US009519596B2

a2 United States Patent (10) Patent No.: US 9.519.596 B2

Coppola et al. 45) Date of Patent: Dec. 13, 2016
(54) RESOURCE ACCESS CONTROL IN A (58) Field of Classification Search
SYSTEM-ON-CHIP USPC oo 711/163

See application file for complete search history.
(71) Applicants: STMICROELECTRONICS

(GRENOBLE 2) SAS, Grenoble (FR); (56) References Cited
Technological Educational Institute of
Crete, Crete (GR) U.S. PATENT DOCUMENTS
(72) Inventors: Antonio-Marcello Coppola, Sassenage gaégia?gi‘ E% gggﬁ E?’it_a%j—no et al.
_ . _ : : iljeberg
(FR); Georgios Kornaros, Crete (GR): 2005/0086661 Al*  4/2005 Monnie .................. GOGF 9/526
Miltos Grammatikakis, Crete (GR) 710/310
_ 2006/0004942 Al1* 1/2006 Hetherington ........ GO6F 9/3802
(73) Assignees: STMICROELECTRONICS 711/3
(GRENOBLE 2) SAS, Grenoble (FR); 2013/0125119 Al 5/2013 Vipat et al.
TECHNOLOGICAL 2015/0121366 Al1* 4/2015 Neiger .................. GO6F 9/4555
EDUCATIONAL INSTITUTE OF 718/1

CRETE, Crete (GR) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Primary Examiner — Jared Rutz

U.S.C. 154(b) by 26 days. Assistant Examiner — Hamdy S Ahmed
(74) Attorney, Agent, or Firm — Allen, Dyer, Doppelt,
(21) Appl. No.: 14/629,613 Milbrath & Gilchrist, P.A.
(22) Filed: Feb. 24, 2015 (57) ABSTRACT
_ o A method for controlling access of a processor to a resource,
(65) prior Publication Data wherein the processor ghas an instrlslction set 1ncluding a
US 2015/0254189 A1l Sep. 10, 2015 virtualization extension, may include executing a resource
access 1nstruction by the processor using the virtualization
(30) Foreign Application Priority Data extension, whereby the resource access instruction conveys
a virtual address (VA) and a virtual machine identifier. The
Mar. 65 2014 (FR) ...................................... 14 51819 method may also 1include trans]ating the virtual address to a
physical address based on the virtual machine 1dentifier, and
(51) Imt. CL looking-up an access control rule table using the physical
Goot 12/00 (2006.01) address as a search key. Each entry of the rule table includes
Goor 12/14 (20006.01) a virtual machine identifier. The method further includes
GOoE 9/455 (2006.01) controlling access to the resource based on the output of the
(52) US. CL rule table and a match between the virtual machine identifier
CPC ... GO6F 12/145 (2013.01); GOGF 9/45533  returned by the table and the virtual machine identifier

(2013.01); GOG6F 12/1441 (2013.01); GO6F  conveyed in the resource access instruction.
2009/45587 (2013.01); GOOF 2212/1052

(2013.01) 11 Claims, 1 Drawing Sheet

CPU CPU

MEM




U.S. Patent Dec. 13, 2016 US 9,519,596 B2

Fig 1
(Prior Art)
App App App
Fig 2 Fig 3

§ CPU i
E oz
i CACHE | |
AX
=
VMIDE  FA ALK N
14 | | INVAL
o X6

AX!
AXI

- — N




US 9,519,596 B2

1

RESOURCE ACCESS CONTROL IN A
SYSTEM-ON-CHIP

TECHNICAL FIELD

The mvention relates to controlling access to resources, 1n
particular to memory areas that may contain sensitive data
reserved to specific processes. The invention relates more
specifically to implementing access control in a system-on-
chip providing virtualization, extending existing security
protection mechanisms, such as those based on “secure/non-
secure domain” design principles, by allowing validating
permissions on a finer level of granularity.

