access requests.
If the metric 1s low, then the host 1s not currently 1ssuing a
lot of host access requests. This enables the process of FIG.
1 (1n some embodiments at least) to not let a predicted read
address be prefetched when there are a lot of host requests
(e.g., even 1f the prefetch read addresses are associated with
a locality that has had good predictions in the past). In
contrast, some other systems may let all predicted read
addresses be prefetched even 11 the system had a lot of host
access requests at that time.

The following figure shows an example of localities and
previous read addresses that are associated with and/or
included 1n each locality. The previous read addresses 1n
cach locality may aflect certain parameters or values asso-
ciated with each locality (e.g., a read address, a maximum
length, a sequence number, a read state, and/or the time of
a last state change).

FIG. 2 1s a diagram 1illustrating an embodiment of two
localities as associated logical block addresses. In the
example shown, sequence 200 shows the 26 logical block
addresses that were most recently requested by the host, 1n
the order in which they were received. Logical block
addresses are an example of read addresses that are included
in a read request from a host.

Graph 250 shows the logical block addresses from
sequence 200 plotted. The x-axis of graph 250 corresponds
to access number (or conceptually, time) and the y-axis
corresponds to the logical block address (or conceptually,
space). In this example (which 1s straightforward 1n order to
clearly illustrate the technique), there are two apparent
groups or localities: locality 1 (252) and locality 2 (254).

In this example, locality 1 (252) 1s associated with a
sequential read and 1n some embodiments a locality tracker
identifies locality 1 (252) as being 1n a sequential read state
based on the logical block addresses therein. Note, for
example, that the logical block addresses in the 800-range
appear 1n ascending order: 800, 801, 802, eftc.

In contrast, locality 2 (254) 1s associated with a random
access or random read pattern. Note, for example, that the
variation in logical block addresses associated with locality
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2 (254) 1s relatively large with a seemingly random pattern.
In some embodiments, a locality tracker determines that
locality 2 (254) 1s 1n a random read state.

Naturally, performing locality tracking on a continuous or
periodic basis may result in a fluctuating number of locali-
ties 1dentified at step 100. In some embodiments, there 1s
some maximum number of localities supported by the
system (e.g., set using some register or other configuration
setting).

As described above, newer information replaces older
information so that older read requests are no longer used to
identity localities and/or determine locality values or param-
cters. For example, if a new logical block address 1is
received, then the oldest logical block address may be
discarded and the information associated with that read
request 1s no longer used.

A more detailed example of locality tracking 1s described
in further detail below. Any appropriate technique for group-
ing logical block addresses together or otherwise 1dentifying
which locality a recently received read request belongs to
may be used.

The following figure shows an example of a system which
performs the process of FIG. 1.

FIG. 3 1s a diagram showing an embodiment of a system
which prefetches data using localities and performance
monitoring. In the example shown, host 300 issues host
reads to (solid state) storage controller 310. In some embodi-
ments, storage controller 310 1s a semiconductor device.
Storage controller 310 includes read processor 320, which 1s
responsible for read-related operations and processing. To
preserve readability, a corresponding write processor 1s not
shown 1n this example.

A host read 1s sent from host 300 to read processor 320
and 1n some embodiments 1ncludes a read address (such as
a logical block address), a length to read (e.g., beginning
from the read address), and a sequence number. The host
read 1s satisfied or otherwise fulfilled 1n one of two ways. IT
the data associated with the requested read address 1s
contained in prefetch cache 330 (e.g., because it has been
prefetched by read processor 320), then the prefetched data
in prefetch cache 330 1s returned to the host as host read
data. This 1s sometimes referred to as a cache hit. Returning
prefetched data from prefetch cache 330 1s much faster than
going to solid state storage 340 for the host read data and
thus read performance 1s improved when there 1s a cache hait.

If the data associated with the requested read address 1s
not 1 prefetch cache 330, then the data 1s obtained from
solid state storage 340 and 1s returned as host read data. Thas
1s sometimes referred to as a cache miss.

In the background, prefetch cache 330 1s updated with
prefetched data according to the process of FIG. 1. Locality
tracker 322 1s one example of a component that performs
step 100 1n FIG. 1. Locality tracker 322 lets the other
components 1n read processor 320 know how many locali-
ties there are and any associated parameters or values
associated with each locality (some examples are described
in more detail below).

Read address predictor 324 predicts read addresses and 1s
one example of a component that performs step 102 1n FIG.
1. In one example, as each host read comes 1n, for those host
reads which are cache misses, locality tracker 322 deter-
mines which locality the requested read address 1s associated
with (e.g., locality 1, locality 2, etc.). Locality tracker 322
informs read address predictor 324 of the locality and read
address predictor 324 predicts a read address for that local-
ity. In some embodiments, locality tracker 322 also outputs
a (historic) maximum requested length for that locality, and
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read address predictor 324 uses that maximum requested
length to determine a range of predicted read addresses (1.e.,
how large of a “chunk™ to suggest for prefetching). In some
embodiments, read address predictor 324 uses information
associated with the host read (e.g., the requested read
address and/or the requested length) in predicting a read
address and/or length.

