12 United States Patent

US009519806B2

(10) Patent No.: US 9.519.806 B2

Mitola, 111 45) Date of Patent: Dec. 13, 2016
(54) DOMAIN-SPECIFIC HARDWIRED WEB (56) References Cited
SERVER MACHINE
U.S. PATENT DOCUMENTS
(71) Applicant: Hackproof Technologies, Inc., Cocoa
Beach, FL (US) 6,006,264 A * 12/1999 Colby HOA4L %/95/22(5)
(72) Inventor: Joseph Mitola, III, Cocoa Beach, FL 2011/0302397 Al* 12/2011 Mitola, Il GOﬁ;F égiﬁl‘
(US) 2012/0131316 Al* 52012 Mitola, III GOGF 21/57
712/241
(73) Assignee: Hackproof Technologies, Inc., Cocoa
Beach, FL (US
each, FL (US) OTHER PUBLICATIONS
(") Notice: Sub) ec‘[- to any dlsclalmer,,‘ the term of this Sep. 28, 2015 (WO) International Search Report—App. PCT/
patent 1s extended or adjusted under 35 US2015/03712
U.5.C. 154(b) by 250 days. WebPHY Databus: “WebPHY Databus—A Web Server/Ethernet IP
_ Core for FPGAs”, Jun. 3, 2013, Retrieved from the Internet: URL.:
(21) Appl. No.: 14/321,097 https:I)ywww.youtube.com/watch?v=QQRmNZXH5g, 1 page,
- retrieved on Sep. 17, 2015.
(22) Filed: Jul. 1, 2014 Magdaleno, et al., “A FPGA Embedded Web Server for Remote
_ o Monitoring and Control of Smart Sensors Networks,” Sensors, vol.
(65) Prior Publication Data 14, No. 1, Dec. 27, 2013, pp. 416-430.
US 2016/0006786 A1 Jan. 7, 2016 (Continued)
(51) Int. CL Primary Examiner — Kyung H Shin
Gool’ 15/173 (2006.01) (74) Attorney, Agent, or Firm — Banner & Witcofl, Ltd.
GO6l’ 21/71 (2013.01)
GO6F 21/56 (2013.01) (57) ABSTRACT
HO4L 12754 (2013'0;) A domain-specific hardwired symbolic web server machine
GO6F 21/57 (2013'0;) 1s described that processes information via the hardwired
GO6F 9/52 (2006'();) mapping of symbols from one or more domains onto other
GO6F 21/76 (2013-0;) such domains, computing and communicating with
GOoF 11/00 (2006'0:“) improved security and reduced power consumption because
HO4L 29/08 (2006.01) it has no CPU, no Random Access Memory (RAM), no
(52) US. CL istruction registers, no Instruction Set Architecture (ISA),
CPC GO6F 21/71 (2013.01); GO6F 9/524 no operating system (OS) and no applications programming.
(2013.01); GO6F 11/00 (2013.01); GOGEF 21/56 The machine provides web services by recogmzing legal
(2013.01); GO6F 21/57 (2013.01); GO6F requests such as HT'TP GET request and responding with an
21776 (2013.01); HO4L 12/5695 (2013.01); HTML web page. In some embodiments, the machine has no
HO4L 67/02 (2013.01) unconstrained RAM 1into which malware may insert itself
(58) Field of Classification Search and needs no anti-virus software.

USPC ...l 709/226, 220, 240, 203; 712/241
See application file for complete search history.

R

8 lines . , .
N I ft i 8lines

Initial Object

e, | ASCIT Coded

RERRRSRRN

20 Claims, 20 Drawing Sheets

W

|
._.m-"""’%fé_] I
DA T T + &+ 8 lines |

] *
[] b
»

']

»

r

Terminal Object

B L L

US 9,519,806 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Arab, Gawen, “Web Server on a FPGA, without CPU, only VHDL
(French),” Jan. 29, 2010, Retrieved from the Internet: URL:https://

www.youtube.com/watch?, v=7syuSE, retrieved on Sep. 17, 2015,
1 page.

Anonymous: “Anatomy of an HTTP Transaction—Web Perfor-
mance Monitoring and Optimization,” catchpoint.com; May 14,
2013, Retrieved from the Internet: URL:https://web.archive.org/
web/20130514104338//http://blog.catchpoint.com/2010/09/17//
anatomyhttp; [retrieved on Sep. 18, 2015] p. 1-4.

Perkowski, Marek Andrzej, “Learning Hardware,” Jun. 24, 2010,
retrieved from http://web.cecs.pdx.edu/mperkows/CLASS
VHDL_ 99/tran888/lecture008-learning-hardware.pdf, retrieved
Jun. 13, 2014, pp. 1-119.

Perkowski, et al, “Evolvable Hardware or Learning Hardware?
Induction of State Machines from Temporal Logic Constraints,”
Evolvable Hardware, 1999. Proceeding of the First NASA/DOD
Workshop O N. Pasadena, CA, Jul. 19-21, 1999, pp. 129-138.
Wikipedia, “Field-programmable gate array,” Feb. 4, 2013,
retrieved Jun. 13, 2013 from: http://en.wikipedia.org/w/index.
php?title=Field=programmalbe gate array&oldid=536512233.
Notification of Transmuttal the International Search Report and The

Wirtten Opinion of the International Searching Authority dated Jul.
2, 2014, 1n International Application No. PCT/US2014/013337, 10

pages.
Jul. 30, 2015 (US) Non-Final Oflice Action—U.S. Appl. No.
13/799,277.

* cited by examiner

US 9,519,806 B2

Sheet 1 of 20

Dec. 13, 2016

U.S. Patent

L TRl

[T T R =
X . | R @MITALH) = 1 _
. | b @@oauisoyt T .
		. TToToooesssoooo- s	
	[TovT 7	TALH =g utewod 09V	e
		o o LoVl	
] | .y (9%ed qoM = Q) [0qUIAS OSVT 4 _ |
+) | _ el .
| | B Sl C 1 oeve !
| | | < : (dV) deN 0PV 1 l__: :zwﬁ ||
| | HRALEE - gevil IS
, s

x . |, (19D dLLH) [0quAS 0¢VI | 96V
_ . sinduf _ _ L ! | _ :
1 Apey) | _ | |
T A At dL1H =V urewoq 0¢v1 L6V |
_ _ JI0U3] . | _

| 1 (1aD=e) 0qUAS 0TV e . .
e 09V bev1 | () 109 v "A [0V] _
JLNS—— . v -t | 00V1:
Leee « wooo « sovoomt = sewsose > sssows wees < soveom o wesows 3 wewows n weosn 4 wosso 4 wowwowt % wesss 3 wessen x wowson 4 woswost s wooss 3 sossos 3 wowwon ' wosow 3 mosesor s -

- -I
r..l.h. -l. lllllllll

WYY I
d)-4aMO

E E
llllllllllllllllllllllllllllllllllll

Sheet 2 of 20

0¢cdl

Dec. 139 2016

O1d] NV'] 19Uy

el s1q

U.S. Patent

00141

US 9,519,806 B2

Sheet 3 of 20

Dec. 13, 2016

U.S. Patent

| (\uonoy; (duny) _
| [3e]d | weA) | 9SVT !

|| <\ Uuondyy/ (J010Y) asne)> | GOV T

\([(afq0) 2ourd] | |
ped} (1010V) UoNovy/ | $SVT

N 2oed] [190e1d] yred| | €SVT:

| ' ([oord] Suryl) | ZsvT !

| _ (Suryl) | 15ve!

-
-
-
-
-
-
.
—t
<t
<
o

LN A R X N X N X X I X

0] 0TVT

01V
© JOQUIAS

US 9,519,806 B2

Sheet 4 of 20

Dec. 13, 2016

U.S. Patent

({{[[(32ed) 1nQO] 08 WMod]dDLl])an0]uiayil] < [(a8ed gam) TNLHI]
{[[33ed gom]TINLH] < [[(L3D)dLLH]}
{I(T+X) NASIdL1H] <= [[(Xx NAS)dL1H]}
{[L3D]dLLH] < [[(335ed) U] 08 1Od]dDL])uilisuiayia]}
{[uAS]dL1H] < [[(3=2ed) uj] 08 MOd]dDL])ullisuisyaal} dOL}H|
[TALLH] ‘[dL1H] ‘[aino][wi]do1] ‘[[log 1od]uiisuisyia] seoeqd]
(((@8ed gaM) TNLH) |
((3senbal 139)(3sonbau uAs) d11H)((a8essow)(3xoed) di dD1) SBUIYY) 43S) |
00292 |

T T T T T A T T T o T T T T

Pﬂlllllllllll!u_.

ZTEERERERK
M ERERNENR?N
ETEERERERHN
O o
H“I"I"l"l"l"l”! - .r .._ ._1
A EEFEEEREIRFES 4 bk k& ok H
L A A A HHIIIIIIIIIII!H """ - S L
R R AR AR R ERREE 0000 e ek e b e b e
BEEAEEEEEEERSFE 000000 iR e ks
lllllllllllllllllllllllllll
I I . I

. SHAPPE | H
mqsmoswg A} 03 A5ed gom TALLH ue Eg puodsas [[eys pue ﬂmo:wE LHD |

@Eu (UAQ) uoneziuoiyouAks j000101d J I H 2z1ugooal jeys ‘9 Hod jourayy |
ue woxy s1axoed g DI 1d09. [[eys (NS) QUIYORW JOAISS QOM V., |
uonea1y10ads |

wWoISAS © B 1X0) Ul "(JASA) QUIYIBIA JOAIIS GO B JO UONBILI0adg |

US 9,519,806 B2

1143
Imed €OdLLH
(€0)S 66§ A e (0)151] 69€
S .omm (Z0)s /8 |
2 I'dLLH
< LAD70dLLH
m (10)pua [6§----- —(0)S 09¢
S urpwoq
- 0C¢%
o dLLH
G% . -
S 10dLLH 00

U.S. Patent

US 9,519,806 B2

1sanbay] UAS J.LLH 2IBPIBA 0) MOLIY ()0}

Sheet 6 of 20

Ov v

(dLLH
SOLISTIRS

urewiod d.L.LH

Dec. 13, 2016

U.S. Patent

mow@
- = =

(UAS dLLH)
[OQUIAS
N\

SO A

907

sSUnoAID) 1 dD.L

US 9,519,806 B2

Sheet 7 of 20

Dec. 13, 2016

U.S. Patent

R3S
ney),
dejn ul
10U SI
(LED 1o0u)

s sl esle s el mlen deesl sl

N T N Ay ..

’’’’’

0Ls

_
' (98ed qom)
_ [OQUIAS

iiiii

1O dnyooT

(d8edqom ‘1LHD)

d[qe], dnoo]
(TALH dLLH) dei

i
}
: Ol¢ _
I
I
I

A0ed QI
"TIALLH

0L,

LA dLLH
sden

00S

US 9,519,806 B2

Sheet 8 of 20

Dec. 13, 2016

U.S. Patent

s o w- = . . -.L._ ..l._.wq e T

6LV9

|
|
|
| .
o LEV9 oy 9EV9 a4l Ty oy, ITve
= | | ZqoquAg i [q0quAS N)
| e e e e e | e e e e =
| b 1 Bt st ¥
b PEvo | tEVo TR Piv9 [tIV9Y 1
| ' AQJOQUAS "_ XQ [OQUIAS “_ |+ 7qioquig "_ 1q JOQUIAS “_
R [I R | o e e e e e —
| N O
| || _
| o leve | V9 .
: | e JoquiAg | ‘s I B JoqWAS | o;G_
L — — B . . —. .__ od e s s el e —
00V9

US 9,519,806 B2

-
.Il..'__
r._llll.

(g)U Mony 49

b
y
-
L
L .
-
[T

)
Bl
L

Sheet 9 of 20

(V)] mouy [+d9

(X'V)38 mouy zvd9 0vd9

Dec. 13, 2016

U.S. Patent
as
\O
o)
oy
L1

US 9,519,806 B2

Sheet 10 of 20

Dec. 13, 2016

U.S. Patent

Y aw e o . “ OBION e n
” [EYyau O [IYUDT))}
501D 0) ._u L o:o:o N %..52 MY 4

q..aﬁﬁ. ﬁﬁﬁ. Hﬁﬁn e g W S T I ..r..x..

m LSINUAL 01 SINAUQ
|

1 mzﬁ@o avls 77T09

W

7

LA

HH H“H“ﬂ .H”H”ﬂ”ﬂ“ﬂ“ﬂ”ﬂ”ﬂ”ﬂ“ﬂ“ﬂ .“
Fd o e
. g i el e
..I..r.l..r.l..r.I..r.l..r.-_...r.-_...r.-_...r.-....r.-_...r.-_...r.l..r.I..r.l..r.-....r.-_...r.-_...r.-_...r.-_...r.-_...r.-_......-_...r.-_......-.......-_......-_......-_......-_..... ﬂ# “HHHHRHHHHHH“H”H”R”HHHHH”H”H”H“H”H“H“ .
.:. .:. .;. b. .:. .;. i i b. o b dr b b dr b b b b i .:.l..'..:.b.l.b.b.b.l.b.b. .) ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ HHHHHHHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
’ dr oy oarar e] . T !
. . _M........._........._. .“INH.!..-.“ - ox ol) ol)
y .:..;.b.b..:. o *IMMW@ oo dr g o4 & i + X A_E X XX g X X
') TN .._........H H %.._.H....H.._.H.._........H.._.H.._..._..............................H...H..........H...H...H...H...H...H “xﬂa“xn HﬂHﬂHﬂHﬁHﬂ - HHHEHHH
q oo i g i 4 & 4 & koA oo odr o b K ok odrogr i I x XXX AR XX NN xR X
A 4 b dr A dr b dr Jr dr b o e dp o dr b odr M EX X XEXNREEXENREEXEREEXEREEREREYEREREYEENR HHHI.‘? - M
y o & b 4 A o odr o 4 A dr g g A 4 0 A E A
Jrodr dp dr dr Jdp dr dp dp A A e 4 Jdr Jr O O 0 b X . . EX XX ENEEENEXERENEEXEEREEEREEERXENERER -
L ok b b b b b b b i i b o4 b i b Jr FEEEEEEEEELEEEELEEELEEELEEELESELEEN,.
L ™ dr g dp A i B f 4 i Jr dr dr ir b iy LA A
;! .-“-_ .._l-ti:................. s i S O
L i b i i b..:.b.b.b.b. ﬂHHHHHHHHHHHH.]IIIIHHHHHHHHHHHH. .
y o ok I o odr o4 i HHHHHHHHHHHHIIIHIHHHHHHHHHHHH
kT drodr g dr Jr dr g dp B dr Jr b.l.b.l..:.l.b.b.b.l.b. EXXREXERXENXESRENENXE WX XX XXX £ E ;
oq.............q..........q....q................q......_............. I ..

o
S
M% f%

B

iiiiiiiiiiiiiiiiiiiiiiiiiiii

ﬁ#ﬁ.:.mﬁw

[i B | _..rr_.-._. .

