

US009518252B2

US 9,518,252 B2

Dec. 13, 2016

(12) United States Patent

Grallert et al.

USES THEREOF

(10) Patent No.:

(56)

(45) Date of Patent:

References Cited

LISTERIA BACTERIOPHAGE P825 AND

Inventors: Holger Grallert, Weilheim (DE); Julia Lorenz, Regensburg (DE); Anna Scherzinger, Bernried (DE)

(73) Assignee: **DSM IP ASSETS B.V.**, Heerlen (NL)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 97 days.

(21) Appl. No.: 14/119,811

(22) PCT Filed: May 29, 2012

(86) PCT No.: PCT/EP2012/002270

§ 371 (c)(1),

(2), (4) Date: Sep. 30, 2014

(87) PCT Pub. No.: WO2012/159774

PCT Pub. Date: Nov. 29, 2012

(65) Prior Publication Data

US 2015/0037284 A1 Feb. 5, 2015

(30) Foreign Application Priority Data

(51)	Int. Cl.	
, ,	C12N 7/00	(2006.01)
	A01N 63/00	(2006.01)
	A61K 35/76	(2015.01)
	C07K 14/005	(2006.01)
	C07K 16/40	(2006.01)
	C12N 9/36	(2006.01)
	C12Q 1/18	(2006.01)
	G01N 33/569	(2006.01)

(52) **U.S. Cl.**

(58) Field of Classification Search

None

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,322,783	B1 *	11/2001	Takahashi A23L 3/3571
2004/0020250	A 1 *	2/2004	424/543 Sulakvelidze A01N 63/00
2004/0029230	Al	2/2004	435/235.1
2004/0223954	A1*	11/2004	Bruessow A23K 1/17
2009/0246336	A1*	10/2009	424/93.6 Burnett A23L 3/3571
			426/326

FOREIGN PATENT DOCUMENTS

WO 2010/020657 2/2010

OTHER PUBLICATIONS

Loessner et al., Applied and Environmental Microbiology, Jun. 1990, 56(6):1912-1918.*

International Search Report for PCT/EP2012/002270 Mailed September 26, 2012.

Van Der Mee-Marquet et al., "Evaluation of Seven Experimental Phages for Inclusion in the International Phage Set for the Epidemiological Typing of Listeria Monocytogens," Applied and Environmental Microbiology, vol. 63, No. 9, pp. 3374-3377, (1997). Carlton et al., "Bacteriophage P100 for Control of Listeria Monocytogenes in Foods: Genome Sequence, Bioinformatic Analyses, Oral Toxicity Study, and Application," Regulatory Toxicology and Pharmacology,vol. 43, No. 3, pp. 301-312, (Dec. 1, 2005). Klumpp et al., "The Terminally Redundant, Nonpermuted Genome of Listeria Bacteriophage A511: A Model for the SPO1-Like Myoviruses of Gram-Positive Bacteria," Journal of Bacteriology, vol. 190, No. 17, pp. 5753-5765, (Sep. 2008).

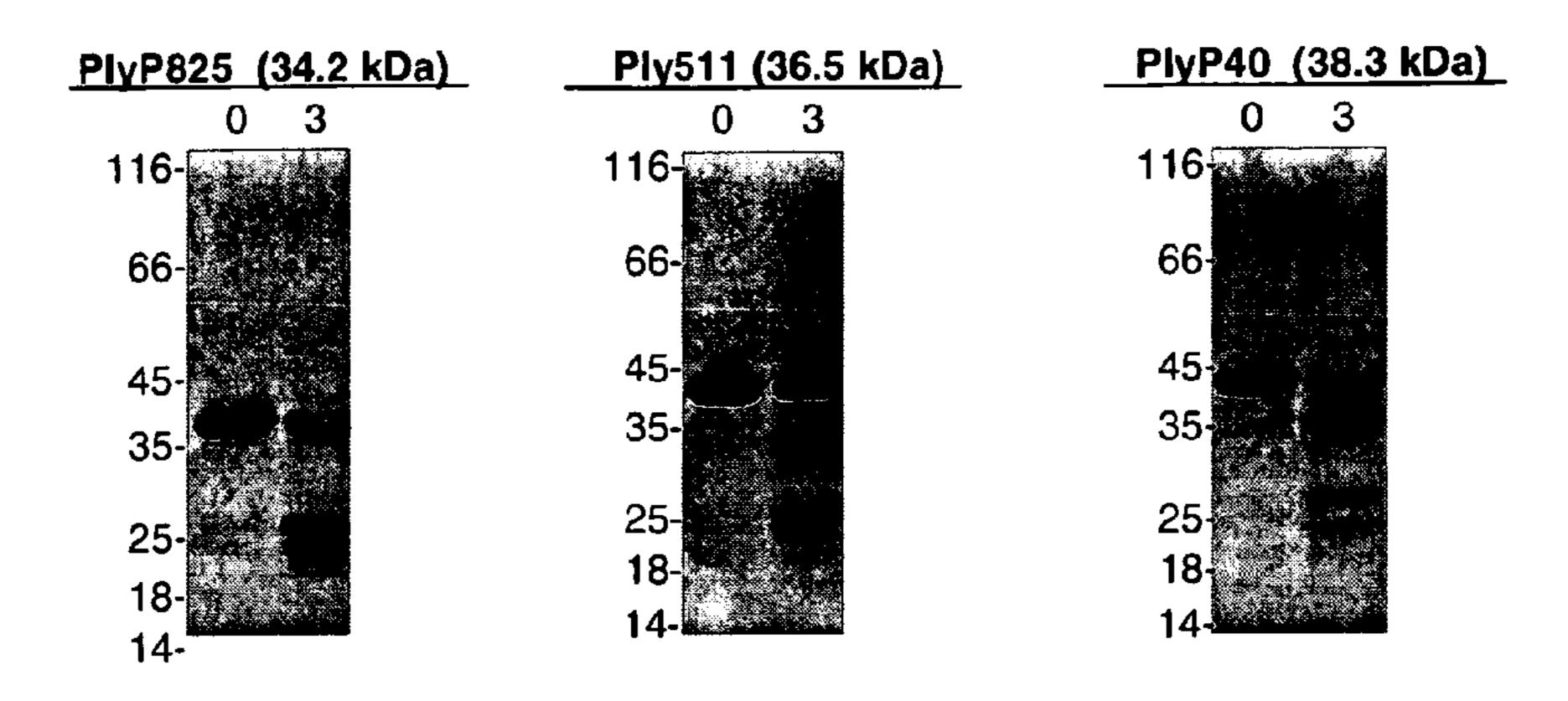
Gaeng et al., "Gene Cloning and Expression and Secretion of Listeria Monocytogenes Bacteriophage-Lytic Enzymes in Lactococcus Lactis," Applied and Environmental Microbiology, vol. 66, No. 7, pp. 2951-2958, (Jul. 1, 2000).

Borysowski et al., "Bacteriophage Endolysins As a Novel Class of Antibacterial Agents," Experimental Biology and Medicine, vol. 231, No. 4, pp. 366-377, (Apr. 1, 2006).

Guenther et al., "Virulent Bacteriophage for Efficient Biocontrol of Listeria Monocytogenes in Ready-To-Eat Foods," Applied and Environmental Microbiology, vol. 75, No. 1, pp. 93-100, (Jan. 1, 2009).

Hagens et al., "Application of Bacteriophages for Detection and Control of Foodborne Pathogens," Applied Microbiology and Biotechnology, vol. 76, No. 3, pp. 513-519 (Jun. 7, 2007).

* cited by examiner


Primary Examiner — Nicole Kinsey White (74) Attorney, Agent, or Firm — McBee Moore Woodward & Vanik IP, LLC

(57) ABSTRACT

The present invention relates to a novel *Listeria* bacterio-phage designated ProCC P825. In particular, the present invention relates to the endolysin PlyP825 encoded by the novel phage ProCC P825 and uses of the novel endolysin PlyP825 for controlling *Listeria* contamination and infection.

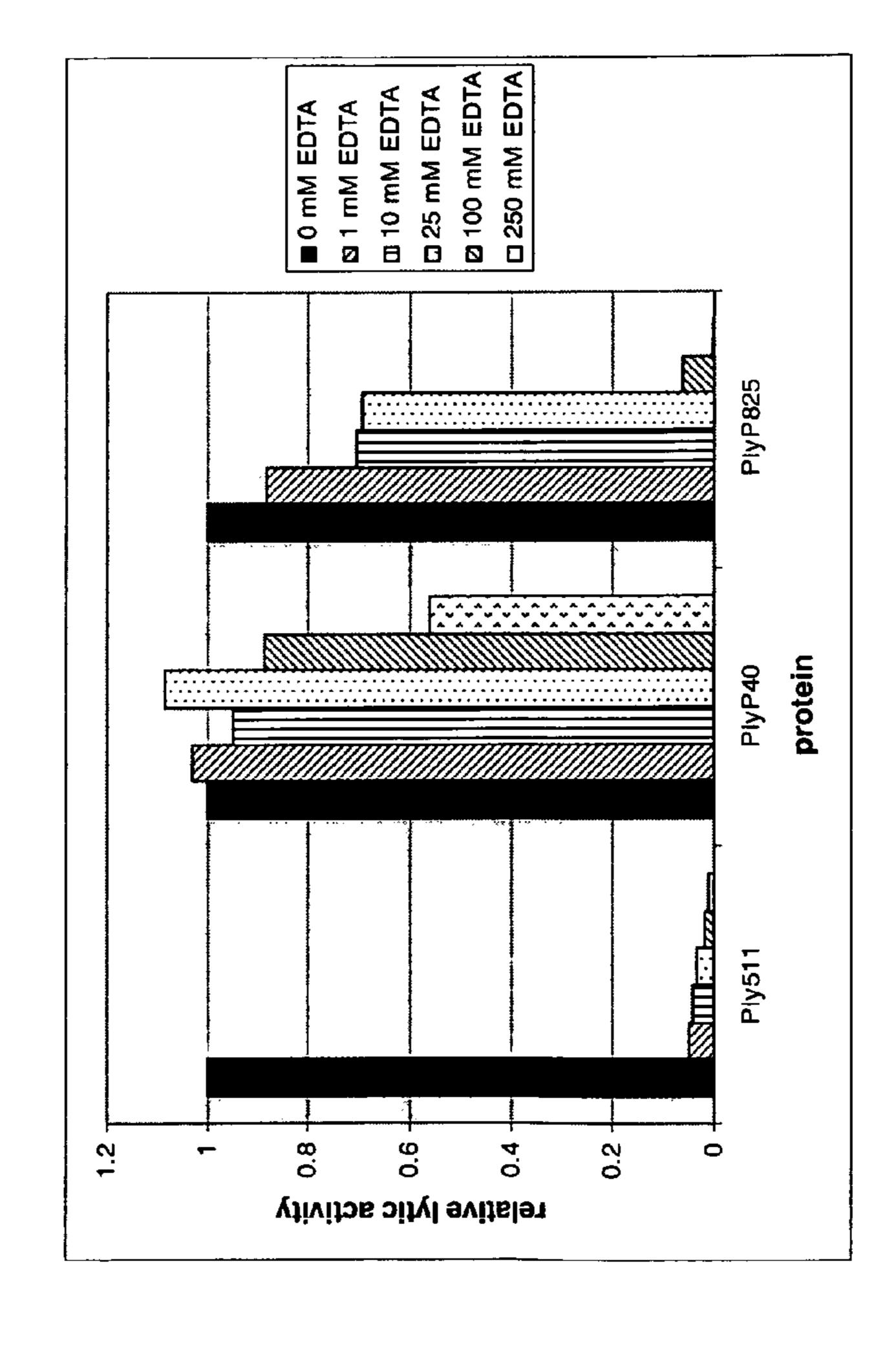
14 Claims, 8 Drawing Sheets

Figure 1

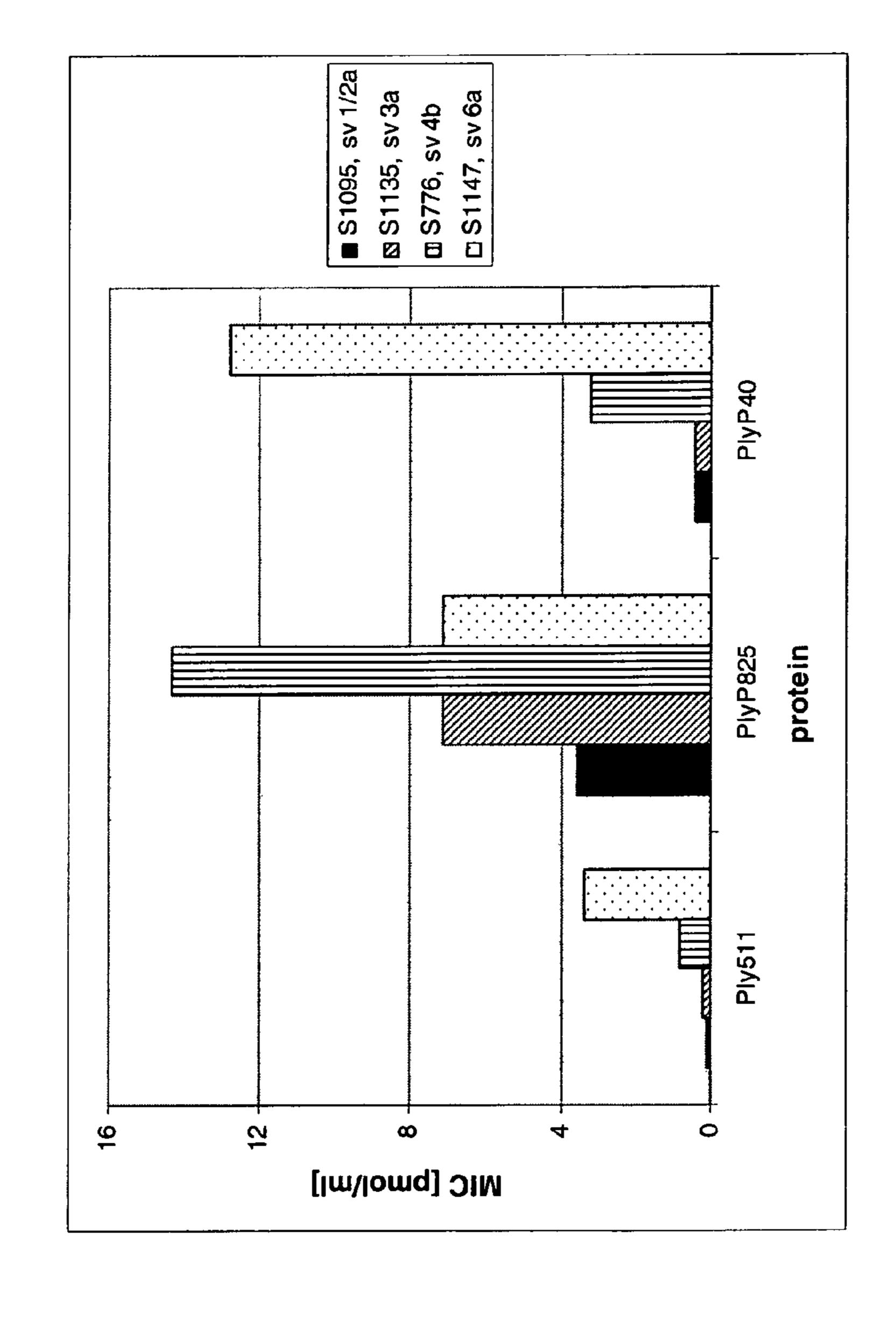


6,0013 (A) (A) (A) 0,032 0,032 6100,0 **†**900'0 6,0013 **†900'0** 0,032 \$900'0 E100'0 MBC 0,032 91,0 \$00,00 \$100,0 0,032 0,0013 **†900**'0 0,032 91,0 α 0 ന log reduction

igure 2


4 & 9 8 4 - 0 8 5 4 5 0 8 6 6 0

log reduction



rigure 6 relative lytic activity

0.200 300 400 500

igure 7

LISTERIA BACTERIOPHAGE P825 AND USES THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a §371 National Stage Application of PCT/EP2012/002270, filed May 29, 2012, which claims priority to European Application No. 11004348.6, filed May 26, 2011.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a novel *Listeria* bacteriophage designated ProCC P825. In particular, the present invention relates to the endolysin PlyP825 encoded by the novel phage ProCC P825 and uses of the novel endolysin PlyP825 for controlling *Listeria* contamination and infection.

Description of Related Art

The gram-positive bacterium *Listeria monocytogenes* is a bacterial pathogen which is known as the causative organism in several outbreaks of food-borne disease. Listeriosis is 25 a life-threatening infection of humans worldwide which is caused by *Listeria monocytogenes* and which is characterized by a variety of symptoms and conditions, including diarrhea, abortion and encephalitis. In industrialized countries, high mortality is associated with listeriosis following 30 *Listeria monocytogenes* food contamination. In humans, the prevalence of listeriosis has risen significantly since the 1980s, resulting in intensified surveillance of *Listeria monocytogenes* in food industry. This contributed to a decrease of human listeriosis cases in the last two decades (McLauchlin 35 1987, Oevermann et al. 2008). However, its prevalence has again increased in the last few years (Gillespie et al. 2006, Goulet et al. 2008, Gillespie et al. 2009).

The species *Listeria monocytogenes* encompasses numerous strains and the genetic diversity amongst them is high 40 (Doumith et al. 2004). Various strains have been implicated in both human and animal disease, and current surveillance schemes for foods are based on the assumption that all *Listeria monocytogenes* isolates are potentially pathogenic, resulting in costly recalls in food industry (Oevermann et al. 45 2010).

While listeriosis is greatly aided by early administration of antibiotics with rapid bactericidal activity against *Listeria monocytogenes*, research to improve food safety is directed to exploring novel technologies such as the use of bacterio- 50 phage for specific killing of bacteria.

Bacteriophages are viruses that infect bacteria. They are obligate intracellular parasites and lack their own metabolism. Phages are the natural enemies of bacteria. They are host-specific in that they infect specific bacterial species or 55 even specific strains (Hagens and Loessner 2007). There are a few exceptions like *Listeria* bacteriophage A511, which can infect and kill bacteria within an entire genus. The extreme specificity of phages renders them ideal candidates for applications designed to increase food safety. Phages can 60 be used for biocontrol of bacteria without interfering with the natural microflora.

Endolysins from *Listeria* bacteriophages are promising tools for detection and control of *Listeria* contamination and infection. These proteins have a modular organization, 65 which is characterized by an N-terminal localized enzymatically active domain (EAD), which contributes lytic activity,

2

and a C-terminal localized cell wall binding domain (CBD), which targets the lysin to its substrate.

It is an object of the present invention to provide a novel *Listeria* bacteriophage and novel endolysins against *Listeria*, which exhibit improved properties over known *Listeria* bacteriophages and known endolysins against *Listeria*.

SUMMARY

The present invention provides a novel *Listeria* bacterio-phage designated ProCC P825, which has been deposited at DSMZ, Braunschweig, Germany, under international deposit number DSM 23783 in accordance with the Budapest treaty for deposit of cell cultures. In the present invention, the novel bacteriophage "ProCC P825" is simply named "P825". Therefore, whenever reference is made herein to "P825", the novel bacteriophage "ProCC P825" as deposited at DSMZ, Braunschweig, Germany, under deposit number DSM 23783 is meant.

The present invention provides the novel *Listeria* bacteriophage designated ProCC P825 and a novel endolysin designated PlyP825, which is encoded by the novel *Listeria* bacteriophage P825. The novel endolysin designated PlyP825 is encoded by the nucleic acid sequence shown in SEQ ID NO: 1, which comprises 945 nucleotides. The corresponding amino acid sequence of PlyP825 is set forth in SEQ ID NO: 2 and comprises 315 amino acid residues accordingly. The novel endolysin PlyP825 is particularly useful in the control of *Listeria* contamination and infection.

Aspects of the invention are:

- 1. A bacteriophage capable of lysing *Listeria* serovars 1/2, 3, 4, 5, and 6.
- cytogenes in food industry. This contributed to a decrease of human listeriosis cases in the last two decades (McLauchlin 1987, Oevermann et al. 2008). However, its prevalence has again increased in the last few years (Gillespie et al. 2006, Goulet et al. 2008, Gillespie et al. 2009).

 The species Listeria monocytogenes encompasses numerous strains and the genetic diversity amongst them is high 40

 2. The bacteriophage of item 1, wherein the bacteriophage has a genome (i) comprising the DNA sequence of SEQ ID NO: 7; (ii) having at least 90% or 95% sequence identity with the DNA sequence of the genome of bacteriophage ProCC P825 deposited under accession No. DSM 23783.
 - 3. A nucleic acid molecule comprising a polynucleotide selected from the group consisting of:
 - (a) a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2;
 - (b) a polynucleotide encoding a fragment, analog or functional derivative of a polypeptide encoded by the polynucleotide of (a), wherein said fragment, analog or functional derivative has endolysin activity;
 - (c) a polynucleotide which is at least 75% identical to the polynucleotide of (a), and which encodes a polypeptide having endolysin activity;
 - (d) a polynucleotide encoding a polypeptide having an amino acid sequence that is at least 75% identical to the amino acid sequence of SEQ ID NO: 2 and having endolysin activity;
 - (e) a polynucleotide which hybridizes under stringent conditions to the polynucleotide of any one of (a) to (d);
 - (f) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1;
 - (g) a polynucleotide which is at least 75% identical to the nucleotide sequence of SEQ ID NO: 1 and which encodes a polypeptide having endolysin activity;
 - (h) a polynucleotide comprising part of the nucleotide sequence of (f) and which encodes a fragment, analog or functional derivative of the polypeptide having the amino acid sequence of SEQ ID NO: 2, wherein said fragment, analog or functional derivative has endolysin activity; and

- (i) a polynucleotide that is the complement of the full length of a polynucleotide of any of (a) to (h).
- 4. A vector comprising the nucleic acid molecule of item 3. 5. A host cell transformed or transfected with the nucleic acid molecule of item 3, or the vector of item 4.
- 6. The host cell of item 5, containing a polypeptide expressed from the nucleic acid molecule of item 3, or from the vector of item 4.
- 7. A method of making a polypeptide encoded by the nucleic acid molecule of item 3, comprising culturing the host cell 10 of item 5 under conditions such that the polypeptide encoded by the nucleic acid molecule of item 3 is expressed, and recovering the polypeptide encoded by said nucleic acid molecule.
- 8. A polypeptide encoded by the nucleic acid molecule of item 3, or obtainable by the method of item 7.
- 9. An endolysin protein obtainable from (i) the bacteriophage of item 1 or 2, or (ii) bacteriophage ProCC P825 deposited under accession No. DSM 23783, or a fragment, 20 analog or functional derivative thereof having endolysin activity.
- 10. A chimeric lysin protein comprising:
- (i) the polypeptide of item 8 or the endolysin protein of item 9 and a heterologous protein, wherein the chimeric lysin 25 protein has lysin activity; or
- (ii) the polypeptide of item 8 or the endolysin protein of item 9, wherein the enzymatically active domain (EAD) of the polypeptide of item 8 or the endolysin protein of item 9 is substituted with an EAD of a heterologous lysin protein, 30 wherein the chimeric lysin has lysin activity.
- 11. A composition, preferably a pharmaceutical composition or a disinfecting composition, comprising (i) the bacteriophage of item 1 or 2, (ii) the nucleic acid molecule of item 3, (iii) the vector of item 4, (iv) the host cell of item 5 or 6, 35 (v) the polypeptide of item 8, (vi) the endolysin protein of item 9, or (vii) the chimeric lysin of item 10.
- 12. A solution, preferably a disinfecting solution, comprising (i) the bacteriophage of item 1 or 2, (ii) the nucleic acid molecule of item 3, (iii) the vector of item 4, (iv) the host cell 40 pH. of item 5 or 6, (v) the polypeptide of item 8, (vi) the endolysin protein of item 9, or (vii) the chimeric lysin of item 10.
- 13. A method for controlling *Listeria* contamination, preferably for sanitizing and/or disinfecting Listeria contamina- 45 tion, comprising applying the composition according to item 11 or the solution of item 12 to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method.
- 14. Use of (i) the bacteriophage of item 1 or 2, (ii) the 50 nucleic acid molecule of item 3, (iii) the vector of item 4, (iv) the host cell of item 5 or 6, (v) the polypeptide of item 8, (vi) the endolysin protein of item 9, or (vii) the chimeric lysin of item 10 in a method for controlling *Listeria* contamination, preferably for sanitizing and/or disinfecting Listeria con- 55 tamination, with the proviso that the method is not a therapeutic method.
- 15. The bacteriophage of item 1 or 2, the nucleic acid molecule of item 3, the vector of item 4, the host cell of item 5 or 6, the polypeptide of item 8, the endolysin protein of 60 item 9, or the chimeric lysin of item 10 for use in the treatment and/or prevention of a *Listeria* infection.
- 16. A kit comprising (i) the bacteriophage of item 1 or 2, (ii) the nucleic acid molecule of item 3, (iii) the vector of item 4, (iv) the host cell of item 5 or 6, (v) the polypeptide of item 65 8, (vi) the endolysin protein of item 9, or (vii) the chimeric lysin of item 10.

- 17. An antibody or fragment thereof that binds specifically to the polypeptide of item 8, the endolysin protein of item 9, or the chimeric lysin protein of item 10.
- 18. A nucleic acid molecule comprising the DNA sequence of the genome of the bacteriophage of item 1 or 2.
- 19. A product comprising (i) the bacteriophage of item 1 or 2, (ii) the polypeptide of item 8, (iii) the endolysin protein of item 9, or (iv) the chimeric lysin of item 10.
- 20. The product of item 19, which is a food product, preferably a dairy product.
- 21. A bacteriophage having lytic activity against *Listeria* serovar 3 obtainable by (a) plating a sample containing bacteriophage and *Listeria* bacteria serovar 3 to obtain plaques, and (b) purifying the phage contained within the one or more plaques.
- 22. A bacteriophage, which has lytic activity against *Listeria* serovar 3.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 shows trypsin digestion of endolysins PlyP825, Ply511 and PlyP40. Aliquots were analyzed at 0 and 3 min. The marker is shown in kDa. Analysis was performed on a 4-12% SDS-Gel (NuPage Novex, Invitrogen).
- FIG. 2 shows MBC (minimum bactericidal concentration) testing of endolysins PlyP825, Ply511 and PlyP40 in buffer pH 6 against Listeria monocytogenes EGDe sv 1/2a and Listeria innocua WSLC2011 sv 6a. Buffer: 20 mM sodium phosphate, 50 mM sodium chloride, 0.05% Tween pH 6.
- FIG. 3 shows MBC testing of endolysins PlyP825, Ply511 and PlyP40 in milk 1.5% fat against *Listeria monocytogenes* EGDe sv 1/2a and Listeria innocua WSLC2011 sv 6a. Testing was performed with 20 µg/ml endolysin.
- FIG. 4 shows MBC testing of endolysins PlyP825, Ply511 and PlyP40 in milk 3.5% fat against *Listeria monocytogenes* EGDe sv 1/2a. Testing was performed with 20 μg/ml endolysin.
- FIG. 5 shows a comparison of the relative lytic activity of endolysins Ply511, PlyP40, and PlyP825 as a function of the
- FIG. 6 shows a comparison of the relative lytic activity of endolysins Ply511, PlyP40, and PlyP825 as a function of the salt concentration.
- FIG. 7 shows a comparison of the relative lytic activity of endolysins Ply511, PlyP40, and PlyP825 as a function of the EDTA concentration.
- FIG. 8 shows a comparison of the MIC of endolysins Ply511, PlyP40, and PlyP825 against *Listeria monocyto*genes ProCC S1095 sv 1/2a, Listeria monocytogenes ProCC S1135 sv 3a, Listeria monocytogenes ProCC S776 sv 4b, and Listeria innocua ProCC S1147 sv 6a.

DETAILED DESCRIPTION OF A PREFERRED **EMBODIMENT**

Bacteriophage-encoded endolysins are highly active enzymes, which hydrolyze bacterial cell walls. These phageencoded cell wall lytic enzymes are synthesized late during virus replication and mediate the release of progeny virions. Endolysins can be used to lyse *Listeria* cells in various applications including *Listeria* contamination and infection. Endolysins can also be used to lyse *Listeria* cells simply to recover nucleic acids or cellular protein for detection or differentiation.

The novel *Listeria*-specific bacteriophage ProCC P825 ("P825") provided by the present invention has been deposited internationally on Jul. 14, 2010 at the DSMZ—

Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany, under international deposit accession No. DSM No. 23783 in accordance with the Budapest treaty concerning deposit of cell cultures. The address of DSMZ is Inhoffenstr. 7B, 38124 Braunschweig, 5 Germany.

The name and address of the depositor of the novel bacteriophage P825 is as follows: Hyglos Invest GmbH, Am Neuland 1, 82347 Bernried, Germany. Evidence is provided by a separate document enclosed with this application that 10 the depositor Hyglos Invest GmbH, Bernried, Germany, has authorized the applicant to refer to the deposited biological material in the present application, and has given his unreserved and irrevocable consent to the deposited material being made available to the public (in accordance with, for example, Rule 33 EPC). In addition, said separate document provides evidence that the depositor Hyglos Invest GmbH, Bernried, Germany, has given his consent that the applicant makes use of the so-called "expert solution" (in accordance with, for example, Rule 32 EPC).

The novel *Listeria*-specific bacteriophages provided by the present invention are capable of lysing Listeria serovars 1/2, 3, 4, 5 and 6. Thus, bacteriophages according to the present invention are broad host range bacteriophages. Importantly, these novel phages are capable of lysing *List*- 25 eria serovar 3, which is one of the clinically relevant Listeria serovars. Therefore, bacteriophages of the present invention are in particular those which are capable of lysing *Listeria* serovar 3. This activity is unique to the novel bacteriophages provided by the present invention. *Listeria*-specific bacte- 30 riophages described in the art do not exhibit this specific property. The novel bacteriophages provided by the present invention are strictly lytic and therefore invariably lethal to a Listeria bacterial cell after infection. The lytic activity comes from the endolysin encoded by the novel phages 35 capable of lysing *Listeria* serovars 1/2, 3, 4, 5 and 6. Therefore, the endolysin encoded by the novel bacteriophages of the present invention can be used for controlling Listeria contamination and infection. The endolysins encoded by the novel bacteriophages comprise an EAD 40 (enzymatically active domain), which contributes for the lytic activity of the endolysin, and a CBD (cell wall binding domain), which targets the lysin to its substrate.

In various embodiments, a novel *Listeria*-specific bacteriophage provided by the present invention is a non-modified bacteriophage capable of lysing *Listeria* serovars 1/2, 3, 4, 5 and 6, in particular a non-modified bacteriophage capable of lysing *Listeria* serovar 3. As used herein, a non-modified bacteriophage is a wild-type bacteriophage.

The novel *Listeria* bacteriophage P825 is capable of 50 lysing *Listeria* serovars 1/2, 3, 4, 5 and 6. Importantly, phage P825 is capable of lysing *Listeria* serovar 3, which is one of the clinically relevant *Listeria* serovars. This activity is unique to the novel bacteriophage P825. Bacteriophages described in the art do not exhibit this specific property. The 55 novel *Listeria* bacteriophage P825 is strictly lytic and therefore invariably lethal to a *Listeria* bacterial cell after infection. The lytic activity comes from the endolysin PlyP825 encoded by the phage P825. Therefore, PlyP825 can be used for controlling *Listeria* contamination and infection. 60 PlyP825 comprises an EAD (enzymatically active domain), which contributes for the lytic activity of the endolysin, and a CBD (cell wall binding domain), which targets the lysin to its substrate. The nucleotide and amino acid sequence of the PlyP825 EAD are shown in SEQ ID NOs: 3 and 4, respec- 65 tively. The nucleic acid sequence encoding the PlyP825 EAD comprises nucleotides 1 to 426 of SEQ ID NO: 1. The

6

amino acid sequence of the PlyP825 EAD comprises amino acid residues 1 (M1) to 142 (E142) of SEQ ID NO: 2. In the present invention, the EAD of SEQ ID NO: 4 may also be called "the lytic domain" of the PlyP825 endolysin of SEQ ID NO: 2.