Performance monitor 326 uses one or more metrics to
determine whether or not to let a predicted read address from
read address predictor 324 be prefetched; it 1s one example
of a component which performs step 104 1n FIG. 1.

Cache manager 328 1s responsible for managing prefetch
cache 330, including by selecting what prefetched data to
evict when prefetch cache 330 1s full. In some embodiments,
cache manager 328 evicts the oldest prefetched data. In
some embodiments, prefetch cache 330 1s divided up where
cach locality has dedicated or corresponding cache space. In
such embodiments, the evicted data 1s selected from the
portion which corresponds to the locality in question. To put
it another way, prefetched data for one locality would not be
evicted to make room for prefetched data for another locality
(1n embodiments as described above at least). An example of
this 1s described 1n more detail below. Obviously, 1n such
embodiments, 1f the number of i1dentified caches was to
change, the number of portions that prefetch cache 330 1s
divided up into correspondingly changes. Prefetch cache
330 may be used to store prefetched data and 1s one example
of a component which performs the step of storing in step
108 in FIG. 1.

In some embodiments, storage controller 310 1ncludes a
storage interface (not shown) which reads data from and
writes data to solid state storage 340. Such a storage
interface 1s one example of a component which performs
step 106 1n FIG. 1.

In some embodiments, signals and/or information not
shown 1n this figure 1s exchanged between components. For
example, locality tracker 322 may track what kind of read
state each locality 1s 1n (e.g., sequential, stride, or random)
and/or read address predictor 324 may also generate a
predicted length (e.g., beginning from the predicted read
address) to prefetch (if approved by performance monitor
326).

The following figures 1illustrate some metrics used by a
performance monitor in various embodiments to decide
whether to permit a predicted read address to be prefetched
(e.g., at step 104 1n FIG. 1).

FIG. 4A 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a utilization metric. In the
example shown, a utilization metric, representative of a
degree to which the storage 1s being accessed, 1s determined
at 400. In various embodiments, the utilization metric may
be determined based on timing and/or trathc information,
such as the arrival time or rate of host access requests (e.g.,
the number of host requests that have arrived 1n the last X
amount of time) and/or the level of congestion 1n a write
bufler (e.g., indicating that a lot of write requests have
arrived and the system 1s backed up trying to process the
write requests). For example, the two may be combined
using a linear function:

Utilization Metric=a<# of host access requests
recerved 1n last X amount of time>+p<length of
write buffer>

where ¢ and p are scaling factors.
Other values which may be used at 400 include bufler
congestion, host read bandwidth (e.g., the bandwidth
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between the host and a storage controller), solid state storage
bandwidth (e.g., the bandwidth between a storage controller
and one or more solid state storage “chips™), host request
arrival time, and host request arrival rate.

At 402, 1t 1s determined if the utilization metric 1s less than
a utilization threshold. In this example, a larger utilization
metric indicates a busier host and so 11 the utilization metric
1s greater than or equal to the utilization threshold, then data
from the predicted read address 1s not prefetched at step 404.

In some embodiments, a Yes decision at step 402 1s a
suflicient condition for the data from the first (second)
predicted read address to be prefetched, but in some other
embodiments, it 1s not suflicient in and of itseltf. As such, the
Yes branch out of step 402 1s not shown 1n detail here.

It 1s noted that the utilization metric will be the same for
all localities and thus predicted read addresses from all
localities may be prevented from being prefetched when the
system 1s busy responding to host access requests. Some
other metrics (including hit rate metrics and read amplifi-

cation metrics, which are described in further detail below)
have different values for different localities and those met-
rics may result in different decisions for different localities.

FIG. 4B 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a hit rate metric. At 410, a hat
rate metric representative of a degree to which one or more
previous predicted read addresses have been correctly pre-
dicted for the locality 1s determined. For example, the hit
rate may be calculated as:

Number of Host Reads in Prefetch Cache

Hit Rate Metric =
e VI Number of Host Reads

over some period of time or number of previous host reads.
The hit rate metric 1s a real number between 0 and 1 where
a higher hit rate metric indicates more accurate read predic-
tions. For example, 11 all host reads have been perfectly
predicted, then all of the host reads would be found in the
prefetch cache (e.g., prefetch cache 330 in FIG. 3) and thus
the hit rate metric would be 1 (1.e., 100%). With a poor
predictor, the value of the hit rate metric would be O.