BACKGROUND

FIG. 1 1illustrates a typical system-on-chip (SoC) “eco-
system”, comprising hardware components HW under a
dashed line, and software components SW above the dashed
line. The hardware components may include multiple pro-
cessing units CPU, a shared memory MEM, a graphics-
processing umt GPU, and other hardware accelerators,
peripheral or mput/output devices 10.

Software components designed to run on that hardware
may include an operating system OS in which individual
application programs (App) may be executed. In some
instances, the software may instead include a hypervisor that
can run multiple virtual machines VM. Each virtual machine
may then run its own guest operating system and specific
application programs.

The use of virtual machines may be desired 1n situations
needing tight 1solation between operating environments on a
same device. For instance a user may install two virtual
machines on a smartphone, a first one provided by his
employer for business use, and the second one for personal
use. The virtual machine for business use would implement
strict security policies to restrict access to company infor-
mation, and thus limit the features available to the user. To
benefit from the full feature set of the smartphone, the user
would switch to the second virtual machine that has no
restrictions.

In theory, the data of the virtual machines are isolated
from each other, 1.e. one virtual machine cannot access the
data of another virtual machine even though the data is
stored 1n the same memory of the SoC. The hypervisor
ensures this 1solation, 1n particular, by mapping the address
spaces used by the virtual machines to non-overlapping
physical address spaces on the SoC.

In practice, however, a rogue program running in a virtual
machine may be designed to exploit security vulnerabilities
of the hypervisor, for instance using buller overtlow or
“virtual machine escape” techniques. With such exploits, the
rogue program may access data beyond the address space
assigned to the virtual machine and reach sensitive data
belonging to the host system or to another virtual machine.

SUMMARY

In view of the foregoing, a method 1s proposed herein for
controlling access of a processor to a resource, wherein the
processor has an istruction set including a virtualization
extension. The method comprises executing a resource
access 1nstruction by the processor using the virtualization
extension, whereby the resource access instruction conveys
a virtual address and a virtual machine identifier. The
method also includes translating the virtual address to a
physical address based on the virtual machine 1dentifier and

10

15

20

25

30

35

40

45

50

55

60

65

2

looking-up an access control rule table using the physical
address as a search key. Each entry of the rule table includes
a virtual machine identifier. The method further includes

controlling access to the resource based on the output of the
rule table and a match between the virtual machine 1dentifier
returned by the table and the virtual machine identifier
conveyed 1n the resource access nstruction.

The step of controlling access may comprise granting
access to the resource 11 the rule table returns no entry. The
step of controlling access may comprise denying access by
ignoring the instruction. Denying access may comprise
invalidating the content of a cache memory of the processor.

In an embodiment, the resource and the processor may be
connected through a network-on-chip (NoC), and the steps
of looking-up the access control rule table and controlling
access may be performed 1n a network interface configured
to couple the processor to the network-on-chip.

A system-on-chip may be provided, comprising a net-
work-on-chip (NoC), a resource connected to the network-
on-chip, and a processor comprising a virtual address to
physical address translation table and an instruction set
including a virtualization extension. The execution of a
resource access instruction by the processor using the vir-
tualization extension produces a virtual machine i1dentifier
stored 1n the translation table with the virtual address. The
system-on-chip may also include a network interface cou-
pling the processor to the network-on-chip for accessing the
resource, and an access control rule table having an input
wired to receive the physical address output by the transla-
tion table as a search key and the corresponding virtual
machine i1dentifier. Each entry of the rule table includes a
virtual machine 1dentifier. Access control logic 1s coupled to
the output of the rule table and configured to control access
to the resource at the network interface level based on the
output of the rule table and a match between the virtual
machine identifier returned by the table and the wvirtual
machine 1dentifier iput to the table.