The nucleotide and amino acid sequence of the PlyP825 CBD are shown in SEQ ID NOs: 5 and 6, respectively. The nucleic acid sequence encoding the PlyP825 CBD comprises nucleotides 487 to 945 of SEQ ID NO: 1. The amino acid sequence of the PlyP825 CBD comprises amino acid residues 163 (G163) to 315 (N315) of SEQ ID NO: 2. In the present invention, the CBD of SEQ ID NO: 4 may also be called "the cell wall binding domain" of the PlyP825 endolysin of SEQ ID NO: 2.

The nucleotide sequence of the genome of phage P825 is depicted in SEQ ID NO: 7, and contains 66,849 nucleotides, including the stop codon.

Lytic Activity of Phages of the Present Invention

The phages provided by the present invention exhibit lytic activity against *Listeria* bacteria. As demonstrated by the inventors, phage P825 completely inhibited growth of *Listeria monocytogenes* strains. Phage P825 not only inhibited growth but actually reduced *Listeria* titers. As confirmed by enrichment studies, applying phage P825 completely eradicated *Listeria* bacteria. The lysis spectrum of phage P825 has been shown to be consistent with the host specificity provided by the tail spike protein of phage P825 responsible for receptor binding on the *Listeria* cell surface.

The present invention provides bacteriophages capable of lysing *Listeria* serovars 1/2, 3, 4, 5, and 6. A preferred phage is phage P825. The present invention also provides phages that are capable of lysing *Listeria* serovars 1/2, 3, 4, 5, 6 and 7. A preferred phage is phage P825. In various embodiments, a phage according to the present invention is capable of specifically lysing *Listeria* serovar 3. A preferred phage is phage P825.

As described above, the phages provided by the present invention exhibit lytic activity against *Listeria* bacteria, i.e., they have the activity of lysing *Listeria* bacteria, in particular *Listeria* serovars 1/2, 3, 4, 5, 6 and 7, in particular *Listeria* serovar 3. In the context of the present invention, the terms "exhibiting lytic activity against Listeria bacteria", "having lytic activity against *Listeria* bacteria", "having the activity of lysing *Listeria* bacteria" and "being capable of lysing *Listeria* bacteria" may be used interchangeably. The present invention provides a bacteriophage capable of lysing Listeria bacteria, preferably Listeria monocytogenes, wherein the bacteriophage has a genome (i) comprising the DNA sequence of SEQ ID NO: 7; (ii) having at least 90% or 95% sequence identity with the DNA sequence of SEQ ID NO: 7; or (iii) having at least 90% or 95% sequence identity with the DNA sequence of the genome of bacteriophage ProCC P825 deposited under accession No. DSM 23783. In various embodiments, the phage provided by the present invention is capable of lysing any one of the *Listeria* species described herein. In various embodiments, the phage according to the present invention has a genome having at least 96%, 97%, 98%, or 99% sequence identity with the DNA sequence of the genome of bacteriophage ProCC P825 deposited under accession No. DSM 23783. In various embodiments, the phage according to the present invention has a genome having at least 96%, 97%, 98%, or 99% sequence identity with the DNA sequence of SEQ ID NO: 7. Preferably, the phage according to the present invention is bacteriophage ProCC P825 deposited under accession No. DSM 23783.

The present invention provides a nucleic acid molecule comprising the DNA sequence of the genome of a bacteriophage according to the present invention. In various embodiments, the nucleic acid molecule comprises the DNA sequence of SEQ ID NO: 7. In various embodiments, the 5 nucleic acid molecule has at least 90%, 95%, 96%, 97%, 98%, or 99% sequence identity with the DNA sequence of SEQ ID NO: 7. In various embodiments, the nucleic acid molecule has at least 90%, 95%, 96%, 97%, 98%, or 99% sequence identity with the DNA sequence of the genome of 10 bacteriophage ProCC P825 deposited under accession No. DSM 23783. The present invention provides any polypeptide encoded by the nucleic acid molecule of SEQ ID NO: or variants thereof as described herein above.

Lytic Activity of Proteins of the Invention

A major problem of phage endolysins is the proteolytic instability. Until now, two *Listeria* endolysins are known that are not restricted to lyse distinct *Listeria* serovars like Ply500 and Ply118 (Loessner et al., 2002), but are able to lyse several *Listeria* serovars: Ply511 of *Listeria* phage 20 A511 and PlyP40 of *Listeria* phage P40. However, a bacteriophage according to the present invention is capable of lysing all of serovars 1/2, 3, 4, 5, and 6. This property is unique to bacteriophages of the present invention. Thus, bacteriophages according to the present invention are broad 25 host range bacteriophages. Importantly, bacteriophages of the present invention are capable of lysing *Listeria* serovar 3, which is one of the clinically relevant serovars. This activity is not shared by any known *Listeria*-specific bacteriophages.

In order to compare the proteolytic sensitivity of the three endolysins of phages A511, P40, and P825, they were Trypsin-digested in equimolar amounts. Aliquots were retained and analyzed after 0 and 3 min incubation at room less proteolytic degradation sites than Ply511 and PlyP40.

PlyP825 was analyzed for its activity against different *Listeria* strains with serovars 1/2, 3, 4, 5 and 6. Exponential Listeria cells were poured in LB-Top Agar in plates. Onto the solidified agar 2 µg of PlyP825 was spotted. After 40 incubation over night at 30° C. all 22 strains tested were lysed by the endolysin PlyP825 (Table 2). Thus, PlyP825 is a broad range *Listeria* endolysin.

The minimum bactericidal concentrations (MBC) of endolysins PlyP825, Ply511 and PlyP40 in buffer and in 45 preferably the activity of the endolysin of SEQ ID NO: 2. milk were determined and compared. For determining the MBC in buffer pH 6 the endolysin enzymes were incubated with 10⁵ cells/ml of strains *Listeria monocytogenes* EGDe sv 1/2a and *Listeria* innocua WSLC2011 sv 6a in buffer (20) mM Sodium-phosphate, 50 mM sodium chloride, 0.05% 50 Tween 20 pH 6) at 30° C. After 1 h the samples were plated and cell numbers counted. FIG. 2 shows the results: PlyP825 reduces effectively pathogenic and non-pathogenic *Listeria* cells in buffer: 0.032 µg/ml endolysin were sufficient to reduce 4.5 (WSLC2011) or 3.1 (EGDe) orders of magnitude 55 of *Listeria* cells. This is about 0.5 to 1.5 log more than Ply511 and 0.9-1.3 log more than PlyP40 were able to reduce with the same protein concentration.

For determining the MBC in milk the enzymes were incubated with 10⁵ cells/ml of strains Listeria monocytogenes 60 EGDe sv 1/2a and *Listeria* innocua WSLC2011 sv 6a in milk with 1.5% fat at 30° C. After 3 h the samples were plated and cell numbers counted. FIG. 3 shows the results: PlyP825 shows the highest *Listeria* cell reduction in milk. Independent from the test strain PlyP825 reduces 1.4-1.7 orders of 65 magnitude more cells than the other two broad *Listeria* endolysins Ply511 and PlyP40 in milk with 1.5% fat.

Besides the enzymes were incubated with 10⁵ cells/ml of strains Listeria monocytogenes EGDe sv 1/2a in milk with 3.5% fat at 30° C. After 3 h the samples were plated and cell numbers counted. FIG. 4 shows the results: Also in milk with 3.5% fat PlyP825 reduces the highest cell number. PlyP825 Nucleic Acid and Amino Acid Sequences and Variants Thereof

The present invention provides a nucleic acid molecule comprising a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2. The present invention also provides a nucleic acid molecule, which comprises a polynucleotide that is at least 75% or at least 80% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that 15 encodes a polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. The present invention further provides a nucleic acid molecule, which comprises a polynucleotide that is at least 85% or at least 90% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that encodes a polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that encodes a polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Preferably, the said nucleic acid molecule comprises a polynucleotide that is at 30 least 93% or at least 94% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that encodes a polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. More preferably, the said nucleic acid temperature (FIG. 1). As shown in FIG. 1, PlyP825 shows 35 molecule comprises a polynucleotide that is at least 95% or at least 96% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that encodes a polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, and that encodes a polypeptide having endolysin activity,

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 75% or at least 80% identical to the amino acid sequence of SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. The present invention also provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 85% or at least 90% identical to the amino acid sequence of SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. In various embodiments, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 91% or at least 92% identical to the amino acid sequence of SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 93% or at least 94% identical to the amino acid sequence of SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the

endolysin of SEQ ID NO: 2. More preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 95% or at least 96% identical to the amino acid sequence of SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Still more preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 97%, at least 98%, or even 99% identical to the amino acid sequence of 10 comprising a polynucleotide, which hybridizes under strin-SEQ ID NO: 2, and which has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2.

Furthermore, the present invention provides a nucleic acid fragment, analog or functional derivative of a polypeptide encoded by a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2, wherein said fragment, analog or functional derivative has endolysin activity, preferably the activity of the endolysin of SEQ ID 20 NO: 2. Preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a fragment, analog or functional derivative of a polypeptide encoded by the polynucleotide of SEQ ID NO: 1, wherein said fragment, analog or functional derivative has endolysin activity, preferably 25 the activity of the endolysin of SEQ ID NO: 2.

The present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to any one of the polynucleotides described in the three preceding paragraphs. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of the polynucleotides described in the three preceding paragraphs.

comprising a polynucleotide having the nucleotide sequence of SEQ ID NO: 1. The present invention also provides a nucleic acid molecule, which comprises a polynucleotide that is at least 75% or at least 80% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a polypeptide 40 having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. The present invention further provides a nucleic acid molecule, which comprises a polynucleotide that is at least 85% or at least 90% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a 45 polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a 50 polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 93% or at least 94% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a polypeptide 55 having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. More preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 95% or at least 96% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a polypeptide 60 having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to the nucleotide sequence of SEQ ID NO: 1, and that encodes a 65 polypeptide having endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2.

10

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide that is a part of the nucleotide sequence of SEQ ID NO: 1, and that encodes a fragment, analog or functional derivative of the polypeptide having the amino acid sequence of SEQ ID NO: 2, wherein said fragment, analog or functional derivative has endolysin activity, preferably the activity of the endolysin of SEQ ID NO: 2.

The present invention provides a nucleic acid molecule gent conditions to any one of the polynucleotides described in the two preceding paragraphs. Preferably, the present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions molecule comprising a polynucleotide, which encodes a 15 to the polynucleotide of SEQ ID NO: 1. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of the polynucleotides described in the two preceding paragraphs. Preferably the present invention provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of the polynucleotide of SEQ ID NO: 1.

> PlyP825 EAD Nucleic Acid and Amino Acid Sequences and Variants Thereof

The present invention provides a nucleic acid molecule comprising a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4. The present invention also provides a nucleic acid molecule, which comprises a polynucleotide that is at least 75% or at least 80% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. The present invention further provides a nucleic acid molecule, which comprises a polynucleotide The present invention provides a nucleic acid molecule 35 that is at least 85% or at least 90% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. Preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 93% or at least 94% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. More preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 95% or at least 96% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 75% or at least 80% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4. The present invention also provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that

is at least 85% or at least 90% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4. In various embodiments, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence 5 that is at least 91% or at least 92% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4. Preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 10 93% or at least 94% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4. More preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 15 95% or at least 96% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4. Still more preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 20 97%, at least 98%, or even 99% identical to the amino acid sequence of SEQ ID NO: 4, and which has the lytic activity of the EAD of SEQ ID NO: 4.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide, which encodes a 25 fragment, analog or functional derivative of a polypeptide encoded by a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 4, wherein said fragment, analog or functional derivative has the lytic activity of the EAD of SEQ ID NO: 4. Preferably, the said nucleic 30 acid molecule comprises a polynucleotide, which encodes a fragment, analog or functional derivative of a polypeptide encoded by the polynucleotide of SEQ ID NO: 3, wherein said fragment, analog or functional derivative has the lytic activity of the EAD of SEQ ID NO: 4.

The present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to any one of the polynucleotides described in the three preceding paragraphs. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of the polynucleotides described in the three preceding paragraphs.

The present invention provides a nucleic acid molecule comprising a polynucleotide having the nucleotide sequence 45 of SEQ ID NO: 3. The present invention also provides a nucleic acid molecule, which comprises a polynucleotide that is at least 75% or at least 80% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. The 50 present invention further provides a nucleic acid molecule, which comprises a polynucleotide that is at least 85% or at least 90% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. Preferably, the said nucleic acid molecule comprises 60 a polynucleotide that is at least 93% or at least 94% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4. More preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 95% or 65 at least 96% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic

12

activity of the EAD of SEQ ID NO: 4. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to the nucleotide sequence of SEQ ID NO: 3, and that encodes a polypeptide having the lytic activity of the EAD of SEQ ID NO: 4.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide that is a part of the nucleotide sequence of SEQ ID NO: 3, and that encodes a fragment, analog or functional derivative of the polypeptide having the amino acid sequence of SEQ ID NO: 4, wherein said fragment, analog or functional derivative has the lytic activity of the EAD of SEQ ID NO: 4.

The present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to any one of the polynucleotides described in the two preceding paragraphs. Preferably, the present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to the polynucleotide of SEQ ID NO: 3. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of the polynucleotides described in the two preceding paragraphs. Preferably the present invention provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of the polynucleotide of SEQ ID NO: 3.

PlyP825 CBD Nucleic Acid and Amino Acid Sequences and Variants Thereof

The present invention provides a nucleic acid molecule comprising a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6. The present invention also provides a nucleic acid molecule, which 35 comprises a polynucleotide that is at least 75% or at least 80% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. The present invention further provides a nucleic acid molecule, which comprises a polynucleotide that is at least 85% or at least 90% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. Preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 93% or at least 94% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. More preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 95% or at least 96% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 75% or at least 80% identical to the amino acid sequence of SEQ ID NO: 6, and which has the cell wall binding activity 5 of the CBD of SEQ ID NO: 6. The present invention also provides a nucleic acid molecule comprising a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 85% or at least 90% identical to the amino acid sequence of SEQ ID NO: 6, and which has the 10 cell wall binding activity of the CBD of SEQ ID NO: 6. In various embodiments, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 91% or at least 92% identical to the amino acid sequence of SEQ ID NO: 6, and 15 which has the cell wall binding activity of the CBD of SEQ ID NO: 6. Preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 93% or at least 94% identical to the amino acid sequence of SEQ ID NO: 6, and 20 which has the cell wall binding activity of the CBD of SEQ ID NO: 6. More preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 95% or at least 96% identical to the amino acid sequence of SEQ ID NO: 6, 25 and which has the cell wall binding activity of the CBD of SEQ ID NO: 6. Still more preferably, the said nucleic acid molecule comprises a polynucleotide, which encodes a polypeptide having an amino acid sequence that is at least 97%, at least 98%, or even 99% identical to the amino acid 30 sequence of SEQ ID NO: 6, and which has the cell wall binding activity of the CBD of SEQ ID NO: 6.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide, which encodes a fragment, analog or functional derivative of a polypeptide 35 encoded by a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 6, wherein said fragment, analog or functional derivative has the cell wall binding activity of the CBD of SEQ ID NO: 6. Preferably, the said nucleic acid molecule comprises a polynucleotide, 40 which encodes a fragment, analog or functional derivative of a polypeptide encoded by the polynucleotide of SEQ ID NO: 5, wherein said fragment, analog or functional derivative has the cell wall binding activity of the CBD of SEQ ID NO: 6.

The present invention provides a nucleic acid molecule 45 comprising a polynucleotide, which hybridizes under stringent conditions to any one of the polynucleotides described in the three preceding paragraphs. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of 50 the polynucleotides described in the three preceding paragraphs.

The present invention provides a nucleic acid molecule comprising a polynucleotide having the nucleotide sequence of SEQ ID NO: 5. The present invention also provides a 55 nucleic acid molecule, which comprises a polynucleotide that is at least 75% or at least 80% identical to the nucleotide sequence of SEQ ID NO: 5, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. The present invention further provides a nucleic acid molecule, which comprises a polynucleotide that is at least 85% or at least 90% identical to the nucleotide sequence of SEQ ID NO: 5, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. In various embodiments, the said nucleic acid molecule comprises a polynucleotide that is at least 91% or at least 92% identical to the nucleotide sequence of SEQ ID NO: 5, and

14

that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. Preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 93% or at least 94% identical to the nucleotide sequence of SEQ ID NO: 5, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. More preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 95% or at least 96% identical to the nucleotide sequence of SEQ ID NO: 5, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6. Still more preferably, the said nucleic acid molecule comprises a polynucleotide that is at least 97%, at least 98%, or even at least 99% identical to the nucleotide sequence of SEQ ID NO: 5, and that encodes a polypeptide having the cell wall binding activity of the CBD of SEQ ID NO: 6.

Furthermore, the present invention provides a nucleic acid molecule comprising a polynucleotide that is a part of the nucleotide sequence of SEQ ID NO: 5, and that encodes a fragment, analog or functional derivative of the polypeptide having the amino acid sequence of SEQ ID NO: 6, wherein said fragment, analog or functional derivative has the cell wall binding activity of the CBD of SEQ ID NO: 6.

The present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to any one of the polynucleotides described in the two preceding paragraphs. Preferably, the present invention provides a nucleic acid molecule comprising a polynucleotide, which hybridizes under stringent conditions to the polynucleotide of SEQ ID NO: 5. The present invention also provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of any one of the polynucleotides described in the two preceding paragraphs. Preferably the present invention provides a nucleic acid molecule comprising a polynucleotide that is the complement of the full-length of the polynucleotide of SEQ ID NO: 5.

For a variant polypeptide of the present invention having an amino acid sequence at least, for example, 95% "identical" to the reference amino acid sequence of a reference polypeptide defined by a certain SEQ ID NO, is intended that the amino acid sequence of the variant polypeptide is identical to the reference amino acid sequence, except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid of the reference polypeptide shown in the respective SEQ ID NO. In other words, to obtain a variant polypeptide having an amino acid sequence at least 95% identical to the reference amino acid sequence of a certain reference SEQ ID NO, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the N-terminal or C-terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of a reference SEQ ID NO can be determined conventionally using appropriate computer programs (i.e., sequence alignment programs) known in the art.

As used herein, a nucleic acid molecule of the present invention is DNA or RNA.

Vectors and Host Cells

The present invention provides recombinant vectors containing nucleic acid molecules of the present invention. In various embodiments, provided is a single recombinant vector containing a single nucleic acid molecule of the 5 present invention. In various other embodiments, provided is a single recombinant vector containing several nucleic acid molecules of the present invention. In still other embodiments, provided are several recombinant vectors each containing a single nucleic acid molecule of the present invention. In still further embodiments, provided are several recombinant vectors each containing several nucleic acid molecule of the present invention.

In various embodiments, the nucleic acid molecule or nucleic acid molecules contained in a single or several 15 vectors according to the present invention are operatively linked to an expression control sequence allowing expression of the polynucleotide or polynucleotides in prokaryotic or eukaryotic host cells. Preferably, the expression control sequence is a promoter or a promoter sequence. Suitable 20 promoters are known to the skilled artisan. In various embodiments, the vector is a plasmid. Other suitable vectors will be readily apparent to the skilled artisan. A recombinant vector according to the present invention may also be called expression vector or expression construct.

The expression constructs according to the present invention may further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the EAD and/or CBD of the transcripts expressed by the constructs 30 according to the present invention will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

to the present invention will include at least one selectable marker. Suitable selection markers are known to the skilled artisan.

The present invention provides a method of making a recombinant vector comprising inserting a nucleic acid 40 molecule of the present invention into a vector.

The present invention also provides a method of making a recombinant host cell comprising introducing a nucleic acid molecule or a recombinant vector according to the present invention into a host cell.

The present invention also provides a host cell genetically engineered with a nucleic acid molecule or a recombinant vector according to the present invention. In various embodiments, "genetically engineered" means that the host cell is transformed or transfected with a nucleic acid mol- 50 ecule or a recombinant vector according to the present invention. In various embodiments, the genetically engineered host cell according to the present invention contains a polypeptide expressed from a nucleic acid molecule or from a recombinant vector in accordance with the present 55 invention. Representative examples of appropriate host cells include, but are not limited to, bacterial cells such as E. coli cells, fungal cells such as yeast cells, insect cells such as Drosophila S2 and Spodoptera Sf9 cells, animal cells such as CHO, COS, and HEK293 cells, and plant cells. Appro- 60 priate culture mediums and conditions for host cells of the present invention are known in the art. Proteins/Polypeptides

Recombinant proteins of the present invention can be isolated and purified from a host cell of the present invention 65 containing or expressing the proteins/polypeptides by techniques known in the art including, but not limited to, lysis,

16

chromatography, filtration, and centrifugation. In various embodiments, the isolated and/or purified protein according to the present invention is labeled. Preferably, the label is selected from the group consisting of an enzyme label, a radioisotope, a fluorescent label, and biotin.

A protein of the present invention having lytic activity, preferably the PlyP825 endolysin, can be isolated from the host cell prior to administration in methods of controlling Listeria contamination and infection according to the present invention, or the host cell containing the recombinant protein can be directly applied or administered without prior isolation of the protein having lytic activity. For example, a host bacterium, which produces the PlyP825 endolysin of the present invention can be applied in methods of controlling Listeria contamination and infection according to the present invention where the endolysin would be secreted, for example, into food or foodstuff, onto a surface or in the gut of a subject. The PlyP825 endolysin of the present invention can then attack *Listeria* cells present in such an environment.

The present invention also provides a method of making a polypeptide of the present invention encoded by a nucleic acid molecule of the present invention, wherein the method comprises (i) culturing a genetically engineered host cell of 25 the present invention under conditions such that the polypeptide encoded by a nucleic acid molecule of the present invention is expressed, and (ii) recovering the polypeptide encoded by the nucleic acid molecule. The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For example, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during In various embodiments, the expression vectors according 35 purification, or during subsequent handling and storage of the polypeptide. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides of the present invention for, inter alia, inducing secretion, improving stability and/or facilitating purification are familiar to the ones of ordinary skill and belong to routine techniques in the art. A preferred fusion protein comprises a heterologous region from an immunoglobulin that is useful to stabilize and purify 45 proteins.

> As one of skill in the art will appreciate, polypeptides of the present invention can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins may facilitate purification and may show an increased half-life in vivo.

> For many proteins it is known in the art that one or more amino acids may be deleted from the N-terminus or C-terminus without substantial loss of biological function or activity. Here, biological function/activity includes any function and activity of the proteins of the present invention described herein including, but not limited to, any lytic function/activity and cell wall binding function/activity described herein.

> In the present invention, since the protein of SEQ ID NO: 2 is a member of the endolysin polypeptide family, deletions of C-terminal amino acids up to the Arg (R) residue at position 143 in SEQ ID NO: 2 retains the lytic activity of the endolysin protein, i.e. the lytic activity to Listeria bacterial cells. Accordingly, the present invention provides endolysin polypeptides having one or more residues deleted from the C-terminus of the amino acid sequence of the endolysin protein of SEQ ID NO: 2, up to the Arg residue at position

143 (R143) in the amino acid sequence of SEQ ID NO: 2, and polynucleotides encoding such polypeptides.

The present invention provides polypeptides encoded by the nucleic acid molecules of the present invention. The present invention also provides polypeptides obtainable by 5 methods of making the polypeptides according to the present invention. Therefore, the present invention encompasses and provides each polypeptide that is encoded by any nucleic acid molecule of the present invention. Furthermore, the present invention encompasses and provides each polypep- 10 tide that is obtainable by any method of making the polypeptide according to the present invention. Antibodies

The present invention also provides an antibody or fragment thereof that binds specifically to a polypeptide of the 15 a CBD to the present invention. present invention. Preferably, the antibody specifically binds to the full-length polypeptide having the amino acid sequence of SEQ ID NO: 2, 4 or 6. In various embodiments, the antibody specifically binds to the lytic domain of the endolysin polypeptide having the amino acid sequence of 20 SEQ ID NO: 2, wherein the lytic domain comprises the amino acid sequence of residues 1 (M1) to 142 (E142) of SEQ ID NO: 2. In various embodiments, the antibody specifically binds to the cell wall binding domain of the endolysin polypeptide having the amino acid sequence of 25 SEQ ID NO: 2, wherein the cell wall binding domain comprises the amino acid sequence of residues 163 (G163) to 315 (N315) of SEQ ID NO: 2.

In various embodiments, the antibody of the present invention is selected from the group consisting of a monoclonal antibody, a polyclonal antibody, a chimeric antibody, a Fab fragment, a F(ab'), fragment, and a scFv fragment. In various embodiments, the antibody according to the present invention is labeled. Preferably, the label is selected from the group consisting of an enzyme label, a radioisotope, a 35 fluorescent label, and biotin. The polypeptides of the present invention can be used to raise polyclonal and monoclonal antibodies provided by the present invention. The antibodies of the present invention may be prepared by any of a variety of methods available in the art and known to the skilled 40 artisan.

The antibody fragments provided by the present invention, whether attached to other sequences or not, can also include insertions, deletions, substitutions, or other selected modifications of particular regions or specific amino acids 45 residues, provided the activity of the antibody fragment is not significantly altered or impaired compared to the nonmodified antibody or antibody fragment. These modifications can provide for some additional property, such as to remove/add amino acids capable of disulfide bonding. In 50 any case, antibody fragments according to the present invention must possess a bioactive property, such as specific binding to its cognate antigen.

Functional or active regions of the antibodies or antibody fragments of the present invention may be identified by 55 mutagenesis of a specific region of the protein, followed by expression and testing of the expressed polypeptide. Such methods are readily apparent to a skilled practitioner in the art and can include site-specific mutagenesis of the nucleic acid encoding the antibody or antibody fragment.

Combinations of Proteins of the Invention with Known Listeria-Specific Phages

The present invention provides the combination of a protein of the present invention, preferably an endolysin protein, with one or more other *Listeria*-specific bacterio- 65 phages described in the art. Such combinations can be used for controlling Listeria contamination and/or infection

18

according to the present invention. In various embodiments concerning the combination of a protein of the present invention with one or more *Listeria* bacteriophages known in the art the protein of the present invention is the lytic domain of an endolysin protein according to the present invention. Preferably, the lytic domain of an endolysin protein according to the present invention is an EAD according to the present invention. In various other embodiments concerning the combination of a protein of the present invention with one or more *Listeria* bacteriophages known in the art the protein of the present invention is the cell wall binding domain of an endolysin protein according to the present invention. Preferably, the cell wall binding domain of an endolysin protein according to the present invention is

Combinations of Proteins of the Invention with Known Endolysins

Also provided by the present invention is the combination of a protein of the present invention, preferably an endolysin protein, with one or more endolysins from other *Listeria*specific bacteriophages described in the art. Such combinations can be used for controlling Listeria contamination and/or infection according to the present invention. In various embodiments concerning the combination of a protein of the present invention with one or more endolysins from Listeria bacteriophages known in the art the protein of the present invention is the lytic domain of an endolysin protein according to the present invention. Preferably, the lytic domain of an endolysin protein according to the present invention is an EAD according to the present invention. In various other embodiments concerning the combination of a protein of the present invention with one or more endolysins from *Listeria* bacteriophages known in the art the protein of the present invention is the cell wall binding domain of an endolysin protein according to the present invention. Preferably, the cell wall binding domain of an endolysin protein according to the present invention is a CBD to the present invention.

Combinations of Proteins of the Invention with Known Lytic Domains

The present invention provides the combination of a protein of the present invention, preferably an endolysin protein, with one or more lytic domains of endolysins from other *Listeria*-specific bacteriophages described in the art. Such combinations can be used for controlling *Listeria* contamination and/or infection according to the present invention. Furthermore, based on sequence homology the skilled person is also able to determine the lytic domain of the endolysins encoded by known phages. In various embodiments concerning the combination of a protein of the present invention with one or more lytic domains of endolysins from *Listeria* bacteriophages known in the art the protein of the present invention is the lytic domain of an endolysin protein according to the present invention. Preferably, the lytic domain of an endolysin protein according to the present invention is an EAD according to the present invention. In various other embodiments concerning the combination of a protein of the present invention with one or more lytic domains of endolysins from Listeria bacterio-60 phages known in the art the protein of the present invention is the cell wall binding domain of an endolysin protein according to the present invention. Preferably, the cell wall binding domain of an endolysin protein according to the present invention is a CBD to the present invention.

Also provided by the present invention is the combination of a protein of the present invention, preferably an endolysin protein, with one or more lytic domains of autolysins

described in the art. Autolysins are bacteriolytic enzymes that digest the cell-wall peptidoglycan of the bacteria that produce them. Autolysins are involved in cell wall reconstruction during bacterial cell division. Thus, the present invention provides a protein of the present invention, preferably an endolysin protein, in combination with one or more lytic domains of autolysins. Such combinations can be used for controlling *Listeria* contamination and/or infection according to the present invention.

Also provided by the present invention is the combination 10 of a protein of the present invention, preferably an endolysin protein, with one or more lytic domains of bacteriocins described in the art. Bacteriocins are molecules also produced and secreted by microorganisms. They are antibacterial substances of a proteinaceous nature that are produced 15 by different bacterial species. A subclass of bacteriocins consists of enzymes (proteinaceous toxins) which are produced by bacteria to inhibit the growth of similar or closely related concurrence bacterial strain(s) in their habitat. Many bacteria produce antimicrobial bacteriocin peptides. Thus, 20 the present invention provides a protein of the present invention, preferably an endolysin protein, in combination with one or more lytic domains of bacteriocins. Such combinations can be used for controlling *Listeria* contamination and/or infection according to the present invention. Based 25 on sequence homology the skilled person is able to determine the lytic domain of bacteriocins known in the art.

Also provided by the present invention is the combination of a protein of the present invention, preferably an endolysin protein, with one or more antimicrobial peptides. Antimi- 30 crobial peptides are ubiquitous, gene-encoded natural antibiotics that have gained recent attention in the search for new antimicrobials to combat infectious disease. Antimicrobial peptides generally have a length between 12 and 50 amino acids. The amphipathicity of the antimicrobial pep- 35 tides allows to partition into the membrane lipid bilayer. The ability to associate with membranes is a definitive feature of antimicrobial peptides. Thus, the present invention provides a protein of the present invention, preferably an endolysin protein, in combination with one or more antimicrobial 40 peptides. Such combinations can be used for controlling Listeria contamination and/or infection according to the present invention.