...........................H!u.. A A AN A

....... e " .I."l..r."l..r. .;..-..... F.I.P.l.r. .;..-......P.l.r..l.r..l. .-......

R R R . . H.._.H....H......_. .._.H.._. v.._. .
A . ' i Py_.........._..._......................................_.................................._.............
1 . .

F e ettt A A

L iy
..................... . g Ca.
; Pty el

-

........................... X
.-...................._..-...........-......-...........-........_..-...........-..
o o g ey ey

m
m i - : -
j
.. " ’ B
P T [T o o S S T S T Tl Tl) .
[LT T LN ; U e e e e e dr e U e .___ﬂ.-..u.
.................. ; ek e e e e e d e e e e A,
; X e e e A e e e e
] % ey
L -

-l--l--l--l--l- 'I.. B P -|I--ll--ll--|l--ll- 'I.. L
4 " 4

........................... P o g g m P T Y

i
K e R e e e ke e kK

e

~ NNU@

Lo e e o S R ¢ e & o & I I

b

01109 M
;

§ e
. i i i
La e
e L
ex xR R A R w
" x " e x
LR e e e,
e e
L " ﬁa "
"X "
“__.“a __."a“a 3
" "I
tx x
' n"a"a"
x X

®'®

)

a__.aax

xRS K

g%%%%%%%%%%%%%%%%%%%

.f ele(d 12Uyl 19D 01 5)INAIL) ooooo au

;.lg.ﬁgwgﬁi.%ﬁ%ﬁ.%.w.gA%ﬁ%ﬂ.%i%ﬁ%ﬁ.gﬁ.w”%i.%ﬁ%.w.%x.gﬁ..%ﬂ._gﬁ

0 31

US 9,519,806 B2

—
&
Sy
&
Yo
Yo
!
&
W
=
s 9,
° &=7
Yo
—
)
e
— ¢ =1
>
o>
-
[=7
1]

U.S. Patent

0tL

LR R S PRLE

B RS T

OL38 _

US 9,519,806 B2

|

|

|

~ | | €8 _
3 . - (ofed QoM _
. _ _TLH) U101, _
> | .
7 - S5edqoM LAD)deN |
_ Hued JHIOd [$¥ I0AJATO) OFS 0T TNSA _

m _ “.... - T ..@m.w iiiii |" .:W Bmﬁmm _
Q | L (JADdLIH) uor 1+ YdABAIPY
« : I0AJATO)D) |
> | 1ddNd
= . |
_ _

| .

_ 008 |

U.S. Patent

.....
B LA M R
TR L T

A\ /

US 9,519,806 B2

OCVO

[LV6

(o8rw] YDJA 89) smeieddy 01 (JIOS) PUB ‘SILIOWIA ‘sauljadid HAUOD) ORV 6

1000q() 9|qELIBA , Ewsmﬁommm SJUIRHSUO))
2Q) WLIo 181
yory 0] 3oII) Q76 POV 985 A 0LV6 |I9V6 "] Q9V6
- JOTAQ(] ATOWAN v
m pue 192{qO utettio(g yoey (SV6 |
.t PIXIJ Yord 10] 107 HNIL) MOLIY OBy 10] sautjadig ouj
Z AJOWIDA 1URISUO)) uoljelowinu ad1] wiIod €HV6 SMOLY WO OSV6
7 Wio [7V6 W10 STV 6 .
PLvo rvo [YV6
© PTVE dej yoey I0J JINdIL) SMOLIY OJuL
S adid w0 €€V 6 sdejy o] Ot Vve6
] urewo(q yaey Jo s102[qQ 1817 £2V6
2 [EV6
= sdejyl a3 18T 0EV6

SUIBLLO(] QYL IS OCV 6

SIUIRISU0) 71V6

U.S. Patent

Toneiddy ivg | UONPOHINS 91009y 01V6

00Vo

US 9,519,806 B2

q\4 /

O6CHO

sjoyoed pue
1X3] 10} AIOWAJN

ICH6

m ajqeLIBA ‘ofey
= ¢ -
=t n 9N pue [H5) pue J1 dD1 dobd<— [D)
= UAG JOJ AJOWION U1 g [LI 10] Neielastelfeliog|
= eIsuo) L7896 | | symony czee sadid p| €746
Pedo
e PTH6 nkde-LHD
= 10J] MOIIY QU €€H6
m., LHD UAS :s1991q0 d LLH €746
: 358 "TINLH) <

TWLH dLLH :swewod 0zdé

[L96
uondrosa((J19S)
— 02dS 0,96

deunig smereddy y0)d{ O1U] SMO[{ SHIAUO)) (00 XUI[IY Pue A11J310) ORH6

SIMey v
19ge6| 210U3] 0996

1Cd6

(LAD ‘dLLH) :de 0£€6

zede | 11546

durpadid JOL I
MOy dOL 0SH6

MOLIY JOL WLoj
sdejAl 1TV 0y 96

1edo
SJUIRIISUO)) 7196

U.S. Patent

S8R QM ojduig A0S 1196

d6 1]

uoneIIIoddS JNSM 0166

00d6

US 9,519,806 B2

Sheet 15 of 20

Dec. 13, 2016

U.S. Patent

Tt - }..II}.J.'I.I

Lo o ot ot et et e e e e e e e e e g e g g e o e e g e P e e e e g P e e e e e e g e e e e e e g e b P P e g e g e g e e g P b P e T g g P P F o P P Pl g Pl P Pl g P g

<jwiy/> <Apoq/> * <31111/>0U]
Sa13d0|ouUYyId] JoodNIeH<I 111>
<JVIH><TINLH> <{WiYy 3dA120di>
95ed (9M 00T

- s mmm.:u_”ud\ di WCBM@SUWE T_if
_r O] asuodsay aded o uIn1ay O€0T |
—= 7 wsonboy 1IDPURA 0TOT [

L TE6ETZOT dl 4104 159nbay 139 d11H 0101

uonvonddy 12442 g244 0001

01 314

LT v
e N S S R W P T N A Y R E I e T s T T ol Y -
L J.........-uu.:."._...._..L.-"a";...u__ . .w.h-__........"..._.."k‘.“..-...n.hu W
- - - - - - . _ [

US 9,519,806 B2

il ey

_ Hnod < 1sonbaY LAD PHEA 01T [T

” | T T TS L T T T

— e — - T —— T —

. NP < T T dIUAs dl woug 35anbay 139 dLLH OpTT T

= I P

72 e —— —
P | SRS 08 A1 OE1 |

= HW < _ 1Sanbay UAS pIeA 0711 _

m <d|"3SOH213e31S> 104 1sanbay UAS d1IH OTTT

=

‘0] 31 Jo 0z0T d218 1 S4n220 Pyl HORBPIDA
Y} S» Yons jsanhayy |30 v suypppyng Jo spmaq 0011

[T 314

U.S. Patent

................

US 9,519,806 B2

e
) :
i
_ m
_ |
~ _ i |
. | oTvEr oL |
= L
s 102{qQO TRUTULIO
_ e F F k e F « «
= . | ! f,m Soul] § _".
= _ SQUI[& i% @@@ou :Um< Y 4 4#‘_,_ + > saur] g
g | " 0PVl 4
~ 3 SORUT SR 00VZI

U.S. Patent
@\
p—
ol)
oy
[

. - - b
. - * -]] L
T W LT T e T W e T T L I e L I “
T # .] . . - .]] . LI] .
LR H R " A __..5“ et N .“.. D A WL M -....-“ vroow "1 “ S, ..“ . "
. . . i S N R 1 . x Voo e .

.l.hl.t...'...f.l.‘.l.t. L .l.......'.l. L .l.‘.l.'.l.f .‘.F.t..'..f.l.‘..l.t L ...t.l.hl.f.l.'...t._.l.'...t...t_.l.t

 jumgsuag

o
LI
4
L3
o
4
L3
I

AR ARREAARN

r - L]
- - ' - L
. ' . ' . ' . . ' .
' = [P . [
x . ' ' ' . 5 N . . IHF
= el .._..._...._m... B-. l.. - - 1.ir A A A N A AR
! a5 “ M ' ..? L, ol - IR IR AL It
. Fy L
.HI.v . * 'I .__.._ ' . ..-. .r. .__....l. l.ql_ ...uv. o A o