The system may comprise multiple processors, each
coupled to the network-on-chip through a respective net-
work 1nterface, similar access control logic, and a similar
access control rule table for each network interface. The
system may further comprise a master device, a network
interface coupling the master device to the network-on-chip,
and an auxiliary access control rule table having a search key
input wired to receive a current physical address from the
master device. The system may also include access control
logic coupled to the output of the auxihiary rule table and
configured to control access to the resource at the network
interface level based on the output of the auxiliary rule table.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an exemplary high-level system-on-chip
ecosystem 1ncluding hardware and software components 1n
accordance with the prior art.

FIG. 2 15 a schematic diagram of hardware components of
a system-on-chip interconnected through a network-on-chip
in accordance with an embodiment of the present invention.

FIG. 3 1s a schematic diagram of an access control device
implemented between a processing unit and a network
interface 1n accordance with an embodiment of the present
invention.

DESCRIPTION OF EMBODIMENTS

The hardware components of systems-on-chip are often
interconnected through a network-on-chip (NoC). FIG. 2



US 9,519,596 B2

3

schematically shows such an interconnection. Each hard-
ware component, here two CPUs, a shared memory MEM,
and an input/output device 10, 1s connected to the NoC
through a respective network interface NI. Some hardware
components, 1 particular the processing units, may be
delivered by third parties 1n the form of “black-box” RTL
code and are usable through a standard interface, such as the
AXI bus according to the AMBA® standards. All the
hardware components of a same SoC are usually designed to
use the same bus. Therelfore, 1n this example, each hardware
component 1s connected to 1ts respective network interface

through an AXI bus.

On the software side, a hypervisor may run on all CPUs
and have access to all the system resources. A virtual
machine spawned by the hypervisor may be assigned a
specified portion of the resources, and may be allowed to use
any number of the available CPUs, depending on the com-
puting power required by the virtual machine.

In the context of a macroscopic network (LAN or WAN),
computers connected to the network may share data using
standard network protocols. Such data sharing can be con-
trolled through firewalls usually implemented in routers
placed between network segments. The firewalls apply rules
based on source and target addresses, and application-level
protocols. The source and target addresses are the IP
addresses of the source and target computers when using the
TCP/IP transport protocol. The term “computer” may
include “virtual machine”. Indeed, virtual machines running
on a same computer may be configured by the hypervisor to
be seen on the LAN as independent computers, with distinct
IP addresses.

A similar approach may be used 1n a NoC, where the
hardware components or their network interfaces would
replace the computers connected to a LAN. U.S. Pat. No.
8,185,934 discloses a resource access control device imple-
menting such an approach. The access control 1s based on
physical target addresses and source node identifiers. A
“source node” 1s 1n practice a network interface or the
corresponding hardware component.

Such an approach does not allow controlling access
between two virtual machines running on a same processor,
since the two virtual machines then use the same source
node an cannot be differentiated, 1.e. an access restriction
based on a source node would restrict access from all virtual
machines running on the same processor. Thus an access
control based on virtual machine identification on a NoC 1s
desirable. A NoC, using low-level protocols and simple
hardware for optimizing speed and latency, provides nothing,
equivalent to an IP address that can be flexibly assigned to
a computer or a virtual machine on a LAN. The bus used for
connecting each hardware component to the network inter-
tace NI, for instance an AXI bus, does not convey 1iforma-
tion directly usable to identily virtual machines 1nitiating,
transactions. In fact, the NoC 1s transparent to the processors
and the programs running on the processors, which see the
hardware components of the system as 1f they were sharing
the same AXI bus.

Processors used in SoCs may offer so-called “virtualiza-
tion extensions”, which are specific instructions used for
accelerating virtual machine execution. Such instructions
convey a parameter VMID that identifies the virtual machine
that executes the instruction. The virtual machine 1dentifier

VMID 1s however used internally in the processor and 1s not
provided on the AXI bus. Use of the VMID 1s explained, for
instance, 1 “ARM Cortex A-15 Technical Reference

Manual, Chapter 5: Memory Management Unit”.