Combinations of Proteins of the Invention with Known Cell Wall Binding Domains

The present invention provides the combination of a protein of the present invention, preferably an endolysin protein, with one or more cell wall binding domains of endolysins from other *Listeria* bacteriophages described in the art. Such combinations can be used for controlling 50 Listeria contamination and/or infection according to the present invention. As for the lytic domain encoded by the endolysins from known phages, based on sequence homology the skilled person is also able to determine the cell wall binding domain of the endolysins encoded by known 55 phages. In various embodiments concerning the combination of a protein of the present invention with one or more cell wall binding domains of endolysins from Listeria bacteriophages known in the art the protein of the present invention is the lytic domain of an endolysin protein accord- 60 ing to the present invention. Preferably, the lytic domain of an endolysin protein according to the present invention is an EAD according to the present invention. In various other embodiments concerning the combination of a protein of the present invention with one or more cell wall binding 65 domains of endolysins from *Listeria* bacteriophages known in the art the protein of the present invention is the cell wall

20

binding domain of an endolysin protein according to the present invention. Preferably, the cell wall binding domain of an endolysin protein according to the present invention is a CBD to the present invention.

Also provided by the present invention is the combination of a protein of the present invention, preferably an endolysin protein, with one or more cell wall binding domains of autolysins known in the art. Thus, the present invention provides a protein of the present invention, preferably an endolysin protein, in combination with one or more cell wall binding domains of autolysins. Such combinations can be used for controlling *Listeria* contamination and/or infection according to the present invention. Based on sequence homology the skilled person is able to determine the cell wall binding domain of autolysins known in the art.

Also provided by the present invention is the combination of a protein of the present invention, preferably an endolysin protein, with one or more cell wall binding domains of bacteriocins described in the art. Thus, the present invention provides a protein of the present invention, preferably an endolysin protein, in combination with one or more cell wall binding domains of bacteriocins. Such combinations can be used for controlling *Listeria* contamination and/or infection according to the present invention. Based on sequence homology the skilled

Chimeric Proteins

The present invention further provides a chimeric protein comprising a protein according to the present invention, preferably an endolysin protein of the present invention, and one or more heterologous proteins. Preferably, the chimeric protein of the present invention has endolysin activity. More preferably, the chimeric protein has the endolysin activity of the polypeptide of SEQ ID NO: 2. In various embodiments, the heterologous protein is a heterologous endolysin protein. In various embodiments, the chimeric protein according to the present invention comprises the lytic domain of an endolysin of the present invention and one or more heterologous proteins, wherein the lytic domain has the lytic activity of the EAD of SEQ ID NO: 4. Preferably, the lytic domain is the lytic domain of the endolysin of SEQ ID NO: 2 or the EAD of SEQ ID NO: 4. In various other embodiments, the chimeric protein according to the present invention comprises the cell wall binding domain of an endolysin of the present invention and one or more heterologous 45 proteins, wherein the cell wall binding domain has the cell wall binding activity of the EAD of SEQ ID NO: 6. Preferably, the cell wall binding domain is the cell wall binding domain of the endolysin of SEQ ID NO: 2 or the CBD of SEQ ID NO: 6.

The present invention also provides a chimeric protein comprising an endolysin protein according to the present invention, wherein a catalytic domain of the endolysin protein is substituted with a catalytic domain of a heterologous endolysin protein, wherein the chimeric protein has endolysin activity. Preferably, such a chimeric protein has the endolysin activity of the polypeptide of SEQ ID NO: 2. In various embodiments, the catalytic domain of the endolysin protein of the present invention is the lytic domain, i.e., the EAD, and the catalytic domain of the heterologous endolysin protein is also its lytic domain. Accordingly, in various embodiments, the present invention provides a chimeric protein comprising an endolysin protein according to the present invention, wherein the lytic domain (i.e., the EAD) is substituted with the lytic domain of a heterologous endolysin protein, wherein the chimeric protein has endolysin activity. Preferably, the chimeric protein has the endolysin activity of the polypeptide of SEQ ID NO: 2. In various

embodiments, the present invention provides a chimeric protein comprising an endolysin protein according to the present invention, wherein the cell wall binding domain (i.e., the CBD) is substituted with the cell wall binding domain of a heterologous endolysin protein, wherein the chimeric 5 protein has endolysin activity. Preferably, such a chimeric protein has the endolysin activity of the polypeptide of SEQ ID NO: 2.

The present invention further provides a chimeric protein comprising an endolysin protein of the present invention and 10 one or more lytic domains (i.e., EADs) and/or one or more cell wall binding domains (i.e., CBDs) of other known endolysins from *Listeria* bacteriophages known in the art.

The present invention also provides a chimeric protein comprising a lytic domain of the present invention and one 15 or more lytic domains (i.e., EADs) and/or one or more cell wall binding domains (i.e., CBDs) of other known endolysins from *Listeria* bacteriophages known in the art.

The present invention also provides a chimeric protein comprising a cell wall binding domain of the present inven- 20 tion and one or more lytic domains (i.e., EADs) and/or one or more cell wall binding domains (i.e., CBDs) of other known endolysins from Listeria bacteriophages known in the art.

In various embodiments, the chimeric proteins according 25 to the present invention comprise more than one endolysin protein of the present invention. That is, the chimeric proteins according to the present invention may comprise tandem repeats of an endolysin protein of the present invention. Furthermore, in various embodiments the chime- 30 ric proteins according to the present invention comprise more than one lytic domain of the present invention. That is, the chimeric proteins according to the present invention may comprise one or more tandem repeats of a lytic domain of the present invention. Still further, in various embodiments 35 the chimeric proteins according to the present invention comprise more than one cell wall binding domain of the present invention. That is, the chimeric proteins according to the present invention may comprise one or more tandem repeats of a cell wall binding domain of the present inven- 40 tion.

The present invention also provides chimeric proteins comprising the combination of a protein of the present invention with one or more endolysins from known *Listeria*specific bacteriophages as described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present invention with one or more lytic domains from known endolysins as described above.

The present invention also provides chimeric proteins 50 comprising the combination of a protein of the present invention with one or more lytic domains from known autolysins as described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present 55 present invention is a disinfecting composition. invention with one or more lytic domains from known bacteriocins as described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present invention with one or more antimicrobial peptides as 60 described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present invention with one or more cell wall binding domains from known endolysins as described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present

invention with one or more cell wall binding domains from known autolysins as described above.

The present invention also provides chimeric proteins comprising the combination of a protein of the present invention with one or more cell wall binding domains from known bacteriocins as described above.

Combinations of Phages of the Invention with Known Phages

The present invention provides the combination of a phage of the present invention with one or more bacteriophages, preferably known *Listeria*-specific phages, described in the art. Such combinations can be used for controlling Listeria contamination and/or infection according to the present invention. A preferred phage used in phage combinations according to the present invention is phage P825.

Compositions and Solutions

The present invention provides compositions comprising phage combinations and/or protein combinations of the invention as described herein above. Specifically, such a combination is the combination of a protein of the present invention with one or more known *Listeria* bacteriophages. Furthermore, such a combination is particularly the combination of a protein of the present invention with one or more endolysins from known *Listeria* bacteriophages. Such a combination is also particularly the combination of a protein of the present invention with one or more lytic or cell wall binding domains of endolysins from known *Listeria* bacteriophages. Still further, such a combination is the combination of a phage of the present invention, preferably phage P825, with one or more known *Listeria* bacteriophages.

The present invention also provides compositions comprising chimeric proteins according to the present invention. In general, the present invention provides a composition comprising a protein or polypeptide according to the present invention. The present invention also provides a composition comprising a nucleic acid molecule or a vector according to the present invention. The present invention further provides a composition comprising a host cell according to the present invention. The present invention further provides a composition comprising a protein or polypeptide according to the present invention. The present invention further provides a composition comprising a chimeric lysin according to the present invention. Still further, the present inven-45 tion provides a composition comprising a phage of the present invention, preferably phage P825.

In various embodiments, a composition of the present invention further comprises listeriolysin, a surface disinfectant, an antibiotic, a surfactant, a lytic enzyme, or a bacteriophage specific for bacterial contaminants other than Listeria bacteria.

In various embodiments, a composition according to the present invention is a pharmaceutical composition.

In various embodiments, a composition according to the

In various embodiments, a composition according to the present invention is a diagnostic composition. A phage of the present invention, preferably phage P825, is suitable for detecting the presence of *Listeria* bacteria according to the present invention. Therefore, a diagnostic composition according to the present invention preferably comprises a phage of the present invention, more preferably phage P825.

In various embodiments, a composition of the present invention is an antibiotic for use in therapeutic and non-65 therapeutic applications according to the present invention.

The present invention provides solutions, preferably disinfecting solutions, comprising phage combinations and

protein combinations of the invention as described herein above. Specifically, such a combination is the combination of a protein of the present invention with one or more known Listeria bacteriophages. Furthermore, such a combination is particularly the combination of a protein of the present invention with one or more endolysins from known *Listeria* bacteriophages. Such a combination is also particularly the combination of a protein of the present invention with one or more lytic or cell wall binding domains of endolysins from known Listeria bacteriophages. Still further, such a combination is the combination of a phage of the present invention, preferably phage P825, with one or more known Listeria bacteriophages.

The present invention also provides solutions, preferably 15 disinfecting solutions, comprising chimeric proteins according to the present invention. In general, the present invention provides a solution, preferably a disinfecting solution, comprising a phage or protein or polypeptide according to the present invention. The present invention also provides a 20 solution, preferably a disinfecting solution, comprising a nucleic acid molecule or a vector according to the present invention. The present invention further provides a solution, preferably a disinfecting solution, comprising a host cell according to the present invention. Products

The present invention provides products comprising chimeric proteins according to the present invention. In general, the present invention provides a product comprising a protein or polypeptide according to the present invention, 30 including any fragments, analogs or functional derivatives thereof having endolysin activity. The present invention further provides a product comprising a chimeric lysin according to the present invention. Still further, the present invention provides a product comprising a phage of the 35 tion according to the present invention is Listeria deconpresent invention, preferably phage P825.

The present invention also provides products comprising phage combinations and/or protein combinations of the invention as described herein above. Specifically, such a combination is the combination of a protein of the present 40 invention with one or more known *Listeria* bacteriophages. Furthermore, such a combination is particularly the combination of a protein of the present invention with one or more endolysins from known *Listeria* bacteriophages. Such a combination is also particularly the combination of a protein 45 of the present invention with one or more lytic or cell wall binding domains of endolysins from known *Listeria* bacteriophages. Still further, such a combination is the combination of a phage of the present invention, preferably phage P825, with one or more known *Listeria* bacteriophages.

In various embodiments, a product of the present invention further comprises listeriolysin, a surface disinfectant, an antibiotic, a surfactant, a lytic enzyme, or a bacteriophage specific for bacterial contaminants other than *Listeria* bacteria.

In various embodiments, a product according to the present invention is a food product. Preferably, the food product is any of a dairy product, a fruit product and a vegetable product.

Methods for Controlling Listeria Contamination

The present invention provides a method for controlling Listeria contamination, preferably for sanitizing and/or disinfecting Listeria contamination, comprising applying a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a 65 protein or polypeptide of the present invention, or a chimeric lysin of the present invention to the present invention to the

site of *Listeria* contamination, with the proviso that the method is not a therapeutic method.

The present invention provides a method for controlling *Listeria* contamination, preferably for sanitizing and/or disinfecting Listeria contamination, comprising applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method.

The present invention provides a composition or solution according to the present invention for use in therapy and/or prophylaxis.

The present invention provides a phage according to the present invention for use in diagnosis. Preferably, the bacteriophage for use in diagnosis is phage P825.

In various embodiments, controlling *Listeria* contamination according to the present invention is sanitizing and/or disinfecting *Listeria* contamination.

In various embodiments, controlling Listeria contamination according to the present invention is non-therapeutically treating Listeria contamination. Preferably, treating Listeria contamination is eradicating or removing undesired colonization of *Listeria* bacteria.

In the present invention, "Listeria contamination" means "undesired *Listeria* contamination". In the present inven-25 tion, undesired *Listeria* contamination includes, but is not limited to, contamination of pathogenic *Listeria* bacteria. Here, pathogenic means exhibiting pathogenicity to human beings and/or animals. Listeria monocytogenes is pathogenic to both human and animals. Therefore, in the present invention controlling *Listeria* contamination preferably is controlling Listeria monocytogenes contamination.

In various embodiments, controlling *Listeria* contamination is cleaning from *Listeria* contamination.

In various embodiments, controlling *Listeria* contaminatamination. As used herein, Listeria decontamination means that after applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination the number of *Listeria* bacteria is reduced compared to the number of *Listeria* bacteria prior to applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination. The same holds for applying a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention in *Listeria* decontamination.

The present invention provides a combined treatment for controlling *Listeria* contamination, which comprises apply-50 ing a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention and a further/additional anti-Listeria agent to the site of Listeria contamina-55 tion, with the proviso that the method is not a therapeutic method. The present invention also provides a combined treatment for controlling Listeria contamination, which comprises applying a phage or composition or solution according to the present invention and a further/additional anti-*Listeria* agent to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. Here, the further/additional anti-*Listeria* agent preferably is a disinfectant, an antimicrobial agent effective against *List*eria bacteria, an enzyme, or a surfactant. The group of such antimicrobial agents effective against *Listeria* bacteria includes, but is not limited to, vancomycin, danofloxacin, and neomycin. Furthermore, in case of an enzyme as further/

additional anti-*Listeria* agent to be used in the present invention, the group of suitable enzymes includes enzymes aiding in breaking up biofilms. Such enzymes are known in the art and include, but are not limited to, polysaccharide depolymerases and proteases. The surfactant is particularly useful to solubilize and remove dirt so that the *Listeria* bacteria are accessible to the lytic proteins of the present invention.

The further/additional anti-*Listeria* agent may be applied to the site of *Listeria* contamination before or after applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention in a combined treatment comprising a further/additional anti-*Listeria* agent as used herein.

The present invention further provides a combined treat- 20 ment for controlling *Listeria* contamination, which comprises a thermal treatment of the site of *Listeria* contamination, and subsequently applying a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of 25 the present invention, or a chimeric lysin of the present invention to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. The present invention further provides a combined treatment for controlling *Listeria* contamination, which comprises a thermal treatment of the site of *Listeria* contamination, and subsequently applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. Specifically, thermal treatment of the 35 site of *Listeria* contamination is heat treatment of the site of Listeria contamination, more preferably heat treatment at a temperature of at least 70° C., or 71° C. Still more preferably, thermal treatment is heat treatment at a temperature of at least 72° C., or 73° C. Even more preferably, thermal 40 treatment is heat treatment at a temperature of at least 74° C., or 75° C.

The present invention provides a combined treatment for controlling *Listeria* contamination, which comprises applying a nucleic acid molecule of the present invention, a vector 45 of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention and an irradiation treatment of the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. The 50 present invention also provides a combined treatment for controlling *Listeria* contamination, which comprises applying a phage or a composition or solution according to the present invention and an irradiation treatment of the site of *Listeria* contamination, with the proviso that the method is 55 invention. not a therapeutic method. As used herein, irradiation treatment means subjecting the site of *Listeria* contamination to ionizing radiation, also called ionizing energy. The radiation used to treat the site of Listeria contamination may be applied before or after a phage or a composition or solution 60 according to the present invention is applied to the site of Listeria contamination. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric 65 lysin of the present invention in a combined treatment comprising irradiation treatment as used herein.

26

The present invention provides a combined treatment for controlling *Listeria* contamination, which comprises applying a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention and high intensity light emission treatment to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. The present invention also provides a combined 10 treatment for controlling *Listeria* contamination, which comprises applying a phage or a composition or solution according to the present invention and high intensity light emission treatment to the site of *Listeria* contamination, with the proviso that the method is not a therapeutic method. Specifically, high intensity light emission treatment may be performed by a pulsed power source, as described in MacGregor et al. 1998 ("Light inactivation of food-related pathogenic bacteria using a pulsed power source", Letters in Applied Microbiology 27(2):67-70). The high intensity light emission treatment may be applied to the site of Listeria contamination before or after a phage or a composition or solution according to the present invention is applied to the site of *Listeria* contamination. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention in a combined treatment comprising high intensity light emission treatment as used herein.

A nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention can be applied on or into food or food products. Similarly, phages, compositions and solutions of the present invention can be applied on or into food or food products. Therefore, in various embodiments controlling *Listeria* contamination, preferably sanitizing and/or disinfecting *Listeria* contamination, is controlling *Listeria* contamination of food or a food product.

In various embodiments, controlling *Listeria* contamination, preferably sanitizing and/or disinfecting *Listeria* contamination, is controlling *Listeria* contamination of a solid surface. In various embodiments, such a solid surface is the surface of a food package, a food storage container or food processing equipment. The surface of food processing equipment includes the various physical sites within the food processing facilities/equipment.

The present invention provides food or a food product comprising a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention. The present invention also provides food or a food product comprising a phage or a composition or solution according to the present invention.

The present invention further provides a food package or food storage container comprising a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention. The present invention still further provides a food package or food storage container comprising a phage or a composition or solution according to the present invention. In various embodiments, the nucleic acid molecule, vector, host cell, protein or polypeptide, or chimeric lysin of the present invention is introduced into the food package or food storage container prior to sealing the food package or food

storage container. In various embodiments, a phage or composition or solution according to the present invention is introduced into the food package or food storage container prior to sealing the food package or food storage container. In various embodiments, the food, food product, food pack- 5 age or food storage container further comprises a further/ additional anti-microbial agent. Here, the further/additional antimicrobial agent preferably is an antimicrobial agent effective against Listeria bacteria or other pathogenic bacteria. In various embodiments, the food, food product, food 10 package or food storage container of the present invention has undergone thermal treatment prior to introducing the nucleic acid molecule, vector, host cell, protein or polypeptide, or chimeric lysin of the present invention to the food, food product, food package or food storage container. In 15 various embodiments, the food, food product, food package or food storage container of the present invention has undergone thermal treatment prior to introducing a phage or the composition or solution of the present invention to the food, food product, food package or food storage container. 20 Specifically, thermal treatment of the food, food product, food package or food storage container of the present invention is heat treatment of the food, food product, food package or food storage container of the present invention, more preferably heat treatment at a temperature of at least 25 70° C., or 71° C. Still more preferably, thermal treatment is heat treatment at a temperature of at least 72° C., or 73° C. Even more preferably, thermal treatment is heat treatment at a temperature of at least 74° C., or 75° C.

In the present invention, applying a phage or a composition or solution according to the present invention to the site of *Listeria* contamination includes incubating the site of Listeria contamination with a phage or a composition or solution according to the present invention. This applies in analogy to the use of a nucleic acid molecule of the present 35 invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention as used herein. In the present invention, applying a phage or a composition or solution according to the present invention to 40 the site of *Listeria* contamination also includes administering a phage or a composition or solution according to the present invention to the site of *Listeria* contamination. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a 45 host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention as used herein.

The nucleic acid molecule, vector, host cell, protein or polypeptide, chimeric lysin, phage, composition or solution 50 according to the present invention may be applied to the food, food product, food package or food storage container of the present invention by a number of means, including, but not limited to, admixing the nucleic acid molecule, vector, host cell, protein or polypeptide, chimeric lysin, 55 phage, composition or solution into the food or food product, or spraying the nucleic acid molecule, vector, host cell, protein or polypeptide, chimeric lysin, phage, composition or solution according to the present invention into the food package or food storage container. Likewise, in the present 60 invention the nucleic acid molecule, vector, host cell, protein or polypeptide, endolysin protein, chimeric lysin, phage, composition or solution according to the present invention may be applied to food processing facilities/equipment by a number of means including, but not limited to, spraying the 65 nucleic acid molecule, vector, host cell, protein or polypeptide, endolysin protein, chimeric lysin, phage, composition

28

or solution onto the food processing facilities/equipment and/or directly applying the nucleic acid molecule, vector, host cell, protein or polypeptide, chimeric lysin, phage, composition or solution to the food processing facilities/equipment. Said applications significantly reduce the numbers of *Listeria* bacteria.

The concentration of a protein according to the present invention, preferably an endolysin protein, for administration on or into food, food products, foodstuff and/or into various physical sites within food processing plants can be determined by one of skill in the art. That is, a suitable concentration is, for example, a concentration that provides for effectively controlling Listeria contamination according to the present invention. In various embodiments, the concentration is contemplated to be in the range of about 0.1-100 μg/ml, including the range of about 1-10 μg/ml and 0.5-5 μg/ml. In various embodiments, the concentration is contemplated to be in the range of about 1-5 µg/ml, 5-10 μg/ml, or 10-20 μg/ml. In various other embodiments, the concentration is contemplated to be in the range of about 20-40 μg/ml, 40-60 μg/ml, 60-80 μg/ml, or 80-100 μg/ml. The endolysin provided by the present invention can be applied in a liquid or a powdered form to food, food products, foodstuff, and/or food processing equipment. The nucleic acid molecule, vector, host cell, protein or polypeptide, chimeric lysin, phage, composition or solution of the present invention is administered until a successful reduction of the *Listeria* contamination is achieved or until the amount of *Listeria* bacteria is substantially reduced.

The present invention also provides the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, or a protein or polypeptide of the present invention in a non-therapeutic method for controlling *Listeria* contamination according to the present invention as described herein above.

Methods for Controlling *Listeria* Infection

The present invention provides a method for treating and/or preventing *Listeria* infection of a subject comprising administering a phage or a composition or solution of the present invention to the subject.

The present invention also provides a method for treating and/or preventing *Listeria* infection of a subject comprising administering a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention to the subject.

The methods for treating and/or preventing *Listeria* infection according to the present invention include treating and/or preventing a disease or condition caused by a *Listeria* infection. In various embodiments, the disease or condition caused by a *Listeria* infection is listeriosis. Listeriosis is an infection resulting form the ingestion of food or foodstuff contaminated by *Listeria* bacteria. In various embodiments listeriosis is caused by a *Listeria* infection resulting form the ingestion of food or foodstuff contaminated by Listeria. Preferably, listeriosis according to the present invention is caused by a L. monocytogenes infection resulting form the ingestion of food or foodstuff contaminated by L. monocytogenes. In various other embodiments the disease or condition caused by a Listeria infection is brain abscess, hepatitis, peritonitis, arthritis, gastroenteritis, encephalitis, sepsis, local wound infection, and inflammation of conjunctiva and cornea. Preferably, the disease or condition caused by a Listeria infection is listeriosis.

In various embodiments of the therapeutic methods of treatment according to the present invention the subject is a subject suffering from a *Listeria* infection or a subject supposed to suffer from a *Listeria* infection. In various embodiments of the therapeutic methods of treatment 5 according to the present invention the subject is a subject at risk for a *Listeria* infection.

In various embodiments of the therapeutic methods of treatment according to the present invention the *Listeria* infection is a *Listeria monocytogenes* infection.

In various embodiments of the therapeutic methods of treating and/or preventing a disease or condition caused by a *Listeria* infection according to the present invention the disease or condition caused by a Listeria infection is a disease or condition caused by a *Listeria monocytogenes* 15 infection.

In the present invention, the subject is a mammal including animals and human beings. In various embodiments, the subject preferably is a human being, more preferably a patient in need of a method for treating and/or preventing 20 *Listeria* infection according to the present invention.

In various embodiments, the subject is a pregnant woman. In various other embodiments, the subject is a newborn baby. In various other embodiments, the subject is an elderly person, preferably a person of at least 60 years of age, more 25 preferably a person of at least 65 years of age, still more preferably a person of at least 70 years of age. Even more preferably, the elderly person is a person of at least 75 years of age. In still more preferred embodiments, the elderly person is a person of at least 80 years of age.

The present invention provides a kit comprising a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric provides a kit comprising a phage or a composition or solution of the present invention. In various embodiments, the kit according to the present invention is a kit for use in a therapeutic or non-therapeutic method according to the present invention, or a kit for carrying out a therapeutic or 40 non-therapeutic method according to the present invention. In various other embodiments, the kit according to the present invention is a kit for controlling *Listeria* contamination according to the present invention. In various embodiments, the kit is a diagnostic kit.

In various embodiments, the pharmaceutical composition according to the present invention comprises optionally a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier' includes, but is not limited to, a non-toxic solid, semisolid or liquid filler, diluent, encapsu- 50 lating material or formulation auxiliary of any type. By "pharmaceutically acceptable" is meant a material that is not biologically or otherwise undesirable, i.e., the material may be administered to a subject without causing any undesirable biological effects or interacting in a deleterious manner with 55 any of the other components of the medicament/pharmaceutical composition in which it is contained. The carrier would naturally be selected to minimize any degradation of the active ingredient and to minimize any adverse side effects in the subject, as would be well known to one of skill in the art. 60 Pharmaceutical carriers are known to those skilled in the art. Suitable carriers and their formulations are described in Remington: The Science and Practice of Pharmacy (19th ed.) ed. A. R. Gennaro, Mack Publishing Company, Easton, Pa. 1995. Typically, an appropriate amount of a pharmaceuti- 65 cally acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically**30**

acceptable carrier include, but are not limited to, saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. These may be targeted to a particular cell type via antibodies, receptors, or receptor ligands. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of composition being administered.

In the therapeutic methods of treatment according to the present invention, the dosage or dosages to be administered to a subject will vary with the age, condition, sex and extent of the *Listeria* infection and/or disease or condition caused by a *Listeria* infection in the subject, route of administration, or whether other drugs are included in the regimen. The dosage or dosages to be administered to a subject can be determined by one of skill in the art. Furthermore, the dosage to be administered to a subject can be adjusted by the individual physician in the event of any counter indications.

Pharmaceutical compositions of the present invention may be administered by any suitable route of administration including, but not limited to, oral administration, rectal administration, parenteral administration, intravaginal administration, intraperitoneal administration, topical administration (as by powders, ointments, drops or transdermal patch), buccal administration, administration by inhalant or by nasal administration. As used herein, nasal administration, including topical intranasal administration, means delivery of a phage or a composition or solution of lysin of the present invention. The present invention also 35 the present invention into the nose and nasal passages through one or both of the nares, and can comprise delivery by a spraying mechanism or droplet mechanism, or through aerosolization of a phage or the composition or solution. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention as used herein. Administration of a phage or the composition or solution by inhalant can be through the nose 45 or mouth via delivery by a spraying or droplet mechanism. Delivery can also be directly to any area of the respiratory system (e.g., lungs) via intubation. This applies in analogy to the use of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention as used herein.

> The term "parenteral" as used herein refers to modes of administration, which include, but are not limited to, intravenous, intramuscular, intraperitoneal, subcutaneous and intra-articular injection and infusion.

> In various embodiments, the dosage of administration for the phage P825 is contemplated to be in the range of about 10³ to about 10¹³ pfu/per kg bodyweight/per day, preferably in the range of about 10^{12} pfu/per kg bodyweight/per day.

> In various embodiments, the dosage of administration for the PlyP825 endolysin is contemplated to be in the range of about 2-2000 ng/per g bodyweight/per day, preferably in the range of about 20-200 ng/per g bodyweight/per day.

> Pharmaceutical compositions according to the present invention may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the active ingredient of choice.

Formulations for topical administration of a phage or a composition or solution according to the present invention may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Also, formulations for topical administration of a nucleic acid molecule of the present invention, a vector of the present invention, a host cell of the present invention, a protein or polypeptide of the present invention, or a chimeric lysin of the present invention may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.

The addition of conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable in formulations for topical administration of compositions according to the present invention.

In the present invention, food, foodstuff, and food prod- 15 ucts include, but are not limited to, dairy products, meat products, fish products, unpasteurized food products, fruits, vegetables and salads. As used herein, the term "dairy product" is intended to include any food product made using milk or milk products, including, but not limited to, milk, 20 yoghurt, ice cream, cheese, butter, and cream. In various embodiments, the milk is raw milk or milk that has been pasteurized. As used herein, the term "meat product" is intended to include any food product, which contains animal tissue, including, but not limited to, beef, pork, and poultry. 25 The term "ready to eat meat product" is intended to include any meat product, which does not require cooking prior to consumption, including, but not limited to, pates, hot dogs, bologna, salami, and cold cuts. As used herein, the term "fish product" is intended to include any food product, which 30 contains tissue from an aquatic animal, including, but not limited to, lobster, crab, fresh water and saltwater fish and other seafoods. As used herein, the term "unpasteurized food product" is intended to include any food product, which is prepared using unpasteurized primary ingredients and which 35 does not undergo a final (listeriocidal) heat treatment. As used herein, the term "salad" is intended to include any food product, which contains mixtures of vegetables or fruits, and particularly such mixtures as are presented for consumers to choose from in a display commonly referred to as a "salad 40" bar".

Method for Detecting Listeria Bacteria

The present invention provides a method for detecting the presence of *Listeria* bacteria according to the present invention, preferably *Listeria monocytogenes*, comprising (i) pro- 45 viding a sample suspected to contain Listeria bacteria, preferably L. monocytogenes; (ii) incubating the sample of (i) with a phage or a composition according to the present invention, preferably a diagnostic composition; and (iii) detecting in the sample of (ii) the presence of lysis of Listeria bacteria, preferably L. monocytogenes, or lysis activity of phage P825 against the *Listeria* bacteria, preferably L. monocytogenes, contained in the sample, wherein the presence of lysis of *Listeria* bacteria, preferably *L. mono*cytogenes, or lysis activity of a phage of the invention, 55 preferably. P825, against Listeria bacteria, preferably L. monocytogenes, is indicative of the presence of Listeria bacteria, preferably L. monocytogenes. In various embodiments, the sample of (i) is obtained from a food product, a patient suspected of suffering from a bacterial contamination comprising *Listeria* bacteria, preferably *L. monocytogenes*. Further Characteristics of PlyP825

The pH optimum for the lytic activity of endolysin PlyP825 was determined (Example 5 and FIG. 5). PlyP825 65 exhibit highest lytic activity at neutral to slightly alkaline (basic) pH. Thus, endolysin PlyP825 has a pH optimum at

32

neutral to slightly alkaline (basic) pH. In various embodiments, the endolysin provided by the present invention is characterized as having a pH optimum at about pH 8.5 with respect to its lytic activity. In various other embodiments, the endolysin provided by the present invention is characterized as exhibiting improved lytic activity at a pH of about 5.5, about 6.5 or about 7.5.

The salt optimum (NaCl) for the lytic activity of endolysin PlyP825 was determined (Example 6 and FIG. 6). 10 PlyP825 exhibits highest lytic activities in the concentration range of about 150-250 mM NaCl. Thus, endolysin PlyP825 has a salt (NaCl) optimum of about 150-250 mM NaCl. In various embodiments, the endolysin provided by the present invention is characterized as having a salt (NaCl) optimum at a concentration in the range of about 150-250 mM NaCl. In various other embodiments, the endolysin provided by the present invention is characterized as having a salt (NaCl) optimum at a concentration of any one of about 150 mM, about 200 mM or 250 mM NaCl.

The lytic activity of endolysin PlyP825 in the presence of different concentrations of EDTA was determined (Example 7 and FIG. 7). While Ply511 was inactivated already at a concentration of 1 mM EDTA, the relative lytic activity of PlyP825 remained at a level of about 70% up to a concentration of about 25 mM EDTA.

The minimum inhibitory concentration (MIC) of endolysin PlyP825 against *Listeria monocytogenes* ProCC S1095 sv 1/2a, Listeria monocytogenes ProCC S1135 sv 3a, Listeria monocytogenes ProCC S776 sv 4b, and Listeria innocua ProCC S1147 sv 6a was determined (Example 8 and FIG. 8). The minimum inhibitory concentration (MIC) is defined as the lowest concentration of an antimicrobial agent at which the visible growth of a microorganism is suppressed (Andrews et al. 2001). The MIC values varied depending on the *Listeria* strain tested. For inhibiting *List*eria monocytogenes ProCC S1095 sv 1/2a and Listeria monocytogenes ProCC S1135 sv 3a less PlyP825 protein was required than for inhibiting *Listeria monocytogenes* ProCC S776 sv 4b. The MIC values for PlyP825 are, depending on the *Listeria* strain tested, about 2.3-times lower, or up to 17.75-times higher than the MIC values for PlyP40.