US 9,519,806 B2

'|blbblbllbllblblIblll'bllrllbbllb

' ' ' C ! AL
'
' - %r.—.lrtr att
. . - . lh...”“‘ll.ll.l.l.}.!.-.l}.l - ' "
oo ' o e-.-_l.-_l.-...._...v.-..r.......I ' ' e e ' -
. '
) r et t . .-_n.._.n...........-.ill..%h Bk d T .
r - ' - . ' r Y 2 e E 8 aaaa P o &
. . ._..-l. LI o . ._.._..q._.ll.-lu-ulul#n.___.... s .
' . il hln .allllljﬂﬁq#v#a#-lul... . P . -
LA S Y L L - %##4444 ro ' . . 1 eor
r - A . [B R r . - . r r ' -
‘i...-.t. ' P a .
o L, T ' A] . > Lt) f
P S % ' ' e i -
g & [] ' r '
. [T B a i ' . -
. M
Vo K .
' A '
. - ' ' - ' . P g ' ' \ -
. iy »
" " X i.m.lt.lt.._-i....._...........___....._.a......l. N "
¥ s $ﬂ#&t¥t&#ﬁ4ﬁ4‘& e ' . r . ' . “ .
' LT . " T i......”_..-...”_..r-._.iui__ﬂl |I. r s - » -
B . Pt E.._....._.._..._.._.ju-H]l.I_ raomcr ' r -
! b ' Ill_llln..rl“lulul - - - o et - .
' Pl . LT l.illii'i.bi.ffb.fgﬂl.. = = - -
. - . T M NN - ;
" ot ! ’ vt rrriritﬂ.lEf.._._..._.....4..............4........__.............-
' ' Ve . L. o T T P P P ¢
L} -'*l- -' r ror . L} L] r o . r a
o ﬁt
. -
-) - - u .
ALICE) v .
' . -
Foaa -
. K .
' lil.w.__..-_“. B f “ .
b - -
e,
- . k. - .
P By e »
8 2 e '- ¥
o - ' LI N L & .
1 g-”ﬁﬂj.." e ..1l.l.". -y @ﬁ%ﬁ. ﬁ ﬁ% X .
' - A .
y— e e %W v :
. . B e S T » - . . -
' . h_1 rI - l.' L] LA .I.__i.__ r . . , . . » - h .
gt g 'l L N LR - . 'r.-_ P ; C e » -
PN 2o - - R .- | i) o ' ' ' ' Vo Ve ' o » ' ' ' ' »
t ﬂ.-_ e R T T " i ™y ' - ! ! ! v wa orow ' ! ! " -
r .._.-.. I:.iﬁl“ﬂ“.j 1.” .'.... 1”.___.. r .II_- B oy e E...l- ' . ' ”. -”.-...I“..__.. i“.r ” -
\ ' o L A aow ' " o' x n a -
e . . Yo T - t..__. . . _-“u___.._ru....r o .____._._-.r.._. e calel ...lﬂﬁ._. - .-"er._.......__. . ..r.....-.._..-tr;utu&rtututn..utrtrtutu — -
' x ﬁ Tm!... e - ' h a X M .o [Ll - .
+. - U . - Aty ¥ N Cmtaa
r R Ty . R S uw = L ' L-lh._.. S ' e o Ve ' Vo »
r ._.n.IT.I - 5 FJd o -.l._.. f . Y o L]
a ¥ L ' » ' ' o - ' 'y '
' K A I"_—. ' AR SRR W r ' . \ ; Lt
._-__..._Hs A aye e __t__ ' ' 1..”.._.F ' C . - -
Vo e o L e e e e e x e Uy r e ' »a'a"gls : -
L ¥ - ql-_.....-rmﬁ1 . .
b b b 4 M &k & & & & k b & & Jh bk k k ko k h h kL k Ak Ak hhh Lk P) ' ol b
R O o o o o N O O o o o o o N e e, e fEy . [SR oy | P Ce ; a
1.__._1 o Ty) - o oror r ! -l .
E ' ' ' . -
- 'l.“-] —'l- .I..................... "EFFFFFFSFFFFEFEFFEFEr¥yrFP ”. . “ J -J L\
. . | L3 &
r - e » =
' » [y N f‘l
) ' i . -
-- ' r“- -
1 - .. ' ¥ r &
' ' ' ' 1 ' ' ' '
B o . P o ' - » [yt - .
' ' ' ¥ ' '
r ' PR ' r ¥ ' ' R R ' [y - .
' 1 ' vr .—_... ... ' 1 1 | - L ; 1 3 & 4 1
c a4 s 1 1 moma T __..-_ ‘o "y -.l h . . & o 3 ._-._m.ﬂ .. .
P L] . o EARRE - -) - R R A AR A AR AR
P) 1 . w ol . ! e . -:. .-.I ' I T T ol W ..h.. .
.i..i AR rat e LR . ' . BN ui o]}1 | - .
e . =T o ..”. 1. . ' ' PR u. P . “...“._.I!H. " - " v A L |
. '
- . [¥, ..-.”
PR . s » vy -
. . o+ b
...... ¥ & - - A - ry N
e v K i ;...K. AR g : : :
. B nor .._I-.T.rq. ' " rorolor o A ro. r & i
F . D e] [" & ' ' b L
A o LM C e . r . . ' . » & ' o y - -
- B ".l_. a " .-_....1.......1...1...1...1...1...1..............................1.......1...1...1...1...............................1...1...1...1...1... P1.............1...1...1...1...1...1...1...1...1...1.......1...1.“..1...1...1...1...1...1...1...1...1...........1.._1......................1 v = ﬂ..l " :
o Tma .._ . . O e T i e T e i e S o R R S i o . O I Sl R R R T S S e T S T i R A R O i S i e H » . - . .
e o . -
' - . o () .
. _"_. oM 2
' A F ' »
")
' na [i -
0 e g
. - - .. -
- . my
> r.oR 4 o -
" r - "
e LR ' ' . »
¥ .“I__ B e e e e e e e e e e e e e m e mm e e e e . e = m = e = e e =
. o . .-..-_... -
.I_q -or d . . 3 . n .
. 'y x ' ™ . . .
R sl a . PR - -Tr__
‘_r... o . o ' . . . »
'] R , ' '
3 ' --.. T o . ' : , ; : -
PR hra . .. i i - -
5 [3 ' f . '
........ . _Il. ' . . . \ e] ' . - .
. S Ba [- - Lo - -
1 K ' .-”-. . r ' “. . " g - -
a .
1....-.. .I... . T LXRRER . -
U] . [E W, | £_a -
_.l " & (3 [L]
' A o e b L I . .
L P! " ¥ Wt e = ;)
LN [' » ™ f e f " N
. - ' r . ¥ ' ' o ' ' .
' -".- ' T ' M i ' '
' h . . r P e ' -
' ») Va ' r
"o Y d S ' . - o . - - -
W ot e e, . .
v I :
._.l- ﬁ ' PR . -l
.l . Tl e m mm mmom om momom om m om om o m m o m om o o m om o m om m e m om = o m m om = o =
.-.I .'.:. l.
- e -
. o s .
L .- ' .
-
. e ' -
. I”. r I"_ ' »
:
ur ™ -
" r '
r i Jr b b &] . -
| |]-..-.l.......l........-...........n.......................-..-......l................... -
" a --_"_ ’ r . P) - '
. ' ' ' .
&y . b m o ' R . . R " -
' e i’ i’ . ' '
L . @@%@&p@ 3 : . .
et O ¥ » .
rookor . - [l . e . P h ' ' . P) - .
X . ¥ . . . e '
e ' vor o Vo . » - - - '
o ' " ' ' .
ﬁi... oM ' ' . [y - D
¥ ur ! o '
i . R . x " . F o - ror ' a n aomoa
* -.M ¥ y i e . ' o '
* . ' o 3 . f .] o ra . 3 ' s
i I r Fa) » C == P '
s 1._..__-:1.T RN . . o ' P, = r s r r r r r or r r r r r . r = r m r F r = F m E P P F P F P P P F F P P m m N P P m N F F P m F N F P P P P P P E_E_ P P P F_F B = raror amk
L N ...-____M...M.lm.ﬂ-_ B . e N CoL N N N N N N Y N N N N N N N N NN NN NN N N I Frrr e R
x ' x "] ' ¥ w w'n N .- . aTnTa. '
» ' ' Mk b Bl) T P ' P ' ' . ' . ' . . . ' ' ' . . PR . . ' v ana
I . o I} ¥ 1. ' Y ' o o ro. .. o . o o ' ' s on .
» . 1 ' ' ' - e
i 1 - ' ' ' e Ew '
- - r - " & & & & = & & & = & = & = &
' ' A maw '
PR - N
”I_ R N PR .
L - e '
r T '
r = - s h 2 m &2 b &2 u b s &2 = & b &
r " m =2 mam = =& = Em E = @E === @=E==8=588@2@8T°r .
[} » PN E NN ENNE RN T
] ar s '
L= B o T T T T o T T U TUL T P, P L - h h .

U.S. Patent

e Lt

US 9,519,806 B2

T T T T T T o wonpondde oadse o - T T 777 n
| TNLH :
_
_
_
| dL1H |
_
_
]
_ | jouwdYIy z
S T T N B T e)
: i S i il e Eaiiainl Soers T ."
— _
- i
> _ |
= : £C Suuviad 001AIOQ 1dnoyuy
- ! WYY (SO) 1iays ,w_“ upnL2d() I AT] Juj “
b o e e e e e e e e - ane aas mess ess) wea mas maa see mas e mae e ea A e saee e mee e s Mee wea mam
- NV
3] | v v
- TNLH 1LAD 93eSSON 1oyord SIQISIGAY 3y
w oo JOLIJ
= peoT] YOIEN ystd AST NdD 00VEI
& .
¢L L t.L ¢L [L=Wi]

VET 314

U.S. Patent

US 9,519,806 B2

o[qE) 1PUIdYIH

= - == A e - - — - — — —

| T RdA00pE> ONAS dLLH WV ON

_ a3e _ $Y20]Yg I1307]
- " oM "TINLH PUIYID Y
o ! 12443 ¢
S _
= _ — — 2
. “ L4D dLLH UAS dLLH M
E _ vVodA
Z ! SABLSSAIA 10BIIXH

_

“ s1o39ed dI 1 S1aYoBJ WLIOY
= | 0] 013077
« | e L ———— o
r X X X IX IXoewnL 2lqeD 1oy
=

WY ON (SO) Wa1sAQ 3unn.iad() on
$42)8132 ON 11dD ON

d¢1 31y

00dtLl

U.S. Patent

US 9,519,806 B2

1

DOMAIN-SPECIFIC HARDWIRED WEB
SERVER MACHINE

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s related by subject matter to
U.S. non-provisional application Ser. No. 13/799,2777, filed

Mar. 13, 2013, which 1s a non-provisional of U.S. provi-
sional application Ser. No. 61/760,913, filed Feb. 5, 2013,
entitled “A Domain-specific Hardwired Symbolic Learning
Machine.” Each of the above-mentioned applications 1is
incorporated by reference 1n 1ts entirety.

COPYRIGHT AUTHORIZATION

A portion of the disclosure contains material which 1s
subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as 1t appears 1n the
Patent and Trademark Ofilice patent file or records, but
otherwise reserves all copyright rights whatsoever.

FIELD

This application 1s related to secure computing and com-
munications.

BACKGROUND

Current Internet web page servers employ processor ele-
ments (PE) such as a central processor unit (CPU) with an
associated memory hierarchy of cache, random access
memory (RAM), hard drive(s) and/or network storage. PE’s
may be organized 1nto a system on chip (SoC) or network on
chip (NoC) of many PEs and memories, such as a graphics
processing unit (GPU), which may incorporate one or more
application-specific integrated circuit (ASIC) co-processors,
such as a floating point unit, or may incorporate a recon-
figurable co-processor (e.g. a field programmable gate array
(FPGA)). Computer programming languages such as assem-
bly languages, C and C++ are known 1n the art for creating
soltware packages oflering basic capabilities (e.g., an oper-
ating system (OS) of a computing device such as Windows
or Linux). Other software packages can be created using
other languages including higher level computer languages
such as Java and JavaScript for programming higher level
services (e.g., web services using OS services). A virtual
machine such as the Java Virtual Machine (JVM) may
tacilitate the use of a language like Java on a variety of
computers having a variety of instruction set architectures
(ISAs). Web services may be provided to fixed and mobile
devices like smart phones via a downloaded application or
other service from a web server or other device accessible
via a wired or wireless network. An arrangement of com-
puting hardware, OS, virtual machines, and software may be
computationally meflicient (e.g., because of the overhead of
pushing and popping interrupt stacks 1 random access
memory for software, virtual machines, and OS functions).

Machines having an arrangement of CPU registers,
istruction set architecture (ISA), and memory, may be
commonly referred to as Turing-equivalent (TE), and may
be able to compute anything that is possible to envision. The
register sequences of CPUs, PEs, and GPUs can be manipu-
lated by malware to include subsequences that violate the
authorized behavior of programming executed by computers
and other devices connected via one or more networks. For

10

15

20

25

30

35

40

45

50

55

60

65

2

example, a compromised network may be used to commiut
various cybercrimes, such as the theit of wealth via one or

more data transfers. Conventional cybersecurity measures
(e.g., hardware roots of trust, sandboxes, virtual machines,
anti-virus, firewalls, and monitors) have been incapable of
providing a permanent solution to such cybercrime.

Many types of cybercrime exploit Turing-Equivalence,
for example, by exploiting the vast degrees of freedom,
uncontrolled states of registers and memory, and sequences
of instructions (which may never terminate) that compose
Turing-equivalent machines. In other words, Turing-equiva-
lence of shared CPU hardware, open ended nature of register
sequences, layering of software, and re-programmability of
local and networked memory systems may provide oppor-
tunities for malware to perform computing tasks that are not
authorized and may result in, among other things, financial
or physical damage.

BRIEF SUMMARY

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to i1dentity key or essential features of the mmven-
tion.

A hardwired web server machine 1s described herein that
1s configured 1n such a way as to preclude the entry of
malware into 1tself, which reduces the eflects of networked
malware and provides a more permanent solution to cyber-
security. The hardwired web server machine described
herein (also referred herein as a web server machine, or a
domain-specific hardwired web server machine) may
include, for example, a computing machine 1n which open-
ended register sequences and uncontrolled memory states of
conventional computing and communications do not occur.
In other words, the hardwired web server machine described
herein 1s, for example, a machine with no CPU, no RAM, no
instruction registers and no ISA.

In some embodiments, such a machine may organize data
into symbols and may limit the symbols to members of
enumerated sets called domains. Domains may be applica-
tion-specific. For example, a web server machine may
include an mput domain such as a set of all valid HI'TP GET
requests for one or more web services. A web server
machine may include a web page domain such as a set of
valid HTTP 1.1 text representing web content.

A web server machine may allow for the use of fixed
symbols and variable symbols. Fixed symbols may be
encapsulated 1nto hardwired memory constants such as read
only memory (ROM). Vanable symbols may be encapsu-
lated into memory blocks that may be 1solated from each
other and may not be randomly accessed. Referring again to
the hardwired constants that may form a fixed symbol, a web
server machine may incorporate hardwired constants into a
seli-specification, briefly noted herein as “(Self)” or a “(Sell)
description.” (Sellf) may describe the intended information
processing behavior of the device. (Self) may be written 1n
a human language.

A web server machine may encapsulate an information
processing operation into 1solated hardwired combinatorial
logic termed a pipe circuit. A pipe circuit may be intercon-
nected between pairs of domain-specific encapsulated
objects such as for example flip-tlop, register, or memory
block. Instead of a shared-CPU performing instructions
stored 1n memory, such a machine may realize the informa-
tion processing functions of an application-specific
sequence of conventional CPU 1nstructions 1n a pipeline that

US 9,519,806 B2

3

may be a sequence of pipe circuits. Each pipe circuit may
map (via 1ts circuitry) a domain-specific value of a symbol
contained 1n an input variable object into an intermediate
value and may produce ultimately an intended domain-
specific symbol as a variable output object. The map of a
pipe circuit may be hardwired to be consistent with a (Self)
description. There may be two or more pipe circuits, each of
which may perform an i1dentical map between two diflerent
pairs of encapsulated variable objects.

Such a machine may accept external stimuli (e.g. in the
form of text and multimedia content represented 1n variable
objects from one or more distinguished 1nput ports) forming
a variable composite symbol termed a token. A web services
machine may accept an HI'TP GET request, forming a GET
token. Such a GET token may be realized 1n a variety of
ways such as the text “GET” or more simply as a signal of
a circuit configured to be interpreted as a GET signal. Such
a machine may realize information processing by moving
such tokens, whether as data or as signals, systematically
through special-purpose unidirectional hardwired parallel
symbol processing pipelines (groups of which are also
referred herein as arrows) to result 1n the delivery of tokens
representing the results of information processing to one or
more distinguished output ports. A web server machine may
move a GET token through an arrow to result 1n the delivery
of a Web Page token to an output port. A pipe circuit may
include a domain-enforcing circuit that may validate the
conformance of a token to a domain (which has been
hardwired into the machine, such as via a hardwired speci-
fication of such a domain 1n a (Self) description). Tokens and
symbols entailed 1n token flow from input to output may be
constrained via hardwired tests, e.g. of domain and for
conformance to behaviors specified 1 a (Self) description.

Input stimuli forming tokens may be oflered by one or
more sensors or data communications interfaces such as a
local area network or wireless link. Output tokens may be
converted to text, graphics, voice, video, or other media (e.g.
for external usage). The input ports, domains, maps, (Self)
description, and output ports of such a machine may be
immutable during operation, while allowing for extensibility
via hardwired fault management circuits operating accord-
ing to a hardwired (Self) description. Variable objects may
cnable tokens to flow through the immutable maps to
provide information processing services such as email, data-
base, spreadsheets, Internet access (e.g. world wide web)
and other valuable information processing services.