10

15

20

25

30

35

40

45

50 <

55

60

65

4

FIG. 2 schematically illustrates a firewall configuration
that may use the virtual machine identifier VMID with a
minor hardware modification of the processing units. A
firewall device FW 1s integrated in a network interface NI
assigned to a processing unit CPU. In order to achieve better
flexibility, as shown, a similar firewall device 1s integrated 1n
cach network interface assigned to a CPU. The device FW
1s wired to receive the address lines of the AXI bus and the
VMID conveyed by the currently executed instruction,
tapped from within the processing unit. Further details are
explained with reference to the next figure.

FIG. 3 schematically illustrates an embodiment of the
firewall device FW and further details of an exemplary
processing unit CPU. The CPU usually comprises a core 10
in charge of executing the mstructions, a memory manage-
ment unit MMU, and a cache memory 12 (CACHE).

Application programs may be designed to use a uniform
address space called “virtual memory” (which should not be
mistaken with the memory space allocated to a virtual
machine, 1.e. real machines also use such virtual memory).
In that case, the addresses conveyed in the instructions
executed on the core 10 are virtual addresses VA.

The memory management unit MMU 1s configured to
translate the virtual addresses VA presented by the core to
the actual physical addresses PA that are used for accessing
the resources. The translation may be carried out by a
translation look-aside builer TLB that 1s configured at sys-
tem boot by the operating system or the hypervisor. In
operation, the TLB may be refreshed by the operating
system or hypervisor upon context switches. The physical
addresses PA output by the TLB are presented on the AXI
bus and used also by the cache memory 12. For sake of
clarity, only the address lines of the buses are shown.

When virtual machines are used, each virtual machine
offers a same virtual address space to the application pro-
grams running within 1t. This implies that instructions
executed within distinct virtual machines may use the same
virtual addresses VA. One role of the VMID used by
processors having a virtualization extension 1s to difleren-
tiate the virtual address spaces used by the different virtual
machines 1n the TLB. In practice, the VMID values may be
appended, as shown, to the most significant bits of the virtual
addresses contained 1n the TLB to form the search keys of
the TLB entries.

For sake of simplicity, the TLB entries are shown as
containing the full virtual and physical addresses VA, PA. In
practice the virtual addresses are separated 1n an “offset”, an
index” and a “tag”, wherein only the tag 1s contained in the
TLB rows with the VMID, and the ofiset forms the least
significant bits of the physical address PA. The detailed
structure and operation of a TLB are out of the scope of this
disclosure, and unnecessary to understand the principles
described herein. The TLB may be considered 1deally as a
content-addressable memory (CAM) where the pair (VMID,
VA) 1s used as the search key to find the corresponding
physical address PA.

As mentioned previously, the firewall device FW 1s wired
to recerve the physical address PA conveyed on the AXI bus,
output by the TLB, and the corresponding VMID. The
processing unit 1s not originally configured to output the

VMID. It may be modified so that the VMID can be tapped

at the same time as the physical address PA. For this
purpose, the TLB may be modified to output the VMID with
the physical address PA, as 1illustrated.




US 9,519,596 B2

S

As an alternative, the VMID may be tapped from the
search key mnput lines of the TLB. The VMID may then
require synchromzation with the output of the TLB through
a latch.

The firewall device FW 1ncludes a hardware access con-
trol table 14, which may be considered ideally as a content-
addressable memory. In practice 1t may have a similar
structure as the TLB of the MMU and be managed 1n a
similar fashion by the hypervisor. The table 14 1s designed
to assign access control rules ACR to specified pairs of
virtual machine and physical address values (VMID, PA),
1.¢. the current pair (VMID, PA) 1s used as the search key 1n
table 14 to find the corresponding ACR rule. The firewall
device FW 1s configured to implement the ACR rules output
by the table, for instance, between the network interface NI
and the NoC, as illustrated by a gate 16.

An access control rule ACR may include a few bits for
encoding usual file system rights such as read-only, read/
write, write-only, none. By default, the absence of data in the
access control table 14 corresponds to a conventional system
where no access control 1s implemented.