Listeria Serovar 3 Specific Bacteriophage

The present invention provides bacteriophage capable of lysing *Listeria* serovar 3 obtainable by (a) plating a sample containing bacteriophage and Listeria bacteria serovar 3 using agar plates to obtain plaques, and (b) purifying the phage contained within the one or more plaques obtained.

In various embodiments, the step of plating a phagecontaining sample and *Listeria* bacteria serovar 3 comprises mixing a phage-containing sample and *Listeria* serovar 3 host cells in molten, "soft" agar. The resulting suspension is then poured on to an appropriate "nutrient" basal agar medium to form a thin "top layer" which hardens and immobilises the bacteria. In various embodiments, the step of plating a phage-containing sample and *Listeria* bacteria serovar 3 follows the double agar layer method as described by Adams (1959).

During incubation the uninfected *Listeria* bacteria multifood processing equipment, a food storage container, or a 60 ply to form a confluent lawn of bacterial growth over the surface of the plate. Each infected bacterium bursts after a short time and liberates progeny phages that infect adjacent bacteria, which in turn are lysed. This "chain" reaction spreads in a circular motion until brought to a halt by a decline in bacterial metabolism. Plaques are zones of bacterial lysis caused by bacteriophage action and appear as circular zones of lysis on lawns of bacterial cells.

Phages may be purified by removing, picking off, a well isolated plaque using either a Pasteur pipette or more crudely, but just as effectively, a wire loop. Using a sterile Pasteur pipette, the area around the plaque is stabbed and pieces of soft area are "sucked" into the pipette. The agar 5 should be gently broken into smaller pieces with the wireloop, mixed briefly with a vortex-mixer and left for 5-10 minutes at ambient temperature. The phage suspension may then be filter-sterilised through a 0.45 mµ syringe-mounted, filtration unit to remove any bacteria including phageresistant host bacteria.

In various embodiments, the sample is an environmental sample, preferably a sample from environmental water, more preferably a water sample from a rivulet. In various embodiments, the sample is a phage suspension.

In case of the phage-containing sample being a phage suspension, the step of plating a phage-containing sample and Listeria bacteria serovar 3 comprises mixing a small volume of a dilution of a phage suspension and Listeria serovar 3 host cells in molten, "soft" agar.

FURTHER DEFINITIONS

In the present invention, "Percentage (%) of sequence identity" is determined by comparing two optimally aligned 25 sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two 30 sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.

The terms "identical" or percent "identity", in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or sub-sequences that are the same 40 or have a specified percentage of amino acid resides or nucleotides that are the same, when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment 45 and visual inspection. Such sequences are then said to be "substantially identical". This definition also refers to the complement of a test sequence. Optionally, the identity exists over a region that is at least about 50 amino acids or nucleotides in length, or more preferably over a region that 50 is 75-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subse- 55 quence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for 60 the test sequences relative to the reference sequence, based on the program parameters.

The terms nucleic acid molecule and nucleic acid sequence may be used herein interchangeably.

As discussed herein there are numerous variants of the 65 proteins and polypeptides of the present invention. Protein variants and derivatives are well understood to those of skill

34

in the art and in can involve amino acid sequence modifications. For example, amino acid sequence modifications typically fall into one or more of three classes: substitutional, insertional or deletional variants. Insertions include amino and/or carboxyl terminal fusions as well as intrasequence insertions of single or multiple amino acid residues. Deletions are characterized by the removal of one or more amino acid residues from the protein sequence. Typically, no more than about from 2 to 6 residues are deleted at any one site within protein molecules according to the present invention. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the protein, thereby producing DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture. 15 Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known to the ones skilled in the art. Amino acid substitutions are typically of single residues, but can occur at a number of different locations at once; insertions usually will be on the 20 order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. Deletions or insertions preferably are made in adjacent pairs, i.e. a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct. The mutations must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. Substitutional variants are those in which at least one amino acid residue has been removed and a different amino acid residue inserted in its place such that a conservative substitution is obtained. The meaning of a conservative substitution is well known to the person skilled in the art.

Certain post-translational modifications are the result of matched positions by the total number of positions in the 35 the action of recombinant host cells on the expressed polypeptide. Glutaminyl and asparaginyl residues are frequently post-translationally deamidated to the corresponding glutamyl and asparyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Other posttranslational modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the o-amino groups of lysine, arginine, and histidine side chains, acetylation of the N-terminal amine and, in some instances, amidation of the C-terminal carboxyl. Such post-translational modifications are also contemplated by the present invention.

> The term "Listeria" as used herein means the bacterial genus *Listeria*. In the present invention, the genus *Listeria* encompasses all known *Listeria* species. In particular, in the present invention the genus Listeria includes, but is not limited to, the following *Listeria* species: L. monocytogenes, L. seeligeri, L. ivanovii, L. innocua, L. welshimeri, L. grayi ssp. grayi, and L. grayi ssp. murrayi.

> In the present invention, the preferred *Listeria* species is a *Listeria* species that is pathogenic to human beings and/or animals.

> In various embodiments of the present invention, the preferred Listeria species is Listeria monocytogenes, which is pathogen to both human and animals. This applies in particular to the therapeutic and non-therapeutic methods of the present invention.

> In the present invention, *Listeria* serovars 1/2, 3, and 4 include, but are not limited to, Listeria monocytogenes serovars 1/2, 3, and 4, respectively.

> In various embodiments, the preferred Listeria monocytogenes serovar is serovar 1/2. In various other embodiments, the preferred *Listeria monocytogenes* serovar is sero-

var 3. In various further embodiments, the preferred *Listeria monocytogenes* serovar is serovar 4.

In the present invention *Listeria monocytogenes* includes serotypes 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e, and 7. In various embodiments, the *Listeria* species is 5 selected from the group consisting of *L. monocytogenes* serotype 1/2a, *L. monocytogenes* serotype 1/2b, *L. monocytogenes* serotype 3a, *L. monocytogenes* serotype 3b, *L. monocytogenes* serotype 3c, *L. monocytogenes* serotype 4a, *L. monocytogenes* serotype 10 4ab, *L. monocytogenes* serotype 4b, *L. monocytogenes* serotype 4c, *L. monocytogenes* serotype 4d, *L. monocytogenes* serotype 4e, and *L. monocytogenes* serotype 7.

In more preferred embodiments of the present invention the *Listeria* species is selected from the group consisting of 15 *L. monocytogenes* 1142 serovar 1/2a, *L. monocytogenes* 1042 serovar 4b, *L. monocytogenes* 1019 serovar 4c, *L. monocytogenes* 1001 serovar 1/2c, *L. monocytogenes* EGDe serovar 1/2a, *L. monocytogenes* SLCC 7150 serovar 1/2a, *L. monocytogenes* SLCC 7154 serovar 1/2c, *L. monocytogenes* 20 SLCC 7290 serovar 1/2c, *L. monocytogenes* 0756062 serovar 1/2c, *L. monocytogenes* WSLC1485 serovar 1/3a, *L. monocytogenes* WSLC 11082 serovar 1/3c, *L. monocytogenes* ScottA serovar 4b, *L. monocytogenes* WSLC 1048 serovar 4d, *L. 25 monocytogenes* 8309032 serovar 4d, and *L. monocytogenes* 8309033 serovar 4e.

In various embodiments, the preferred *Listeria* species is *Listeria* ivanovii, which is pathogenic to animals. In preferred embodiments, the *Listeria* species is *Listeria* ivanovii 30 serotype 5.

The literature discloses reports about diseases in human beings resulting from infection with *Listeria seeligeri* (Rocourt et al. 1987) and *L. ivanovii* (Cummins et al. 1994). In the present invention *Listeria seeligeri* includes serotypes 35 I/2a, I/2b, I/2c, 4b, 4c, 4d, and 6b. In various embodiments, the *Listeria* species is selected from the group consisting of *L. seeligeri* serotype I/2a, serotype I/2b, serotype I/2c, serotype 4b, serotype 4c, serotype 4d, and serotype 6b.

In the present invention *Listeria* innocua includes sero-40 types 3, 6a, 6b, 4ab, and U/S. In various embodiments, the *Listeria* species is selected from the group consisting of *L. innocua* serotype 3, *L. innocua* serotype 6a, *L. innocua* serotype 6b, *L. innocua* serotype 4ab, and *L. innocua* serotype U/S. Preferably, *L. innocua* is *L. innocua* 2011 45 serotype 6a.

In the present invention *Listeria welshimeri* includes serotypes 1/2a, 4c, 6a, 6b, and U/S. In various embodiments, the *Listeria* species is selected from the group consisting of *L. welshimeri* serotype 1/2a, *L. welshimeri* serotype 4c, *L. welshimeri* serotype 6a, *L. welshimeri* serotype 6b, and *L. welshimeri* serotype U/S.

In the present invention *Listeria grayi* includes serotype *Grayi*. In various embodiments, the *Listeria* species is *L. grayi* serotype *Grayi*.

In the present invention, the terms "serotype" and "serovar" may be used interchangeably.

In the present invention, the terms "controlling *Listeria* contamination" and "controlling undesired *Listeria* colonization" may be used interchangeably.

The term "endolysin", as used herein, denotes enzymes that are naturally encoded by bacteriophages and are produced by them at the end of their life cycle in the host to lyse the host cell and thereby release the progeny phages. As described in the background section, endolysins are comprised of at least one enzymatically active domain (EAD) and a non-enzymatically active cell binding domain (CBD).

36

The EADs can exhibit different enzymatic activities as described herein, such as, e.g., N-acetyl-muramoyl-L-alanin amidase, (endo)-peptidase, transglycosylase, glycosyl hydrolase, (N-acetyl)-muramidase, or N-acetyl-glucosaminidase. The terms "endolysin(s)" and "lysin(s)" may be used herein interchangeably.

The term "domain" or "protein domain", as used herein, denotes a portion of an amino acid sequence that either has a specific functional and/or structural property. On the basis of amino acid sequence homologies, domains can frequently be predicted by employing appropriate computer programs that compare the amino acid sequences in freely available databases with known domains, e.g., Conserved Domain Database (CDD) at the NCBI (Marchler-Bauer et al., 2005, Nucleic Acids Res. 33, D192-6), Pfam (Finn et al., 2006, Nucleic Acids Research 34, D247-D251), or SMART (Schultz et al., 1998, Proc. Natl. Acad. Sci. USA 95, 5857-5864, Letunic et al., 2006, Nucleic Acids Res 34, D257-D260).

Whenever reference is made to the activity of the polypeptide of SEQ ID NO: 2 (PlyP825), the endolysin activity of PlyP825 is meant. Specifically, the endolysin activity of the polypeptide of SEQ ID NO: 2 (PlyP825) is the lytic activity of the polypeptide of SEQ ID NO: 2 (PlyP825) against *Listeria* bacterial cells described herein, preferably against pathogenic Listeria bacterial cells, more preferably Listeria monocytogenes. In general, the enzymatic activity of the endolysin of SEQ ID NO: 2 is analogous to the enzymatic activity of known endolysins exhibiting lytic activity against *Listeria* bacterial cells. More specifically, the lytic activity of the endolysin PlyP825 is hydrolytic activity, still more specifically hydrolytic activity against peptidoglycan in the cell wall of *Listeria* bacterial cells. Therefore, the lytic activity of the endolysin PlyP825 may also be described as peptidoglycan hydrolase activity.

As described herein, the EAD of SEQ ID NO: 4 has lytic activity against *Listeria* bacterial cells. In particular, the lytic activity of the EAD of SEQ ID NO: 4 is defined as lytic activity against *Listeria* bacterial cells. More specifically, the enzymatic activity of the EAD of SEQ ID NO: 4 is analogous to the enzymatic activity of known EADs exhibiting lytic activity against *Listeria* bacterial cells. Given the fact that the polypeptide of SEQ ID NO: 4 represents the EAD of the endolysin of SEQ ID NO: 2, and given that EADs from Listeria bacteriophages are known and described in the art, the nature of the lytic activity of the EAD of SEQ ID NO: 4 of the present invention is clear to the skilled person. In various embodiments of the present invention, the lytic activity of the EAD of SEQ ID NO: 4 against *Listeria* bacterial cells is peptidoglycan hydrolase activity, i.e. hydrolytic activity against peptidoglycan in the cell wall of Listeria bacterial cells. The peptidoglycan hydrolase activity of the EAD of SEQ ID NO: 4 may also be called peptidoglycan-digesting activity or muralytic activity. In various 55 embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is muramidase activity or N-Acteyl-glucosaminidase activity. In various embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is amidase activity or endopeptidase activity. Preferably, the lytic activity of the EAD of SEQ ID NO: 4 is peptidoglycan amidase activity. More preferably, the lytic activity of the EAD of SEQ ID NO: 4 is L-muramoyl-L-alanine amidase activity, D-alanyl-glycyl endopeptidase activity, or D-6-meso-DAP-peptidase or meso-DAP-D-Ala peptidase activity. In various embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is peptidoglycan transglycosylase activity. More preferably, the lytic activity of the EAD of SEQ ID NO: 4 is murein transglycosylase

activity. In various embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is peptidase activity, preferably carboxypeptidase activity. In various embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is glycosyl hydrolase activity. In various embodiments, the lytic activity of the 5 EAD of SEQ ID NO: 4 is N-acetylmuramoyl-L-alanine amidase activity. In various embodiments, the lytic activity of the EAD of SEQ ID NO: 4 is cysteine histidine-dependent amidohydrolase/peptidase activity.

As described herein, the CBD of SEQ ID NO: 6 has cell 10 wall binding activity. This cell wall binding activity provides for targeting the lysin to its substrate, namely the peptidoglycan of *Listeria* bacterial cells. Therefore, in particular the cell wall binding activity of the CBD of SEQ ID NO: 6 is Listeria cell wall binding activity. In general, the enzymatic 15 activity of the CBD of SEQ ID NO: 6 is analogous to the enzymatic activity of known CBDs that likewise provide for targeting lysin to its substrate in the cell wall of *Listeria* bacterial cells. Given the fact that the polypeptide of SEQ ID NO: 6 represents the CBD of the endolysin of SEQ ID NO: 20 2, and given that CBDs from *Listeria* bacteriophages are known and described in the art, the nature of the cell wall binding activity of the EAD of SEQ ID NO: 6 of the present invention is clear to the skilled person. Accordingly, it is also clear to the skilled person that CBDs according to the 25 present invention have no or no significant hydrolytic activity like the EADs, i.e. CBDs according to the present invention have no or no significant hydrolytic activity against Listeria bacterial cell walls. Here, no or no significant hydrolytic activity is intended to describe the situation 30 whereby the hydrolytic activity of a CBD of the present invention is not sufficient to prevent the application of such a CBD to bind to the cell wall of a *Listeria* bacterial cell. A CBD according to the present invention is supposed to be a protein, which has no or no significant hydrolytic activity 35 itself.

In various embodiments, the cell wall binding activity of the CBD of SEQ ID NO: 6 is binding to peptidoglycan of the cell wall of *Listeria* bacterial cells. Preferably, the cell wall binding activity of the CBD of SEQ ID NO: 6 is binding to 40 a carbohydrate or cholin moiety in the cell wall of *Listeria* bacterial cells. More preferably, the cell wall binding activity of the CBD of SEQ ID NO: 6 is binding to a carbohydrate of the peptidoglycan or teichoic acid or lipoteichoic acid in the cell wall of *Listeria* bacterial cells.

The terms "protein" and "polypeptide" are used in the present invention interchangeably. As used herein, the term endolysin denotes an enzyme. Accordingly, whenever reference is made herein to a protein or polypeptide of the present invention, this also includes endolysins of the present invention. The terms "endolysin(s)" and "endolysin protein(s)" or "endolysin polypeptide(s)" may be used herein interchangeably.

Furthermore, basically the terms "protein" and "polypeptide" as used herein also encompass any "chimeric lysin" 55 provided by the present invention. However, for clarity reasons concerning the scope of the present invention sometimes reference is made herein to "proteins and polypeptides of the present invention" on the one hand, and "chimeric lysins of the present invention" on the other hand. The terms "chimeric lysin(s)" and "chimeric endolysin" may be used herein interchangeably. Furthermore, the terms "chimeric (endo)lysin(s)" and "chimeric (endo)lysin protein(s)" or "chimeric (endo)lysin polypeptide(s)" may be used herein interchangeably.

Furthermore, the term "sv" represent the well known abbreviation of the term "serovar".

38

When particular embodiments of the invention are described herein, the corresponding paragraphs/text passages of the description invariably make reference to means and/or methods described elsewhere in the description. In this context, terms like "according to the present invention", "of the present invention" and "provided by the present invention" are used. That is, when a particular embodiment of the invention is described in a certain paragraph or text passage, reference is made to means and/or methods "according to the present invention" or "of the present invention", which are described elsewhere in the description. For a particular embodiment described, such references are intended to incorporate for the particular embodiment all means and/or methods, which are described elsewhere in the description and which are provided by the present invention and therefore form part of the scope of the invention. For example, if the description of a particular embodiment refers to "the endolysin according to the present invention" or "the endolysin of the present invention", or "the endolysin provided by the present invention", it is intended that all endolysins, which are described elsewhere in the description, and which are provided by the present invention and therefore form part of the scope of the invention, are applicable to the particular embodiment. This particularly applies, for example, to fragments and variants of polypeptides according to the present invention, which are defined in the present invention and which are applicable to the various embodiments described throughout the application text.

The above principle applies to all embodiments making use of terms like "according to the present invention", "of the present invention" and "provided by the present invention". It goes without saying that not each embodiment described herein can specifically mention the means and/or methods of the invention, which are already defined elsewhere in the description, and which are applicable to the various embodiments described throughout the application text. Otherwise, each patent application would comprise several hundreds of description pages.

Furthermore, terms like "in various embodiments" and "in various other/further embodiments" mean "in various embodiments of the present invention" and "in various other/further embodiments of the present invention"

The invention is exemplified by the examples, which are not considered to limit the scope of the present invention.

Example 1

Lytic Activity of Phage ProCC P825

The phage P825 provided by the present invention exhibits lytic activity against *Listeria* serovars 1/2, 3, 4, 5 and 6. As demonstrated by the inventors, phage P825 completely inhibited growth of *Listeria monocytogenes* strains.

250 μl overnight culture of different *Listeria* strains were added to 3 ml TB-top-agar (TB-medium, 0.75% (v/v) agar, 2 mM CaCl₂, 10 mM MgSO₄), and poured into TB-agar plates. 5 μl of phage P825 (10⁹ pfu/ml) were spotted onto the top-agar plates and dried for about 30 minutes. The plates were incubated overnight at room temperature. Evaluation of lysis spots demonstrated that phage P825 was lytic for all *Listeria* strains tested. Evaluation of lysis spots was performed as follows:

More than 75% of strains tested from one serovar show a lysis spot: "+"

Less than 25% of strains tested from one serovar show a lysis spot: "-"

Not determined: nn.

30

65

nn

TABLE 1

Comparison of lytic activity of Listeria phages on Listeria serovars

("+", "-" and "nn" in accordance with the above definition)

Serovar 3 Serovar 4 Serovar 5 Serovar 6

nn

Listeria

phage

P825

A511

P100

A118

40TABLE 2-continued

22 *Listeria* strains tested for lysis by PlyP825. ProCC S: Culture Collection Number of Hyglos Invest GmbH, Bernried, Germany. "+" indicates lysis of this strain by PlyP825.

	ProCC S	Strain	Serovar	PlyP825
_	1002	Listeria monocytogenes SLCC 7154	1/2c	+
	1003	Listeria monocytogenes SLCC 7290	1/2c	+
	2867	Listeria monocytogenes 0756062	1/2c	+
)	1135	Listeria monocytogenes WSLC1485	3a	+
	1154	Listeria seeligeri WSLC 40127	3b	+
	2991	Listeria seeligeri WSLC 41113	3b	+
	2974	Listeria monocytogenes WSLC 11082	3c	+
	2975	Listeria monocytogenes WSLC 11083	3c	+
	776	Listeria monocytogenes ScottA	4b	+
	1144	Listeria monocytogenes WSLC 1048	4d	+
	2919	Listeria monocytogenes 8309032	4d	+
	2920	Listeria monocytogenes 8309033	4e	+
	857	Listeria ivanovii WSLC 3009	5	+
	1014	Listeria ivanovii SLCC 4706	5	+
	1164	Listeria ivanovii ssp. londoniensis WSLC	5	+
)	1150	30167 Listeria ivanovii ssp ivanovii WSLC 30165	5"	+
	1147	Listeria innocua WSLC2011	6a	+
	773	Listeria innocua WSLC 2012	6b	+
	1754	Listeria seeligeri WSLC 41116	6b	+

Example 4

Minimum Bactericidal Concentration of PlyP825 in Buffer and Milk

The minimum bactericidal concentrations (MBCs) of the endolysins PlyP825, Ply511 and PlyP40 in buffer and in milk were determined and compared.

For determining the MBC in buffer pH 6 the endolysin enzymes were incubated with 10⁵ cells/ml of strains *Listeria monocytogenes* EGDe sv 1/2a and *Listeria* innocua WSLC2011 sv 6a in buffer (20 mM sodium phosphate, 50 mM sodium chloride, 0.05% Tween pH 6) at 30° C. After 1 h the samples were plated and cell numbers counted. FIG. 2 shows the results: PlyP825 reduces effectively pathogenic and non-pathogenic *Listeria* cells in buffer: 0.032 μg/ml endolysin were sufficient to reduce 4.5 (WSLC2011) or 3.1 (EGDe) orders of magnitude of *Listeria* cells. This is about 0.5 to 1.5 log more than Ply511 and 0.9-1.3 log more than PlyP40 were able to reduce with the same protein concentration.

For determining the MBC in milk the enzymes were incubated with 10⁵ cells/ml of strains *Listeria monocytogenes* EGDe sv 1/2a and *Listeria* innocua WSLC2011 sv 6a in milk with 1.5% fat at 30° C. After 3 h the samples were plated and cell numbers counted. FIG. 3 shows the results: PlyP825 shows the highest *Listeria* cell reduction in milk. Independent from the test strain PlyP825 reduces 1.4-1.7 orders of magnitude more cells than the other two broad *Listeria* endolysins Ply511 and PlyP40 in milk with 1.5% fat. Besides the enzymes were incubated with 10⁵ cells/ml of strains *Listeria monocytogenes* EGDe sv 1/2a in milk with 3.5% fat at 30° C. After 3 h the samples were plated and cell numbers counted. FIG. 4 shows the results. Also in milk with 3.5% fat PlyP825 reduces the highest cell number.

Example 5

pH Optimum of PlyP825

The pH optimum for the lytic activity of endolysin PlyP825 was determined and compared with that of endo-

Phage P825 has been shown to be lytic against *Listeria* 15 serovars 1/2, 3, 4, 5 and 6. The host range is broader than that of known phages A511, P100, A118, A500, P40, and PhiLM4, as shown in the above Table 1. Importantly, novel phage P825 is capable of lysing *Listeria* serovar 3, which is one of the clinically relevant *Listeria* serovars. This activity 20

Furthermore, phage P825 not only inhibited growth but actually reduced *Listeria* titers. As confirmed by enrichment 25 studies, applying phage P825 completely eradicated *Listeria* bacteria. The lysis spectrum of phage P825 has been shown to be consistent with the binding specificity provided by the tailspike protein of phage P825.

is unique to novel phage P825. Known *Listeria*-specific

bacteriophages A511, P100, A118, A500, P40, and PhiLM4

do not share this property.

Example 2

Proteolytic Stability of PlyP825 Compared to Ply511 and PlyP40

In order to compare the proteolytic sensitivity of the three endolysins they were Trypsin-digested in equimolar amounts. Aliquots were retained and analyzed after 0 and 3 min incubation at room temperature (FIG. 1). As shown in 40 FIG. 1, PlyP825 possesses less proteolytic degradation sites compared to Ply511 and PlyP40.

Example 3

Lytic Activity of PlyP825 Against a Broad Range of *Listeria* Serovars

PlyP825 was analyzed for its activity against different 50 *Listeria* strains with serovars 1/2, 3, 4, 5 and 6. Overnight cultures of *Listeria* cells were poured 1:6 in LB-Top Agar in plates. Onto the solidified agar 2 µg of PlyP825 was spotted. After incubation over night at 30° C. all 22 strains tested were lysed by the endolysin PlyP825 (Table 2). Thus, 55 PlyP825 is a broad range *Listeria* endolysin.

TABLE 2

22 *Listeria* strains tested for lysis by PlyP825. ProCC S: Culture Collection Number of Hyglos Invest GmbH, Bernried, Germany. "+" indicates lysis of this strain by PlyP825.

ProCC S	Strain	Serovar	PlyP825
995	Listeria monocytogenes EGDe Listeria monocytogenes SLCC 7150 Listeria seeligeri WSLC 40140	1/2a 1/2a 1/2b	+

lysins Ply511 and PlyP40. The results are shown in FIG. **5**. The lytic activity as a function of the pH was determined applying photometric lysis tests. In particular, heat-inactivated cells of *Listeria monocytogenes* ProCC S1095 sv 1/2a were suspended in buffer (50 mM sodium citrate, 50 mM NaH₂PO₄, 50 mM borate and 100 mM NaCl), which was adjusted to pH values of 4.5, 5.5, 6.5, 7.5, 8.5 and 9.5, respectively. As shown in FIG. **5**, PlyP825 and Ply511 exhibit highest lytic activity at neutral to slightly alkaline (basic) pH. Thus, endolysins PlyP825 and Ply511 have a pH optimum at neutral to slightly alkaline (basic) pH. The result shown for Ply511 confirms the pH optimum described in the literature (Pieper et al. 2005). PlyP40 exhibits highest lytic activity at acidic pH. Thus, endolysin PlyP40 has a pH optimum at acidic pH.

Example 6

Salt (NaCl) Optimum of PlyP825

The salt optimum (NaCl) for the lytic activity of endolysin PlyP825 was determined and compared with that of endolysins Ply511 and PlyP40. The results are shown in FIG. 6. The lytic activity of endolysins Ply511, PlyP40 and PlyP825 against *Listeria monocytogenes* ProCC S1095 sv 1/2a was determined at pH6 for concentrations of 0 mM, 10 mM, 50 mM, 100 mM, 150 mM, 250 mM, and 500 mM NaCl. As shown in FIG. 6, endolysins Ply511 and PlyP825 exhibit highest lytic activities in the concentration range of about 150-250 mM NaCl. Thus, endolysins Ply511 and PlyP825 have a salt (NaCl) optimum of about 150-250 mM NaCl. Furthermore, as shown in FIG. 6 endolysin PlyP40 exhibits highest lytic activity at a concentration of about 150 mM NaCl. Thus, endolysin PlyP40 has a salt (NaCl) optimum of about 150 mM NaCl. Thus, endolysin PlyP40 has a salt (NaCl) optimum of about 150 mM NaCl.

Example 7

Relative Lytic Activity of PlyP825 in the Presence of EDTA

The lytic activity of endolysin PlyP825 in the presence of different concentrations of EDTA was determined and compared with that of endolysins Ply511 and PlyP40. The results are shown in FIG. 7. The lytic activity as a function of the 45 EDTA concentration was determined applying photometric lysis tests using Listeria monocytogenes ProCC S1095 sv 1/2a as reference strain. The incubation period was one hour at pH 6 and different concentrations of EDTA. As shown in FIG. 7, Ply511 was inactivated already at a concentration of 50 1 mM EDTA, and at a concentration of 250 mM EDTA the residual activity was about 1%. Furthermore, as shown in FIG. 7, the relative lytic activity of PlyP40 remained almost unchanged up to a concentration of 100 mM EDTA, and the relative lytic activity of PlyP825 remained at a level of about 55 70% up to a concentration of about 25 mM EDTA. At a concentration of 250 mM EDTA the residual lytic activity of PlyP825 was about 2.5%.

Example 8

MIC of PlyP825 Against Listeria

The minimum inhibitory concentration (MIC) of endolysin PlyP825 against *Listeria monocytogenes* ProCC S1095 65 sv 1/2a, *Listeria monocytogenes* ProCC S1135 sv 3a, *Listeria monocytogenes* ProCC S776 sv 4b, and *Listeria*

42

innocua ProCC S1147 sv 6a was determined and compared with that of endolysins Ply511 and PlyP40. The results are shown in FIG. 8. The minimum inhibitory concentration (MIC) is defined as the lowest concentration of an antimicrobial agent at which the visible growth of a microorganism is suppressed (Andrews et al. 2001). For determining the MIC cells of *Listeria monocytogenes* ProCC S1095 sv 1/2a, Listeria monocytogenes ProCC S1135 sv 3a, Listeria monocytogenes ProCC S776 sv 4b, and Listeria innocua ProCC S1147 sv 6a, respectively, were incubated in TB medium at pH 6. The growth of the *Listeria* strains tested was observed by determining optical density (OD). As shown in FIG. 8, the MIC values varied depending on the Listeria strain tested. For inhibiting Listeria monocytogenes ProCC S1095 15 sv 1/2a and Listeria monocytogenes ProCC S1135 sv 3a in general less protein was required than for inhibiting Listeria monocytogenes ProCC S776 sv 4b and Listeria innocua ProCC S1147 sv 6a. Ply511 shows the lowest MIC values 0.10 to 3.34 pmol/ml. The concentrations for PlyP40 were 20 higher than the concentrations for Ply511, namely by a factor of about 1.75 to about 3.5. The MIC values for PlyP825 are, depending on the *Listeria* strain tested, about 2.3-times lower, or up to 17.75-times higher than the MIC values for PlyP40.

REFERENCES

McLauchlin J. (1987). *Listeria monocytogenes*, recent advances in the taxonomy and epidemiology of listeriosis in humans. Journal of Applied Bacteriology 63(1):1-11.

Oevermann A., Botteron C., Seuberlich T. et al. (2008). Neuropathological survey of fallen stock: active surveillance reveals high prevalence of encephalitic listeriosis in small ruminants. Veterinary Microbiology 130 (3-4):320-329.

Gillespie I. A., McLauchlin J., Grant K. A. et al. (2006). Changing pattern of human listeriosis, England and Wales, 2001-2004, Emerging Infectious Diseases 12(9): 1361-1366.

Goulet V., Hedberg C., Le Monnier A., and de Valk H. (2008). Increasing incidence of listeriosis in France and other European countries, Emerging Infectious Diseases 14(5):734-740.

Gillespie I. A., McLauchlin J., Little C. L. et al. (2009). Disease presentation in relation to infection foci for non-pregnancy associated human listeriosis in England and Wales, 2001 to 2007. J. Clinic. Microbiology 47(10): 3301-3307.

Doumith M., Cazalet C., Simoes N., et al. (2004). New aspects regarding evolution and virulence of *Listeria monocytogenes* revealed by comparative genomics and DNA arrays, Infection and Immunity 72(2):1072-1083.

Oevermann A., Zurbriggen A., and Vandevelde M. (2010). Rhombencephalitis caused by *Listeria monocytogenes* in humans and ruminants: A zoonosis on the rise?. Interdisciplinary Perspectives on Infectious Diseases, Volume 2010, Article ID 632513, 22 pages.

Hagens S, and Loessner M. J. (2007). Application of bacteriophages for detection and control of foodborne pathogens, Appl. Microbiol. Biotechnol. 76(3):513-519.

Loessner M. J., Kramer K., Ebel F. and Scherer S. (2002). C-terminal domains of *Listeria monocytogenes* bacterio-phage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol. 44:335-349.