Thus, a web server machine, which comprises hardwired
connections and domain-specific functionality, may be one
implementation of (or include aspects of) a Domain-specific
User-defined Parallel Pipelined Learning (DUPPL)
machine. As discussed throughout this disclosure, the
domain-specific hardwired web server machine may be
referred to as a Web Server Machine (WSM). In some
embodiments, operating as a purposefully configured web
server may be the machine’s single function. To form the
WSM, miformation processing functions for providing the
WSM may be hardwired into ASICs, optical computing
circuits, FPGAs, and/or other circuits or computing devices.
A WSM may be simple, operating within a limited domain
embodied as a domain-specific device such as an ASIC. A
WSM may be flexible, operating within a specified set of
domains and maps embodied 1n a flexible device such as a
field programmable gate array (FPGA). Multiple simple and
flexible WSMs may be interconnected by sharing domains.
A collection of simpler devices, proximate or networked,
may form a larger, more complex composite WSM capable
of complex web services. Nevertheless, the function of a

10

15

20

25

30

35

40

45

50

55

60

65

4

grven chip, network, or system and of a composite machine
or network of such WSMs may occur within the immutable
boundaries of a given domain or set of domains that may be
embodied 1into such a WSM via a (Sell) description and that
the machine 1tself may not change but may employ to limit
its own behavior.

Compared to a conventional Turing-equivalent computer,
cybersecurity may be improved by a WSM through, for
example, a WSM’s hardwired immutability of information
processing, mherent seli-checking of domains, seli-referen-
t1al consistency of a (Sell) description, hardwired constants,
encapsulated varniable objects, and hardwired parallel pipe-
lines. A WSM may need no virus protection because there 1s
no unconstrained random access memory in which a virus
may hide. These properties of a WSM may introduce a new
category ol information processing machine that may neu-
tralize a vast range of malware such as computer viruses,
keystroke loggers, worms, and advanced persistent threats.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example block diagram of an
apparatus configured to operate as a WSM according to one
or more aspects described herein.

FIG. 1B illustrates a block diagram of a hardware con-
figuration for a WSM according to various aspects described
herein.

FIG. 2A illustrates example notations of symbols that may
be used i a WSM according to various aspects described
herein.

FIG. 2B illustrates example notations for a (Self) descrip-
tion of a WSM, which includes both a notation having a text
form and a notation having a symbolic form.

FIG. 3 illustrates an example of a domain for a WSM that
provides examples of fixed objects for the hypertext transier
protocol (HTTP), Syn and GFET, and relationships thereof.

FIG. 4 1llustrates an example block diagram for a valida-
tion arrow for a WSM that validates a domain.

FIG. 5 1illustrates an example block diagram for a map
arrow for a WSM that maps an HTTP request to an HITML
response.

FIG. 6 A illustrates examples of parallel pipes that may be
formed by objects of memory blocks and arrows of pipes.

FIG. 6B 1llustrates an example of a hierarchical pipeline
that may be formed by objects of memory blocks and arrows
ol pipes.

FIG. 6C 1llustrates an example block diagram for a circuit
that implements aspects of a WSM machine and 1s config-
ured to get Internet data.

FIG. 7 illustrates examples of token processing.

FIG. 8 illustrates an example conveyor belt for processing,
tokens through a sequential arrangement of arrows.

FIG. 9A illustrates an example flow chart that depicts a
method for transforming a specification into a representation
of a DUPPL machine that can be implemented by a recon-
figurable apparatus, such as an FPGA.

FIG. 9B 1llustrates an example flow chart that depicts a
method for transforming a web services specification into a
representation of a WSM that can be implemented by a

reconiigurable apparatus, such as an FPGA.

FIG. 10 1llustrates a generalized flow chart of a WSM that
receives an HI'TP GET Request and responds with a web
page.

FIG. 11 1illustrates additional details of token processing
that occurs within a WSM.

US 9,519,806 B2

S

FIG. 12A illustrates an example DUPPL machine cir-
cuitry having constants for a domain of traffic light colors
(TLC).

FIG. 12B 1llustrates example circuitry for a WSM having
constants for a domain of Internet Protocol (IP) addresses
for the WSM.

FIG. 13B illustrates a time line for the operation of a web
server application on a general purpose computer having
random access memory and an operating system.

FIG. 13B illustrates an example time line of operation of
WSM having no random access memory or operating sys-
tem.

DETAILED DESCRIPTION

Introduction to Terminology

As discussed above in the brief summary, mformation
processing functions of a WSM may be hardwired into the
pipes of ASICs, optical computing circuits, FPGAs, and
other circuits or computing devices that may comprise such
a machine. Information of a WSM 1s stored and processed
through the circuitry of a WSM 1n various forms. Such
information forms may include: symbols, objects, tokens,
domains, and a self-description, which is referred herein as
“(Self)”.

A symbol 1s textual data, the basic unit of mmformation
representation that conforms to a defined logical structure
and 1s expected to be a member of a domain. For example,
a symbol could be text such as “GET” and a symbol could
be “IP Address 1.2.3.4.5”. A WSM may express a symbol as
a value of an object. Values of objects may be fixed and
constant, that of a single symbol hardwired into such a
WSM; or objects may be variable, capable of representing
alternative symbols of a domain. For example, an object
named “LegalRequest” may have a fixed value “GFET;” a
variable object named “IPAddress” may have a variable

value “1.2.3.4.57. A WSM will know how to process a

symbol according to its meaning. A symbol can be used 1n
vartous ways throughout a WSM. In some 1instances, a

symbol may be able to “tlow” through the circuitry of a
WSM. When a symbol “flows™ through the circuitry of a
WSM, 1t 1s referred to as a token. A token named Request
may have a value GET, forming a token (Request GET) that
may tlow through a comparison with a LegalRequest, tlow-
ing further to generate a (WebPage) token, the text value of
which may be provided to an output port.

An object 1s the basic unit of imnformation storage and
retrieval. An object may contain exactly one symbol. An
object may be variable, containing alternative diflerent sym-
bols, or an object may be fixed, containing exactly one
symbol for the life of the WSM of which 1t 1s a part.

A domain 1s a listing of symbols. Each symbol that 1s

listed 1s a member of that domain. For example, 11 a domain
provides a listing of “HTTP 1.0” and “HTTP 1.17, the

symbol “HTTP 1.0” and the symbol “HTTP 1.1” are both
members of the domain, e.g. the domain of HTTP protocols.
A WSM will know how to process a domain, for example,
to test a symbol to determine whether the symbol 1s a
member of the domain. For example, 11 the symbol to be
tested 1s “HTTP 6.0” 1t would not be a member of the above
domain. However, if the symbol was “HTTP 1.0” 1t would
be a member of the domain. A domain may be abstract such
as a protocol or may be concrete such as the contents of a
specific web page. A domain may refer to things that are
external to a WSM such as a place via GPS coordinates or

10

15

20

25

30

35

40

45

50

55

60

65

6

to things that may be internal to a WSM, such as (Self)
hardware domain that may include a listing of the circuit
boards of the (Sell).

A (Self) may include a description of what the WSM can
and cannot perform. The (Self) may include all domains and,
thus, mdicates all symbols that may validly occur within a
WSM. A WSM will know how to process the (Self) to, for
example, 1dentily a particular domain 1n order for a symbol
to be validated against the domain. In some arrangements,
(Sell) 1s hardwired mto the WSM and cannot be changed
throughout the life of the circuit.

As 1s apparent from the above description and the addi-
tional details described below, a WSM 1s comprised of
various circuits including memory blocks and pipes.

A memory block may be comprised of various circuitry
components necessary for storing the symbols. For example,
with respect to ASIC and FPGA designs, a memory block
may be comprised of various tlip-tlops, registers, wires and
the like. In general, a memory block stores a symbol. In
some 1nstances, the memory block may act as a constant
(e.g., the stored symbol cannot be changed physically nor
clectronically for the life of the circuit); a vaniable object
(e.g., have contents that can change throughout the life of the
circuit, such as by storing different symbols at different
points 1 time); and an address (e.g., store a symbol that
refers to the location of another memory block). Thus, a
memory block may be a circuit representing an information
object whether fixed or variable that may have as its contents
at a given time a symbol of a given domain.

Additionally, memory blocks may be associated with
other memory blocks. For example, a constant (e.g.,
memory block acting as a constant) may be associated with
a variable object (e.g., memory block acting as a variable
object) such that the constant provides a label or name for
the variable object. The constant may act as an address that
defines where the varniable object 1n located in the memory
space of the WSM e.g., so that a third memory block
containing a token may access the variable object with the
constant as 1ts address. For example, a memory block having
the fixed value ‘LegalRequest’ may be adjacent to a memory
block having the fixed value ‘GET’, associating a symbolic
name °‘LegalRequest” with a value ‘GET’. In a related
example, a memory block having the fixed value ‘Request’
may be adjacent to a memory block having the variable
value “Put”, associating a symbolic name ‘Request’ with a
value “Put” 1n this example, not a legal request. The memory
block associations of a WSM may be defined 1n the (Self) via
a one or more symbols and/or domains.

The definitions of the symbols and/or domains in the
memory blocks form a part of the reasons a WSM 1s able to
defeat attacks/hacks that a conventional computing device 1s
susceptible to. As mentioned above, conventional comput-
ing devices are susceptible to attacks that inject malware
into a web site. One example 1s an SQL 1njection attack.
Malicious statements may be inserted into a data entry field
of a web site so that the statements induce erroneous
execution. For example, 1n an SQL 1njection attack, the
single quote character, ‘, may be entered as a name. Such a
value should be i1llegal as a name because 1t can cause a data
base statement checking for “name” to check for *“’” which
may match every name in the database and return all
database values to the attacker. The return of all database
values to the attacker may be one of the purposes of the
attack (e.g. to extract names and credit card numbers). In
contrast, when a WSM 1s presented with a Request value of
“’” such a value would not match a domain of legal values

(e.g., the “GET” domain); therefore, the WSM would not

US 9,519,806 B2

7

respond to the single quote by returning all values of the
database and, thus, 1s able to defeat this type of attack.

A pipe 15 circultry that 1s located between at least two
memory blocks. The circuitry of a pipe may be comprised of
logic necessary to perform one or more designated func-
tions, such as AND-gates, OR-gates, NAND-gates, invert-
ers, and the like. The designated functions are generally
related to the application being implemented by the WSM.
Pipes may take the contents of one memory block as nput,
process the mput according to, for example, a map between
two symbols or an arrow between two domains, to produce
output that 1s stored 1n a memory block. For example, a pipe
may 1include circuitry that validates that a symbol 1s a
member of domain. In a specific WSM, for example, a
“GET” value of a ‘LegalRequest” memory block defining a
‘LegalRequests’ domain may be compared with a “Put”
value of a ‘Request’ token, resulting 1n a failure of such a
token to conform to the ‘LegalRequests” domain. A pipe may
include circuitry that maps a symbol from one domain to a
different domain. In a specific WSM, for example, a “GET”
value of a ‘Request’ token conforming to a ‘LegalRequests’
domain may be mapped to a (Web Page) object having a
value “(<html> . . . <html>)" of a ‘WebPages’ domain,
resulting 1n a success of the token GET to conform to the
LegalRequests domain to obtain a (Web Page) object from
a WebPages domain.

The terms described above will be used throughout the
disclosure when describing various embodiments of a
WSM. Additional details of the circuitry used in a WSM will
also be provided in connection with the various embodi-
ments of a WSM. Additional details of the various forms
information may take when stored or processed n a WSM
will also be discussed in connection with the wvarious
embodiments.

Each circuit of a WSM may be associated an information
processing purpose and function. The purpose and function
of a memory block circuit may be to represent an informa-
tion object that may have a fixed symbolic name and that
may contain a symbol as i1ts value. The purpose of a pipe
may be to map a symbol of an mput memory block into a
resulting symbol of an output memory block. Further, addi-
tional circuits or information forms, or variations on the
above discussed circuits and information forms, may also be

introduced 1n connection with the various embodiments of a
WSM described herein.

FIG. 1A, WSM Domain-Specific Hardwired Symbolic Web
Server Machine

For ease of understanding the hardware of a WSM,
various examples herein will utilize a web page application.
Usage of this example application does not constrain the
applicability of this disclosure to any other applications or
from enumerating any other domain that may be required for
a WSM mmplementing another application. For example, the
basic hardware model of WSM may be used to convey a
page of a spreadsheet or status of an electric power grid, or
a database of credit cards. In such a spreadsheet example,
Domain A={Row, Column}, which would be rows and
columns of a spreadsheet to be displayed 1n a web page.