The access control table may be populated by the hyper-
visor at boot time for a set of preconfigured wvirtual
machines. The table may also be modified at run time as
turther virtual machines are installed or existing virtual
machines are removed.

In practice, the table 14 may contain only a group of most
significant bits of the physical addresses PA, whereby each
address entry in the table designates an address range of the
s1ze defined by the absent least significant bits. For instance,
when the oflset bits of the virtual addresses are also used as
the offset bits of the physical addresses, and those bits are
not stored in table 14, each physical address entry of table
14 designates a memory “page”.

In operation, when the core 10 executes a resource access
instruction, using the virtualization extension, the virtual
address VA and the VMID conveyed by the instruction are
provided to the MMU. The TLB 1s looked-up using the pair
of values (VMID, VA) as the search key. The access request
1s placed on the AXI bus to be forwarded by the network
interface together with the physical address PA output by the
TLB. In parallel, the access control table 14 1s looked-up
using the pair (VMID, PA) as the search key. The rule ACR
returned by the table 1s implemented by gate 16 before the
NoC takes the access request 1nto account.

If the rule ACR 1s void, 1.e. the table returns a “miss™
because there 1s no entry in the table matching the pair
(VMID, PA), the access request may be forwarded normally
to the NoC. If the access request 1s a write request, and the
rule denies write permission, the gate 16 may simply void
the request, such that the NoC sees no request presented by
the network interface NI. In this case the write request 1s
silently 1gnored: the program that 1ssued the request “thinks”
that the write request has completed and continues normally.

If the access request 1s a read request, and the rule denies
read permission, the gate 16 may again void the request as
seen from the NoC. However, the read request expects data
to be returned at some point 1n time. If the request 1s 1gnored,
no data 1s returned, and the program that issued the request
may stall. Since that program is performing unauthorized
operations, making it stall may be a satistactory approach.
Such unauthorized read and write requests are thus not
tforwarded to the NoC, whereby the NoC cannot become
saturated with repeated unauthorized requests, such as pro-
duced, for instance, by denial-of-service attacks.

An alternative response of the firewall to an unauthorized
read request would be to let the request through with a

10

15

20

25

30

35

40

45

50

55

60

65

6

modified physical address pointing to a specific area con-
taining zero or random data. The program that issued the
request will see no error and continue with useless data.
Thus causing unauthorized operations to be silently 1gnored
makes the technique very simple to implement 1n hardware.

In some circumstances 1t may be desirable to notify such
operations to take additional measures. The firewall device
may then be designed to 1ssue an interruption to signal a read
or write error, whereby the hypervisor may be configured to
kill the process or virtual machine that performed the
unauthorized operation. The event may then also be written
in a log.

As described up to now, the firewall device can prevent
unauthorized access to address spaces when the access
requests are forwarded to the NoC. If the physical address
designates data that 1s stored in the cache memory 12, the
CPU accesses the data directly in the cache memory and the
request 1s not presented to the network interface NI, 1.e. a
gate 16 such as shown in FIG. 3 cannot prevent the unau-
thorized access.

Although the actual data 1s accessed 1n cache, the corre-
sponding (VMID, PA) pair 1s still seen by the firewall
device. Therelfore, the firewall device may be designed to
invalidate the cache contents through a line INVAL when the
table 14 denies access. A “cache-miss™ 1s then produced,
forcing the request to go through the NoC, where 1t can be
controlled through gate 16.

As previously mentioned, the rules contained in table 14
may also grant access (read or write) to the corresponding
physical addresses. Such access grants may be interpreted
by the firewall device as exclusive, 1.e. such that only the
designated virtual machines have access to the specified
physical addresses. This 1s 1n fact symmetrical to access
denial rules that are also exclusive in that only the desig-
nated virtual machines are denied access. For implementing
both grant and demal rules, the table 14 may be used 1n the
following manner.