Zink R. and Loessner M. J. (1992). Classification of Virulent and Temperate Bacteriophages of *Listeria* spp. on the

Basis of Morphology and Protein Analysis. Appl. Environm. Microbiol. 58(1):296-302.

Rocourt J., Schrettenbrunner A., Hof H., and Espace E. P. (1987). *Listeria seeligeri*, a new species of the genus *Listeria*. Pathol. Biol. 35:1075-1080.

44

Cummins A. J., Fielding A. K., McLauchhlin J. (1994). Listeria ivanovii infection in a patient with AIDS. J. Infect. 28: 89-91.

Adams M. (1959). Bacteriophages. New York: Interscience Publishers, 137-159.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 7
<210> SEQ ID NO 1
<211> LENGTH: 945
<212> TYPE: DNA
<213> ORGANISM: Bacteriophage ProCC P825
<400> SEQUENCE: 1
                                                                      60
atggcattaa cagaagcatg gcttcttgaa aaagccaata gacgtttaaa cgaaaaaggg
                                                                     120
atgcttaaag aagtttcaga taaaacccgt gcagtaatta aagagatggc taaacaaggt
                                                                     180
atttacatca atgttgcaca aggcttccgt tctattgcag aacagaatga attatatgca
                                                                     240
caaggcagaa caaagcccgg caatgtggta acaaatgcaa agggaggtca atcaaatcat
                                                                     300
aactacggtg ttgctgtaga cttatgccaa tacacgcaag atggtaaaga tgtaatctgg
                                                                     360
gcggtagatg ctaagtttaa aaagattgta gctgccatga agaaacaagg attcaaatgg
                                                                     420
ggtggagatt ggaaatcttt taaagacaac cctcattttg agttatatga ttgggtagga
                                                                     480
ggagaacgtc ctaactccag cactcccgct aaaccatcca aaccatctac acctgcgaag
                                                                     540
ccttctggtg aacttggtct cgtagattac atgaacagca agaaaatgga ttcctctttt
                                                                     600
gctaatcgta aagtacttgc tggaaaatat ggcatcaaga attatacagg aaccacttca
                                                                     660
cagaatacac aactattagc taagattaaa gcaggtgcac caaaacacgc tactccaaaa
                                                                     720
cctccggcta aaccagctac ttctgggatg tacgtatact tccctgctgg taaaggtact
                                                                      780
tggagtgtgt atccattaaa taaagcacct gtaaaagcta atgcaatcgg agcaattaac
                                                                     840
ccttcgaagt ttggtggact gacttacaaa gtcgaaaaga attacggaga taatgttcta
                                                                     900
ggaattaaga ctggttcctt tggacatgtc aaagtatatt gccacccatc aactggtgta
                                                                     945
aaaattagca acaacggagc aggaaatttt ccgaatgttc agaat
<210> SEQ ID NO 2
<211> LENGTH: 315
<212> TYPE: PRT
<213> ORGANISM: Bacteriophage ProCC P825
<400> SEQUENCE: 2
Met Ala Leu Thr Glu Ala Trp Leu Leu Glu Lys Ala Asn Arg Arg Leu
                                    10
Asn Glu Lys Gly Met Leu Lys Glu Val Ser Asp Lys Thr Arg Ala Val
                                25
            20
                                                    30
Ile Lys Glu Met Ala Lys Gln Gly Ile Tyr Ile Asn Val Ala Gln Gly
        35
                                                45
                            40
Phe Arg Ser Ile Ala Glu Gln Asn Glu Leu Tyr Ala Gln Gly Arg Thr
Lys Pro Gly Asn Val Val Thr Asn Ala Lys Gly Gly Gln Ser Asn His
Asn Tyr Gly Val Ala Val Asp Leu Cys Gln Tyr Thr Gln Asp Gly Lys
                85
                                    90
Asp Val Ile Trp Ala Val Asp Ala Lys Phe Lys Lys Ile Val Ala Ala
            100
                                105
                                                    110
```

Met Lys Lys Gln Gly Phe Lys Trp Gly Gly Asp Trp Lys Ser Phe Lys

-continued

45

115	120	125

Asp Asn Pro His Phe Glu Leu Tyr Asp Trp Val Gly Glu Arg Pro 130 140

Asn Ser Ser Thr Pro Ala Lys Pro Ser Lys Pro Ser Thr Pro Ala Lys 145 150

Pro Ser Gly Glu Leu Gly Leu Val Asp Tyr Met Asn Ser Lys Lys Met 165 170 175

Asp Ser Ser Phe Ala Asn Arg Lys Val Leu Ala Gly Lys Tyr Gly Ile 180 185

Lys Asn Tyr Thr Gly Thr Thr Ser Gln Asn Thr Gln Leu Leu Ala Lys 195 200 205

Ile Lys Ala Gly Ala Pro Lys His Ala Thr Pro Lys Pro Pro Ala Lys 210 220

Pro Ala Thr Ser Gly Met Tyr Val Tyr Phe Pro Ala Gly Lys Gly Thr 225 230 235

Trp Ser Val Tyr Pro Leu Asn Lys Ala Pro Val Lys Ala Asn Ala Ile 245 250 255

Gly Ala Ile Asn Pro Ser Lys Phe Gly Gly Leu Thr Tyr Lys Val Glu 260 265 270

Lys Asn Tyr Gly Asp Asn Val Leu Gly Ile Lys Thr Gly Ser Phe Gly 275 280 285

His Val Lys Val Tyr Cys His Pro Ser Thr Gly Val Lys Ile Ser Asn 290 295 300

Asn Gly Ala Gly Asn Phe Pro Asn Val Gln Asn 305 310

<210> SEQ ID NO 3

<211> LENGTH: 426

<212> TYPE: DNA <213> ORGANISM: Bacteriophage ProCC P825

<400> SEQUENCE: 3

60 atggcattaa cagaagcatg gcttcttgaa aaagccaata gacgtttaaa cgaaaaaggg 120 atgcttaaag aagtttcaga taaaacccgt gcagtaatta aagagatggc taaacaaggt 180 atttacatca atgttgcaca aggcttccgt tctattgcag aacagaatga attatatgca 240 caaggcagaa caaagcccgg caatgtggta acaaatgcaa agggaggtca atcaaatcat 300 aactacggtg ttgctgtaga cttatgccaa tacacgcaag atggtaaaga tgtaatctgg 360 gcggtagatg ctaagtttaa aaagattgta gctgccatga agaaacaagg attcaaatgg 420 ggtggagatt ggaaatcttt taaagacaac cctcattttg agttatatga ttgggtagga 426 ggagaa

<210> SEQ ID NO 4 <211> LENGTH: 142

<212> TYPE: PRT

<213> ORGANISM: Bacteriophage ProCC P825

<400> SEQUENCE: 4

Met Ala Leu Thr Glu Ala Trp Leu Leu Glu Lys Ala Asn Arg Arg Leu 1 15

Asn Glu Lys Gly Met Leu Lys Glu Val Ser Asp Lys Thr Arg Ala Val 20 25 30

Ile Lys Glu Met Ala Lys Gln Gly Ile Tyr Ile Asn Val Ala Gln Gly 35 40

											O _D	7,0	10,			
						47										
											_	con	tin [.]	uea		
Phe A	Arg 50	Ser	Ile	Ala	Glu	Gln 55	Asn	Glu	Leu	Tyr	Ala 60	Gln	Gly	Arg	Thr	
Lys P	ro	Gly	Asn	Val	Val 70	Thr	Asn	Ala	Lys	Gly 75	Gly	Gln	Ser	Asn	His 80	
Asn T	'yr	Gly	Val	Ala 85	Val	Asp	Leu	Cys	Gln 90	Tyr	Thr	Gln	Asp	Gly 95	Lys	
Asp V	al	Ile	Trp 100	Ala	Val	Asp	Ala	Lys 105	Phe	Lys	Lys	Ile	Val 110	Ala	Ala	
Met L	īÀa	Lys 115	Gln	Gly	Phe	Lys	Trp 120	Gly	Gly	Asp	Trp	Lys 125	Ser	Phe	Lys	
Asp A	Asn .30	Pro	His	Phe	Glu	Leu 135	Tyr	Asp	Trp	Val	Gly 140	Gly	Glu			
<210><211><211><212><213>	· LE · TY · OR	NGTI PE:	H: 49 DNA ISM:	59 Bact	terio	opha	ge Pi	roCC	P825	5						
					~a +1	- 2 0 2 1	taaa	a 2 <i>0</i> 0	7220		t aa	at t a	ata i	-+++	act a a t	6.0
															gctaat	
															cagaat	
								_			_				cctccg	
gctaa	acc	ag o	ctact	ttct	gg ga	atgta	acgta	a tad	cttc	cctg	ctg	gtaa	agg 1	tactt	tggagt	240
gtgta	tcc	at t	caaat	taaa	gc a	cctg	taaaa	a gct	taatq	gcaa	tcg	gagca	aat 1	taaco	ccttcg	300
aagtt	tgg	ıtg g	gacto	gact	ta ca	aaagt	tcgaa	a aaq	gaati	acg	gaga	ataa	tgt 1	tctaç	ggaatt	360
aagac	tgg	jtt d	cctti	tgga	ca to	gtcaa	aagta	a tat	tgc	cacc	cat	caact	tgg 1	tgtaa	aaaatt	420
agcaa	caa	ıcg g	gagca	agga	aa tt	ttc	cgaat	t gtt	caga	aat						459
<210><211><211><212><213>	· LE · TY · OR	NGTI PE :	H: 19 PRT ISM:	53 Bact	terio	ophag	ge Pi	roCC	P82!	5						
Gly G	lu	Leu	Gly	Leu 5	Val	Asp	Tyr	Met	Asn 10	Ser	Lys	Lys	Met	Asp 15	Ser	
Ser P	he	Ala	Asn 20	Arg	Lys	Val	Leu	Ala 25	Gly	Lys	Tyr	Gly	Ile 30	Lys	Asn	
Tyr T	hr	Gly 35	Thr	Thr	Ser	Gln	Asn 40	Thr	Gln	Leu	Leu	Ala 45	Lys	Ile	Lys	
Ala G	Sly SO	Ala	Pro	Lys	His	Ala 55	Thr	Pro	Lys	Pro	Pro 60	Ala	Lys	Pro	Ala	
Thr S	Ser	Gly	Met	Tyr	Val 70	Tyr	Phe	Pro	Ala	Gly 75	Lys	Gly	Thr	Trp	Ser 80	
Val T	'yr	Pro	Leu	Asn 85	Lys	Ala	Pro	Val	Lys	Ala	Asn	Ala	Ile	Gly 95	Ala	
Ile A	Asn	Pro	Ser 100	Lys	Phe	Gly	Gly	Leu 105	Thr	Tyr	Lys	Val	Glu 110	Lys	Asn	
Tyr G	31y	Asp 115	Asn	Val	Leu	Gly	Ile 120	ГÀв	Thr	Gly	Ser	Phe 125	Gly	His	Val	
T		_	~	'	_	~	 1	~-T		_	- -	<i>a</i>	7.	_	~ 7	

Ala Gly Asn Phe Pro Asn Val Gln Asn

Lys Val Tyr Cys His Pro Ser Thr Gly Val Lys Ile Ser Asn Asn Gly

-continued

<211> LENGTH: 66849 <212> TYPE: DNA <213> ORGANISM: Bacteriophage ProCC P825

<210> SEQ ID NO 7

<400> SEQUENCE: 7 tattaaattc tcatacagtg tagtcgtgtg tgttcgagtg aagcactgtt aaagaggtag 60 gttctaaaca tatcttaact tgttatacat atactataac agtattaaat accttatata 120 180 attatatggc tataacacgt cacaacatgc cacacatgtt atctcatata aacccgcttt 240 aacacgccaa taatggttcc taaccattcc ccaataagta ccccacatag tcccccaaat 300 agcccccata ttcattcgct attatcctcc acaaataccc cggcttatct gccctagatc 360 gtggtggatt acctgtaata tatccccctc atattccccc tatattagta ctgttattat actactatcc aacatatcac ctatataagt acccggatat tacccgtaat tatacacgtt 420 480 gtgacacgtc cccacacgca cccttatatt taaggggtta aactgtgcgg aaattctagt 540 gcgattatac aacacttaac ctacacttat ccacctttcc aaagttaaat gcgttagaat cactccattt cactattcta tatttaagac atattctcta tctttagaat attcagactt 600 660 ctatatccat aaaaagagcc cccagttaag ggagcttatt tctggttatc taatttgttc 720 cattcccgct cacattcagc caagaaggct tttatgcctt catttgtttg tggcaggtta 780 tcaccttgca ttttaacatc ttccatttta tcctttacaa acttgccttt accttccata aactctgcga acccgttttc tatctcttca ttattcattg ttggaaccac accccattat 840 ccatgccatc atatccccac gcattacttc cagttgtgtc aattactaag acgtcttttt 900 960 catatacaat aacagctttg tctttgtaga tatttacgtc cacaggtttt tcatttggaa agccgtactc ttttacaatc tgtttttcct tcatttcctg cgttacttta ctttcagata 1080 ctgcactcgc attttcaact tgattaaaca ttaccaccaa tgttactaca ctcaatacta ccaacgctac aaataccatc atcaattttt tcatcttctc tattcctcct aatttttatt 1140 togtgttoot tactactott atataataac ataggtagtg ttacaaaaca agcccatttg 1200 1260 tgttacagaa ttattacatg tgtaaaggga gccgaaagct ccccgctgtt attctttagg 1320 ctcaaagtgt gctaaacaaa tagctccaat tccaaagcag acgaatatca cgcctaacaa 1380 tatcatgact ttgttattac tgtcaccagt cttagctaga attttatggc tatcactcgc ttttacttcc tgtataactt ttttaggttg tggggacgtt tctacggctt ttacttttgg 1440 1500 tttaacgggt tcttgtacag ttaaagcttt ctgaggagcc tcactatttt cagatacaac 1560 ttctttttgt ggttcttctt tcacaacttc tttttctggt tccggttttt gctgtggctc 1620 ttctttaact ggtgcaacaa tttcgtccca cgttaaaacc attacgaacg tatcacaatc 1680 ttttagcact gaaatagtgc cagtaaattc agttccccca aatggagctg tccaatcatc 1740 tttagaagtc catttttgac catcctctgc cacgtaagtc catgtaccag atttttcatc 1800 taaggtcatt tttacattaa cttctttcat cgtttctgga ttccattcat aatctgtaag tacttcttcg ccatccttta tttctgtttt agtgtcatcc aatattttac atccagtaac 1860 ttctttatcc caaattactt ctacttgctg tccgtcgata tagtaaatat cgttatcatt 1920 cgataactgt tttccatctg tagtgattaa cgttccttct tttgcgtgca cttccggaat 1980 tttttcatct gcatttactt gtgcccctcc aaaaatcaat actccaaaaa ctagactact 2040 cacgattaat ttacttactg aattcttctt catgtttttg ccctcttttc ctttattttc 2100

-continued

acttgacaac	tatatcacac	attgttaaac	ttgtcaacaa	cctgccagaa	cttctatacg	2160
gttttggata	agctcattac	tttctgtgtg	taattcgtat	gtacttatta	agtctaccca	2220
aaatggatac	ttaagtttac	cttcttcttg	catttcgtcc	aaaattgtgt	tatactgttt	2280
tactgcatct	tgaatattgt	tagctgtaaa	gcttttgtat	tctgtcatgc	tgttatcctt	2340
ttgacaaatc	accgaccatg	tggacggcac	ttctttcaca	tctatatcga	aaatagcacc	2400
gtccacaaca	tctcgcaaca	tgaatttagt	cttaaccaca	atagcttacc	tcgaaaagtg	2460
cataccaact	tgaaggacgt	gcttggaaat	atttagtagc	attaattgca	tccattaaat	2520
agattgcgtc	gtcagaatcc	atatctacgt	gaaaagtgaa	accagagaac	aagtctgtgt	2580
caatctcatc	cgtattaaat	tcgtagtgct	cgaaaatatc	cgttaactct	tctaagataa	2640
gttcttgtgc	aatttcttgc	atatcttccg	ctaattcttg	ttcatcttct	tcatatccat	2700
tccacccatt	tttaaacagt	tcgataaatg	tttctttgat	tgtgctatta	gtagatgcgt	2760
gaactggata	gtcttcgcta	tcaccaaatc	ttatatacag	actaccttct	ccactttcta	2820
aacgtgtagc	ataatccttt	gcattaatac	tcatttctaa	gcttctaagt	tcattcattt	2880
ttaacgtcct	cctcttaatt	tatataccaa	gtatatcacg	ctctttgtta	caattcaata	2940
cctacaatat	tacaaatgtg	ttacagtaag	tgctgaaata	tctgctcttg	tttgtgtgtc	3000
aagtataaac	tgttttgtca	atttttggaa	tttacttaca	agtccatttt	gtcgcataaa	3060
ttctttgatg	tggcgaactg	gcgtatttgt	caaatgttgt	acgtttgctg	taatataaaa	3120
ttctccatca	actaaagcgg	ctacaggcgt	tttatagctg	taaagaactt	tcgtgctgta	3180
ggctgttcca	tctctgtaga	tattcttctc	cgccacttct	gctttattgt	gataactcgt	3240
tacattctcg	aaaataggtt	ctaatgcttt	aatagtagtt	tcttccgttt	taaacaattt	3300
gaccactcct	atattttat	tctggttact	ttctgaattg	gtttgttaag	atagaatgct	3360
actgcttccg	cttgtttgtc	cgtgtaagtt	tgcatgaaac	ttgtaacgtc	catgctaaac	3420
aagttcttga	ccgctcttct	taattccaga	caatcaacca	ccacgaactt	acttttaccg	3480
attgaaagag	attgaataac	gttctgcatt	aaattgtagc	acctcctctt	tttccaagta	3540
ggtctaattc	agtgaaagca	atttccctca	atttgtcccg	cgtaatagtg	ttgtagtacg	3600
ttgtgaaatc	ttggtaagta	cattttgcga	atgcttcaat	tagtccgcct	cgttttgccc	3660
ctacattttg	cacgcaccaa	gcttggcggt	ctgaaactaa	catgctaaca	tattttacga	3720
gctctttctt	tgacaatctc	caaacttgtg	cagatacaaa	ttctttcacc	gctaattttt	3780
ctacttcgat	agttttactc	attttactcc	tcctccttta	atattggatt	actccggatt	3840
ttcttgtgtg	gcgttttatc	tctctttgta	gtacgctgtc	cgcaaaacgg	aatcttgcta	3900
caattccatg	cgtgcttgct	gtgttgcttt	taagttcgta	aattgttcca	tcttccattg	3960
tgatgaattg	ataaactaag	ctacctccat	agatactagg	tcttgactgt	aagtaatatg	4020
actcattttg	atttaccata	tctggattaa	tgaaaccatt	ctttaagtgc	ttttcttgta	4080
ttttgtttgc	catttctaac	acactcctca	tttaatttgt	gttgttcttt	actactcttt	4140
aactataaca	cgtccgtttc	agtttgtcta	ctattttaat	gttacaattg	tgttacaaac	4200
ttatttggtt	cttttactat	aaacttttgc	caatctattt	tggctttcga	aatactctct	4260
tactttaaat	acgcttgctg	acctatttt	ttcacttcca	taaccaagca	ttgccaaaaa	4320
ttcctctgtt	gataaaccta	ttccctcgta	agttgctttg	tcctttttga	attccgcaat	4380
cgtaagttct	attaaatccg	ctaaagctgt	taactccatt	tctgaaatat	cttcaccaca	4440
tgaaccaatt	tcagttactq	caaaaagtqc	atcgggtgca	acaaatgccc	ttccttctct	4500
		<u> </u>		_		

-continued

aatttcttgt cttgtcgctt	gtcttaattt	catttgaatc	aattcctttc	tacatttgat	4560
ataagattac taacaacatc	ataacagata	atgtgataag	tgtcaagctt	ggaatagctt	4620
ttaatagaag ttgtttcata	ttatcgtttc	ctttccgttt	tcaattactt	taattccgag	4680
cgttttgttt tctatagtag	aaagtggttt	ttgtatatct	ccattttcct	ccatcatcgc	4740
ccggtgtatc acgtgtaacg	cttgttttaa	ttccatttta	gtttgtgtgt	cgcatgtgct	4800
tttgtctact acattatata	gagcgttcga	agctctgttt	aatagaatgt	aattacttgt	4860
tgctgtcatt ttaaccagct	ccttttaatt	gataagctaa	tcttagcacg	cttttttctg	4920
tttgtctagc ttttttgtgt	tacaagtttg	ttacagaagt	acgtaaattg	gatgacaaga	4980
gtttgattaa agttgacttt	gacctttatt	gatgtacctg	aaatcgacgt	ctttttaggt	5040
gtctgcggta gctttttgct	gctgatttcc	cgggcgcctg	cgttcagtcc	taaaaaattc	5100
cccggggata tacaaaattt	ccccaaaaa	atttccaccc	aatttatggg	tgagaataaa	5160
aaatccaccc aattatttga	gtttgacgaa	cggaatttga	atcgaaacaa	ttaagtagtc	5220
gaagcagaaa acgtaactca	aaataataat	gaatggatgg	atttaatatc	cagttcaaat	5280
ggaactgatt tttgtaactg	tttttccaat	acatttgact	gttaatttac	agaacgctgg	5340
gaaagtgttc atcattttta	gcagaaattt	gtattcaagt	tttggctaat	gtttgcgaca	5400
acgtttcctt aacttgtaaa	ttaattttac	cacagattgt	tgcatttgtc	aaatattgcg	5460
gaaaacgtgt tgaaacaagt	gataccaatg	gttttgagtt	tccccagaat	aaattttaaa	5520
aataatttca aaaaaaatat	ttaaatctac	agaataaatt	ttaaaaatga	tttccaaaat	5580
gaccccact tgtgttttga	attgaacttt	gtagaatata	ttttcaaaat	aaataccaaa	5640
tataactaaa atgtgatata	ataaaaagat	aaaggtggtg	ataaaatgtt	agatgatttt	5700
gtagaatttc ttccaaacta	ttttgttaat	aaggaaggga	aagttctaag	taaaatttct	5760
ggaaaaatta aggagttaaa	aggttctaaa	aatccacaaa	aatatcaaca	atttgggttt	5820
aaagttgatg gaaaacatgt	tggaatacaa	ctacaccgta	tactagcaat	ggcattcatt	5880
ccaattccag aagaattaaa	aaatgctaag	aattgcgtag	accatataga	cggtaatcca	5940
gaaaacaact ctttagaaaa	tttaaggtgg	actaactacc	aagaaaactt	agcaaaagca	6000
ggtagaag gacaacgtcc	tatgttattc	acccatgaag	aggcacgtta	catgcgtaaa	6060
gaatattggg aagagggtat	gtccatagag	gatgtagcta	aagagtttgg	tggtggaact	6120
gataaacgtg tttacaatgg	tgtacaaagt	attattaaat	acaaatcaat	gcaatatgta	6180
gcagacgaat agccagagga	ttaatcccgc	tggcttttct	ttttatcttc	ttcttctatt	6240
tcaaaaattc ttttaaaagt	atctactaag	gcattaataa	attcatcagt	attcattgac	6300
tgattataaa cattaaccat	aacagtattt	gtaaaatatt	tttctaaaac	atcttcagaa	6360
actgcgtggc ttatagctcc	gtctacagtg	tcatcccaat	caacctcgta	agcaatcatt	6420
cctgtcattc cctgtgtaac	accaataata	gttcccttag	aattgttata	acgatgctgt	6480
acacgttcaa acttttcaaa	cttactcatg	atacgttatc	ctcctagaaa	tcatttgaaa	6540
aagttactcc acaatattca	ttcttcccat	aatgtataaa	ggtacaggca	ctttcatctt	6600
ctctcacact tattccaacc	ttcaccactt	ccccatctat	gggagattta	aatgttattt	6660
ttaaggcaac tttatgatgt	gtattatggt	taatccaagc	ctttaccttg	aatattcctc	6720
ttcgcatctt tactacggct	gtattaggat	aattttggga	atgtttgtga	aaatttcctg	6780
tgaatggatt aaacatttca	aatatatcag	ctctggatgt	aggtaataac	atatatctta	6840

cattttgttt	agataataac	tctctacctc	ttctgtcaat	tgctgaaaag	ctttcttctc	6900
cgtgtgtaag	taactccaat	actaatttt	ctgcaatttt	ctttccttct	ttacatcttt	6960
ctttcctcaa	ctgcttagtg	tgtttattct	tttctttaat	caatatttt	cttgctctgg	7020
aaaattttc	cataattgct	ttcacctcac	ctctttattt	acctattaaa	ctaactataa	7080
tagctaaaat	aataagaaat	aatattacta	acataacaaa	tacaatgata	gcaacccaga	7140
taattattgg	aataaacact	gtccaccaga	caatattaat	aataccagtt	aattgaagta	7200
ttaataatac	taggaaagca	attacgcata	ctgcacttaa	tctcatactt	attcactctc	7260
ctattagttt	aatatcccac	gggctcatcc	aaacagttcc	aaaactattg	ttatcaaatt	7320
taactttata	aattagtatg	ccttccataa	gtgtccagtc	gataattgtt	cctttttcat	7380
aattattggt	ttcctccact	cggcttccat	ttgcataggg	atgttctgct	gacatattgc	7440
tgaatacctc	ctctttattg	ttaacccaat	ctaaaatatc	ttccaaagta	ttaatactaa	7500
tcaacccccc	cccatctcta	tttaagtata	acacaagcca	ctgaaatatt	caatggctaa	7560
gtgcttttat	agtttatttt	gttttactgg	ataaaaacca	agttcattct	ccgcattcaa	7620
ttgattaaac	cgctcctcag	aaatctgcac	atatgaagta	tcttttgtag	ttaagaatct	7680
attaagttta	ctaagtctaa	cctcttttc	ttctccaccg	tctacttcta	atgaagtata	7740
tactgctttt	ccctctgccc	cattagtagg	aataaaattt	ataaataagc	gtagtagact	7800
tccttgttta	attccgtcaa	aatctttaga	agtagttggc	ttagcatcat	tatattcaca	7860
taatagatac	gcatatactc	ctgaactatt	actcatataa	atcataccct	tctgccattg	7920
cacgaataac	ttcctcagta	actacaccag	aaacacgtgc	cacttcttct	gactcttcat	7980
tatagagcac	aattgtagga	acagatttga	ttccctctgc	gattaagaca	gcttcgtctt	8040
cctccacagt	agcaatatta	taatggaatc	ctgtagcatc	tagttgtggt	tgtactaact	8100
tacatacacc	acagttttct	aatttttat	aaaatacaat	ataacctttt	gccattaatt	8160
tttccccatt	tctttttcta	ataattccat	taatatttta	atggttaaat	ctgttaattc	8220
tttatcatta	ttttgtaaat	catctaagga	agcctttcct	ttgaagtagt	ttctgatatt	8280
catattaata	acctgttcct	gttcttccat	aaatacttct	ttgaattcta	tattaatcct	8340
actcaatgta	tccatttcat	tttcattttc	cacaaaaacg	gaataccaat	aaataccgtc	8400
attatctaag	tggtatttt	ctaattcttt	tggagaaaaa	gctataccta	tttcattatt	8460
aaattcttt	ccatagtcac	gtagtttgtg	gaaatcttta	aatctccaaa	ttaaacgtgc	8520
tccctttttg	tttaaagtaa	gaatttctct	ttcttcatca	tatctaagta	gtacaaaata	8580
gtgcttactt	tcatccaaat	ctgcaaactt	agtcatctaa	tcccctcggt	ttctttgtgt	8640
atttactagc	aggctcatat	gggttattct	cttttgtaat	agtcattcct	aagtatttac	8700
ctctagttgg	tttgtatgtt	cctcctttat	ctattaccca	tgttcttaga	gaagttttag	8760
gaactcccca	caaatctgca	actgcatcat	gtgttttctt	tgcttttaaa	tctctataat	8820
aatttgaaag	agtgtaatta	gcaagagaag	tacatgataa	ttttctatca	taacctttac	8880
ctatttcttc	cagctctgct	agctctttac	caagctccat	aacctcttta	caccattcaa	8940
actcttcctg	ccacacgtca	ttataatcat	taatctctgg	atgttggtct	aaaatgtcat	9000
ggagggcaat	tcttaattct	ttagctcttt	ccctatttt	cattatctaa	caatcccttt	9060
	taccaactct	_				9120
	ttatqatatt		J			9180
	J			5 5	J	
tcctccaaca	tacttgtata	cctagaaagt	ectctacgtg	ccttaccttt	cttttccctg	9240

tcttctcttt	gcttaacacg	acaagacacg	tactcatgta	ttaactcaga	ttcttcattt	9300
gtcaacatgt	aagcaatctc	ttcatccata	ttaaacttca	ctcccgcttc	tttactcgta	9360
gtctttgtgg	gaatttctac	cccattcagc	acagcttcta	taaatagtct	agctgttttc	9420
tgttctgtct	tgtaacgaat	gcggggaatg	tttgctttta	ttgttgcaat	gttatttaaa	9480
atctttttca	aaatatctga	atcactactc	atatcttacc	tccttaactt	tatattaaaa	9540
ttataccaca	ctatttttaa	tatgtcaaca	aaaaagagag	cataagctct	ccttaatctg	9600
ctgttacatt	tctagtggtt	tcagcgttgt	ttacattgtt	gttaatagtt	gcaattacag	9660
atttcttcat	gtcaatagcc	cactgaatag	cttctaatac	ttctgacttt	tctttcttct	9720
tagataaacg	tttgtaagaa	gcttccaata	ctttaatgtc	ctttactaac	ccctcgataa	9780
agtcaatctg	gttttgtgtt	tcctcattaa	tttctttcac	ggttctttct	cccatctata	9840
attaatttt	taacccattt	aatttggttt	tctgctaatt	cttgttttgt	tttggctaac	9900
tgttcctcag	cttcaaagaa	ttttttcttc	attttatcct	ctagtcgtgt	aatttcctct	9960