FIG. 1A illustrates an example domain-specific hardwired
symbolic web server machine (WSM) apparatus, also
referred herein as a WSM or WSM apparatus. FIG. 1A, in
particular, illustrates a method of organization of the logic
circuits of such a WSM, allocating example logic functions
of a WSM 1A00 to example pipes 1A94, 1A96, and 1A80
of logic circuits. Logical features of such an apparatus may,
for example, include a (Self) symbol 1A90 that may employ
symbol notation to express the logic of the WSM; an

5

10

15

20

25

30

35

40

45

50

55

60

65

8

application logical element 1A94 that may realize a web
server application; and a fault management logical element
1A80 that may specily logic relating to logical errors that
may be termed faults. An input network 1A01 may provide
input data to an application logical element 1A94; an 1nput
data analysis logic circuit 1A10 may obtain from an 1nput
network 1A01 an mput symbol, 1.e., symbol a, as 1llustrated
at 1A10, having an example value a equal to the text “GET”
(briefly, “a=GET” 1n the drawing); a map circuit 1A20 may
test a symbol, a, for conformance to a Domain A, of a map
circuit 1A20, e.g. a Hypertext Protocol domain, HTTP; such
a map circuit 1A20 may produce a result (HITP, GET)
associating a symbol GET with a Domain HTTP; a map
circuit 1A40 may connect an mput Domain A=HTTP to an
output Domain B=Hypertext Markup Language, brietly
HTML, accepting a symbol “GET” to generate a resulting
symbol b=Web Page that may comprise text characters
expressing such a Web Page; a symbol b=(Web Page) may
represent a name or logical address to refer to text characters
to conform to a Domain B, HITML; a map circuit 1A60 may
test b for conformance to Domain B, HIML; logic of a
circuit 1A70 may convert a symbol b referring to a (Web

Page) to a form suited for transfer to an output circuit 1A02
such as retrieving the HIML contents and converting such
HTML text to an Internet Protocol (IP) packet.

Thus, logic circuitry 1A94 may accept an HI'TP GET
symbol at an 1nput 1A10 to produce an HIML Web Page at
an output 1A70, implementing a web server application;
circuitry 1A94 may provide an output text HITML Web Page
to an output circuit 1A02. A web server application thus may
be realized in circuits 1A94 of a WSM; a fault management
logic element 1A80 may determine the way in which a
WSM 1A00 responds to logic errors termed faults that may
be detected, for example, 1n maps 1A20, 1A40, or 1A60,
conveyed to circuits 1A80 via fault indicator circuits 1A21,
1A41, 1A61, such as by 1gnoring all faults; as may realize
the logic of an example WSM apparatus. In some embodi-
ments, a (Self) symbol 1A90 may indicate the logic of maps
1A20, 1A40 and 1A60; and of circuits 1A10, 1A30, 1AS0,
and 1A70 containing symbols; 1n some embodiments a
(Self) symbol 1A90 may comprise and inform documenta-
tion that may be represented externally to a WSM apparatus;
in some embodiments a (Self) symbol 1A90 may be realized
in a logic circuit of such a WSM apparatus.

In order for pipe segment 1A40 to satisiy the conditions
of being an arrow of category theory, the symbol 1AS0,
which results from Map (1A30, 1A50), must be a member
of Domain 1AS0. Therefore pipe segment 1A40 may vali-
date symbol 1A50 as a member of Domain 1A50 of Web
Pages. As with pipe segment 1A20, Map (1A30, 1A50) that
1s performed by pipe segment 1A40 may be subject to faults,
such as the failure of a circuit. Therefore, a pipe segment
1A50 may detect faults, such as failure of the contents of
variable memory block 1AS0 to conform to a Web Pages
Domain. In response, a pipe 1A40 may clear a memory
block 1AS50, not sending a response from a WSM, such as
from logic circuits 1A40, 1A50, 1A60, and 1A70 to a
network via circuits 1A02.

If symbol 1A50 1s validated by pipe segment 1A40, the
result may be provided to a network via circuits 1A50,
1A60, 1A70 and 1A02. Sumilar to memory block 1A10, a
memory block 1AS0 may be 1solated from all of the other
memory blocks. Additionally, a memory block 1A50 may
not be accessed randomly. Preventing random access to a
memory block may limit a WSM to only the domains
embodied 1n circuits 1A20, such as of a Domain HT TP and

US 9,519,806 B2

9

of circuits 1A60 of a Domain HTML of Web Pages. In other
words, a WSM may be considered domain-specific.

A memory block 1AS50 may be validated by circuits of a
pipe 1A60 for membership 1n a Domain HTML and thus
may connect to an output symbol 1A70 that may further
comprise a circuit that may deliver content based on a
symbol provided via an IP port 1A02 of a network. For
convenience of reference, an input port 1A01 such as “Port
80” of an IP network 1A01 and an output port 1A02 such as
“Port 80 of an IP network 1A02 may be associated 1nto an
input-output circuit such as an Ethernet LAN or a universal
serial bus (USB) connection; or any other convenient input
output circuit.

Accordingly, a WSM performs information processing
through an arrangement that processes symbols that are
stored 1n various memory blocks that may be 1solated, the
contents of which may be obtained through various pipe
segments. To contrast the differences between a WSM and
a conventional computer, 1n a conventional computer, such
data would be generated in registers of a CPU and subse-
quently stored in a random access memory (RAM). How-
ever, within a WSM, there may be a rigorous tlow of valid
information via tokens from a specific input port to a specific
output port through a sequence of 1solated memory blocks.
The pipe segments of a WSM (e.g., pipe segments 1A20 and
1A40 of FIG. 1A) may together form a unidirectional
portion of circuitry (e.g., tokens only flow one way through
the circuitry) that may be referred to as a pipeline. In various
arrangements, pipelines may include various numbers of
pipe segments, but may not form loops. Looping behavior

may be achieved by the regular transformation of 1mnputs to
outputs via a flow of tokens through the parallel pipelines of
core circuits 1A00 and via networks 1A01 and 1A02. Such
flow of tokens may update the state of memory of various
blocks of such a machine. A circuit representing (1T1me) may
provide an mput to a WSM at a regular time interval. A
(Sell) 1A90 may specily such a time mterval. WSMs may be
paired so that one WSM provides inputs to another WSM,
input ports attached to output ports establishing a flow of
tokens 1n a looping arrangement between such machines that
may be constrained to domains and maps of each machine
with respect to the other.
FIG. 1B, Example WSM Environment

FIG. 1B illustrates an example environment 1B100 where
a WSM apparatus may be used to receive and respond to
requests for a web page. Network environment 1B10 may
include a local area network (LAN) such as an Ethernet
LAN connecting a networked device (not shown in the
figure) such as a computer or smart phone to a WSM 1B20.
A networked device may contain an application such as a
web browser that may request a web page via such network
connections. A WSM 1B20 may comprise one or more logic
circuits 1B30 that may realize logic such as that needed to
provide web services including circuitry needed to provide
the WSM 100 of FIG. 1. Additionally, a WSM environment
for a WSM 1B20 may incorporate power-up circuits 1B40
that may be configured to mitialize a WSM 1B20, e.g. as
needed for a field programmable gate array (FPGA) upon
power-up according to an example pattern of FPGA circuits
disclosed hereinatter. In such an environment 18100, input
may enter WSM 1B20 via a network input 1B10 wvia, for
example, an Internet Protocol (IP) port associated with an
Ethernet LAN (e.g. port 80, which 1s commonly used for
requesting and receiving web pages). Input may include text
(e.g. from a wireline network or wireless device or network).
Text may include requests for web service, such as a

10

15

20

25

30

35

40

45

50

55

60

65

10

hypertext transier protocol (HTTP) request to get a page,
e.g. a GET request, e.g. according to logic circuits 1A94 of
FIG. 1.

A WSM 1B20 may comprise a hardwired machine such as
logic circuits 1B30 that may be realized 1n a field program-
mable gate array (FPGA) chip, for example. A WSM FPGA
chip 1B30 may be mitialized at power up by circuits 1B40
specifically designed to load an FPGA personality mnto a
WSM FPGA chip 1B30. Power-up circuits 140 may com-
prise a general purpose computer that 1s not connected to any
device or network and that may contain data such as a bit
map for an FPGA; such as the text of a web page; such as
an IP address; and such as other data needed at the initial-
1ization of an FPGA logic circuits 1B30 realizing logic 1A00
of FIG. 1. Power-up circuits 1B40 are known to those skilled
in the art as appropriate to load an FPGA chip at time of
powering up such an FPGA chip. An example pattern of

circuits to be loaded at such time are illustrated 1n circuits
described in conjunction with FIGS. 6C, 7A, and 12A.

FIG. 2A, Symbol Notation for a WSM

FIG. 2A 1llustrates symbol notation for a WSM. In par-
ticular, a fixed symbol 2A30 may express a fixed item such
as the three text characters ‘GET” which may be the exact
text expressing an HI'TP GET request 1n a TCP IP packet
from a remote web browser. A notation having single quotes
around 1ts object, such as ‘GET’, may express a constant
symbol 2A30. A vanable symbol 2A40 may represent a
value that may be defined at some point 1n the future and that
may be subject to change, such as an Internet Protocol (IP)
address of a computer sending a GET request via a network
1B10 of FIG. 1B. A symbol notation having double quotes
may place double quotes around its object, such as “IP”
indicating an unknown IP address. An association 2A31 of
a fixed and variable symbol may indicate that a memory
block 2A31 may have a name 1n single quotes that may
contain a fixed value in single quotes, such as a memory
block named ‘Syn’ containing a fixed value ‘SYN’, 1.e. three
text characters. An association 2A41 of a fixed and variable
symbol may indicate that a memory block 2A41 may have
a name, “IP”, in double quotes that may contain a variable
value, such as a memory block named “IP” containing a
variable value of an IP address, e.g. “0.0.0.0.0” that may
consist of five numbers separated by periods also termed
‘dots’ according to IP usage.

Put briefly, a category may refer generally to a collection
of objects and arrows having particular algebraic structure
(e.g., an 1dentity map exists for each object of each arrow of
such a category). Each pipe circuit of a WSM may represent
an arrow ol category theory (an example of which 1s termed
a morphism 1n other branches of mathematics). The pipe
segments along with the memory blocks (e.g., those blocks
acting as variable objects) together may realize the math-
ematical structure of categories with finite limits. By real-
1zing the mathematical structure of such finite limit catego-
ries, a WSM may provide increased information security.

Further, due to the formulation and construction of a
WSM, 1n at least some embodiments, a WSM may realize 1ts
symbols 2A00 and functions 1A00 in an FPGA chip 1A20
that contains no shared registers, no random access memory
(RAM), no shared central processing umt (CPU) or other
processing elements (PEs) of a Turing computer, and no
stored program memories of any sort (e.g., no operating
system, no applications programming). Despite not contain-
ing these components of a conventional computing device,
a WSM may perform information processing via symbols,
hardwired circuitry that map the symbols according to the
domains of the (Self) descriptions, e.g. using symbol nota-

US 9,519,806 B2

11

tion 2A00, ¢.g. embodied mn an FPGA chip 1A20, and
memory blocks storing the symbols that operate as the input,
intermediate values, stored values, and output for the hard-
wired connections. Accordingly, a WSM, for example, may
supply the contents of a web page without fear of a mali-
cious soltware agent entering the WSM web server to
change the function in such a way as to assist malware via
the unauthorized use of the hardware, e.g. as was the widely
reported intent of the StuxNet malware.

A WSM may be embodied 1n an ASIC and/or FPGA, and
the examples throughout this disclosure are described in
connection with an FPGA. However, embodiments of a
WSM could be mmplemented using different computing
devices, including optical computing, optical storage
devices, optical switching; analog or digital charge coupled
devices, and the like.

FIG. 2B, Example Symbol Notation of a WSM Self-De-
scription

FI1G. 2B illustrates a symbol notation for a (Self) descrip-
tion of a WSM having a form 2B100 of a document and
having a form 2B200 of a symbol. The scroll indicating a
document 2B100, for example, 1llustrates a specification of
a WSM 1n text as 1t may be convenient for usage as a system
specification. According to the method of symbols of this
invention, there may be a mathematical relationship of
domains, maps, and arrows of such a WSM specification and
of a (Self) symbol further describing such a WSM. For
example, according to 2B100, a WSM may be specified as
a machine that “shall accept TCP IP packets from an
Ethernet port 80; shall recognized HT'TP protocol synchro-
nization (Syn) and GET requests; and shall respond with an
HTML web page to the requesting IP address.” Accordingly,
a symbol 2B200 may express such a specification in symbol
notation. For example employing symbol notation of FIG.
2A, athing may be noted as (thing) 2A51. A (Self) thing may
itsell contain more specific things 2A51, such as via notation
2AS51: (Self (things (packet) (message) (Syn request) (GET
request) (Web Page)). In this example the (Self . . .) 1s a
(thing) 2A51, the notation for which extends between the
two outer parenthesis of such a (Self . . .) symbol. A further
symbol (things . . .) within such a (Self . . .) symbol may
l1st symbol notations corresponding to (objects) of the sellf,
such as a (packet) or a (GET) request.

A (Self . . .) may incorporate further notation regarding
places 2A52, FI1G. 2A, that may refer to specific details of
a logical circuit of a (Self). In 2B200, there may be
[places . . . | that may refer, for example, to an Ethernet port
80 circuit with a WSM 1A00 of FIG. 1 having an Ethernet
port within its mnput logic 1A01, 1.e. acting as an mnput that
may be expressed as a symbol ‘(Self . . . [Ethernet[In
[Port_80]]] . . .)". In some embodiments, a (Selfl) notation
may correspond to a circuit 1A90. In some embodiments, a
(Sell) notation may correspond to documentation. In circuit
and documentation usage of symbol notation, a pair of outer
parenthesis of the (Self . . .) notation may indicate the
entirety of the (Self). In this example, the Ethernet is
expressed a [place] 2AS52 of the (Self). A symbol “[In[* of
a lager Ethernet port symbol 2B200 may express the input
feature of the Fthernet with respect to the (Self). In this
example, the symbol “In” 1s a fixed symbol that may be
expressed as notation ‘In’ according to symbolic notation.
Thus, a more explicit symbol for Ethernet port 80 may
include many single quotation marks, such as (‘Selt” . . .
| ‘Ethernet’ [‘Input’ [‘Port_80°] ...]...). However, for the
greater clarity of improved readabaility, a simplified symbol
notation (Self) may refer to a more explicit symbol notation
(‘Sell”). A simplified notation 2B200 may refer to constant

10

15

20

25

30

35

40

45

50

55

60

65

12

symbols. A symbol notation 2B200 for a WSM may include
other places that may correspond to logic of a WSM, such
as a place for [TCP[In][Out]] that may correspond to logic
of the TCP IP protocol. Another symbol for a place of a
WSM may include a domain, such as a place [HTTP], e.g.
that may list the elements of a Domain HT'TP, such as ‘SYN”

and ‘GET’. A symbol notation 2B200 may include a place
|[HIML] in which there place may be an HIML object, such
as a (Web Page). So a symbol notation for a (Self) may
incorporate a variety of symbols that may express a speci-
fication.