For a current (VMID, PA) pair, the table 14 1s looked-up
using only the physical address PA as the search key. If the
returned entry contains a demal rule, the firewall device
denies access only 1f the entry contains a VMID equal to the
current VMID, 1.e. 1if the VMIDs don’t match, access 1s
granted by default. If the returned entry contains a grant rule,
the firewall grants access only 11 the VMIDs match, 1.e. if the
VMIDs don’t match, access 1s denied by default.

Such an operation implies that the physical addresses
stored 1n the table are unique, otherwise the table may return
multiple rows. The flexibility provided by this operation
mode, 1n the context of protecting the data belonging to
virtual machines from other virtual machines, may however
never require that a physical address be present in the table
more than once (such as for granting access to one virtual
machine and denying access to a number of other virtual
machines to the same physical address space). In this
context, the table may be kept small, requiring only “secure™
virtual machines to be listed with access grants to the
physical memory areas that need protection.

As previously mentioned 1n relation with FIG. 2, a sitmilar
firewall device FW 1s provided preferably 1n each network
interface assigned to a CPU. If the virtual machines are all
configured by the hypervisor to use all available CPUs, the
access control tables 14 of the firewall devices may have
identical contents, so that instructions of a same virtual
machine executed on different CPUs are granted the same
access rights.

In some circumstances, virtual machines may be config-
ured to use only one CPU. In such a case, access rights




US 9,519,596 B2

7

defined for that virtual machine may be present only in the
firewall device assigned to that CPU. However, for simpli-
tying the table content management, the table contents may
remain identical also 1n this situation.

Certain devices connected to the NoC, other than the
processors, such as input/output interfaces 10, may be
configured to operate 1n a bus-master mode. Such devices
may then access physical addresses directly through their
network interfaces NI, unassisted by a processor, 1.e. the
access requests would be unseen by the firewall devices FW
of the processors, and would not be controllable. In such
circumstances, resource contents of the system-on-chip may
be made accessible to an external rogue device connected to
a master 10 interface.

In order to control such access requests, the network
interfaces NI of master devices, as shown in FIG. 2 for
device 10, may be provided with respective firewall devices
FW'. The firewall devices FW' may be a simplified version
of the previously described firewall devices FW 1n that their
access control tables do not use virtual machine identifiers
VMID, 1.e. they only use the physical address conveyed on
the AXI bus as a search key. In all other respects the devices
FW' may be similar to devices FW.

In an exemplary configuration where the processor fire-
wall devices FW have entries for granting access from
specific virtual machines to specific physical address spaces
(meaning that access 1s denied to those address spaces from
anything else than the specified virtual machines), the tables
of the firewall devices FW' may replicate those address
spaces, thus meaning that access 1s denied to them from the
respective master devices. In such a configuration, all the
firewall tables (FW and FW') may contain the same physical
addresses, whereby their management would be particularly
simple and systematic for the hypervisor.

In another exemplary configuration, the tables of the
devices FW' may contain entries granting access to specific
address spaces, wherein access 1s denied by default. Such a
configuration may be useful 1n situations where the master
devices are known to have access to physical address spaces
dedicated to them.

The described use and content of the access control rules
are exemplary. Many alternatives and variations will appear
to those skilled in the art as to the definition of address
ranges, the content of the access control rules, and the
interpretation of the rules or the absence of rules. In simple
situations, the tables may not need to contain rules specifi-
cally: the rule to apply may then be based on the table
returning a hit or a miss. For instance, full access 1s granted
it the table returns a hit, and access 1s denied if the table
returns a miss.