aaagcttctt	cacaatcctt	tgccagtttt	tctgggtaat	ctaaatcgta	gcaaacttta	10020
acaatgacta	cctgctcact	tactcttttt	aaaaactcca	cataatctgg	taataaatga	10080
ccatatttat	ctttgttgca	atatattacc	tttgcaaaac	tatcatattt	ataaggagcc	10140
tttcttaatt	cttcgtctac	tccgtatcta	atttctttct	cttcttctat	cattttagtt	10200
attttcgtta	cttctcgttt	tgcttttctc	caaataatct	tagtcttaaa	ggtatctcca	10260
aaaaccattc	catctaaata	tctttcttta	actagcaata	accatattaa	taaataactc	10320
acagccattg	aaaacaaaat	aacacagatt	tttaatcctt	cataggtggt	gtattttccg	10380
tcattgtctg	ttgttaccag	tgtccataat	gttgtaaaaa	tgaaaaatcc	tgctaatgtt	10440
attaatgtca	aaaattctat	tttaatgata	cgattaatat	atcttttaag	gtctttacca	10500
aaacgcttga	aaggaagaca	ggcaccagta	tagccctcca	atatagtttg	tatagcgtaa	10560
tcatataaca	tcctatctat	cttcttattc	atcataaaac	ctccctcgta	atatattat	10620
tataccacga	gaaaggcgta	ctgtcaaacg	attaattaat	aatttttgta	tcaaattccc	10680
agtcatagac	gttctcacgt	aatgttagta	atctacctct	tacagtatta	attgccatat	10740
tagaagccac	gtgagaatca	tttccggact	gtgttacagg	aataataaca	acatcttctc	10800
ggaatgtact	catgttcggt	gtcttaaatc	ttaccaaaac	atggaattct	gtcctaacca	10860
attttctcaa	cttccatttc	ttgaatattg	attaacagtt	taccactcgc	aaaaggctgt	10920
aaacgtctgc	gtaagctctc	ttggaatatt	aagaattccc	ctaaattcat	ttcttctaca	10980
ggactaagag	aactaaattc	aaaatccatt	gaaaacctac	ctccatcaat	cccattctta	11040
caaatacgaa	gataatctac	tactacatta	gcgttgtatg	tttccatagt	ttatttgtcc	11100
ccttccaata	aatttttaa	tagttgcata	atatctccgg	ataaatcttc	ctcctcatcc	11160
tcttcttcaa	tcgttactcc	atttatttct	tctgaccact	ggctatggat	ttcttttgca	11220
atattatccc	catatttatc	cccatattct	gctttaaaat	ctttatcagc	caccaaaatg	11280
ttcataattc	cctgtacaag	tccttccaca	gtagctcctg	caaccattaa	aaatgtcttg	11340
tcggtatctt	tcatattttc	tggttctggg	aaatgttgca	tggctaaatc	cactaatcgt	11400
tcgccgaaag	agtttctata	agctagtaca	aattccatta	attcgtttga	tttaatattt	11460
ctactatttg	ctacggaagc	catgtcttt	aatctttcag	ttatttcatc	aaatgctgtg	11520
gaagtatctt	cttcctcttg	actttttgac	aaatgacctt	ctttcacttg	aaactcctca	11580
	_			_		

tgtacgtttc	ctttgtagat	aatattagta	tcactatctt	ttaataatcc	ttgtgaatta	11640
tcaattaaat	cgtctaggtc	tgtctcgtaa	ttttccgcgt	cttcttgaat	atattcattt	11700
aacttatccc	aatctttatc	tactgatttc	ttattaaaat	tatctaacgg	attaaattta	11760
gtcatttatt	tctcctccaa	aattaagttt	aaattgctct	gttgctagtg	cggaatttac	11820
tctagctaat	acggcacttc	tggctaagct	ggttgcttcc	tcgtctgcgt	cttttgtgat	11880
agcagataag	gcgtgctcca	aaaggataat	cgctgcataa	atctctgctg	cggtatctcc	11940
acttgctgag	aagctagaaa	tccccagcat	tccctctaaa	tcgatttcca	catcaatact	12000
tccactaaaa	ctactttctt	ccatttaatt	ctcctccttc	tgtaagaaaa	atttatcata	12060
aatttcttca	tctgtcaagt	cttttattga	ataataatta	aggacgtgtt	ggaagttttc	12120
ctctggcata	gcaatttcta	cagcttctct	tgtttcagaa	ttactttcaa	gagtacgtcc	12180
atatccccat	ccaaaactac	tagctgccgg	tattctacta	atctgtaatt	ctagtaaagt	12240
aaataacagt	cttcgatacg	tacctacgtt	agttaaagga	aaataaagcc	gagaggtgtt	12300
aaaactatct	tcaaaatctt	taatagtgaa	agctactaca	gaagcaatat	catctgactc	12360
ggatgctttt	cctactacaa	tgcgtaatct	gtatttatat	gacaatgcca	caattattt	12420
aaacactttc	aacatataat	catttaaaga	ctgtgcggaa	atgtccgcta	atgcgttaat	12480
ccctacataa	atactaatgg	caggaacctc	tttcatccct	ctacggcgga	attgtcgtgg	12540
atgtccaata	agagaacgtg	gaactgatag	agaagagcct	gtaacgctcc	actccataga	12600
acctttctca	agaatttgct	ggaacctagt	tagctctctt	tggatggaag	cttgttcact	12660
ctcttcgatg	tagttagagt	ggaaccgttc	cttgtaggta	ctggcaccta	ttcctccatc	12720
tctccaatcg	tcatcctctt	ccatattctt	gctgtaatta	aaatcacttt	gtttcttttg	12780
taaatcttta	aaaatatttt	cgtagtcatt	tcctacatat	ttagttaata	aaatactatc	12840
ccaattgccc	tcttttgtta	ttggattaac	tatctctcta	tggctgaaat	tattttcaac	12900
aacatctagc	acaaactttc	ctttctcttc	tgccatcctt	acacctctta	aactttattt	12960
tttattgtct	tgagaagtca	cccaatctct	aaaattgttc	cacacttcat	ttcctgctaa	13020
agaactagcg	tgtttacttt	ccaatccttt	tcgaatagaa	gacacatcag	cccacgctag	13080
tgctttaaac	agaacatttt	caaatacgaa	gccttctcca	aagccttcta	gttttttgta	13140
ctggctcata	gcacggtaag	agataacgtg	gttaatcatg	ttggcttcga	ttacttcacg	13200
gcaacggtga	ataaactgga	ttaaatcatt	atcacggtta	gagataatca	attctaattt	13260
cttgtcataa	tcaacatgaa	taggaacaaa	acggtcaagt	gtcgcagcat	caatcttgtt	13320
acgacctgtg	tagttcatgt	ctcccccttt	accaagcgtg	ttacctgcca	caattacttt	13380
aaagtcttca	tgtgcatata	ctgtttcgtc	tccgccgtct	gcactagaag	ggaaggtcat	13440
aaaattgttt	gcaagaacag	tattaattac	gataagggct	tctggtgaac	tggcatcgat	13500
ttcatcaata	aataataacc	caccattctt	catcgcttta	tacaagtttg	ttgcttggta	13560
tttacccgtt	ccatcacgga	atccaataag	ctgtgtgaac	tcgtctgtaa	ccttctgcat	13620
tggatagaag	tctaaaccaa	gtttagtaga	tacgttttgt	gcaatagttg	ttttacctgt	13680
gcctgcttga	ccatgtaacc	agcagtgcaa	acctgcctgt	gtcatagcag	agatacgtcc	13740
tgtttcacaa	tgttcatcta	ctcctgcact	atatgcttct	gtgctgacat	agtaggtgtc	13800
atagttttgc	tcacgtaaga	agtttaaagc	aggtgattcg	aattctactt	tttctaaagc	13860
	atatcgaaag					13920
	tcctcgaatt					13980
550		5	5	5 3 - 5 - 5 - 5	5	•

tttaatctcc	tcttcctctt	aattagtatc	agtatttta	tcttcatatt	taggacttag	14040
aatccttact	gttgtggagc	gtaaacgtct	gttatttaat	tccaaacgta	gtagcgaatc	14100
tgaaagttct	tctaaggctt	gtgcccgttt	ttcttgtggc	aatgttccat	cttcaatttc	14160
ttttaaatgg	actaaagctc	gttttgcttg	atttaggtgt	gtgaaatttt	tattggttaa	14220
ttcatttact	gttgtgtaca	cgtgaactaa	atcagaatca	cttggtcttt	ctggcatatt	14280
ctcacctcct	gtattactac	tataccacaa	aataaaaacc	ctgtcaacaa	taaagtgaca	14340
aggtttaaaa	attatattga	ttccgcacta	tcccaatcaa	tttcttctgg	gttaattgga	14400
gcgttagggt	ctggtgcatc	tggtataata	aagaatacat	aagcaccatc	tgggtttcta	14460
aattccactg	acaatacctg	tgaaccttca	tcctctaact	ggttggtagc	atatgttaaa	14520
cgttttgcta	attcgtcccc	atcgccatcc	aaataaataa	ctccacgtgt	atatccttta	14580
ttactcatag	aatatgtgcg	tcgccagttg	ctttccatcc	acatacaagt	ggttaggcga	14640
ttggctatct	ttcttttca	ttacaaaaat	ctgtcgtttg	tactctgcaa	tttctgcatt	14700
taatttctct	tcattatttg	cagaggcttc	tagttcatcc	aatagacttt	tgttctcttt	14760
ctctaaatct	tccacaagca	tcttgtagta	ctgttttgag	ggcattagcc	caccttcttt	14820
ctagtaccaa	ccgtgaatga	tatggaactc	tttagctttc	tcccaagttc	catagcgttg	14880
tgccacatag	gcatctgctg	cacgttcttg	gttagcaggc	gaatagtcac	ctttcaagtt	14940
ccattcttct	agttggtatc	ttccaatata	tttaccagtt	gcggaacggc	aattataatc	15000
tcctcgtgac	tccacatagg	cgatatattc	cttagcagat	agtccattct	gcgttccttc	15060
tggaataatt	ccttttcctg	tacttgattg	tgatgtctcc	tgcttggctg	gctcttgaga	15120
tttctcttgg	ttaggagaag	cttgttcttg	ctgttcttgt	tgagcttttt	cctcagcttg	15180
ttttgcttcc	aaagcctgct	gtgcttcttc	tgcttcacgt	tgctttttaa	gagctaattt	15240
acgagctgct	tccgcttttg	ctttaagttc	tttttgatgt	ttttcgtaaa	tttgttttgc	15300
ctgttccaac	gatttttctt	gcttagttgg	tacagatgcg	aacaatttgt	caatattgtc	15360
tgatgcttca	ttctgcttct	taagctcatt	caagtgctta	ggcagatttt	ccacagcagt	15420
taacgcactc	ttctcttgga	ctggttcttg	cactggcttc	actggggcag	ttgttaaact	15480
aactgccata	gctaatgtta	gtagcattta	tttcctccat	ttgattcgtg	tatttagtca	15540
caatttgtgc	ctatgactat	gatacagatt	atagcacgtt	ttgttgcatc	tgtcaactat	15600
taatttaaat	taagtcgttc	gtctattctt	aatcgcagta	cttgaccacg	tgttttgtat	15660
ggtctatcca	ttgaaattgt	tttgggaata	cgccgttctc	cattattatc	tacttctaaa	15720
ataaagttag	aaagtaacat	atacagacgg	tttggcaaac	tgacggattc	aaattcctca	15780
tagaaatctt	cgcagattcc	ttcaactatt	ttagaacgaa	gcagtgcttg	ttgtaaaaca	15840
atttcttctt	cttcaggaac	aggcataatc	aagcgaggat	tattttcctc	gtgtgcttct	15900
agttcttcga	gaacatccca	ataaaagttt	tctaaacgac	ttgcatagtg	tctctgtcgt	15960
gtctttttac	taagttgtcc	atagcgtttt	ttctccgtct	ctgagttcat	ttttaaactt	16020
ctcacttcct	cgtagtattt	ctttaattcg	tataacttgc	ctgtagatag	ttacccggtg	16080
ggctcctaat	atatccgcaa	tttctgatat	tgtataatca	taaacaaaat	aaagaatagc	16140
taccttttgt	aatttttctg	gcatattaac	tgtcttaaac	gcatcttcca	aaatgtttaa	16200
caactgattt	tgaacacttc	cgtggataga	ggtgctatcc	ttttcatggt	ctgaaagtaa	16260
tttcaaaaca	ttattattca	ttattactaa	ctttttaggg	aagtaatctg	attcatttgt	16320

ctctaggaaa	ctcatctttt	ttccaactct	caagtaaatc	cagtatttgg	tcgtatactt	16380
ccgtgtaaga	acgtccgtta	tttgtaataa	cagcatctat	tggaatgtct	tttccatcaa	16440
atactacatc	taattcatta	tttatttcta	ggtcttcacc	taaatgttct	gcacgtttta	16500
aggctacatc	atcatcacaa	acaacttgaa	taattaacat	gccacctcgt	atacagaaat	16560
ctaattcgtt	ctcttgtctt	acgtcatcta	tgacaacacc	tacagagccg	acgggcattt	16620
gggctgataa	cttcttaacc	caaacgtcct	cgtcaatctc	tctcatggct	tgtccgtact	16680
ttatgtattc	atctcgtggc	ttcggtgacc	gtggaatatc	tgggaatgtt	ctatggaatt	16740
catctttcat	tgctttgcca	aatcccatgt	ggtgattacc	agtatagctt	gcaataaact	16800
ctgcaatagt	tgacttacct	gttcgtgatt	ttcctataat	tgcaatactt	ggatatttca	16860
tattattcag	tccttgtaga	caatgaacgt	agttcttcaa	tatcctttaa	gaacgttaac	16920
gctacggcaa	tagcatctgt	ttcatcgtct	gagtattcta	gcggattgtc	catatgtatc	16980
cagcgaggta	aggcatccgc	tacttgttgc	ttagaggaat	ttccgttccc	tgtcactgct	17040
ttcttaactg	cttttggcat	gtagacattc	attttcttt	ctccgttgcg	gaactcatag	17100
tacaaatggt	ctagcacccc	ataaaattta	tagagaatct	tagttgctct	gtttccgtgt	17160
acaaacccac	cctcacgaac	aataatatcc	ggttggaatt	cttcccaaat	agctaacatg	17220
gctttctcaa	atacatctaa	tcttctgcca	atatcccaag	ttgagtgggt	aatgatgata	17280
cgtgtttcaa	ttagattaca	gttaccgtaa	gcatcacgct	ctacaatagc	tactccagtt	17340
ttaacacttg	ataaatcaat	tcctacaata	atcatttagc	tctctccctt	atttctttaa	17400
tccatctata	agcttcctta	caaccactct	gcatccattt	aggcatagta	gatacttggc	17460
tgttatataa	atcaatggaa	gcttttaact	gttcatttgt	taataacaaa	gctgtatgaa	17520
gtttaaatgg	agagaacgtc	catgctgtta	catcaaatac	tggtagttct	tttgcattag	17580
ccaatctaac	ggcttctgct	aaatgtgctt	ccacatcgtc	tttcatttct	tgagttacat	17640
gaattccaaa	acatctcata	ggtggtgttt	taataagctc	ttgttcatcc	atgttccaag	17700
attgtttact	tgcgttctgg	tacataatta	tgtagtaatc	taaatcgtgc	ataagtgagt	17760
atgatgtaac	ctgcttaacg	tgtttagggt	ctggctctct	catggagtat	aaggacgttt	17820
tagctgctgt	tccttgttta	gactttactt	ccagtccaac	acgaatcttt	cgccctgtgg	17880
acgttgtgta	caccatgaca	ccatctactg	agccactaat	agagaaatct	tgtccattat	17940
gactaaaata	tgctacatct	gtggagaaat	cttcaaagaa	cggaaactgt	tttccatcaa	18000
tttctttgcg	gtcaaaacca	aatttaggtt	tctctccaac	aatactttca	taatgttttt	18060
cttgtagtaa	taaattcttt	tgaaccatat	ccccaattac	ggttccaata	tcttgccact	18120
gaccgtgatg	ccacatcttc	actgctttat	cataaggtgc	ttttgtcaat	ctcataacgt	18180
gattccataa	gctatctcct	gttgagcttg	ctctaaatgt	tggaatgcct	tgtgctggtt	18240
gaggtacttt	aaacgtaggt	gaagttgcat	aggcataaga	actatatatg	taatggtcta	18300
ctgctttatc	ttcacgtccg	ccagctcccc	agaaattctt	gaactgttgc	tcaagttctt	18360
gtgccatctt	ttcagcacgc	tgttgttcat	tagacactta	tttttccct	cccaaatccc	18420
atttttcgct	aacgacaata	cctgcatagt	aaacaattgc	tgttaatgag	ctggtaggtg	18480
acataggttc	cgcaacttca	aaggtaaagc	cgtgcacgga	agggcgtttt	ttgttaatta	18540
cttttgaaat	acttctgcga	gggatgccag	ttacttcatg	tgctttcgta	acactttcaa	18600
accaagcaat	tgcttctcca	tccttaaaca	tttctatagg	acgttttcct	cgaattgctg	18660
tggcatcttt	gttatgtctg	taatattctt	tcatgttgtg	tgagctatca	caccactgta	18720

gattaagtaa	attattattt	gttttgtcgt	ggtctatatg	attaagtata	gcatagttta	18780
ccggattatg	caatagtgtt	tcaccaataa	ttctgtgaac	aaatactctt	tttcctttaa	18840
tagatacttg	catgtatcct	tcaatattag	cagtctgttc	caagggaact	aatttagtgt	18900
tgttttgaaa	gtcctgttcc	tctttaaaga	ttgttccatt	actgctggct	acgtatccag	18960
ttaggacttc	gccattaagt	actgccgttt	taataatatc	tgttaccatt	ttattactcc	19020
tcatatgtac	gtcaaaagga	gagaaagctc	tctccatatt	gactttattt	gtcgaaccat	19080
tcttcgactg	aaactaaacc	atcttctttg	acaatgttat	catattttcc	atacttctca	19140
caccaacgtt	taccaattgc	catatcagtt	ttagctggaa	cagagaactt	aactgtttca	19200
atcataacgg	aacgaatcat	ttctacttct	tctctagtaa	tatcctctgg	aacgtagaac	19260
aataattcat	catgtacctg	tgaagatatt	tcaaactttc	gaccgggtgt	tgataatttt	19320
ttcattagtt	tagattgtgc	tatcataact	tcttttgtct	gagtagctgc	tccaccttgt	19380
actttggcat	tagtaatttg	gcgaatctgt	ccacggaatt	cccagtcaaa	agcacgtgtt	19440
gttttcttac	tcatttctct	gtcgaaatct	ttaccaatgg	ctttagggaa	tcgtctacgt	19500
cttcctcgcc	aatcttcaat	gtagccccgc	tgtgttactt	cacgagcgtt	attatctatc	19560
caattcttaa	cggaagggaa	cttagcatag	aagttatcca	tgattgattc	tgcttcttta	19620
aaatctactc	caagactatt	ggctaaagct	ttaggagaca	tgccataaag	gatagcaagt	19680
acaaccgttt	taatacgttt	acgatacact	gtgccatctc	cacatttatc	aagtggtacg	19740
tcaaatgttt	ctgatgcaac	ctcactatat	aagtcacgtc	cttctctgta	gaaggctaat	19800
agtttagggt	cttgcgaata	atgtgctagt	agtctgggct	cttgttgtag	ttccttagac	19860
ctactagacc	tttcgagctc	gttacactct	tcccagtttt	cactaggact	ggactaactc	19920
ttgccgccat	gtggttagcg	accgtggtgt	ttccaccccc	acttgggggc	gtacttcctc	19980
tcggaatagt	ctctacactc	gggtttatta	ctttaatatt	tccaaatgaa	tcctgcataa	20040
ctggtagtta	aacctcttgc	cgccctactt	atttggttat	tatctaaacc	agtcatatta	20100
gaggcatcag	taggtgactt	aaattcacca	atcagttctc	cttccttagt	atactgaaac	20160
acttttctaa	ctttaactct	tcctttatgt	gttcccctat	tgacagcatt	tatttggttg	20220
tttttgttgt	ctacccattc	caaattttct	acacggttat	cacttctatc	tccattaatg	20280
tgatttactt	gaggcaagtt	atttggatta	ggaatgtaag	tttctgcaat	tatacggtgt	20340
actctgtaca	attttctagg	aatatctctt	tgtaatctaa	ctctaacata	accgtcgaac	20400
aatggtgaca	acgtgctctt	aacccattca	ttagtcttac	ttaggtagta	gacatttccg	20460
tctgtatctg	ccttgtaaaa	cttgcttggt	aatccgtctg	caactatatt	tttcacatgt	20520
tttcctcctc	tcttattatt	tttttgttac	cacatattaa	ccctagcacg	ggattggcat	20580
aggctacgcc	cttagctttc	cccgttttag	ccacgtttt	attcagccaa	cattaactga	20640
aatcggcaga	tagtattaac	tgcccttttg	gtgcaataaa	catcttacga	gcttctggcg	20700
ggatattctg	gaagtttggt	tccttagagc	tatatcgacc	agtctttgtt	ccattctgtt	20760
taaactgtgc	atgaatacgt	ccatctggtg	atactttgtc	actagctttc	ttaacaaatc	20820
cgtctagcag	tttggatact	ttgcgatatt	ctatgagaat	cttgatagct	gggtgacggt	20880
tttctagttg	ttctaatact	tctttgccag	tgcttcgttt	atttctttct	ttgaagctaa	20940
cgtaatcacc	taatttaaac	ttatcatata	ttacttctcc	aagttgttgt	ggagaattgt	21000
agttgatact	tccaaaccag	ccatctagtt	catctttaag	acgtgctgat	tcttgttcaa	21060

				COIICII	raca	
ggaaggcttt	ctggctttct	acttccatca	agtcaagttg	gaaaccaaca	cgttccatgt	21120
catttgtaac	actgataaca	ggctgttcca	cttcctcata	taacgtttta	actccagcga	21180
aggttggctt	actcatgtaa	ttcattaaga	atttaaatag	tctaagtgtt	aaatgagtat	21240
cctttgctgc	atatacggaa	gcatattgga	taggaacata	tctaaagtct	ttcgcatctt	21300
tgaatagtgt	gtcaaacgta	tctgattcag	ctccaagata	tttaggtgcc	aaatctttca	21360
gacgatagct	tactaagttt	tcatccatca	agtgcataat	aacagcagtg	tcatggatgc	21420
gacctttaat	ttctatgttg	tttgaataca	ggatgtctcg	gtcaaaacta	gcattatgga	21480
aaactaggtc	tgtatcttct	cttccaacta	attcagctaa	ggcactcatt	gcggagatgt	21540
ttccatcatc	atgatagtta	gtgccatcca	tgtgcagaag	tggtacataa	tagtgtttgt	21600
ctgccttgtc	caaagatact	gagtatccaa	ctgtttcgtc	tctataaaca	tctaatccag	21660
ttgtttccgt	atctatcgcc	attagagttt	ctttacccgc	cagctttaac	atctctaaca	21720
tttcagcgga	ggttgtaata	gtatagtaat	tatctggctt	agtccttaga	agttcttcta	21780
gtttttcttg	tcgttgttct	gcttccacct	tcgtatataa	tcgtaaggct	tctgctttgg	21840
taaacttctt	aggtttcttt	cctacttgag	gctctcggaa	taattttcct	tcatccatcc	21900
gttgtttaac	aatacgtaac	ttctctttag	ctgattcaga	attcttcatt	tctgcaatag	21960
ctttccaagc	atcttccaaa	ggttctatct	cgtaggtttc	tttgatgcgt	tcttttacct	22020
cagctacttc	ctttggaatt	cgtgctgtag	gtgccttaat	cttatctaaa	ttcaaggctt	22080
ttaaaacagt	gttttcaaac	ttaccttggg	attttaccac	atcgcatatc	ccccttctta	22140
tatttgtcta	tgaatttttg	aagtcctttc	gtagttgtgt	ttaaactttt	ggcgacttct	22200
tccacagaac	atcccgcact	gatacttaat	aaggcattcc	aaatatcatt	aggaaattct	22260
tcgtcatctt	caatatcgta	cgggtatgta	tccagcatat	ctcgtaatgt	ttcttcaagt	22320
agatgttctg	gcgttctttc	tttatatgta	ctaagtattc	tataattggt	tgtgtgcttt	22380
atcaaatcac	gtatatcttc	tgtttttaaa	tctggaaact	tcttaatcgt	ctcttccatt	22440
tccgtgtata	aattagctct	caaagtagtt	acttcggctt	ccgttatgtg	gaagccttgt	22500
ctagcctgtt	cagtaactac	gagtatgagg	gcataaatct	gttccatttt	taccatgtac	22560
tctcacctat	ttcattaagt	attcttttcc	attttgcatc	tgtttcaaga	cttcggaagc	22620
tagggaatcc	atcataggca	tttaaataat	cattaaaatc	ttttatttca	tctggaaaca	22680
ctaccataaa	tctatcaatc	atgtaccctt	cgaaactttt	gtacatcgct	ttattaaatt	22740
ctcttccctt	tttatcattg	tctcctgcaa	agaataggcg	tttaattcct	agtgataaaa	22800
tagaatcacg	ctgtacctta	gttaatcggg	aagttcccac	ggctactgca	cagtatccga	22860
tagcacgaac	ggacatagca	tcaatttcac	tttccacaat	tattaatgta	gaaggcttct	22920
gctgtagtgc	ttgtggcaat	ccaaataaat	tattctttgt	aattcctact	tctttgtgta	22980
acgtttcaaa	tcccttttta	tccgtataac	gtatcttaca	agcaatcaaa	tcattcttc	23040
ggtcatacca	tggaatatag	actttgcggt	cttcttcgct	agttccatac	atctcttgga	23100
tttctttagt	aatcccacgt	gattccaaat	aggggctaaa	tacttgtgat	gggattgtta	23160
gaggcgtgac	ttccttgctc	caaagttttc	cctgtagttt	aggaacgcca	cttttgagtc	23220
cgtaagtttc	aactagataa	tctgctactt	catcataact	tatatctcgc	agtcgtgaaa	23280
gtaatgaaat	tatgtttcct	gtttcaccac	taccactgtc	tccccaagtt	cctcctccat	23340
ctgaccctgt	gaagtttaca	aggttaacaa	agaatgacgg	gtgagaatct	gctctaaaag	23400
gtgagttgca	tattaacttg	tcttctgacc	atctagcgtt	tgtccattcg	tgctcttgta	23460

gttctgacac	gatgtcaaca	ttgattctat	ttccacgtat	ctttattaac	gtcactgtaa	23520
acactccttt	tctctatata	ttataacata	aacaaagtgt	gaagtcaagt	taaccgcaca	23580
ctttatttt	attagatgaa	taaatctttg	tttgcggatg	gttctatttc	gtgaatcaat	23640
ccataactag	gtagccatac	tccggttagt	tcaacgttct	ctccgccagt	acgcccttta	23700
acaatctcta	caatgaagtt	cttatccatg	gaatcgaatg	caataactac	agcacagtct	23760
tccaaaagag	aagatgtttt	cttcacttgg	tcacgagttg	gggcaagaag	ttcccgctcg	23820
tctttggata	ttttaagttc	ttctgcttgg	gtgattaagt	gcataacgat	gttgtgcttc	23880
gcagcaatct	tacgaacacg	tttagaagtt	tctgctgcgg	ctcctccagc	tgttcttgat	23940
gagttatttt	catattccaa	aagatagaaa	gcatcaatta	gaactacatc	tgcattagtg	24000
tttacaatgt	cgtcttctag	ttggtcacaa	ttccaactat	caaaacctgg	ctcgttggct	24060
gaacgtacaa	taatacgtcc	cataactttg	ctcataatat	ctgccatagc	ttctgcgaaa	24120
tcttcttcat	ctggaataga	tagtttacca	ttcattaaag	ccttaacact	atatcctgct	24180
aagtattctt	caataccaag	cttaacacta	ttcttcttat	acatcgctgt	gataatagaa	24240
taagcacgtg	tgaagtattc	atacttagac	atttccagat	tatagataag	aactgtggca	24300
ccttcgatag	ctgatttaat	agcttcttga	agtgttatta	aagatttacc	acgtcccgaa	24360
cgtccaaacc	atagaataca	gttaccagaa	ttatatccgc	caacctcttt	attaatcgta	24420
gggaaagatg	aatcccaagt	tttacgtcca	acacctgttt	ggatattgcg	gtactcttct	24480
tggaaccaat	caaagtcatt	aataatatct	gctcccacgt	ttgcaggcat	ggcattatta	24540
ttttgcattt	gtttagcacg	gtcattaaca	aattcccaga	agtcatctac	tgagttatag	24600
ctatcgaaac	tcgttagaac	ctcatcatta	ataaagttta	ctgtttctac	ggctaaatta	24660
tagttctttg	tttcacgtgc	catatattcg	aacgttgcat	caatagcagg	catatagcca	24720
aactctggat	acttagtcac	aacggtttct	gcatcagggc	atttaccata	tctatcatga	24780
tattgtttaa	tgaatagata	agtttcttt	tctgtttgag	ttagaaaatc	tttttctttg	24840
attccaaatt	cagctaaggg	acggatgttg	tcatcctcaa	tgatacggct	taggaattgt	24900
gttccataat	aaatagccat	ctagttcact	cccttacgtt	tggatttacc	cttgaactcc	24960
actacgaatg	tgttatgacg	aattctatcc	cacaaacgtg	tgtctaagga	cattgccatc	25020
ttttgcattt	ctaagttgga	tgtataaata	gtgatacgtc	tgctggttac	tcgtgagttt	25080
attaaatcgt	gaatgtcccc	acgcaatcct	tctgttacag	aacgtactcc	aatatcatct	25140
atcacaagaa	tctttgcttc	ttttgctttg	tttaatcggc	gataaaattc	tgtggaagct	25200
tccgaagcca	tctctgtact	gcttgaagcc	atccggttaa	actgattgta	aagtgcttgt	25260
aattcgttca	tgtctacata	atatgcgaag	tttctagtta	gtttctttcc	gtgtttatta	25320
gcgtaatacc	aaccatcaaa	tacaagctga	ttaagtaagg	cacatgcaga	agttgtttta	25380
cctgttccgg	ttgcatcact	atagaagtac	atgtttttaa	tggagtttgc	ggggtcgttc	25440
atgtctgttc	catcaaacaa	tctctcaata	gatgggacat	agttagggaa	aatagttccg	25500
tataattctt	tttgtcccgc	tttcgctggt	gaattatcca	acataatatt	ggaaaactca	25560
ataggaatat	tagcattacc	atatgaacct	cctactccac	taccatataa	atcaatgtaa	25620
aggagtttgg	ctctattaat	aacatcctct	aaatccattc	cgttctttc	agacaatcgt	25680
ctgcaaaatt	cttcgtattc	caaaccttct	cccctcggt	attaaaagaa	atcactgtaa	25740
tcaattttgt	ctttatctac	gtcaatagta	gactccacat	cttctcccat	gaactgagca	25800