It 1s determined at 412 11 the hit rate metric 1s greater than
or equal to a hit rate threshold. In one example, the hit rate
threshold 1s set to 0.3. If the hit rate metric 1s less than the
hit rate threshold at step 412, then data from the predicted
read address 1s not prefetched at 414. As described above, a
Yes at decision 412 may or may not be suflicient to permit
the predicted read address to be prefetched and thus the Yes
branch out of step 412 1s not shown 1n detail here.

It 1s noted that the hit rate metric will be ditferent for each
locality, and thus the decision about whether to prefetch a
predicted read address or not may be different for different
localities.

FIG. 4C 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a read amplification metric.
At 420, a read amplification metric representative of a
degree to which one or more previous prefetches for the
locality have contributed to read congestion 1s determined.
As described above, 1n solid state storage systems, reading,
causes noise (sometimes referred to as read disturb noise) to
be added to neighbors or adjacent locations to the address
being read and as such a read amplification metric 1s of
interest 1n a solid state storage system. In some embodi-
ments, a read amplification metric 1s calculated using:
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Read Amplification Metric =

Number of Times Solid State Storage 1s Read
Number of Host Reads

where the read amplification metric 1s a real number greater
than 1. The number of times the solid state storage 1s read
(1.e., the numerator in the above equation) includes the
number of host reads (1.e., the denominator in the above
equation); the difference between the two equals the number
of (additional) reads added or otherwise mtroduced by the
storage controller (e.g., for prefetching and/or other man-
agement-related processes). With perfect prediction, the
read amplification metric will have a value of 1. With poor
prediction, the read amplification metric will have a very
large value.

In some cases, one or both of the values from the above
equation are not available to a storage controller and 1n some
such embodiments the following estimate 1s used instead:

Read Amplification Metric=1+(1-Hit Rate Metric).

The above estimation may be obtained by noting or
otherwise assuming that every read request will result 1n a
prefetch. If all prefetches are completely accurate, the read
amplification metric will equal 1. Any misses (1.e., 1 minus
the hit rate metric) will result 1n additional reads and should
be added to the read amplification metric.

At 422, 1t 1s determined 1f the read amplification metric 1s
less than a read amplification threshold. In one example, the
read amplification threshold 1s set to 5. If not, data from the
predicted read address 1s not prefetched at 424. As describe
above, a Yes decision at 422 may or may not be sutlicient to
prefetch the data at the predicted read address.

As described above, the read amplification metric will be
different for each locality, and thus the decision about
whether to prefetch a predicted read address or not may be
different for different localities.

The following figure describes an example in which a
utilization metric, a hit rate metric, and a read amplification
metric are all used to decide whether or not to prefetch data
at a predicted read address.

FIG. 4D 1s a flowchart illustrating an embodiment of a
process for deciding whether to permit a predicted read
address to be prefetched using a utilization metric, a hit rate
metric, and a read amplification metric.

In the example shown, a utilization metric representative
of a degree to which the storage i1s being accessed 1is
determined at 430. At 432, a hit rate metric representative of
a degree to which one or more previous predicted read
addresses have been correctly predicted for the locality 1s
determined. At 434, a read amplification metric representa-
tive of a degree to which one or more previous prefetches for
the locality have contributed to read congestion 1s deter-
mined. Some examples of steps 430, 432, and 434 have been
described above. Note that there may be a single (e.g.,
global) utilization metric and different hit rate metrics and
different read amplification metrics depending upon the
locality.

At 436, 1t 1s determined 1f the utilization metric 1s less than
a utilization threshold, 11 the hit rate metric 1s greater than or
equal to a hit rate threshold, and if the read amplification
metric 1s less than a read amplification threshold. If so, data
from the predicted read address 1s prefetched at step 106 (for
clarity, the same numbering from FIG. 1 1s used to show
corresponding steps). If not, data from the predicted read
address 1s not prefetched at 438.
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In one example, a utilization rate 1s not used but a hit rate
metric and a read amplification metric are used by a simu-
lated performance monitor. With a hit rate threshold of 0.3
and a read amplification threshold of 5, the following hit

rates and read amplifications were achieved with random
reads.

TABLE 1
Performance of Random Reads
Read
Amplification
Using a hit rate metric and a read 1.000
amplification metric
Another technique 2.1184

Note that the read amplification i1s roughly half the read
amplification of the other technique. This i1s because the
performance monitor correctly predicts that the predicted
read addresses are of poor quality and thus should not be
prefetched.

The following table shows the same configuration, but
with the PCM Vantage benchmark test (with a somewhat
predictable read pattern) concatenated before and after with
random read traflic. For example, this might be representa-
tive of a scenario where multiple benchmarks are being
tested on a solid state storage system 1n succession.

TABLE 2

Performance of PCM Vantage Benchmark and Random Reads

Read
Amplification
Using a hit rate metric and a read 1.0658
amplification metric
Another technique 1.8538

Again, the read amplification has been reduced. The

tollowing table shows the same configuration, but with just
the PCM Vantage benchmark test.