A flow of information through a WSM may be expressed
in a (Self) symbol 2B200 as a {path . .. } 2A53 according
to which a thing such as an (IP packet), or more simply
(packet), may tlow, e.g. from an mput port to a HTTP
domain causing a related flow, e.g. ol a (Web Page) to an
output port. According to notation 2A00, a {path} may be
named; e.g. a top level path from input to output may be
named {TOP ... }. Such a top level path may include other
paths that may correspond to maps 120, 140, and 160 of a
WSM 100. Such maps noted by corresponding paths may 1n
turn correspond to circuits of pipes that may realize the logic
of maps, ¢.g. of maps 1A20, 1A40, and 1A60 of FIG. 1A.
Atop level path {TOP . . . } may express itself as a sequence
of lower level paths. For example, a path {TOP} may
express more specifically {TOP {[Ethernet[In([TCP
[Port_ 80 [In (packet)]]—=[HTTP[(request)]} {[HTTP
(GET)]]—=[HTML[Web Page]]} {[HTML (Web Page)]—
[Ethernet| Out(TCP[Port_80 [Out (packet)]]}}. In such a
case, the scope of the top level path extends from the first
bracket, {, to the last bracket, }. For convenience of under-
standing the logic of such a WSM, a lower level path may
be given a name according to notation 2A53. For example,
a path {[Ethernet[In([TCP[Port_80 [In (packet)]]—=[HTTP
[(request)]} may be referred to as a named path {Get_IP},
indicating that such a path may refer to circuits that may get
a (request) object from packets of an Ethernet port. A circuit
1A91 from a (Self) circuit 1A90 to a map 1A20 may
establish a logical relationship between the functions of a
map 1A20 and the symbols of a {Get_IP} path of a (Self)
1A90.

Another path of (Self) 1A90 noted explicitly as {[HTTP
(GET)]]—=[HTML[Web Page]]} may be noted for conve-
nience as a path {Respond_to_GET_request} indicating that
the logic function of such a path may be to respond to an
HTTP GET request. A circuit 1A92 from a (Self) circuit
1A90 to a map 1A20 may establish a logical relationship
between the logic of a map 1A20 and the symbols of a
{Respond_to_GET_request} path of a (Self) 1A90, such as
that an HT'TP GET request results in an HIML Web Page.

A further path of a top level path {TOP} may comprise
{[HTML (Web Page)]—[Ethernet[Out([TCP[Port_80 [Out
(packet)]]}. Such a path may be referred to more conve-
niently as {publish_page}, indicating that such a path may
convert a (Web Page) object of an HIML domain that may
be located 1n an HI'ML place in a WSM 1nto a series of
(packet) objects 1 an Ethernet output port circuit of such a
device. A circuit 1A93 from a (Self) circuit 1A90 to a map
1A60 may establish a logical relationship between the
functions of a map 1A60 and the symbols of a
{publish_page} path of a (Self) 1A90, such as that an HTML
Web Page may be converted to TCP (packets) for Ethernet
output.

Thus, a {TOP} path may comprise three paths {Get_IP},
{Respond_to_GET_request}, and {publish_page}. An
equivalent (Self) notation may express a path {TOP} as a
sequence of these three named paths, i.e. {TOP {Get_IP}
{Respond_to_GET_request} {publish_page} }. In various

US 9,519,806 B2

13

implementations, 1t may be convenient for a (Self) circuit
1A90 of FIG. 1A to connect via circuits 1A91, 1A92, and

1A93 to map 1A20, 1A40, and 1A60. In various implemen-
tations 1t may be convenient to express a (Self) symbol in
documentation as a guide for circuit design.

There may be mathematical relationships between a
specification 2B100 and a symbol 2B200. One such math-

ematical relationship between a word, HI'TP, in a specifi-
cation 2B100 and a symbol ‘HTTP’ 1n a symbol 2B200 may
be termed a one to one mapping (briefly, 1:1). One such
mathematical relationship between a specification 2B 100
and a symbol 2B200 may be that such a specification and
such a symbol are complete with respect to each other such
that a symbol may be complete with respect to a specifica-
tion and a related specification may be complete with respect
to a corresponding symbol; such a mathematical relationship
of completeness may be termed mapping a specification
ONTO a symbol and mapping a corresponding symbol
ONTO a corresponding specification, brietly ONTO. There
may be a mathematical relationship between such 1:1 and
ONTO relationships that 1t does not matter whether one
begins with a specification or begins with a symbol, both
relationships 1:1 and ONTO apply; such a correspondence
may be termed that 1:1 and ONTO each may have inverses.

There may be a further mathematical relationship between
a symbol and an 1tem of hardware such that for each circuit
in hardware there 1s a corresponding symbol. There may be
a further mathematical relationship between an i1tem of
hardware and a corresponding symbol such that for each
constituent symbol of a given symbol there corresponds a
circuit of such hardware; such a mathematical relationship
between symbol and hardware then may be 1:1, ONTO, and
have mverses. Constructing an item of hardware according,
to a symbol such that there may be 1:1, ONTO, and 1inverse
mathematical relationships may embody mathematical prop-
erties of a symbol imto such hardware. For example, a
symbol may express a finite domain such as the set of all
valid HT'TP requests; corresponding hardware may embody
such a symbol (e.g. as text ‘HTTP’) and as a listof all HT'TP
requests to which such hardware will respond, such as ‘Syn’
and ‘GET’. Such explicit finiteness may impart advantages
to hardware. For example, 1 malware expresses itself to the
hardware as an HT'TP request, a map of the hardware, not
finding the malware expression 1n 1ts finite domain HT'TP,
may respond to the malware as a fault or error (e.g., respond
not as if a valid HT'TP request was received).
FIG. 3 an Example WSM Domain: HT'TP

As explained above, a symbol for a place of a WSM may
include a domain, such as a symbol for a place [HT'TP]. The
symbol for the place [HTTP] may contain symbols for the
things contained in such a Domain, such as ‘SYN’ and
‘GET’ (e.g., [HTTP (SYN) (GET)]). FIG. 3 illustrates
example circuits of a WSM domain using HT'TP as an
illustrative Internet domain. Circuits of a domain [HTTP
(SYN) (GET)] may be termed circuits for a hypertext
transfer protocol (HITTP) domain 300; circuits of such a
domain for example may include a circuit 310 that embodies
a fixed symbol ‘HT'TP.0’ that may indicate a circuit for an
HTTP domain; circuits of such a domain for example may
include a circuit 320 that embodies a fixed sequence number
01 and that further embodies a fixed object, HI'TP.O1.Syn
embodying a fixed text value, ‘Syn;” circuits of such an
example domain may include a circuit 330 that embodies a
fixed sequence number 02 and that further embodies a fixed
object, HTTP.0O2.GET, embodying a fixed text value, ‘GET;’
circuits of such an example domain may include a circuit
340 that embodies a fixed sequence number 03 and that

5

10

15

20

25

30

35

40

45

50

55

60

65

14

turther embodies a fixed object, HT'TP.03.Fault, embodying
a fixed text value, ‘Fault;” circuits of such an example
domain may include a circuit 350 that embodies a fixed
object, HI'TP.1, an object that terminates a domain HTTP.

Circuits of an example HI'TP domain 300 may include a
successor circuit 360, s(0), more specifically s(HTTP.0) that
may indicate a successor object, HI'TP.01.Syn of a starting
object HI'TP.O; an example successor circuit 371, s(01),
more specifically s(HTTP.01.Syn) may indicate a successor
object, HI'TP.0O2.GET of a starting object HI'TP.O1.Syn; an
example successor circuit 372, s(02), more specifically
s(HI'TP.O2.GET) may 1ndicate a successor object,
HTTP.03 Fault, of a starting object HI'TP.02.GET—-circuits
of such a Fault object may connect domain circuits to fault
management circuits or may handle faults (e.g. by 1gnoring
an 1nput that would attempt to use a successor of
HTTP.GET); an example successor circuit 399, s(03), more
specifically s(HT'TP.O3.Fault) may indicate a successor
object 350, HITP.1, a domain terminating object, of a
starting object H1'TP.03 Fault; an example type of successor
circuit 391, end(01) may associate an object HI'TP.O1.Syn
with a terminal object 350, HTTP.1, more specifically
s(HT'TP.01.Syn) that may indicate a domain ending succes-
sor object 350, HI'TP.1, of a starting object HI'TP.01.Syn.
Other relationships in addition to those thus far illustrated
may be included 1n order to perform logic related to such a
domain.

FIG. 4, an Example Domain Validation Arrow

As explained above, a WSM may include a domain
validation arrow 120 that may compare a symbol 1A10 to a
domain A, for example an HI'TP domain, that may comprise
circuits illustrated in FIG. 3. FIG. 4 illustrates an example
block diagram for the logic of circuits of an example domain
validation arrow 1A20 of a domain of FIG. 3. A symbol
comprising text ‘Syn” may enter an arrow 1A20 via circuits
401 for temporary storage 1n a memory block 410 of FIG. 4.

Memory block 410 may be isolated from other memory
blocks of a WSM. In such an example, a symbol may not
flow from a memory block 410 directly to any other memory
block (e.g., to a memory block 1A30 of FIG. 1A or to any
other memory block). Instead, a symbol may flow from a
memory block 410 via one or more pipe segments having the
logic of FIG. 4, such as via a domain validation pipe
segment 1A20 having logic illustrated in FIG. 4. A symbol
may tlow from a memory block 410 corresponding to a
memory block 1A10 of FIG. 1A to a memory block 1A30 of
FIG. 1A via a pipe segment 1A20 that may comprise the
logic of FIG. 4. In some arrangements, there may be only
one way for symbols to flow from memory block 410 to
memory block 1A30 such as through pipe segment 1A20
comprising the logic of FIG. 4.

In a WSM, a pipe segment may perform a domain
membership test, as shown by pipe segment 1A20 of FIG.
1A, realized 1n some embodiments via the logic of FIG. 4.
To ensure that symbol 410 1s 1n fact a member of a Domain
HTTP, various checks may be performed. For example,
symbol 410 may be compared to circuits of a Domain HTTP
430 to determine that the value of symbol 410, e.g. ‘Syn’, 1s
found within a Domain HT'TP of circuits 430. Pipe segment
1A20 may be realized as a fixed, unidirectional structure of
combinatonial logic, e.g. according to FIG. 4.

By way of illustration 1n FI1G. 4, circuits of a network 420
may obtain a symbol ‘Syn’ to deposit such a symbol 1n a
memory block 410. Logic circuits 440 may compare the
value of a symbol stored 1n memory block 410 presented via
circuits 403 with members of an HI'TP domain, e.g. of FIG.
3 that may comprise circuits 430 of FIG. 4. Finding a symbol

US 9,519,806 B2

15

‘Syn’ i circuits 430, circuits 440 may form a symbol
(HITP, Syn) that may be stored in an example memory
block 450. Such a memory block 450 may realize symbol
1A30 of FIG. 1. A symbol (HT'TP, Syn) comprising notation
for an object may be termed a token that may flow through
a WSM from one memory block 450 realizing symbol 1A30
to another pipe such as pipe 1A40 of FIG. 1A.

Suppose circuits 440 do not find the contents of memory
block 410 1n circuits 430; then circuits 440 may generate a
(Fault) symbol 441, and circuits 405 may generate a domain
fault signal 441, an error 1n which an input symbol 1s not
found 1n a domain.

A WSM may be configured to expect that symbol of
memory block 410 1s a member of a Domain HTTP. A
domain such as that illustrated in circuits 440 may be very
specific such as depending on the web services application
being implemented by such a WSM. The determination
performed by pipe segment 120 according to logic of FIG.
4 may produce a new symbol 450 indicative of the domain

that was checked and the original input symbol, mapping a
valid input 410 to a valid output 450.

In another example, a symbol 410 may be produced via
TCP IP circuits 420 that may, for example, contain text “Put
162.239.31.72”. The text “Put” could fail to satisty the
domain membership test performed by pipe segment 1A20
according to logic 400 (e.g. 1f “Put” 1s not found in the
domain HTTP that may include ‘Syn” and ‘GET’ but not
‘Put’). Accordingly, a pipe segment 1A20, according to logic
400 may 1gnore input of a memory block 410 containing text
“Put”, e.g. by clearing variable memory block 410 via a
hardware reset line that may reset block 410 after receipt of
such an nput.