attgtagcac gttcaatctc ttctcgtaaa ctacaataaa taaacatgaa attaataggg gttgttcttc ctttaaactg ccaagcttca aaactattat caataacctg tttaacgaat 25920 tcttttgtat gctgttctcc gtatcttttt attagagaat tctgttgagg gtatgaactt 25980 acatgatgtt cttttccaaa taatgccata ttcttacttg ctatataaga attgaagctg 26040 ctaccattcc actcacttac tggaatactt tcccaatctt tataatcaat tttcttttta 26100 gccattaata tctcctccta aatattttct ttcgttacta agcatatctt atcactactt ttaattattg tcaaacataa atttccaaca ataattgtgg tggcttttta atttaccatg 26220 taaacatctg cttacgccac tggggttgaa tcctcccaat ctttttgctt caccaatact 26280 tttaaatatt aatatacttc cgtcacttaa agaagtgcct attattgctt tacttctttt 26340 atctatactt ctttgcagtc ctgttccatg gttcatgttt tctttatttg ttacccattc 26400 aagattacta acattattat catccttaat ttcgtttata tggtttactt gtggtttatc 26460 ctcttcattt ggtataaatg ctaaagaaac tattcggtga acctttactc tcttagtttc 26520 tccacacgaa gaaagttgaa ctgttaaata tccatattta tccttcgtag gaactagaaa 26580 tctatttcta ttatggctaa atatccttcc atctgaataa accgtgtaat taggaaaacc 26640 ttctacttgt tttttgttaa tcatccaaaa cttcctctct attatatatc tttaatagat 26700 aaaaagaaaa gagataaaga actttccggc aaagccggtc gccaaaggcg aaactctttt 26760 aatctcttga ccttaatctc ttaaagaact tatgttagta attaaaagat taaatcactt 26820 tactcggcaa cgcaagcaca aatactaaag ttcataccta agacctattt ttagtattag tgtttcgtta cggatatatt catgctataa tatgtatata agttagccac aaggttagct 26940 tagtgaaaag acatcatcac ctttcgttta tgtttatttc acacacctcc ttcttaatta ttttgtggtg gttgctaata tatcaactgc cacattatgg acagactagg ttcatagcct 27060 atgaagtccg ccaaatagta tgttgtgata ctagctttcg atactttata tatgtggagt 27120 ggagtttgtt gttagagggt tgtccgctcg ctactatgac aaacacataa ccgtaatata 27180 gaggacgtgg cagatgagat tgtcatgttg ccagacaagg gcttagtact tgctcgtcgg tctcggtggg agacgtattc ccatcctaat ctcacatcct gtccgcataa tggaagtaaa actggtctgt ggcatttggc tgtatgttaa cagcttatac ttgtgacgga aaaggtaagt tcacctcatg aagtagttaa tgggttgggt aagaaacgta ggtcttattc cttaaaagtc 27420 ctgtaaaaca aattaattag ttcataaaag taaaatcctt tccgagtatg taatatccag tccattctaa ttctgtacgc agtctatgga tacctcagcc cacgggtagt agcaagttaa 27540 atgagggaac aaaagacaag acgaagacgt tcgtcaccgt agaagtccta ctggttttat 27600 aactacgggc tattattttt gatacaagcc ttggacatcg cttactggcg taattaacca 27660 tgtaaattat attcatgatt tttccttctg gtaccgttgg aaagacaggt aataaacaga 27720 tgtccaaggc gtatatgaga aataatagga ggtaggaaaa tgacatcaaa ctatagtatc 27780 ttaacaaact tcgggtgtca ttggacatgc ccttactata ttgttaacga taagattagc 27840 catcgttacg aggatttcaa gggggaaaat aaatgaatga taatttaaaa aacataatct gttttttgtc tgaaaagatt atgaaattag aagaagaaaa taatgcttta aaaaaagaaa 28020 accaagcaat ttctgtttat agcgaataca caattgaaga gttacaggaa aagcttgata 28080 atgcttccca aggaaatgat tatgagctgg aagaagttaa gcgagtacag cgtgaagtag aatcgagcta ctcagtaaaa cttgcggagc tagaaacact tgttgaaaac aaatcagaac gtattaaaga attgtcaaag gcttgttcag atgttcatga ggagtattta gaatctgcaa

aagaaaatgc	ggagaaagat	accaaaattg	cagaattaga	gaaaaagatt	tcagagggtt	28260
tcgtagatag	tgattacaac	aaaacactag	tagaagatta	tgaagctgct	gaaaaaatgt	28320
taacagaagt	tactcttgaa	aacttagaac	tacagaaaaa	gttagatgcc	aagtttggta	28380
aagtagaata	gcatatttcc	ctgtctggtt	gcagactgca	agcccgacct	aagcttccac	28440
aacctgctct	tttggaagag	taagtgtcga	ctaaaacagt	tgcatgataa	gtgaagcgat	28500
attaggctcg	tttgtataaa	acattaaaga	ggtggaatgt	aacgggttct	cagccctcta	28560
aaaataaatc	ttatatattg	tgtctgcaaa	ccggtatata	aaataaaaag	tcctgtatag	28620
gcaaaggaga	actacatatg	gtaaaattag	gtagcgaagc	aaaagaagca	ttatttgcgg	28680
aaaagaaagt	aacaaaacga	gtaactaagt	tcttgaagca	ggatgagggt	attgtattac	28740
aatttgcagg	ctttgaagaa	ggctatgcac	aagcaatgca	acatcagtat	tacggagtgt	28800
ggaaaggttc	tagtgaatgt	actggaaatg	acttatacga	taaagcagtt	gaaatgattt	28860
atcaagaagc	aaaagaagca	ccaactggtt	ccgatgaaga	aaaacgtcta	aaagacttag	28920
catatgcaat	caaagctaaa	ccagtgttct	tgtttggttt	ctgggaagta	gctacaggtg	28980
aagaacttat	tttaccagtg	tcttctaaga	aacaagctct	agctctttac	aaagcgttag	29040
aaaacatga	gaagaaattt	ggtaagaaag	cttttgaaat	cgaacgtatt	caaggtggat	29100
atttagtatc	tccacttgac	cttgacgaat	tagacttaaa	caacaaacaa	gtagaagact	29160
ttgaggcaca	tgtaaaagat	ggtttcaatg	ttgaattata	cgatgaggct	ctttggaaag	29220
ataacgaaga	agcacaacta	gaaaaacttg	cacaagctgg	aattgacatt	gataaattaa	29280
tcggaagtgg	acatggtaaa	actgctacac	cagcaccagc	tggaacagaa	ccattaccat	29340
tctaaggggg	aactatcatg	caagaaaaca	atttatcttt	agtagtactt	aaattacatg	29400
atgatattga	agacttagaa	acttgtattc	taggattgac	tggtcttata	gacgatgata	29460
agcttcaaga	acttcttgaa	ttgcttgctc	cagtctatga	agcagaaatc	tttattagag	29520
gatacgcagc	caaggattta	gataaccatg	ccaaataaag	atgaaatggt	ttataaagaa	29580
gatggaacta	ttgatgtttc	gagagagttt	ctaaacaaca	tgttagtact	aagtacgtta	29640
gttaaattat	ctacgctatt	agatggaaca	atgaagatgg	ttgatgatgc	catcaaagaa	29700
gaaactctat	ctgaaacagt	ttatgattat	actactaaca	ctatagaatc	ctctttaaaa	29760
gctattaaag	ctctactact	catgacggaa	ggtcttgata	atatggacat	tccagtcgga	29820
ggagagagta	gtgatataga	tgttttgtct	attgttctag	cactcgatgc	ggtgatagaa	29880
gaagcagaca	gagtgattga	agggaataaa	cttgtctaac	actccacaag	gcgtagatat	29940
tggggatatg	gttagatata	tgggatgtgg	cggttgttct	ggtcattata	ctcatctaca	30000
aacatatgaa	gtggttaaat	taagccccca	tctgccacgc	tacttcttta	tagtagatga	30060
tagaggtaat	gaacatcttg	taaagctagg	cgtatacttt	aaaattgcat	aataaaatcc	30120
ctcaccatac	ttgacggtgg	gggattttt	tgttatacta	ttttaagaaa	ccttgtagca	30180
tagcagaagt	tgttgtctca	gcttggaaaa	tcgctggata	agttccagac	acaagttgaa	30240
caccagaaat	aagacctaca	gctgtattgt	ctgtagtagt	tcccgaatgt	gaaaacataa	30300
cacgcatatc	cgtatcattc	acatcgaact	catcatcaac	ggaactatcc	cacgtgaaag	30360
catatctagt	ccactcgctt	gtaatgggaa	caacttgtgc	aagaatatca	gcacccgggt	30420
ctgggttggc	actttgttta	cctctttgag	ttctaaagat	aacacggatg	tccatttctg	30480
cggatgttga	tacgttactt	gttttagccc	agaaggaaac	tgtcaaagca	gaagcattct	30540

ttaagcttgt	gtcatacaat	gttgggcttg	ctccagcagg	taagaagttt	actttagcac	30600
gtaaatgtaa	agattgatac	caagcgttat	tccacttagg	acaaacagct	aaactatacc	30660
cagatggaaa	tggtgtttca	attgaaagtc	ttgcattaga	ctgtgtccct	gtcgagctgt	30720
accagttgaa	tgggtttgta	cgttgtggat	ttggaagccc	tgcttcattc	gatgctgcaa	30780
agtctgtgca	gattggaata	gagtctaatc	catcgttgtt	ttggatgact	tgaatttctt	30840
tactggaaat	aatagggtca	gctaggaagt	tagaagctgt	ctgtgctaat	tgtactaaac	30900
cttcatcaac	gatacggaag	gaaccgccgt	taatctctat	tccagagtta	tctagtgtta	30960
agttgctgtt	acgtactgta	acgtgttccg	actgaataag	aatatcatta	gcagattgtg	31020
acataataga	acctaagtta	gtaccagtca	aagctgggtc	gccgtatttc	catgaaccct	31080
ctggcggtac	ataggattgg	ttgacatcgg	ctgcatatgt	gcttacaaga	actcctgtag	31140
tacttccgtc	atccacacta	tcttttaata	atgaaggtgc	aggactaacg	ctttttaaag	31200
atgacttaag	aagggcagga	ggagcagaag	acggtgctat	gattgcttcg	tcagctggaa	31260
ttaaccccgc	atcgagggta	acatttgtat	cttgaaacat	tgttccagtg	aaatcatatc	31320
cacccatcat	tcctgtaggg	aaataataag	taatagttac	agaaagaatc	tctgtggctt	31380
ttaacttact	aaaatctaca	agaaatcctc	ttctaaccca	cgctgtaacg	gggtctttga	31440
atgtcaaacc	atcactgtat	gtaactgttt	tagatacacc	tgtagactgc	atataagtta	31500
cagttactgt	agttgtaacc	tctccacctg	tgacagaacc	tctttcatac	cagctataaa	31560
gcattttatg	tccaaataat	ctgttaggag	agcggacttc	ttgagtcatt	gtatctaatc	31620
caattaaagg	agatgtccat	ccaagtgaac	agtagttttg	aatttcccct	aatccttccg	31680
cttgtggaaa	taccacagtt	gaagctgttt	gaggaaattc	ccactctaga	tattcagaac	31740
gaaaatctgc	atttaacata	atatttgcag	aactagcatt	atttaaactg	tcattaagag	31800
aaaataattc	tcctttaatt	gcttcgatag	caggaacatc	ttgtacattt	attggaataa	31860
atttaccgaa	cgtaatttga	ttattttctg	gatttgtact	agactttcta	agttctatta	31920
cagtagcttc	taaaccaagt	ggaggattaa	atgtattatc	tttcacccac	actgtgtccc	31980
cgttgtgaac	gtcttctcct	tggaatccaa	gtgcttctaa	atcaagcacg	ttaactgtgt	32040
aggaaacatc	aggttggcta	cgtttcttta	attcttcaat	accttcaacc	acaagacctg	32100
cttgtgtcac	gccagaagta	gaagaaacat	aaagaccaaa	agtattctta	ccttccacac	32160
cccactctct	tagagcagat	ttagatacaa	tataattatc	tgttttagct	ttggtgaagt	32220
tcttgtcatc	tatgttagca	gtgtatccaa	ttagattagt	tcttactcca	ttaccatttt	32280
tctgtgatac	tggaattatg	gctgtacata	ggttagtata	atctaccact	ctctctacac	32340
taactaaatc	tctatcatat	ataaagtatt	taccttcatg	tattggttta	actgaataaa	32400
tattaacaac	acgcttagta	attttggtac	cgtctgaaac	acatgtaaaa	ctatatacca	32460
catcgtattg	ttcttgtaat	tgaagcaaag	cagctaaggc	agtttgtgtt	tctgtagact	32520
caaaaccacc	tgctcccgct	ttaatacctg	aataatcttt	gtatgtccac	aacgtgttag	32580
atagtacagc	tttaatacaa	tcttggaaag	tgttgccacg	gtatggatta	gaaaaagagg	32640
agttaagctc	cgtcacttga	attccttcac	agtaaacaac	tgccactgga	ttagctctat	32700
cagagttttc	atctacttta	ataatagtaa	ataaaagttc	ttcttcgtcc	tcgtcaacaa	32760
atgacaggcg	gtttagacct	gtcaaatatt	gattaacaga	agttcccagt	ggagttgtaa	32820
atacgaatga	tacctcacca	gtttcagaat	tgttcacata	ttcgtcatcc	cagtaaggaa	32880
caccgtctgg	ggattgattt	gtaagatggg	cgacaatgtg	cccggttctg	tcgtaaatgg	32940

ttaacatggt	ttcactcctt	aaaatactct	attatgatat	tgaacagtca	tatctacatt	33000
tgctggtgtt	actactagat	tattatatcc	gggtattagt	gggaagaagt	cactagttgg	33060
gtcaagcaag	gcaggtttca	attgtccgtt	aagatatatt	tgaccacttt	gcatatctat	33120
atctactacg	tcatccttaa	ctagatgaag	tggtggcgtg	gatgtgtctg	gtgggtcaag	33180
aacttcccat	acacgtatat	tagcaatctt	ggcagagtta	cattggtttt	tcttccattt	33240
tgagcgtgca	ataacaatac	caatttctgt	tgcctttgta	ttcatggagc	tgtctggtgg	33300
aaggttaatc	caaggagacc	accaagtaga	acgaagggca	gatgttccgt	agaagtagcc	33360
atctttaact	tcatattgtt	tagcattacg	gaactcacca	gctccccaac	ggaatttacc	33420
attacgtctc	tgtatcatta	tcttaccata	aaaatccgtc	cagtcattac	ttactcgtct	33480
taatagtcca	tcaggtacag	aaccatcatc	aatacgacaa	acaccttgac	cttttagtag	33540
agaggagtac	tctaagttaa	cactgatgaa	accttgtcca	tccgcaccaa	tcatagagat	33600
acaaatgtag	ttagaagcat	tcttatcacc	tattttatga	tgtaaatgaa	gcacagcttc	33660
catatcaaag	tttagtaagg	catgtggcat	agctgcttta	ttcgctgctc	cgtaataggc	33720
agcaatgtcg	tcattagcag	gtttaggcgg	atagttagaa	ggtttcatat	aaaacgtgtc	33780
actagctcgt	gagaaagttc	ctccatattt	aaatccttgc	gaacctaaac	cattaaaacc	33840
ggaagaccag	tttgtccaac	gtgtctcgtt	tgcactcatg	tagctttgga	aaaccatagg	33900
gtgtaaattc	acaggtggct	ttggcttagc	atcccccgga	ggagttccta	cagttacatc	33960
cccattagcc	cctactaaat	ttaaatgagt	tgaatcttct	ttcatcgtga	tagataccaa	34020
aggatgtgtg	ggagcatttc	cgctaacaag	aatactagaa	ggtttagtgt	ctgcatttgt	34080
gaatctcctc	tctattaatt	ctccttctgc	ggagttttga	acacaaataa	atgttaatgt	34140
ccctgcccct	acgtgtaggg	cttcttctat	tgaagtggag	ccatctaatc	taaccttcca	34200
cacataatct	gggtcatcag	aaaaccttaa	taacatatct	tcgtctggat	gatttaaata	34260
ggtagctaat	tgtcttacac	gtccccgaag	taattcaggt	ttatcagcta	taataaatat	34320
atccatagaa	atgtatctta	cgtctgctga	ttgtttatag	aaataatttg	ttgcccctct	34380
tccggtttgt	tgataatttg	aaacaatagg	tggtagagca	tcgtagttaa	ctttttgtac	34440
ccctacatac	caaggttgct	taaccccatt	taatgaaaat	gttcttgggt	ttgcatcttc	34500
tttaggagaa	tagtcgaagt	aaaggaacac	gttacttttg	cctgttactg	ttgttgtatc	34560
ataagccaga	acacttacac	gaatacttcc	atcaggatat	acatattgtc	ccgcatcaga	34620
gctagtttgt	acacttgtgt	taagaggagg	tcttgatagt	acaaggttgt	tattttggct	34680
taccgaacta	tttaaaacaa	tatcacagtt	agaagtatct	gtaaccaacc	cgcttggtaa	34740
cacagagata	cgagttaatc	ttgtttgtag	tttagcacgt	ttttcatctt	ctgtaaaaac	34800
atctccaaag	aaatcaggga	aattctgttc	caccgtgtgt	actgcatcaa	aacttattag	34860
aacttgatgt	acttcactat	ctgctgaatc	tggagtaagc	gttacaggaa	gagcactaac	34920
tgttgtccat	gatgtgtttt	ctaaatcaag	agtaacgctt	ccaaaatctg	tagtatttt	34980
atataaagta	gtattagagg	cttccacaaa	atactctgcg	aaagccggat	tacctgtata	35040
tcctgccatg	tttaaaccc	ctttgtatcg	gttatttgta	ttagttttat	ttgtttgagc	35100
tcggctcata	acatcagaag	tggctcttgc	aaattctcta	ccattgatgt	ataatggaac	35160
agtaatcaca	ggagtagctg	gattatttcc	gtcatcgagt	tcacgagcga	tacttctagc	35220
	atgtatgtag					35280
55 5				5		

ataggttact	ccgccacgtg	caaatttctg	attagtggtg	ttagctaccg	atttttgacc	35340
agtggaaaca	ccaagaggca	atccactagg	agtcatacca	ccatgagctc	gggaaatcca	35400
attatctcca	aagtacttat	tctgattctt	tttctgtaca	gctgctttac	caataccgcc	35460
accgggagtg	ttaactactc	cttgtactat	attaacagaa	gctgtgaatt	gagctttgtc	35520
ccatttactt	ttaaacgcat	tcatcttatt	ctctgcatct	gatgtttccg	cagaaacaat	35580
gatagtaggt	ttagaatctt	tagctccttg	ttctagcttt	tggattttat	ccattacttc	35640
attatacata	atatctgctt	gacgaatagt	ttcatctgct	tgttgagttg	catctgcaat	35700
aagttgtgcc	ttggttctcc	ctgtggcagc	tatctgttca	tcactcatac	cattaattgc	35760
agctattgtt	tgagctgctt	gttccatagc	tgcatttacc	gttttattac	gttggtcttc	35820
agcgtttgca	attatcttat	ctttggactc	tttagaaata	gtttggcgag	aattttcaaa	35880
gtactcaatt	tgtgctaaca	gctggtcatt	ggtaccttgt	tctgcttgta	aaagtaaggt	35940
attttttctt	gttcaataga	ctgatactta	gctaatgcag	catttcttat	tccaatatct	36000
ttagattgta	aatcatttac	taaagctaat	tgttgttcgt	tatatttcat	cattaaagct	36060
tgtttttctt	gattggaatc	tttgactgtt	tttatagcaa	agtacttatc	ctcatccgtc	36120
atattcttgt	tcttctcaaa	gaaggtagct	aagatgtttt	gttgtgaaga	aagaccttct	36180
tgttgtgcgg	ttagtgcact	ggtgttcgca	tcttttattg	tctgtacttt	tgatgcagag	36240
aattctttta	acttatttcc	ttccatagtg	agggtagcta	cagcaatctg	cgatacagct	36300
tcatatgcag	atttagaagt	ttgtttatat	gcttccatat	ttccagaagt	tataaattta	36360
actttattag	aataagctaa	aacagaacct	aaaccagctt	tagttgtatt	ggataaggag	36420
ttccaagctt	ttccttctac	tccatactga	gcagctaaat	cttttgaacc	ttgtatcatt	36480
ttagcatatg	ttgttcgttg	ctgttcggca	cgagttaggt	catcattcat	agggctattc	36540
atctttttag	tgccctcttc	tttaccatat	agctctatag	ccttttcatc	aaaaactttt	36600
ttatctttat	agatactttc	agcagatact	aggtctccct	tttctccttt	atctttggtg	36660
cttttttca	ggtcttcgtt	ctgtctttta	gcttcttttg	cacctttgtt	aaactcactg	36720
aaagcatctg	ttactttgtt	aagtcctttt	gtaaggacat	caagaccccc	tttaaccatc	36780
ccgtctattg	attcacctac	ggcaattttt	aaagattccc	agctagcttt	cattctgtta	36840
atagagccct	cagtagtggc	acgcatcttc	ttagcaactg	agtctgattt	accagcggag	36900
ttctcaattt	tcttcgtcat	gtcctcgaaa	gcatccccac	cagcgttcag	tagttgtagt	36960
acagaaggca	tggcagtaac	gccaaacatt	tgtgtaacca	tcttagagcg	ttcaacactg	37020
gacattccag	ccatctcttt	atttaaatcg	ttgatgatag	taccaatact	tttaaattta	37080
ccagaagcat	ctgtggcaga	gaaaccaata	gatttcatag	cttctgcacc	attcttagta	37140
gggtttacca	aagagataaa	catcttacgt	agacctgttc	ctgctgttga	agcggaaata	37200
cctcggtcac	gtagtaaacc	agcagcggca	gctacttcac	taattgaaat	acctagttgt	37260
tgagcgggtg	cccctgcata	tttaaataca	taactcatat	ctttcatacc	tgctgcggta	37320
gcatcggaag	ccatagcaag	cttatctgcc	acaccgccag	cttcactagc	ttccatatgc	37380
cacgttttaa	gtgctgcgga	aacggtatcg	gttgtaatag	ataaatcttc	ttgagaagca	37440
tctgctgcat	ttagtagagc	aggtagaatt	ttaatagagt	ctgctactgt	ataaccacgt	37500
ttagctaagt	cagtaaatga	ttcaccgata	gactcagcac	tgtgaccagt	cttcttggac	37560
atgtcaaggg	ttactgcgga	aagttgttcg	aatgttttct	tattaccatt	agagataacg	37620
ttagcatctg	ttattacttg	gttgaacttt	gcgtatgctt	ttacagagct	gtttacaaat	37680

ttacctacac	catacacagc	agcaccagca	ctggctgccg	cgatgggtac	gcctagtagt	37740
gatttagaaa	gagagttaac	attttgacca	aaactttgca	tcttggtttt	acctcttcca	37800
ccgaagttgt	taactcgtct	attaacttca	tccattcctt	tattcattcc	gccaaaggat	37860
gtttttgttg	aagcccctgc	tgcgacggct	gccatattaa	acttctctaa	agaccttgca	37920
gctgcattca	tcttacgagt	aaatccagca	gtatcagccg	ttactactac	acgaatatct	37980
gccattaact	ttcaccgtcc	atttcctttt	ctttattacc	aaacttagcc	atagcttctt	38040
cccacatagc	cttggcatcc	tcattgcttt	caggaataat	aactccatta	gctgtttcgc	38100
ctttttcttg	ctctccattt	gtaatcttaa	cacccacaaa	cttttctgcg	gttggcatct	38160
tgttagtgtt	tttcttggag	atgtgtggtg	acatttcata	tagcattaat	tccgcttccc	38220
ataaatcctt	tttaactttt	gctttttgta	tagcagaata	ttcagcaaaa	gtaaggtcat	38280
ccaagcatct	tgggtctatt	cccatctctg	ctaatgttac	taccatgtta	cgaacatcaa	38340
ggaagttctt	ataaagcttt	tcagtagggt	cttcttcatt	atctgtattt	acttttaaag	38400
gtttaaacgg	aacaacatct	actacttgtg	cgaatgagtc	tgaatatgct	tttgcaagtg	38460
ttcctgccca	ttcttctatg	taatctcgtt	cttttgattc	taagaattct	aaagcccttt	38520
tttgaaaatc	agcaaaaggg	atatttctaa	actcttcttg	gtttataaac	atagaccaac	38580
aaagtaatcc	ttcatcgtct	aattctaatt	ctttccaatg	tgctaatcct	tctgcgtagg	38640
gtttctctgt	tactgcttca	atatatttag	cagaacgtat	agtaaaagat	agttcatata	38700
gtttatcttc	aaataaaatt	agtctcatag	ggcacctcat	aaaataaagg	gaagaaagac	38760
tgttcgtcaa	tctcccctaa	tctttagtat	ttagctagat	ggaatatcaa	actgttcaac	38820
cgtagaccac	actaaagtag	aaccttcggc	tgtcatcatt	tgattagcag	catctatagc	38880
tttttcaaca	tcatctgcac	ctgtacccac	ataagtgtta	cgagaagcag	ctacagaaac	38940
atcaagtttc	ttgccagcta	aatctcctgt	tccacctgta	tcatggaaga	taacatcttt	39000
taacaagtca	aacgaattaa	cttctgtgta	ataaatacga	tttcccggtg	tttctccgtc	39060
aataccataa	cgtaccatat	aagagtccgc	gtctgtcaca	gcatcccaag	ctaacttaac	39120
tccatctgtt	gtaggtggag	cagaggaagt	taggttagca	ggtgctgcta	gcggtacatt	39180
agggtgtagg	tactacaatt	gtaactgttt	gagaaacagt	atttaatgca	gtagctgtaa	39240
atttaactcc	aaatgagcca	gtcttaagtg	gtgtcacttt	gtaagcttct	gttccagaaa	39300
tcttctctac	tttcaagtct	gtagcagtag	taccacttac	atactcaaat	tgagttcctt	39360
gtggagcatt	agttggttga	atcgaagtta	cgatttggaa	aggtgtgtta	actgcaatat	39420
ttgaaggaag	agcacttgta	gtcaaagtag	ttgggttgac	aattggtggc	tctgtgtagt	39480
ataattctcc	acgaccagta	agtgttcctt	cgaaagttgc	aatgtcatca	taagggaagt	39540
ctgagttgaa	ggtagttaga	atggctgtac	catattccac	accaccatca	gggtaactta	39600
cttctacgct	tacacattct	ttgtttgtga	aggctgcacg	taaacgtttt	tgaccttcat	39660
ctgtacctac	taacagtcca	tctaaatcaa	tagaccaagt	acgtacgccg	tactctgaac	39720
taccccatcc	gaaatcctct	ttggagcttg	catcaattgt	atcagcttca	cggttaatag	39780
taccaccacg	ttgatagcct	actgcaatca	ttgccccagc	gttgttaggg	tcatctactt	39840
tgatgatgat	ttctacgcca	cggttaaagt	tacttgcaca	ttgtaccatg	tattatttcc	39900
tccgtttaca	ttttattta	gaactgtaaa	agttacggtc	acatacgctc	tttgaaaatc	39960
ttgaacgcct	acttgtgccc	gcttaaaatc	tatattagta	gcaacaaatt	tagctacaca	40020

				-contir	nued	
atacccatca	gctagttgta	aagtagttcc	tagacgattt	atgacatcat	ctgtaatctg	40080
tttaattctt	aaggagccat	ttttcgagtc	ccaaatatcg	atatggagtt	ggtgtctagt	40140
tatttgtcca	ctcttagaag	agtcataaat	taatgtctca	tctccaataa	caatataagg	40200
ataggtggaa	tcgtgtcgcc	aaccgtcaaa	tacttcataa	tctttattta	gttcattata	40260
tatagcttcc	tgtagtgcat	tagaagctga	tatattttca	gaatatggag	gaactgcatt	40320
tatatcagcc	attaaaatcc	tcctagaata	ttactaattt	tatcatcaat	catgttagct	40380
atttgtggct	ctataatagc	ttgagcatcc	tgtacgttaa	agaatgcttg	agaatgagat	40440
gtaccttctt	caacatagga	agcataagca	actccatctt	tagggttttt	agaatcaatt	40500
ataatagata	tttgagaaga	accagttggt	tcatacctca	cactatcata	catagcacct	40560
gtaagtatat	taccattcgc	agctatattt	gacctaatct	gttctacaaa	caattcccca	40620
acgtcatcca	ttgcctgagt	tatctcattt	gttactttaa	taatatcccc	taaaaatgtg	40680
tgacttccta	ttacattaat	accaaccatc	tgtgccaaaa	gtatcaactc	ctttttcgag	40740
tttattttct	ttcttgacat	ctggtggatt	tgtgttaaac	tttggacgcg	gatagcgata	40800
ctcgccaaca	taactacaag	tcatattttg	tgataaatca	tttaccaact	cgtagtatct	40860
atccttccac	actccatcaa	taggaacaag	accatcaata	ggcacaccgt	agtaacgtga	40920
ctctttatgt	tgaaacctta	catggtgttg	ttgagacatg	gtggcttgca	taggaagttt	40980
tgtaataatt	tgtgaaccac	taatcgtacc	acgaactgtt	ccaacaactt	ctaagatgta	41040
agcaccttct	ccaccggtct	catcaggaat	ggaagttttg	cgaactagtt	gaaaccgata	41100
ttgtcgcttc	atagcatccg	caaccttcct	tttccctcag	tagggttatt	gattccatac	41160
tgctcaagat	atggaagcca	gttcttatag	atgtcagcaa	tatagtcaaa	ccttgttata	41220
tccgttgact	ctaatttaag	accttctgag	tttagctggt	tgtatcgttg	agctagaatc	41280
tcatcagcaa	taaaatctaa	atccgcttct	gggtattcag	tataaggcac	accaagcaca	41340
atacagataa	ctttttgaat	atggcttttt	agaattgcta	aaaccaagtc	ttggtcatgc	41400
tcatcagcgg	gtaaacctat	aataactttt	atagcttcaa	tgtttatatt	tgcatactct	41460
ggtggcatat	actaacctcc	catctgccac	aaaaaagggg	agaaagacga	aatgtcaatc	41520
tccctctctt	agtctcttat	tatgattaag	atactgtgac	agtgtgagtg	gcagtaatag	41580
aaccatcagt	attggatact	gttaatatat	atttacctgc	tggcacgtct	gttccagtat	41640
agttaacttt	taagccatcg	ataatagctt	ttatagcact	agaatcagca	ccatctttat	41700
ctgtaacctt	aacttcaaaa	gcttctgtag	catctgtagg	gtctactgca	actgtaaagc	41760
taccagttaa	tgcaccggaa	gaagatttag	aagacgtttt	aggagaaaca	gttaagctaa	41820
caatttcttt	attactagaa	gaacgtaaca	ttgaaggact	tgcagatggg	acatctacag	41880
taactaggtt	agaccatgca	gttacttcat	tgtattctgc	actttctaaa	gcagaagtgg	41940
catccgcgta	aactccagca	aattgtgcta	catatacgtc	aattttctta	ccagcgaatg	42000
gagctaatgc	tactactaca	tcctcagtag	ctgtaaagct	attagttgta	gttacaaaaa	42060
cattattatc	tggcaatcca	tctccattaa	tgcctaaacg	aacaacatac	gttttagcat	42120
taaatcctcc	attaccccaa	tcaatagtga	aagaatcaga	ttctaaatct	gttacattaa	42180
cattaatagg	agcaggtgga	tgaatactag	tatcagatac	cagtgtttta	acgttaattg	42240
ggtttgtcca	atcacttgtt	ttaatactga	cgtcactacc	agtagttgta	acttcatgac	42300
atctaactaa	atactggtag	ttagtattag	gaagaagatt	atcatctctc	caatttccag	42360
cgggaacata	tgtagctacc	acattgccgt	tacgtttaat	atcatatttc	ttaacggttg	42420

. 1
-continue
- (· () [

gattttacta caccagagtc tacctcacgc acacgtactt ggtattggta gtttgttttt 42540	
	0
ggtaatacat cattatccac aaagtcacct gaagcatgga acgtttcgat aatgttacca 42600	0
tttttcttaa tatcatattt cttttctaca gccattgatt tattcctccg attcgattat 42660)
aatagactta taacccagcc gaagctgggc ttagtcttta ttaggcaggt aaagtaattg 42720)
taacagaaga agcagttgta gcaggagtcg caatagttgg agccgctgga acagcagtgc 42780)
ctgcacctac ataaacaatt ttatcttcat cagccataaa tgtagcatag tggcggtcac 42840)
cacttattaa tgtagtgtga gaaagtaaat catattcagt aagaatacgt gtatcttgtt 42900)
taagagcaat accaagagca ccagctttaa tgaagaagaa ctcaccgtct tgtactttat 42960	0
cagaaagaac tacagtacat ccataaagag taccgatagt accattgatg atgatagaac 43020	0
cttgattaat gataggaaca aacttatcat cagaaacgaa caaagcataa ctgttagtgc 43080)