TABLE 3
Performance of PCM Vantage Benchmark
Read
Amplification
Using a hit rate metric and a read 1.59
amplification metric
Another technique 1.69

In all three cases described above, the read amplification
1s reduced, which 1s an important consideration 1n solid state
storage systems.

During the PCM Vantage benchmark, the predicted read
addresses will be more accurate and the performance moni-
tor will let more through accordingly. During the random
reads, the accuracy of the predictions will drop and the
performance monitor will let fewer predicted read addresses
be prefetched in response.

Returming to FIG. 3, in some embodiments, prefetch
cache 330 1s divided up and each locality has a correspond-
ing section or portion of prefetch cache 330. The following
figure shows an example of this and describes some benefits.

FIG. 5 1s a diagram illustrating an embodiment of a
prefetch cache that 1s divided up so that each locality has a
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corresponding portion of the prefetch cache. In diagram 500,
prefetch cache 502 1s divided up so that portion 502q 1s the
cache space for a first locality and portion 5025 1s the cache
space for a second locality. In this example, 1t 15 assumed
that there are two localities. As described above, the number
ol localities may change over time. Correspondingly, the
number of portions a prefetch cache 1s divided up into will
change as the number of localities changes. In some embodi-
ments, cache manager 328 is responsible for tracking where
the “dividers™ are within prefetch cache 330, the number of
localities (e.g., detected by locality tracker 322), and updat-
ing the number and positions of “dividers” within prefetch
cache 330 1f the number of localities changes.

Diagram 3550 shows an example of cache eviction with a
prefetch cache not divided up (Without Locality 1n diagram
550) and a prefetch cache divided up so that each locality
has a corresponding portion (With Locality in diagram 550).
The Host Request column shows the read addresses that are
included 1n read requests from the host: 800, 401, 503, and
801. This example assumes the localities shown 1n FIG. 2,
and thus the received read addresses are associated with a
first locality, a second locality, a second locality, and a first
locality, respectively.

Each read request causes a diflerent predicted read
address to be generated corresponding to the locality for
which a host request was received. Note that the same
predicted read addresses are generated with locality and
without locality. Note, for example, that both scenarios have
predicted read addresses of 801, 402, and 504. However, the
cache eviction 1s slightly different. Without locality, the third
predicted read address (1.e., 504) causes the data associated
with predicted read address 801 to be evicted since that 1s the
oldest piece of data. As a result, a cache miss occurs when
the host requests a read address of 801. However, with
locality, a prefetched piece of data can only evict another
piece of prefetched data from the same locality. As such, the
third predicted read address (1.e., 504) causes the data
associated with predicted read address 402 to be evicted.
This results 1n a cache hit when the host requests read
address 801. Note that the only difference between the with
locality scenario and the without locality scenario 1s the way
the prefetch cache 1s managed. The locality tracking, read
address prediction, and performance monitoring are the
same.

In some embodiments, the size of each portion depends
upon the maximum length associated with each locality. For
example, as described above, a locality table in some
embodiments stores the maximum length requested for each
locality. In some embodiments (when space permits), the
s1ze of portion 5024 1s set to the maximum length stored for
the first locality and the size of portion 50256 1s set to the
maximum length stored for the second locality. If space does
not permit, then the space may be divided proportionally:

e

( Maximum Length of Locality 1 )

Maximum Length of Locality 1 + X Total Size of Prefetch Cache

. Maximum Length of Locality 2

and

( Maximum Length of Locality 2
Maximum Length of Locality 1 +

X Total Size of Pretetch Cache.

. Maximum Length of Locality 2 |
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In some embodiments, the maximum number of localities
(and thus, the maximum number of portions a prefetch cache
would be split 1nto) 1s determined by simulating benchmark
tests used by systems manufacturers to evaluate parts sup-

pliers. In some embodiments, the maximum number of 3

localities 1s selected to be one that offers a good compromise
(e.g., as measured by a hit rate metric or a read amplification
metric) across all benchmarks.

FIG. 6 1s a flowchart illustrating an embodiment of a
cache eviction process when a prefetch cache 1s divided up
so that each locality has a corresponding portion of the
prefetch cache. In some embodiments, the process 1s per-
formed by cache manager 328 1n FIG. 3. In some embodi-
ments, the process 1s performed as part of step 108 1n FIG.
1.

At 600, 1t 1s determined 1f the portion of the prefetch cache
corresponding to the locality 1s full. For example, when a
piece of prefetched data 1s received by a cache manager for
storage, the associated locality may also be received with i1t
(e.g., so that the cache manager knows which portion of the
prefetch cache that the piece of prefetched data should be
stored 1n).