A pipe 1A20 testing a symbol 1A10 according to the logic

400 comprises one example of a domain test. Other symbols
obtained from a network according to circuits 420 may
cause other symbols 450 configured by circuits 406 accord-
ing to the symbol notation of FIGS. 2A and 2B according to
the needs of other types of web services applications.
FIG. 5, Mapping HI'TP GET to HITML Web Page

FIG. § illustrates an example block diagram for a map
arrow, which maps an HTTP request to an HIML response.
For example as illustrated in FIG. 5, a symbol may be
obtained by circuits 501 and represented 1n memory block
510. In one embodiment, memory block 510 may realize the
memory and associated logic of symbol 1A30 of FIG. 1A.
In such embodiments, the logic of circuits of FIG. 5 may
realize the function of map 1A40 of FIG. 1A. Map 1A40
may be realized by the logic of a pipe segment that may
perform a mapping from one domain to a diflerent domain,
for example according to the logic of circuits 1llustrated 1n
FIG. 5. According to the logic test 530 of FIG. 3, a pipe
segment may map an mnput that may occur 1n one domain to
determine an output that may occur 1n another domain. Map
520, for example, provides a lookup table by which elements
of a one domain are associated with elements of another
domain. In this example 520, a GET request 1s a valid
member of an HT'TP domain. As shown 1n the entry (GET,
WebPage) of lookup table 520, a GET request 1s associated
with to an 1tem denoted by the text symbol *WebPage’ that
occurs 1n the output domain of HI'ML responses listed 1n
lookup table 520. A lookup table 1s just one example of the
many alternative ways ol representing an association
between an 1nput symbol 510 and a resulting symbol 540.
Thus logic circuit 530 may look up any mput symbol 510 1n
the lookup table 530 to determine an output for the pipe
realized by logic circuits 500. In one case, circuits 300 may
generate a symbol (WebPage) as an output symbol 540, the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

generation of which may be signaled to other circuits via
output signaling line 506; in another case, circuits S00 may
generate a (Fault) signal 531 that may stimulate other
circuits to respond to such a failure for an mput to be
associated with an output 1mn of a pipe 1A40 realized by
circuits 500.

The contents of a memory block 540 returning a response
may be set only by circuits 504 of pipe logic 500, which may
complete the logic function of mapping a value of a symbol
510 of one domain of a variable memory block 3510 to a
resulting variable memory block 540. A Map (HTTP,
HTML) of lookup table 520 1s shown to map domain HI'TP,
for example including a GET request, onto a domain HTML,
for example including various Web Pages. Such a map 1A40
may comprise a complete map termed an arrow 1f the logic
500 covers all of the possibilities between the two domains
and thus achieves a degree of completeness of mathematical
structure 1n mapping Domain HTTP onto Domain HTML
via, e.g. lookup table 520. A mapping performed by a pipe
segment 1A40 may satisly the defimtion of a finite limat
sketch category, as 1s known in the branches of higher
mathematics of computability and of category theory. Thus
a very simple computational device such as a lookup table
with associated logic circuits 500 may realize 1n hardware a
theory of computability that may reduce or eliminate mal-
ware from entering mto a WSM or from using a WSM 1n a
manner in which 1t was not intended.

Pipe segments may be simple circuitry, such as the a logic
of a lookup table 500; or may be more complex circuitry,
such as a circuit to compare a variable content of a memory
block to circuits describing a domain of legal requests
embodied 1n the logic circuits via text or other data repre-
senting symbols according to notation 2A00 for example.

Symbols being output at a port 1A02 of FIG. 1A (e.g.,
turther illustrated as, for example, comprising circuits of a
network 1B10 of FIG. 1B) may be further converted by
circuitry in the WSM. For example, the WSM may convert
any symbol received at a port 1A10 to human-readable text,
images, audio, etc. Users of the WSM or other devices
attached to the WSM (e.g., via a display or via a network
connection) then may be provided with the web data.

FIG. 6A Fork, Join, and Parallel Pipelines

FIG. 6A illustrates examples of parallel pipes that may
include pipes that fork, pipes that join, hierarchical pipes and
pipes that may be formed by objects of memory blocks;
pipes having completeness with respect to domains may
comprise arrows of pipes in a DUPPL machine. A WSM

may employ such parallel pipelines as further illustrated in
FIGS. 6C, 7, and 12A

FIG. 6B Hierarchical Arrows

FIG. 6B illustrates examples of hierarchical arrangement
of pipes and memory blocks that may be termed a hierar-
chical arrow of a DUPPL machine. A WSM may employ
such hierarchical arrows as illustrated further 1n FIG. 6C.
FIG. 6C A WSM Arrow to Get Ethernet Data

FIG. 6C illustrates circuits to get data from the Internet as
an arrow Get Ethernet Data 6C000. Such a circuit, 6C000,
may be realized, for example, via circuits employing the
method of an application of fork and join circuit arrange-
ments of FIG. 6 A combined with the method of a hierar-
chical arrangement of circuits of FIG. 6B. The apparatus of
6C000 may be realized via a block diagram language for
digital circuit design such as Matlab® Simulink, Annapolis
Microsystems CoreFire (used 1n FIG. 6C) and many other
commercial tools for representing circuits as a block dia-
grams. In particular, FIG. 6C 1illustrates circuitry in block
form from a graphical circuit design tool (e.g., Microsys-

US 9,519,806 B2

17

tems CoreFire), which allows a designer to create a circuit
by editing, dragging, dropping and interconnecting blocks
for particular circuitry. In some embodiments, the blocks of
the graphical circuit design tool may represent portions of
VHDL code, which 1n turn can be used to create an FPGA
image.

Contemporary art of such block diagram languages allows
the use of instruction sets, random access memory, and
arbitrary feedback loops. The apparatus 6C000 avoids
instruction sets, random access memory, and arbitrary feed-
back loops comprising instead a hierarchy of feed-forward
parallel pipelines having forks, joins, queues, and other
discrete logic according to the illustration of FIG. 6C.

Circuits 6C000 may comprise a hierarchical pipeline of
two pipes, an mitial pipe 6C100 preparing data for process-
ing by a second pipe 6C200. Such an initial pipe 6C100 may
comprise a further hierarchical pipeline of two pipes, an
initial pipe 6C110 preparing data for processing by a second
pipe 6C120. A block diagram language may allow brief
annotation of the function of such a pipe 6C110, having a
briel name such as Last-to-SV that may convey a function
of creating an order among signal lines needed for a circuit
6C120. A follow-on circuit 6C120 then may perform a
clocking function that converts a stream of data having a
clock rate of 1 gigabit per second, “OneGig” to a clock rate
of ten gigabits per second, “Ten(Gig”. Such a circuit 6C120
may generate a clock line that may be split from a data line,
a clock line providing a signal to a block of circuits 6C211
in parallel with a data line providing a signal to a data queue
circuit 6C201. Such an arrangement of circuits 6C120,
6C211, and 6C201 forks the information of circuit 6C120
into two distinct parallel paths, one of a clock for a circuit
6C211 with a distinct parallel path of data for a circuit
6C201. A further arrangement of circuits 6C210 may
arrange a circuit block 6C211 with a parallel circuit block
6C212 having functions of fanning out data and of merging
data. Such parallelism of data may be preserved 1 a
subsequent block of circuits 6C220 having parallel queues
and debug functions such as circuits 6C221 for “automerge™
and circuits 6C222 for merge data. A further arrangement of
circuits 6C221, 6C222, and 6C230 may comprise a join
function that may join the signals from blocks 6(C221 and
6C222 1 a block 6C230 transforming signals from ten
gigabits per second to one gigabit per second 1n the example
of FIG. 6C.

A pipe 6C000 may comprise an input pipe to Get Ethernet
Data from an Ethernet circuit 1A01 containing data from the

Internet. Such a pipe 6C000 may comprise some circuits of
an arrow 1A20 of FIG. 1A that may obtain a GE'T symbol

1A10 from the Internet.
FIG. 7 Timing of Token Processing

FIG. 7 illustrates examples of token processing that may
occur 1n a DUPPL machine. A Web Server Machine (WSM)
may realize token processing of FIG. 7 via circuits 6C211
corresponding to timing signals T1, T3, TS5, and T7 of FIG.
7. A WSM may realize token processing of FIG. 7 via
circuits 6C212 corresponding to data symbols 720, 721, and
730 of FIG. 7.
FIG. 8 Sumplified Conveyor Belt

FI1G. 8 1llustrates an example conveyor belt for processing
tokens through a sequential arrangement of arrows provid-
ing rapid access to a large collection of symbols and tokens.
A WSM may include a symbol ‘GET” and a symbol Web
Page that may have a direct one-to-one mapping realizing
the conveyor belt apparatus of FIG. 8 via a signal line 840
from a GET request 830 to a Web Page 850 such that a GET

symbol may cause the delivery of such a Web Page. Thus,

5

10

15

20

25

30

35

40

45

50

55

60

65

18

a stmple signal line may achieve the function of the DUPPL
Convevor Belt arrangement of circuits of FIG. 8.

FIG. 9A Method for Transforming a Specification into a
Machine

FIG. 9A 1llustrates an example flow chart that depicts a
method for transforming a specification into a DUPPL
machine. A specification of a WSM may comprise text
2B100 providing a human readable specification in natural
English language. Via symbol notation 2A00, such a WSM
specification 2B100 may be expressed more compactly 1n a
symbolic form 2B200. A method for transforming specii-
cations 2B100 and 2B200 into a WSM comprising circuits
according to FIGS. 3 through 8 1s represented in FIG. 9A.

Designers applying the method of FIG. 9A may receive a
specification according to a process 9A10. The specification
may comprise a statement as 1llustrated 1n 2B100 of FIG.
2B. Designers may identify an application 9A11 expressed
in such a specification. In the case of specification 28100,
9A11 may comprise a single application defining a WSM for
recognizing HTTP Syn and GET requests and serving a
single corresponding HI'ML web page. The method of FIG.
9A may be used to construct a DUPPL machine having
many different WSM’s having a diversity of applications of
which 2B 100 serves as an illustration. The illustrative
specification of 2B100 may be referred to for convenmence as
WSM 1.0.

For a WSM application 9A11, there may be Domains
9A20 defining for example collections of data elements of
such a WSM. A WSM 1.0, for example, may include
domains TCP IP, HI'TP, and HIML expressed for example
in English 1n 2B100 and expressed in symbol notation 1n
2B200. A process 9A22 may cause the objects of each
domain to be 1dentified, forming the contents of an object list
9A23 for each domain 9A20. A WSM 1.0, for example, may
include a Domain HTTP, the objects of which may be
“SYN” and “GET” according to notation 2A00 expressed as
a hierarchical Domain thing (HTTP) of 2B200 containing
data elements (SYN request) and (GET request) compactly
noted 1 2B200 as (HTTP (SYN request)(GET request)).

The application of a process 9A00 noted in FIG. 9A may
result 1in the generation of data objects, pipes, arrows, and
memory blocks, circuits, forming an apparatus 9A80 of FIG.
0A

FIG. 9B Method for Transforming a Specification nto a
WSM

FIG. 9B 1llustrates an example flow chart that depicts a
method for transforming a specification for an example

WSM 1.0 1mto a web server machine apparatus according to
a DUPPL machine method 9A00. According to the discus-

sion of FIG. 9A, there may be a WSM specification 9810,
a WSM application 9B11 to serve simple web pages,
Domains 9B20 that may include HI'TP and HIML, for
example, and from an enumeration process 9822 there may
be a list of HTTP objects 9B23 that may include SYN and
GET. Pairs of objects of domains of a WSM may be
analyzed to identity maps 9B30. In the example WSM 1.0,
such maps may include a Map: (HI'TP, GET)—=(HTML,
WebPage). Process 9B00 for an example WSM 1.0 may
include the analysis of maps 9B30 to identily a composite
top level collection of maps, TOP, 9B40, termed an arrow as
are certain collections of maps. The TOP arrow 9B40 may

be expressed i a symbol form 1n a symbol form of a WSM
1.0 specification 2B200 of FIG. 2B. According to a further

analysis 9B41 of a TOP arrow 9B40, a TOP pipeline
comprising a hierarchy of arrows may be formed as a TOP
Pipeline 9B350. Such a TOP Pipeline may comprise circuits
to get data from an FEthernet Port 80, such as example

US 9,519,806 B2

19

circuitry of FIG. 6C forming an initial pipe of such a
pipeline. A design process 9B32 may transform a TOP
Pipeline 9B50 into blocks of a block diagram language 9B80

that may be converted, for example, mto a bitmap person-
ality of a Field Programmable Gate Array (FPGA) to form

an example WSM 1.0 via a bitmap of a Xilinx FPGA, for
example.

A tfurther analysis 9B32 of a map 9B30 may determine
whether 1t may be helpful to form a conveyor belt for rapid
access to data of a DUPPL machine. A resulting expression
9B33 may associate the identification of a GE'T request 1n an
HTTP Domain with the generation of a Web Page 1n an
HTML Domain defining a simple conveyor belt. A further
design process 9B34 may convert an expression 9833 nto
a hierarchy 9B43 of unidirectional pipes having forks and
joins but having no loops according to the method of
DUPPL machines. A design process 9B44 may transform a
GET—Page Pipeline 9B43 into blocks of a block diagram
language 9B80 that may be converted along with other
blocks into a bitmap personality of a WSM 1.0 FPGA.

A Tfurther analysis 9B24 of HTTP Objects 9B23 may
result 1n circuits 9B25 checking variable memory blocks of
a DUPPL machine WSM 1.0 for conformance to a given
Domain. Domain checking circuits 9B25 may check for
conformance to WSM 1.0 Domains TCP IP, HITP, and
HTML, for example. An associated analysis 9B26 of domain
object 9B23 may result 1in: a differentiation between values
to be stored m constant memory blocks of Read Only
Memory (ROM), such as the constant symbols SYN, GET,
and the contents of a Web Page; a differentiation from
variable symbols for TCP IP Packets and text received from
such packets as extracted by various pipe segments of a TOP
pipeline. A design process 9B29 may transform a constants
and variables 9B27 into blocks of a block diagram language
9B80 that may be converted along with other blocks 1nto a

bitmap personality of a WSM 1.0 FPGA.
FIG. 10 A WSM Apparatus Top Level Application

FI1G. 10 illustrates a Web Server Application 1000 result-
ing from, for example, the application of the method of FIG.
9B to a specification 2B100. Such an application may
comprise a domain-specific machine for the domain of web
server applications. Such a machine may accept an HTTP
GET request 1010 from an IP address (e.g., 162.239.31.72);
such a machine may include an arrow 1020 of pipes that may
validate such a GET request; such a machine may include an
arrow 1030 of pipes that may return a web page response to
the requesting IP address of Request 1010; such a machine
may deliver a web page 1040 via the transmission of IP
packets to such an IP address 162.239.31.72.