What 1s claimed 1s:

1. A method for controlling access of a processor to a
resource, wherein the processor has an mstruction set includ-
ing a virtualization extension, the method comprising:

executing a resource access instruction by the processor

using the virtualization extension, the resource access
instruction conveying a virtual address and a virtual
machine 1dentifier;

translating the virtual address to a physical address based

upon the virtual machine identifier, the physical address
comprising an actual physical address for accessing the
resource without further translation:

looking-up an access control rule table using the physical

address as a search key, each entry of the access control

rule table including a virtual machine i1dentifier; and
controlling access to the resource based on an output of

the access control rule table and a match between the

10

15

20

25

30

35

40

45

50

55

60

65

8

virtual machine identifier returned by the access control
rule table and the virtual machine identifier conveyed in
the resource access instruction, wherein controlling
access comprises granting access to the resource if the
access control rule table returns no entry.

2. The method of claim 1, wherein controlling access
comprises denying access by i1gnoring the resource access
instruction.

3. The method of claim 2, wherein denying access com-
prises invalidating content of a cache memory of the pro-
CESSOL.

4. The method of claim 1, wherein the resource and the
processor are connected through a network-on-chip (NoC),
and wherein looking-up the access control rule table and
controlling access are performed in a network interface
configured to couple the processor to the network-on-chip.

5. A method for controlling access to a resource by a
processor having an mstruction set including a virtualization
extension, the method comprising:

executing a resource access 1nstruction from the processor

based upon the virtualization extension, the resource
access 1nstruction comprising a virtual address and a
virtual machine 1dentifier;

translating the virtual address to a physical address based

upon the virtual machine 1dentifier, the physical address
comprising an actual physical address for accessing the
resource without further translation;
looking-up a stored virtual machine identifier in an access
control rule table based upon the physical address; and

controlling access to the resource based upon a match
between the virtual machine identifier stored in the
access control rule table and the virtual machine i1den-
tifier 1n the resource access instruction, wherein con-
trolling access comprises granting access to the
resource 11 there 1s no stored virtual machine 1dentifier
corresponding to the physical address.

6. The method of claim 5, wherein controlling access
comprises denying access by 1gnoring the resource access
instruction.

7. The method of claim 6, wherein denying access com-
prises invalidating content of a cache memory of the pro-
CESSOT.

8. The method of claim 5, wherein the resource and the
processor are connected through a network-on-chip (NoC),
and wherein looking-up the stored virtual machine 1dentifier
in an access control rule table and controlling access are
performed 1n a network interface configured to couple the
processor to the network-on-chip.

9. An mtegrated circuit (IC) comprising:

a network-on-chip;

a resource coupled to the network-on-chip;

at least one processor comprising a virtual address to

physical address translation table and an 1nstruction set
including a virtualization extension, the execution of a
resource access instruction by the at least one processor

using the virtualization extension producing a virtual
machine 1dentifier stored in the wvirtual address to
physical address translation table with a virtual address,
the physical address comprising an actual physical
address for accessing the resource without translation;

a network interface coupling the at least one processor to
the network-on-chip for accessing the resource;

an access control rule table having an mput to receive a
physical address output by the virtual address to physi-
cal address translation table as a search key and a



US 9,519,596 B2

9

corresponding virtual machine identifier, each entry of
the access control rule table including a virtual machine
identifier; and

access control logic coupled to an output of the access

control rule table and configured to control access to
the resource at a level of the network interface based on
the output of the access control rule table and a match
between the virtual machine i1dentifier returned by the
virtual address to physical address table and the virtual
machine identifier mput to the control rule table,
wherein said access control logic 1s configured to
control access by granting access to the resource if the
access control rule table returns no entry.

10. The IC of claim 9, wherein the at least one processor
comprises a plurality of processors each coupled to the
network-on-chip through a respective network interface; and
turther comprising further access control logic and a further
access control rule table for each respective network inter-
face.

11. The IC of claim 9, further comprising:

a master device;

a further network interface coupling the master device to

the network-on-chip;

an auxiliary access control rule table having a search key

iput to receive a current physical address from the
master device; and

further access control logic coupled to an output of the

auxiliary rule table and configured to control access to
the resource at the level of the network interface based
on the output of the auxiliary rule table.

% x *H % o

10

15

20

25

30

10



	Front Page
	Drawings
	Specification
	Claims