It the portion of interest 1s determined to be full at step
600, the oldest piece of data in the portion of the prefetch
cache corresponding to the locality i1s evicted at 602. For
example, each entry 1n the prefetch cache may have a
sequence number (e.g., which 1s updated each time a host
read request 1s received which falls into that particular
portion/locality), where a higher sequence number indicates
a more recent read of the storage. In some embodiments, the
piece of data with the lowest sequence number 1s evicted
from the relevant portion of the prefetch cache.

At 604, the prefetched data 1s stored 1n the portion of the
prefetch cache corresponding to the locality. As described
above, with this technique, prefetched data can only evict
prefetched data from the same locality. Prefetched data
associated with a first locality cannot, for example, cause
prefetched data associated with a second locality to be
evicted.

The following figures show an example of a locality
tracking process. For example, such a process may be
performed when a read request 1s received from a host and
the process updates the stored information in a locality table.
In various scenarios, a new locality (entry) 1n a locality table
may be created, an old locality (entry) may be deleted from
the locality table to make space for a new locality (entry), or
an existing locality (entry) may be updated with new 1nfor-
mation.

FIGS. 7A and 7B are a flowchart 1llustrating an embodi-
ment of a locality tracking process. The process shown here
1s one example of a process that 1s performed by locality
tracker 322 in FIG. 3.

At 700, a read address, a length, and a sequence number
associated with the read request are obtained. In this
example, each read request from the host includes a read
address (such as a logical block address), a length (e.g., an
amount ol data to read, beginning from the read address),
and a sequence number.

At 702, a minimum distance between the read address
associated with the read request and a plurality of stored read
addresses 1s determined. For example, a locality tracker may
store a locality table with an entry for each locality currently
identified. Fach entry in the table may include a locality
identifier, a read address (e.g., the last read address received
for that particular locality), a maximum length (e.g., the
largest length requested for that particular locality), and a
sequence number (e.g., the last sequence number for that
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particular locality). Step 702 may include determining dis-
tances between the read address associated with the host
read and all of the read addresses stored in the locality table,
and then selecting the distance that 1s the smallest.

At 704, 1t 1s determined 1f the minimum distance 1s less
than or equal to a locality threshold. In one example, a

locality threshold 1s a configurable value that 1s used to
decide whether two read addresses belong to the same group
or locality (or not). If the mimimum distance 1s less than the
locality threshold at step 704, then the host read falls within
one of the already-stored localities. As such, the locality
entry corresponding to the stored read address from which
the minimum distance was determined 1s updated at 706. In
one example, the read address 1s updated with the new read
address, the sequence number 1s updated with the new
sequence number, and the maximum length 1s updated i1 the
length associated with the read request 1s greater than the
length stored in the locality table.

If the minimum distance 1s greater than the locality
threshold at step 704, then the host read 1s associated with
a new locality for which information is not currently stored
in the locality table. The process then checks at 708 11 the
number of localities (e.g., currently, that 1s, before the
creation of a new locality entry) 1s less than a maximum
number of localities. In other words, the process checks to
see 1 one of the localities needs to be deleted (because a
maximum number of localities 1s already stored in the
locality table) 1in order to make room for the new locality
entry. If not (1.e., the maximum number of localities is
already stored in the locality table), a locality entry having
a smallest sequence number 1s evicted at 710. To put 1t
another way, the oldest locality entry 1s removed.

After eviction at 710, or 1f the number of localities 1s less
than the maximum number of localities, a new locality entry
1s created using the read address, the length, and the
sequence number. For example, the new entry may be
populated with the information obtained at step 700.

Once an existing locality entry 1s updated (e.g., via step
706) or a new locality entry 1s created (e.g., via step 712), the
process checks to see if any localities should be merged
together. At 750, 1t 1s determined 1f there are any stored read
addresses within a locality threshold of each other. To put 1t
another way, 11 the locality threshold 1s conceptually thought
of as a window having a certain width, do two (or more)
stored read addresses fall into the window at the same time?

If so, sequence numbers corresponding to the stored read
addresses within a locality threshold of each other are
obtained at 752. For example, the appropnate locality entries
in the locality table would be accessed and the sequence
numbers would be obtained from those entries.

At 754, the locality entry, associated with one of the
stored read addresses within a locality threshold of each
other, and that has the lower sequence number, 1s deleted
from the locality table. To put i1t another way, the older
locality 1s deleted, thus “merging” the two localities
together.