A symbol 1040 noted as “Web Page” may comprise a
fixed sequence of text, e.g. written in the HTML language or
other language for expressing web pages. Such a symbol

1040 may have a fixed wvalue “<!DOCTYPE
htmI><HTML><HEAD><ITTTLE>Hackproot Technologies
Inc.</TITLE> . .. (other web page content)</body></html>

FIG. 11 Detailed Pipes of a GET Arrow

FIG. 11 1llustrates additional details 1100 of a web server
application, elaborating arrow 1020 of FIG. 10. Specifically,
an arrow 1020 may comprise a sequence of pipes 1110 to
1150 achieving the logic of an HT'TP domain and testing
symbols thereby generated for conformance to such an
HTTP domain. More specifically, a pipe 1110 may receive
an HTTP synchronization request, noted as Syn Request for
the WSM 1tself, referred to as a<Static.Host.IP>; a further
pipe 1120 may determine whether HTTP information
received forms a Valid Syn Request; that failing, control
may pass from such a pipe to a fault handling mechanism

10

15

20

25

30

35

40

45

50

55

60

65

20

which may, for example, 1ignore such packets; a further pipe
1130 may save an IP address from such a Syn Request; that
failing, control may pass from such a pipe to a fault handling
mechanism which may, for example, 1gnore such packets; a
further pipe 1140 may recognize an HI'TP GET Request
From an IP GET.IP that 1s synchronized; that failing, control
may pass from such a pipe to a fault handling mechanism
which may, for example, 1ignore such packets; a turther pipe
1150 may validate a resulting GET request as a Valid GET
Request; 1f the validation of pipe 1150 fails, control may
pass from such a pipe to a fault handling mechanism which
may, for example, 1gnore such packets.

In general, arrows such as a GET arrow 1020 may
comprise pipes realizing more detailed logic of such an
arrow, recognizing conditions of success and failure that
comprise faults and directing control from a given pipe to a
different pipe comprising a response to such a fault condi-
tion.

FIG. 12A Bit Level Constants for Trafhc Light Colors
Domain
FIG. 12A illustrates an example DUPPL machine cir-

cuitry having bit-level constants for a domain of traflic light
colors (TLC). FIG. 12A describes constants of a DUPPL
machine that may be a domain-specific machine for a trathic
light control domain.

FIG. 12B Bit Level Constants for a TCP IP Domain

FIG. 12B illustrates an example circuitry of a WSM
having constants for a domain of Internet Protocol (IP)
addresses, a TCP IP Domain. In particular, FIG. 12B 1llus-
trates circuits for constants, word reverses and concatenation
in block form from a graphical circuit design tool (e.g.,
Microsystems CoreFire), which allows a designer to create
a circuit by editing, dragging, dropping and 1nterconnecting
blocks for particular circuitry. In some embodiments, the
blocks of the graphical circuit design tool may represent
portions of VHDL code, which in turn can be used to create
an FPGA mmage. The function of the circuitry 12B100
illustrated 1n FIG. 12B may provide a concatenation of bit
level constants and mput data to produce an IP address.
Bit-level constants for the decimal digits 010642 may be
generated via Constant blocks, manipulated for alignment
via Word Reverse blocks, and finally concatenated to form
a sequence of such bits for use in the pipe of which the
circuits 12B 100 may be a part. Such a sequence may
comprise, for example, a static web address.

FIG. 13A, a Conventional Mechanization of a Web Server
Application

FIG. 13 A illustrates the time line of operation of a web
server application 13A00 on a general purpose computer
having an operating system and web server application
realized via a contemporary von Neumann central process-
ing unit (CPU) having an instruction set architecture (ISA)
with registers and a random access memory (RAM). The
time line across the top of FIG. 13A illustrates how a
conventional computer executes a web services application,
cach step 1n sequence. At each time T1, 12, etc. the operating
system (OS) and applications share various instruction reg-
isters of various CPUs, saving persistent information in a
large shared RAM that may be more permanently stored on
non-volatile memory such as a hard dnive.

Such a WSM 13A00 may consume a certain amount of
power through the operation of 1ts CPU, RAM, hard dnive,
and other computing and communications components.
FIG. 13B WSM Mechanization of a Web Server Application

In contrast to such a conventional computer, a WSM
comprises hardware having a timing diagram 13B00 show-
ing the timing of pipes of hard wired logic, e.g. that form

US 9,519,806 B2

21

packets from the signals received at an Ethernet cable;
having hard wired logic of pipes that extract messages from
such packets; having hard wired logic of pipes that recog-
nize HI'TP SYN and GET requests, and having hard wired
logic of pipes that generate a Web Page previously stored 1n
read only memory 1n a form of packets at an Ethernet cable
addressed to appear at the IP address that 1ssued the GET
request. Thus, WSM timing diagram 13B00 searches for an
applications domain expression such as a GET request of an
HTTP domain; finding such a GET request, a WSM gener-
ates IP packets of a TCP IP domain comprising a Web Page
of an HIML domain.

Such a WSM 13 B00 requires no such shared registers
since each variable may be represented 1n i1ts own variable
object memory block of a given pipe and the value of the
variable object may be constrained by domains hardcoded
into the WSM.

Such a WSM 13B00 may consume a certain amount of
power through the operation of its pipes and related com-
munications components; on a per-request basis, the total
power dissipated by such a WSM 13B00 described in FIGS.
1A through 12B may be significantly less than that of a
conventional computing machine performing web services
applications, 13A00. Such a WSM 13B00 therefore may be
termed a green computing machine.

Malware may infect random access memory (RAM) of a
general purpose computer. In contrast, a WSM retains infor-
mation in the 1solated memory blocks that cannot be ran-
domly accessed. Indeed, the memory blocks of a WSM can
only be accessed via hardware of pipes that perform various
functions such as validation checks on symbols as they are
passed through the pipe circuitry. As a result of such a
validation, any such memory block may contain only vali-
dated results that satisiy the constraints of the hard-coded
domains of the application being implemented 1n the WSM.
Thus, the circuits of a WSM may prove much more resistant
to software and network-based malware that uses RAM, and
in some cases impervious to the types of malware that prey
on computers having RAM.

The 1nvention claimed 1s:

1. A domain-specific web server apparatus comprising:

first circuitry configured to receive a hypertext transier

protocol (HTTP) request;

second circuitry configured to generate an input symbol

based on the HTTP request;

third circuitry configured to validate that a value of the

iput symbol 1s valid according to a first domain,
wherein the first domain 1s one of a plurality of domains
embedded into hardware of the domain-specific web
server apparatus, wherein the first domain includes, via
a hardwired symbolic notation, values that the HT'TP
request 1s allowed to have;

fourth circuitry configured to generate an output symbol

by mapping the mput symbol from the first domain to
a second domain of the plurality of domains;

fifth circuitry configured to determine output data based

on the output symbol; and

sixth circuitry configured to transmit the output data as a

response to the HI'TP request.

2. The domain-specific web server apparatus of claim 1,
wherein the domain-specific web server apparatus has no
registers; no central processing unit (CPU); no Random
Access Memory (RAM); no instruction registers; no Instruc-
tion Set Architecture (ISA); has no operating system (OS);
and has no applications programming.

3. The domain-specific web server apparatus of claim 1,
wherein the output data includes a web page.

10

15

20

25

30

35

40

45

50

55

60

65

22

4. The domain-specific web server apparatus of claim 1,
wherein the values of the first domain 1nclude a first value
for a ‘SYN’ object and a second value for a ‘GE'T’ object.

5. The domain-specific web server apparatus of claim 1,
wherein the HTTP request includes an HT'TP SYN request
or an HI'IP GET request.

6. The domain-specific web server apparatus of claim 1
further comprising:
seventh circuitry configured to store a computational
self-description of the domain-specific web server
apparatus, wherein the computational self-description
provides a description of what the domain-specific web
server apparatus 1s configured to perform.
7. The domain-specific web server apparatus of claim 1
further comprising:
seventh circuitry configured to cause the domain specific
web server apparatus to ignore the HI'TP request 11 the
value of the mput symbol 1s 1nvalid.
8. The domain-specific web server apparatus of claim 1,
embodied 1n one or more field-programmable gate arrays
(FPGA) or one or more application-specific integrated cir-
cuits (ASIC).
9. An apparatus comprising;:
one or more field programmable gate arrays programmed,
via one or more field programmable gate array (FPGA)
images, to cause the apparatus to:
receive a hypertext transfer protocol (HTTP) request;
generate an input symbol based on the HT'TP request;
validate that a value of the mnput symbol 1s valid according
to a first domain, wherein the first domain 1s one of a
plurality of domains embedded into hardware of the
one or more field programmable gate arrays, wherein
the first domain includes, via a hardwired symbolic
notation, values that the HTTP request 1s allowed to
have;
generate an output symbol by mapping the input symbol
from the first domain to a second domain of the
plurality of domains;
determine output data based on the output symbol; and
transmit the output data as a response to the HTTP
request.
10. The apparatus of claim 9, wherein the apparatus has

no registers; no central processing unit (CPU); no Random
Access Memory (RAM); no instruction registers; no Instruc-
tion Set Architecture (ISA); has no operating system (OS);
and has no applications programming.

11. The apparatus of claim 9, wherein the output data
includes a web page.

12. The apparatus of claim 9, wherein the values of the
first domain include a first value for a *“SYN’ object and a
second value for a ‘GET” object.

13. The apparatus of claim 9, wherein the HT'TP request
includes an HTTP SYN request or an HT'TP GET request.

14. The apparatus of claim 9, wherein the one or more
field programmable gate arrays are programmed, via the one
or more FPGA 1mages, to cause the apparatus to:

store a computational self-description of the apparatus,

wherein the computational seli-description provides a
description of what the apparatus 1s configured to
perform.

15. The apparatus of claim 9, wherein the one or more
field programmable gate arrays are programmed, via the one
or more FPGA 1mages, to cause the apparatus to:

ignore the HITP request i1 the value of the input symbol

1s 1nvalid.

US 9,519,806 B2

23

16. A method comprising;:

receiving a definition of one or more functions for a
hypertext transier protocol (HTTP) web server to be
implemented 1n an apparatus, wherein the one or more
functions include transmitting a response to a received
HTTP request;

determining a list of domains, a list of variable objects and
a list of maps based on the definition;

determining, based on the list of domains, domain vali-
dation pipe circuitry to produce a plurality of domain
validation pipe circuits that are each configured to
validate mput as having a valid value according to at
least one domain 1n the list of domains;
determining, based on the list of maps, domain mapping
pipe circuitry to produce a plurality of domain mapping
pipe circuits that are each configured to map input
between a first domain 1n the list of domains to a second
domain 1n the list of domains;
determining, based on the list of variable objects, memory
block circuitry to produce a plurality of memory block
circuits, the plurality of memory block circuits being
configured to (a) provide input to and receive output
from the plurality of domain validation pipe circuits
and (b) provide mput to and receive output from the
plurality of domain mapping pipe circuits; and

implementing the plurality of domain validation pipe
circuits, the plurality of domain mapping pipe circuits
and the plurality of memory block circuits into the
apparatus such that the apparatus 1s configured to
perform the one or more functions for the HITP web
Server.

17. The method of claim 16, wherein the apparatus
comprises a field programmable gate array (FPGA), and
wherein the implementing the plurality of domain validation
pipe circuits, the plurality of domain mapping pipe circuits
and the plurality of memory block circuits into the apparatus
includes:

10

15

20

25

30

24

converting the plurality of domain validation pipe cir-
cuits, the plurality of domain mapping pipe circuits and
the plurality of memory block circuits mto an FPGA
image, and

compiling the FPGA 1mage into the FPGA such that the

FPGA 1s configured to perform the one or more func-
tions for the HITP web server.

18. The method of claim 16, further comprising:

determining a list of constraints based on the definition;

and

determining seli-description circuitry based on the list of

constraints, wherein the self-description defines what
the apparatus 1s configured to perform;

wherein the implementing the plurality of domain vali-

dation pipe circuits, the plurality of domain mapping
pipe circuits and the plurality of memory block circuits
into the apparatus includes implementing the seli-
description circuitry into the apparatus.

19. The method of claim 16, wherein the plurality of
domain validation pipe circuits includes a first pipe circuit
that determines whether a textual symbol has a valid value
according to a first domain from the list of domains; and

wherein the plurality of domain mapping pipe circuits

includes a second pipe circuit that maps the textual
symbol from the first domain to a second domain from
the list of domains.

20. The method of claim 16, wherein after implementing,
the plurality of domain validation pipe circuits, the plurality
of domain mapping pipe circuits and the plurality of
memory block circuits into the apparatus, the apparatus 1s
configured to perform the one or more functions for the

HTTP web server without using an Instruction Set Archi-
tecture (ISA).

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,519,806 B2 Page 1 of 1
APPLICATION NO. : 14/321097

DATED - December 13, 2016

INVENTORC(S) . Joseph Mitola, 111

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

On Page 2, Column 1, under Other Publications, Line 22:
Please delete “Wirtten” and 1nsert --Written--

Signed and Sealed this
Second Day of May, 2017

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