In some embodiments, a locality tracker tracks state
information and the time of a last state transition and stores
this information 1 a locality table for each locality. For
example, the states (sometimes referred to as read states)
may consist ol: sequential, stride, or random, which 1s a
characterization of the types of reads associated with a given
locality. In FIG. 2, for example, a locality tracker may
determine that locality 1 (252) 1s 1n a sequential read state
and locality 2 (254) 1s 1n a random read state. Any appro-
priate pattern analysis technique may be used.
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In some such embodiments, a read address predictor uses
the state information and the maximum length for a given
locality to generate both a predicted read address and a
predicted length (e.g., to prefetch beginning from the pre-
dicted read address) for that locality. Any appropriate pattern
identification technique may be employed to select or oth-
erwise determine the state a locality 1s 1n. In some embodi-
ments, the time at which a locality last changed states 1s a
sequence number (e.g., the sequence number of the host read
which caused the locality to change from one state to
another). Using sequence numbers may be desirable because
they are already available 1n the prefetch path and 1t elimi-
nates the need for a clock or counter.

One benefit to the technique described herein 1s that it
permits relatively simple read address predictors to be used.
Other prefetch techniques may need to use more compli-
cated predictors 1 order to achieve desired performance
metrics, but using localities and performance monitors puts
less pressure on the read address prediction (e.g., because
the suggested prefetch will not be permitted 11 the perfor-
mance 1s not good). As such, simpler read address predictors
are able to be used.

In some embodiments, a read address predictor outputs a
predicted read address corresponding to the next read
address (e.g., not fetched using read address and the length
included 1n the read request from the host). In some such
embodiments, the predicted length 1s set to the length of the
stored maximum length for that locality. As described above,
performing prefetch with localities and performance moni-
toring permits simpler read address predictors to be used,
such as the one described above.

In some embodiments, a read address predictor uses the
stored state for a given locality 1n generating a predicted read
address, 1n particular when the locality 1s 1n a sequential read
state or a stride read state. In some such embodiments, the
predicted read address 1s set to the next read address (e.g.,
not fetched using read address and the length included in the
read request from the host) if the locality 1s 1n a sequential
read state. In some embodiments, the predicted read address
1s set to the next stride or “yump” if that locality 1s 1n a stride
read state. In some embodiments, the predicted length 1s set
to the maximum length stored for that locality.

Although the {foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the mnvention 1s not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What 1s claimed 1s:

1. A system, comprising:

a locality tracker configured to identily a locality associ-
ated with a read request based at least 1n part on a read
address 1ncluded 1n the read request;

a read address predictor configured to generate a predicted
read address based at least 1n part on the locality;

a performance momtor configured to decide whether to
permit the predicted read address to be prefetched;

a storage 1nterface configured to: 1n the event 1t 1s decided
to permit the predicted read address to be prefetched,
prefetch data from the predicted read address; and

a prefetch cache configured to: 1 the event 1t 1s decided
to permit the predicted read address to be prefetched,
store the prefetched data.

2. The system recited 1n claim 1, wherein the system

includes a semiconductor device, including one or more of
the following: an application-specific integrated circuit

(ASIC) or a field-programmable gate array (FPGA).

5

10

15

20

25

30

35

40

45

50

55

60

65

14

3. The system recited in claim 1, wherein the performance
monitor 1s configured to decide whether to permit the
predicted read address to be prefetched, including by:

determiming a utilization metric representative of a degree

to which storage 1s being accessed; and

determining whether the utilization metric i1s less than a

utilization threshold, wherein in the event 1t 1s deter-
mined that the utilization metric 1s greater than the
utilization threshold, data i1s not prefetched from the
predicted read address.

4. The system recited 1n claim 1, wherein the performance
monitor 1s configured to decide whether to permit the
predicted read address to be prefetched, including by:

determiming a hit rate metric representative of a degree to

which one or more previous predicted read addresses
have been correctly predicted for the locality; and

determining whether the hit rate metric 1s greater than a

hit rate threshold, wherein 1n the event 1t 1s determined
that the hit rate metric 1s less than the hit rate threshold,
data 1s not prefetched from the predicted read address.
5. The system recited 1n claim 1, wherein the performance
monitor 1s configured to decide whether to permit the
predicted read address to be prefetched, including by:
determining a read amplification metric representative of
a degree to which one or more previous prefetches for
the locality have contributed to read congestion; and

determiming whether the read amplification metric 1s less
than a read amplification threshold, wherein 1n the
event 1t 1s determined that the read amplification metric
1s greater than the read amplification threshold, data 1s
not prefetched from the predicted read address.

6. The system recited in claim 1, wherein the performance
monitor 1s configured to decide whether to permit the
predicted read address to be prefetched, including by:

determining a utilization metric representative of a degree

to which storage 1s being accessed;

determining a hit rate metric representative of a degree to

which one or more previous predicted read addresses
have been correctly predicted for the locality;
determiming a read amplification metric representative of
a degree to which one or more previous prefetches for
the locality have contributed to read congestion; and

determiming 1f (1) the utilization metric 1s less than a

utilization threshold, (2) the hit rate metric 1s greater

than a hit rate threshold, and (3) the read amplification

metric 1s less than a read amplification threshold,

wherein:

in the event 1t 1s determined that (1) the utilization
metric 1s less than the utilization threshold, (2) the hat
rate metric 1s greater than the hit rate threshold, and
(3) the read amplification metric 1s less than the read
amplification threshold, data i1s prefetched from the
predicted read address; and

in the event 1t 1s determined that (1) the utilization
metric 1s greater than the utilization threshold, (2) the
hit rate metric 1s less than the hit rate threshold, or (3)
the read amplification metric 1s greater than the read
amplification threshold, data 1s prefetched from the
predicted read address.

7. The system recited 1n claim 1, wherein:

there are a plurality of localities;

the prefetch cache 1s divided up mnto a plurality of

portions, wherein each portion in the plurality of por-
tions corresponds to a locality 1n the plurality of
localities; and

the system further includes a cache manager configured

to:
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determine 1f the portion of the prefetch cache corre-
sponding to the locality, associated with a read
request, 1s full; and

in the event it 1s determined that the portion of the

prefetch cache corresponding to the locality 1s full:

evict an oldest piece of data in the portion of the

prefetch cache corresponding to the locality; and

store the prefetched data in the portion of the
prefetch cache corresponding to the locality.

8. The system recited 1mn claim 1, wheremn the locality

tracker 1s further configured to:
obtain a read address, a length, and a sequence number

associated with the read request;
determine a minimum distance between the read address

associated with the read request and a plurality of

stored read addresses:
determine 11 the minimum distance 1s less than a locality

threshold;

in the event 1t 1s determined that the minimum distance 1s
less than the locality threshold, update a locality entry
corresponding to a stored read address from which the
minimum distance was determined; and

in the event 1t 1s determined that the minimum distance 1s

greater than the locality threshold:

determine i a number of localities 1s less than a
maximum number of localities;

in the event it 1s determined that the number of locali-
ties 1s greater than the maximum number of locali-
ties, evict a locality entry having a smallest sequence
number; and

create a new locality entry using the read address, the
length, and the sequence number.

9. A method, comprising:

identifying a locality associated with a read request based

at least 1n part on a read address included 1n the read
request;

generating a predicted read address based at least in part

on the locality;

using a processor to decide whether to permit the pre-

dicted read address to be prefetched; and

in the event 1t 1s decided to permit the predicted read

address to be prefetched:
prefetching data from the predicted read address; and
storing the prefetched data 1n a prefetch cache.

10. The method recited 1n claim 9, wherein the method 1s
performed by a semiconductor device, including one or
more of the following: an application-specific integrated
circuit (ASIC) or a field-programmable gate array (FPGA).

11. The method recited 1 claim 9, wherein deciding
whether to permit the predicted read address to be
prefetched includes:

determining a utilization metric representative of a degree

to which storage 1s being accessed; and

determining whether the utilization metric 1s less than a

utilization threshold, wherein in the event 1t 1s deter-
mined that the utilization metric 1s greater than the
utilization threshold, data 1s not prefetched from the
predicted read address.

12. The method recited in claim 9, wherein deciding
whether to permit the predicted read address to be
prefetched includes:

determining a hit rate metric representative of a degree to

which one or more previous predicted read addresses
have been correctly predicted for the locality; and

determining whether the hit rate metric 1s greater than a

hit rate threshold, wherein in the event 1t 1s determined
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that the hit rate metric 1s less than the hit rate threshold,
data 1s not prefetched from the predicted read address.
13. The method recited 1 claim 9, wherein deciding
whether to permit the predicted read address to be
prefetched includes:
determining a read amplification metric representative of
a degree to which one or more previous prefetches for
the locality have contributed to read congestion; and

determining whether the read amplification metric 1s less
than a read amplification threshold, wherein 1 the
event 1t 1s determined that the read amplification metric
1s greater than the read amplification threshold, data 1s
not prefetched from the predicted read address.

14. The method recited mn claim 9, wherein deciding
whether to permit the predicted read address to be
prefetched 1ncludes:

determining a utilization metric representative of a degree

to which storage 1s being accessed,;

determining a hit rate metric representative of a degree to

which one or more previous predicted read addresses
have been correctly predicted for the locality;
determining a read amplification metric representative of
a degree to which one or more previous prefetches for
the locality have contributed to read congestion; and

determining 11 (1) the utilization metric 1s less than a

utilization threshold, (2) the hit rate metric 1s greater

than a hit rate threshold, and (3) the read amplification

metric 1s less than a read amplification threshold,

wherein:

in the event 1t 1s determined that (1) the utilization
metric 1s less than the utilization threshold, (2) the hat
rate metric 1s greater than the hit rate threshold, and
(3) the read amplification metric 1s less than the read
amplification threshold, data i1s prefetched from the
predicted read address; and

in the event 1t 1s determined that (1) the utilization
metric 1s greater than the utilization threshold, (2) the
hit rate metric 1s less than the hit rate threshold, or (3)
the read amplification metric 1s greater than the read
amplification threshold, data i1s prefetched from the
predicted read address.

15. The method recited 1n claim 9, wherein:

there are a plurality of localities;

the prefetch cache 1s divided up into a plurality of

portions, wherein each portion in the plurality of por-
tions corresponds to a locality 1n the plurality of
localities; and

the method further includes:

using the processor to determine 1f the portion of the
prefetch cache corresponding to the locality, associ-
ated with a read request, 1s full; and
in the event 1t 1s determined that the portion of the
prefetch cache corresponding to the locality 1s full:
evicting an oldest piece of data in the portion of the
prefetch cache corresponding to the locality; and
storing the prefetched data in the portion of the
prefetch cache corresponding to the locality.

16. The method recited 1n claim 9 further comprising:

obtaining a read address, a length, and a sequence number

associated with the read request;

determining a mimimum distance between the read

address associated with the read request and a plurality
of stored read addresses:

determining if the minimum distance 1s less than a locality

threshold;

in the event 1t 1s determined that the minimum distance 1s

less than the locality threshold, updating a locality
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entry corresponding to a stored read address from
which the minimum distance was determined; and

in the event 1t 1s determined that the mimimum distance 1s

greater than the locality threshold:

determining 1 a number of localities 1s less than a
maximum number ot localities:

in the event it 1s determined that the number of locali-
ties 1s greater than the maximum number of locali-
ties, evicting a locality entry having a smallest
sequence number; and

creating a new locality entry using the read address, the
length, and the sequence number.

17. A computer program product, the computer program
product being embodied 1n a non-transitory computer read-
able storage medium and comprising computer instructions
for:

identifying a locality associated with a read request based

at least 1n part on a read address included 1n the read
request;

generating a predicted read address based at least in part

on the locality;

deciding whether to permit the predicted read address to

be prefetched; and

in the event 1t 1s decided to permit the predicted read

address to be prefetched:
prefetching data from the predicted read address; and
storing the prefetched data 1n a prefetch cache.

18. The computer program product recited 1n claim 17,
wherein the computer mstructions for deciding whether to
permit the predicted read address to be prefetched include
computer istructions for:

determining a utilization metric representative of a degree

to which storage 1s being accessed,

determining a hit rate metric representative of a degree to

which one or more previous predicted read addresses
have been correctly predicted for the locality;
determining a read amplification metric representative of
a degree to which one or more previous prefetches for
the locality have contributed to read congestion; and

determining 1t (1) the utilization metric 1s less than a

utilization threshold, (2) the hit rate metric 1s greater

than a hat rate threshold, and (3) the read amplification

metric 1s less than a read amplification threshold,

wherein:

in the event 1t 1s determined that (1) the utilization
metric 1s less than the utilization threshold, (2) the hat
rate metric 1s greater than the hit rate threshold, and
(3) the read amplification metric 1s less than the read
amplification threshold, data is prefetched from the
predicted read address; and
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in the event 1t 1s determined that (1) the utilization
metric 1s greater than the utilization threshold, (2) the
hit rate metric 1s less than the hit rate threshold, or (3)
the read amplification metric 1s greater than the read
amplification threshold, data i1s prefetched from the
predicted read address.
19. The computer program product recited in claim 17,
wherein:
there are a plurality of localities;
the prefetch cache 1s divided up nto a plurality of
portions, wherein each portion in the plurality of por-
tions corresponds to a locality in the plurality of
localities: and
the computer program product further includes computer
instructions for:
determining 1f the portion of the prefetch cache corre-
sponding to the locality, associated with a read
request, 1s full; and
in the event it 1s determined that the portion of the
prefetch cache corresponding to the locality 1s full:
evicting an oldest piece of data in the portion of the
prefetch cache corresponding to the locality; and
storing the prefetched data in the portion of the
prefetch cache corresponding to the locality.
20. The computer program product recited in claim 17
further comprising computer instructions for:
obtaining a read address, a length, and a sequence number
associated with the read request;
determining a mimimum distance between the read
address associated with the read request and a plurality
of stored read addresses;
determining if the minimum distance 1s less than a locality

threshold;
in the event it 1s determined that the minimum distance 1s
less than the locality threshold, updating a locality
entry corresponding to a stored read address from
which the minimum distance was determined; and
in the event it 1s determined that the minimum distance 1s
greater than the locality threshold:
determining 1f a number of localities 1s less than a
maximum number of localities;
in the event it 1s determined that the number of locali-
ties 1s greater than the maximum number of locali-
ties, evicting a locality entry having a smallest
sequence number; and
creating a new locality entry using the read address, the
length, and the sequence number.
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