ttactaaaag atatgtagca tcttcgtaaa gagtttcacc aaagttagct aaagctaaag 43140)
gaattttgtt gattgcatct acagtaagag ccgctccagt tgaagggtct acagcttttt 43200)
tagcagaacg agcaatagca attaaatcat catctacttt ttgagctaaa gccattgcga 43260)
tttggtcaac aatttcatta acagggttac ctgcggaagc tagttctagt tcgtctgaga 43320)
tagctacagc tttaacagct tttttaactg ttacagagat ttgagattgg ttaatagtgt 43380)
caatattaga agtttgacct tctgcaacaa cttctgcttt accaattttg ttccagttag 43440	0
gaagagtgat tgtatcccct acagaacctt gtaattgatt gaatgttgta gctagtggtg 43500	0
caaagcgaat atactcgtac attttctttg caaggtatgg accgacaact tgtggtacaa 43560)
acatattttg taacattgtc agtggttggt aaggtgaatt agccattaat aattgactcc 43620)
tttgtcattg tatttttatc cttgaagagc agtataaagt tctggattac gttcatataa 43680)
agatagttgt tcttctaagg acattttttc taacgcttct tttgtgagag agtcatcaga 4374(0
cacaccacta tcgttagaac caccaccagc aggagatgaa taagcacctt ttaatttagt 43800)
gtcaactcgt tgttgaacca atgcgataac ctcgttctgt aaatcagata cccgttgatt 43860)
aacggcttcg gtcgaatcgg caataacaaa gtcggctaac gtaggagaaa gctcacgttt 43920)
agataattca cgcactgcgt gagttcgcat aacttcttgt tgagcacgtt gctccgcacg 43980)
ttcatatttc aattccagtt ctcgaatgcg tttttgttca gcagtttcag acggattggc 44040)
tttggctact tcctcgctaa taatagtttc gaggttattt gttttccaag tctcaatacc 4410()
tttagtaact tttgaatcta taataggtgc gattaaattt ttaccgctct ctgtttgaag 44160)
gtattcattt acagtgtcct tattaaagaa cgcacctcgt aaatccgctt caagctctgt 44220)
attttgtttt aggtgttctt gcaattctgc aaaagataat tggtcttcga taggcatttc 44280)
tttttcccct ctcaccttta gagtccaatg tcctccaaag tttagatata ttttcctgtg 44340)
ttggttttac atactataaa caggtactat agtacaacga caaaaaggat gtacggggat 44400)
aactggaaca ctatctttat catagattcc gtctccgtta atccctccgt tttcaagttg 44460)
tctacaatgc ttacaaggtg cattcttaga taactccggg gctgtcgtat attgataata 44520)
cataacactg tttgcagtac cttcgtcata gatagattgg tttactgctt ttgctgtgct 44580)
agttcttatt gctctcttag cttggtactc agcttgggaa aaagctttta atgcttcttc 44640)
tcttgcttct tcttcggaat atccctgaga taagctacgg tgtagtaaac gtgttatagt 44700)
aataataaga gctgctataa taacatttag tttgttagaa tggtctaccg ccttgtcctc 44760)

		0 /		-contir	ıued	
aaatgagtcc	aaagtgttag	ataacttttc	ttcccccata	ggtacagtag	aagaccctat	44820
ttgttgcatt	tttctgaata	tttttctaat	cgcttcatct	tgggcaattt	ttacatcgtt	44880
ttggtactta	ataactatgt	tctgcaacaa	cctatttatc	aaataaaaag	cttgcatacc	44940
ttcaaaagaa	ttgatataat	tattattaac	ttctccgttt	tcatcatatg	ccttggagag	45000
gtaagttaat	acctcatcca	aaacacgttg	aaggtctact	gatagctctc	catccacttc	45060
ctcaatccga	gacatcgcat	caaacatcat	gttagcatat	tgagcttctt	tttgtggagt	45120
aacttttgcc	atctagcatt	acctcgcttg	tctttgtttt	tcttgtgtcg	ctgaatcttg	45180
aacgtttgta	ccttgtgcat	tagtagtaat	tccttgtttg	gcacgtccat	tagaattatc	45240
atttgcttta	acattcgaag	ccgtcatagt	agttgttgcg	ttttccgcta	tagaagtttc	45300
tgctacaaga	gcaatctctt	cttgtttctc	aattgcaacc	tgtttcattt	ctttcttaac	45360
atctgtaacg	aaaggaattt	gatgtaacag	agtttcatta	gaaacaagtc	cacggaactt	45420
aacagaagta	tcagcaagtt	ctgcaagaga	agcaggtaag	caacgagtaa	atactggtga	45480
catgtcttta	gcatctttaa	gagcagatga	tttaactgca	attaaggtag	ctattaagtt	45540
aatacgttca	tgaagtccaa	tctcaaactt	acgttgttta	gctgatgttt	taatctcaag	45600
attattcaag	gcatatttga	tggcaacacc	agaaaggtta	ttagcagttt	gcattccatt	45660
agtatcaggt	gtgaaagatt	gttccatgat	ttcttttgtt	aaacgattct	tgatgttctc	45720
taagtgtttg	tcaggggttt	gcttagtaat	aaacttagca	tccccgcctt	ccactagaac	45780
cattacacgg	ttttgtttca	tggagcggac	gtcttcacta	ttagtaccgt	ccatacctgt	45840
taacataagg	taagcatcat	tccagtaaga	gacatcattt	acactatcac	acacaactaa	45900
gttaagtgca	tcaacaagtc	caataactgt	ttcgaaatcg	ccaagacgtt	catcgttagc	45960
taagtactca	atcataggaa	cttctccaaa	atagtgagga	gttactttct	cattgtatat	46020
tagattatta	gatgactctt	cttctcccgt	tgcattctct	tctgctacag	aagcatcccc	46080
gccaccaagt	gaaactttga	attgtagaat	gcggtctgga	tagtatacag	taacacttct	46140
tcgcttctcg	gaagagatag	catccgtata	atcgttatat	acaacgccac	acagtttgtt	46200
ctcatctaat	gtagaatcat	atacgataaa	agcgtttgag	ggagcttcat	atttgaatct	46260
atggttggcg	ttcttatctg	tccaatgaat	ctcaaaagcg	tgtccataga	tagatactaa	46320
tttacctaac	tcagaatcaa	catcagtaga	attattagcg	ttcataacat	ctgtaacttg	46380
tttgatggtg	ttgtcactcg	ctttggcata	tgtaattgca	ttaccagtaa	agtacgagtt	46440
agcagtctct	acaatcagtt	taggatagtt	atgtacaagt	ttattatttg	gtttcaactt	46500
atcattgaaa	gttctcttta	aaatatcgtg	gttaccaata	tagtaatcgt	gcagatattt	46560
gtagatgaac	ttacgctgag	aatgccgttg	aattagaaga	agtacgcctg	caatattagg	46620
ctcttcatct	gcaataaact	ttctattaaa	tactactgtg	ttaactcgtg	aaccccgcgg	46680
aacatagtcc	gtaggctgag	aatctgttgg	aatgtttaca	ccattattag	ccatacgaaa	46740
ctccatttct	gcaagtattt	gttcgtctct	ttctcctgct	tttaccattt	aaattcctcc	46800
attaaacatg	aacttactga	ttagaatcca	agtgccgact	taggtatagt	ccgtgctcta	46860
ttacgtggga	ttacttcttc	caacgcataa	cgcaaggcat	ctaagccgtg	attgtattcg	46920
tcaataggtt	tgtttatata	ttcgtttggg	ttttgtttgt	ctttctgcca	agcatagttt	46980
tcaagttctt	ctctaatgtg	agtacatcga	gggtggacaa	taatttcgaa	tccttgcaca	47040
aattgaatac	catgtacaat	tgaatcttta	cctttacgag	ctgctttgat	tctccatata	47100
cctttacggc	gaatctcttc	aatagattta	ggctcagaac	tatctgctac	tattttctct	47160

ttagcccaac ctttctcagc	tatcttgcga	acaatatcat	cattgagcat	tcgttcttt	47220
tgtttaatat tattttggta	ttcatcgtaa	atataaatct	tcttgttgcg	ttcgtctaca	47280
atacaagcaa ccatcgctgt	agcatcattg	gcgtaaccaa	agtcaagacc	aaagtaagac	47340
tttaatccag cacgtttgag	ttggtctacg	gttgggtcaa	tgttttgcat	accataaggg	47400
tcatggatat taggaatctt	ccactctctc	caattggtgt	agacaagctc	accgagagaa	47460
gcaaagtctc ccatggcata	gatacggtgg	taagtcggat	ttgttttcat	aagctcttct	47520
aaagtattaa gatacttttc	tggtaagaac	ttattatctt	tgtaggtagt	atgtagtatc	47580
cttaaatctt cgggacgttc	atctgctgta	gttgggtcat	gaaataatct	atatacccag	47640
ttaacttttg agatagggtt	ataacagaga	atcatctgtc	cctctttct	ccgtttacct	47700
gcaagattac gcatacgtag	ttgaagctgt	gtataatcat	ctaaggtaag	ttccgttgct	47760
tcctccaaaa atatatcatc	aataccagat	atagatttga	ttttctccgg	gttatcaatt	47820
cctttaaata gaatttgaga	accatttgga	agaacgatac	gaagttggga	agtgtaaatt	47880
ctacatctat cagcaagctt	gaatgttgat	aaagctttag	taaattctga	aaatacagaa	47940
tcccgtaaag agtttgtatt	ctttctaact	actaacatct	ttctttttc	tcgcatcaag	48000
cgaataacag aacgttgtac	cgcccaaaca	gatttaccag	aacccgctcc	accataaaaa	48060
atgatagtac ggtcattcca	ttctaaacta	ggtaggtaca	ctttgttaaa	cattcgttca	48120
tgaatattta atgaaatatg	ttctacttgt	ttctcctgtt	tcatatgtat	tctcctttat	48180
aaaagtaacc tccaccttat	attatatcat	aaggcagagg	taatgtcaag	cattaattct	48240
gaacattcgg aaaatttcct	gctccgttgt	tgctaatttt	tacaccagtt	gatgggtggc	48300
aatatacttt gacatgtcca	aaggaaccag	tcttaattcc	tagaacatta	tctccgtaat	48360
tcttttcgac tttgtaagtc	agtccaccaa	acttcgaagg	gttaattgct	ccgattgcat	48420
tagcttttac aggtgcttta	tttaatggat	acacactcca	agtaccttta	ccagcaggga	48480
agtatacgta catcccagaa	gtagctggtt	tagccggagg	ttttggagta	gcgtgttttg	48540
gtgcacctgc tttaatctta	gctaatagtt	gtgtattctg	tgaagtggtt	cctgtataat	48600
tcttgatgcc atattttcca	gcaagtactt	tacgattagc	aaaagaggaa	tccattttct	48660
tgctgttcat gtaatctacg	agaccaagtt	caccagaagg	cttcgcaggt	gtagatggtt	48720
tggatggttt agcgggagtg	ctggagttag	gacgttctcc	tcctacccaa	tcatataact	48780
caaaatgagg gttgtcttta	aaagatttcc	aatctccacc	ccatttgaat	ccttgtttct	48840
tcatggcagc tacaatcttt	ttaaacttag	catctaccgc	ccagattaca	tctttaccat	48900
cttgcgtgta ttggcataag	tctacagcaa	caccgtagtt	atgatttgat	tgacctccct	48960
ttgcatttgt taccacattg	ccgggctttg	ttctgccttg	tgcatataat	tcattctgtt	49020
ctgcaataga acggaagcct	tgtgcaacat	tgatgtaaat	accttgttta	gccatctctt	49080
taattactgc acgggtttta	tctgaaactt	ctttaagcat	ccctttttcg	tttaaacgtc	49140
tattggcttt ttcaagaagc	catgcttctg	ttaatgccat	tatttatctc	cgtcctttcg	49200
aggttcagta taatttaaag	ctctttcgct	gtcgctaaat	ccagaagttg	tagggtctac	49260
gtagttagca ataagagctg	tgataaccgc	aatgatagct	actggcttgc	ttatgaattc	49320
gcaaaaggca ttccacaata	aactccaact	atctaaatct	gatacttgaa	atccgccagc	49380
agaccacaca attgtaagaa	cagctactgc	ggataatagc	catgttcgcc	agttcttgaa	49440
tcttagtttc cagttaatat	tcatcgtttg	tatccctccg	tgtgttttac	ttctttaata	49500

tcttcttcga	tatagtcaag	acgtgtttca	atcttatctg	cacgtccttc	tatcttatct	49560
actctagtat	tggttttgtt	aatgcggagg	tgtatttgca	ttcggtcttg	tttgctttcc	49620
tccaattgac	tagctaagtt	atccatgcta	ctagttagat	tatcaaatct	atccataaat	49680
ggcgatgcta	caattctctt	gaatagccaa	gctagcccac	taaacaatcc	cgtaactagt	49740
ccaattaatg	ctacccattc	tgtaatctgt	agtccccaaa	taactgctcc	tatctgcata	49800
cttgctccca	cttccatctg	tattaatact	ctaatacttc	ctctagccgt	actctatttg	49860
accagtttgt	agtattggca	ttgttatcgt	gacctactaa	tcggtcattg	tatagtctta	49920
ccatcttcac	tattgtacgg	ttaccagcat	aatcctttac	agtatcgttt	gaatatgcta	49980
taactgaacc	tacagtaact	ccttcacgag	cttctacatg	tcgtttaggt	acgtaagtgt	50040
aggtgtagtt	tatgttagaa	gaatcccacc	tccaaacaag	gataattcca	ttacgcatat	50100
ttgtgatatt	cttaccaaag	gtaactgttt	gacttgcgtt	tggatatacg	ttagtgttgg	50160
ctttaagaac	acgtgaagac	catacaacat	tatctgtgta	tgttttcgca	tttgctgtag	50220
ctgttgttat	ggcattttgt	tgagcagtgt	tagccttcgt	tgtagcgtcc	gtagaggcaa	50280
ctgattgaac	gtttgcatct	gctgtgtcca	tttgctcctt	agaagcataa	gtgaaccaag	50340
gaagggttac	gccggacgtg	tcaacgtgca	tctcatacgt	cacactatct	ggtacagttc	50400
ttaatactaa	aatctttgtt	ccagattttc	ctgttgtaac	atctaattga	aagcttacag	50460
cggttgtggt	tgttatctgt	ggtgggaaac	ctatagttgc	tttgtcagcc	aatgaagcgg	50520
gagaaacacc	ttcgtatagc	ttcgcatcta	atgtaggtag	tccgggcgat	agtgctgtca	50580
atgttcctaa	atcaattcta	gttccgttag	catttgtaaa	agcgtacggt	tgatagtttg	50640
taatatctgt	tttaagaact	acttgattgg	catcaataga	agcttgtagt	gcctttactt	50700
ctgtatcaag	tgttgctaca	tttccagtca	atgctgttac	atcatcagaa	gtattatcta	50760
gttctgtttg	tacatctgca	agctctgctc	tgatagcatc	tttgaaagct	tcaatatctg	50820
atgtaaatgg	tggtgtttgc	atggaattat	ttgttgcatt	attttgaata	gttagagaga	50880
agttctgggt	agtaacacgt	ttgttaactg	ttccaacaag	ttgctctaat	gcaaagtatg	50940
cctctggcat	gtatccaact	tttgaccaca	cttctttaat	aaatgtgtag	cggaatattc	51000
cctgtgaagc	atctactatt	tctaagttct	gataaacaga	accgtcatca	cgtacatagt	51060
taatttgttc	gccgtcttga	taaggaagac	gacattcaaa	atagattgaa	tagccagtta	51120
aattgatagg	cagtccagtc	ttggttagct	taactagaat	agacgttaaa	tctctgtcgg	51180
caaggcgacc	tataactctt	tggttttcat	aaggtcttgt	tacgtctagt	ataatgtcat	51240
attcttttac	tgcatcagcc	atttgtcatc	ctccttagtc	aatataaaat	tctattggcg	51300
ttaaccaaat	accttgtgtt	ccgttaccat	ttatccatac	aacctctaag	ttacctgcac	51360
tgcttacata	aacctctgcc	ataaagttaa	caccagtggt	ttgacgtgca	catatccaac	51420
cattttgatt	acctaccatt	ggacgataac	cagcaggaag	tgttgcgata	acacctttct	51480
tagcagcggt	atccatgtga	acaactccac	gtaatgaaac	cttattacct	actttacgat	51540
atgccggagg	gtttgtagca	tcagttgacc	atccagaatt	aaatcctgtg	atatttatcc	51600
agccagtatc	tcgtgcatct	tgcactctcc	atcctcgcca	cactccgcta	tttagttggt	51660
tcattaccat	agtctggttg	gagcctactc	catataaatt	ccccaagta	ccttgtacct	51720
caatataggt	atatccccgg	atggtggtag	gaggaacatt	agtattagga	tttgttgttc	51780
cagcagtacc	agaaattcgt	gtcatataca	taccagccgg	aactttattt	agctctgtgt	51840
aaatatctaa	tccactgtcc	gtatctagat	ttactatagg	aacaccgcta	ttatcaaata	51900

gctggatgtt ctgcatggaa	tccattctag	tgtttaaggt	agaaactgcg	gttgctaatt	51960
ggttagcaac atcagacatt	gtggcgttct	ctttccaagg	aagtacccaa	ccagctgttc	52020
catttaagaa agttgaataa	gagtttccaa	aggaatccca	tccaattacc	catccggttg	52080
tagctgttgt tagatgagaa	attcctctta	aaggagtatt	agccgttggg	ttatttacag	52140
cacctgatac tgcatagaat	gttcgtaaac	ctattcctgc	tgtttttata	atatcaagaa	52200
tatcttttga agtgtctgag	ccagttgtaa	gtaagttggc	acctgtgtca	tcagtaatct	52260
tctgtttctg ccagttaact	gcatcagctg	ttttgattac	ttggttagct	gtaatcagtg	52320
cttctatctc atccatctgt	gcactagcat	ctgccacatc	tgctttcagt	tgaaccattt	52380
cagcaattac aggagcaagc	ctaatttcaa	tctcagcttt	aagcgactca	atgtcagaga	52440
tgtaatcgtc agcatttatc	tttccttcaa	tagcactatc	tgttacaatg	attttaaagt	52500
tacgagttgt gacacgtttt	acaatatcac	caactggtgt	ttctaaagca	aaataggcaa	52560
tgttaatagc ccctactttg	gagaaagtct	ctttaacaaa	gttgtattga	atgattcctt	52620
gttcggcatc tacaataatc	atattgccat	ttgctatccc	atcatcacgg	acgaagttag	52680
catactcacc tgtttgtgcg	ggtaattgac	actcaaatag	cggggtacgt	cccactaagt	52740
ttattgcttc tccgttgttg	gttagcttaa	ctaatacgga	tgttaaatct	ttgtcagcaa	52800
tgcgggatat tagtaccacg	ttttcagtat	ctttaactaa	gtccaatgct	agagtgtatt	52860
tcttgtcagc tgattttgga	actggtggat	tagcttggct	atagatagga	acaggacatc	52920
tcgcaagctc tttagttcca	ttatacataa	tcattgtaac	cactgtggtt	aatgtgattt	52980
gagatttgat agtggaaacg	tcagccataa	aggttgtccc	attagtgaat	cctgcaattg	53040
catttaagtt agtatcagtt	ccgttaagta	atatcttaac	agtagttaat	gtttcgtcta	53100
cctcgtaaac gccatgaata	aaatcatccg	tgccgtcaaa	ggcgtaggag	tttgccatga	53160
tatagttagt cattcttaat	cctcgccttc	ctcaatagag	taatcaaagt	tatcttgcca	53220
gtcgtcctca tcgtcctcgt	cttcgtcatc	tccaacaata	tccacggtaa	taactgtttc	53280
gactttgatt tcttgtttct	ctttccacat	gccataggat	ttacctaaca	tctcagcagc	53340
tttattctta tcgacaatag	aaggtttctt	attaaccttt	tccccttttg	cagttacgaa	53400
ttcttctcct tcttctcctt	taacaactcg	tgtataatat	tccagaatat	ctttttggtc	53460
tgcaattgta ctgttagcat	ttgattctgt	aacatagcgt	aggtaagctt	gattttcttc	53520
tttagccaaa agtgtatgtg	cataaggtct	tgtatatcca	gactctctcg	cagcacgaga	53580
aacattatgg tcaactagat	attctctaag	taaacgtttt	gtcttaggtt	taatcacact	53640
aaatttttct gggtcattat	aaatgtttaa	cgccacaaac	tttcactccc	tttctctctt	53700
gttcttttt ttggaggtat	ttcttttta	ataaaagaca	cgccagtgtc	ttataaataa	53760
gtgtagcccc gtgcaaaatc	tttcgataaa	tctttaaact	ttactcttct	ttagttctat	53820
cgagtaagaa gaacctttac	tctttaaaac	atgtaaagat	acagtttaga	cccctttt	53880
gttgcgtttt ctgggaaaat	aactggtata	agtgtcatat	taatttattt	tgaagaaaat	53940
agttgacaat tagaaaggta	cgtgctaaga	ttagtttata	aattattagg	aggagatata	54000
aaatggctga tgtagtatat	gcggaatgga	actggtcaga	agaccaaaca	aaagaagaga	54060
tggaatatgc tttagacttg	attaaagaaa	tggttggaaa	gattaataag	aaggaacaag	54120
tagaacctat tgatattccc	gctttggttg	aagaaagatt	ccacggaaga	agtgtagaga	54180
aagctaaaga tgaaacaact	attacaattg	attccacaag	tgaatctaaa	tggaatcctg	54240
	_	_		_	

ttttggtaga attggagaa	a ttcgctaagc	gggtggagga	aaaggattat	attgtgttgt	54300
ctgatttaac aagttggtt	a gaaccaatta	acgaagtatt	aggaacagat	ttaaaatacc	54360
gcagagagg aatgcgtat	t aatcgctagg	tgataatatg	aaacgaattt	ataaaatgtg	54420
gattgaacct tttgtcggt	a ttgcaatttt	tatgttgcct	ttatttgctt	ccggaggaga	54480
agaagctact acaggatgg	g aagtagcttt	agcgtttatt	ctttcactgg	gctatgggta	54540
ctttgttggt agacccatg	ıt tgtattactt	tttatttgat	ggagtaaccg	cagaagcaca	54600
caaaagagaa attaatago	t tacgaaccta	tattaatcaa	tgccaagaag	caatgaatgc	54660
tagtggtaaa acatgtaga	ıg acctaaccga	tagagttgtg	ggtttatata	gctccaacaa	54720
agaacttttg gatagattg	g aatatctcca	aaaagaagca	gaaaacttac	aagaagaatt	54780
gctcatgtta cgagaagag	a atgcacaatt	aattatacag	gtaaagaaac	atgaagagta	54840
ataaaccttc tttacttgg	ıg gcatgtttga	cagatacagc	aagtggaaaa	gaatatcctt	54900
atgaatttag ggcaacaca	t catttaataa	gagttttagt	ttcctacaga	actaatatag	54960
caggtaagcg ggagtttta	c gttagattgg	aatctattaa	ttattcggat	ggctgggaaa	55020
taactcctta tgatgaggt	a tatctaggag	aaactacttg	gggttgagag	gtgttaacga	55080
tggaaacaaa tttgcctto	c ctatcttctg	ctcttttgca	tgacttagca	tgtagtaggc	55140
aatatgattt aagatatgt	a gatgtagtta	acgttacaat	aacaatgtgc	gaggacactc	55200
ctactagtaa agaatttt	c agtatagaat	tagaaacaaa	atataaccgt	aatatttgga	55260
aatttggaga aggtagata	t acagtagttc	ttggagaaac	aacgtggaag	tgaggtaatt	55320
ataaatgagc aagattttt	c catccctgcc	aacggcacat	ttacagtatg	atagctatat	55380
tggtgctcat ccttatgag	a aagatgtaac	acataaaata	ataagaattg	ctattactaa	55440
agataataga ttagcaggt	g ttactgaatt	tgatgtcatg	atagagtctg	aattaaactc	55500
tcaggcgtgg ggcaagagt	t atgaactagc	taatgccata	catctaggag	caacttattg	55560
ggaaacggag gaatgagtg	ıt gactaaaatg	tatccgatat	tagataatat	cgtaggaaga	55620
gattgggaag gtgactgg	t tcgtattgca	aatatgtcaa	actacgggat	aaccaatata	55680
aacatatttt tggatgagg	a gggagattgg	aatataaatt	taattagtac	ttctttggag	55740
gagtttgaag catgtttco	a atatattgaa	tctattagta	ttatagattg	ggaagaggtg	55800
gagtgaccgt ggttaaaat	g tatccagtat	tagcggatat	tgtaggattt	tgtagggaac	55860
taagaatgtg tggaatgcg	ıt cttaatgacg	gtcatggggt	ttctaaggta	agcatagagc	55920
tcagcaacgg taattggag	ıt ttgatcgtag	ttaaaaattc	aggagacggt	aacggaataa	55980
gttttatgag tattaatgg	ıt gtagaaatag	tagcttggga	aatgaaggag	gaaagaggat	56040
gagtattaaa tattccctt	c caaaactaag	agtaggggaa	agacttcaaa	gtggacgtaa	56100
agcaattttt gatttccct	c aacgcaataa	aaagaatgtt	acaagaataa	gagtatggcg	56160
aaatagtaaa tcaggtaaa	t tgcgagcggg	agttactgga	gacagtggaa	gagaagagtg	56220
gtgtgctttt ttagaagaa	g acgagactat	gttatatatt	ggagagttgg	tgtggaatga	56280
gtaatgttaa attttcact	t ccagacctgc	gagtaagatg	ggttgataaa	atatatgtgg	56340
aaagggaata cttatttga	c aaagcagata	caaaggacgt	tatacgaatc	aaactaggaa	56400
taacctcatt gggtacatt	c ttcttacaga	tagagccagc	agatggaata	ggtgattata	56460
ccagcatttc acgtgcaga	a gaagaggttt	tatttggaga	ggtgatttgg	aatgagtgtt	56520
aagttttatt taccgacct	g tctagctgaa	tggttagatg	gacatggaat	aataaggaca	56580
acccgtttta atccaatta	a tactaccaat	gtagttaata	ttactgtaac	taaaagagga	56640

aacgggaaat	tgtacttgca	tgttaatgga	gataaaacaa	cttcatatga	agaggataac	56700
atggctctag	gtgagcaagg	ggatgttatt	tattggtgaa	gaactgtgtg	ggaggattag	56760
atgtaatggg	taaaattgaa	atgtcttttc	cagagcttag	tgtgtctttt	attgagttta	56820
caggagatag	aggggttgcc	ggatggaatt	caccaagtac	tcaccatgta	aggcgtataa	56880
cagttatgtg	cctagatgag	cagagaggca	ctgttttgat	aatgactgga	caagatgaag	56940
aagaagattg	gcaagcaata	gatgaggacg	gcgacttagt	tacttgggga	gaaaccgttt	57000
gggaggaaga	tagttgacag	tctttctcct	ttttggtata	cttaaatagt	aggaggagat	57060
tatatgaaag	ggataggtta	tttaatagat	tgtattagta	acaatttgtt	gttagaactt	57120
aaagtaattg	aggataataa	atttgattgt	tcatgtttaa	ttacgtactg	gaatgaagag	57180
tacggaacga	ttaatacttt	tagatttagt	aattcagata	caattttgag	agcgttgttc	57240
tatgttaatt	acagaaagga	taaggcacag	attggtcacg	agtttactgc	tagtaggaga	57300
ggagcgtttg	taattgaaac	aacctaaaca	aaagtatagt	tacgtgtata	caagagatgg	57360
agaaaaagtt	acacatatta	gattatacaa	aaaaccaagt	agtgaggaga	tattgactat	57420
gtttaaaaca	gtatctggat	gtagagaaag	atattacgtg	gatgagccta	taagatatgc	57480
tttaacaatt	tttatatatg	attgtatagt	gaaataaagg	agagtgcgat	atgccggata	57540
tatttgatag	cgtagacaga	tttgaagaag	aggataagag	agttttacga	attgagatac	57600
gttacttggg	aaataccgga	gcatttaaaa	gaaaattctt	gtatgacaat	ggaagacatt	57660
catatgcagc	taatttgtgg	gaagaagtgg	cacaagagtt	attctatgca	ggaataactg	57720
atttgtacat	taaagagtga	ggagtaatta	ttatggatag	caaactttac	aaccacgtta	57780
ttgcagagga	tattagcaca	gtatatgaag	tagttattaa	aagagatgtt	aatggtgctt	57840
ttgttatatc	ctatctttat	gttattaact	caatattaaa	tacaatgagt	ggaagagtta	57900
ctagaggtaa	gttaaatcgt	attaataaaa	gtttgcaggt	tatctctact	aaaatgtgtg	57960
ctttacaaaa	ggaagagaaa	tatataaggg	aatgataaaa	acaaatggca	aaggtttttg	58020
atactaacaa	aaggtaccgt	ataacttatg	agagggaaga	agtagtaact	attaagattt	58080
tagagaaagg	aatatttcgt	ttagaaaaga	tttatcaagg	taactggggt	ggcggtattg	58140
ctgtagcatc	ttgtgaggaa	tttttaaatg	atttaaccgt	aactgataaa	gaggaggatt	58200
taaagataga	atgaaaaact	atagagtata	aagaatagaa	tccaaagatg	cgaagccatt	58260
tatattaggt	ctacattatg	cacaacgtat	gccaagtatt	tcctacgctt	acgggatatt	58320
ccttggagaa	gagttgctgg	gaatttgtac	cattggaaaa	cccgccagta	atcctttatg	58380
tgttggagta	tgtggcaaag	agtattcgca	caaggtttt	gaattgaata	gattgtgtat	58440
gaaggataaa	ctaggtaaga	atgttttgag	cttctttgtg	agtaaagtgc	ttaaagactt	58500
gaagaaagaa	aacctcatct	taatttctta	tgcagatact	ggtatgaacc	attctggata	58560
tatctaccaa	gctaccaact	ggatgtacac	gggattaact	gctggaagga	cagataaata	58620
tacgccagag	aataaacact	ctcgacacta	cacgaacgag	tttaaccact	tgcgaaaagt	58680
aaggacggct	aagcatcgtt	atatctatgt	ggcgggagat	aaacgttttg	taaaagaggt	58740
taaaggaaag	attaggatat	taagaacaac	catatcctaa	agatactaat	agtgattatg	58800
agttaggaac	tcgccagaaa	acaaagatac	ttaacacaga	ggataatacg	gtgttttatc	58860
agtaatttat	ctgtcctagt	tgacattgtt	ttaactttgt	ggtaagctct	tattataaag	58920
aaggaggaga	taaatatgaa	taagtatgaa	agatatgttg	taggttggta	tgatgaagat	58980
- -	_	_		_ _		

ggtgactggc	actactgttc	gagccgtaca	ggtgttttaa	aggaaaccgt	aactgaagct	59040
aacaattgcc	gaaaagtgaa	acagagacat	cctttataca	aatataaaag	tttggagatt	59100
ggtacaatgt	actttgaggg	tgctttaaat	gaagaacttg	ttaaaccaat	tattgcagaa	59160
gagaaagagt	atgcgattcg	ccgtcacgag	ttaagagatg	aattcgaaac	aattgctaag	59220
gaaagaggat	taaataattt	tgggactgag	tttaataaag	cttttgacga	atggatagca	59280
actaaggagg	attaaaatgg	actgctataa	taaatacaga	gtttgcgtat	tttatggaga	59340
aagagattac	gaatttttct	acattgaagc	atacgacgaa	ttttatgcta	agttagatgc	59400
tatggatatg	tatgctaatt	tttcacgaga	gttatactac	gatgaagtgc	ttccagtttt	59460
ctctgttgaa	atcgaacaag	tagaggagtt	ttaaaaatga	gaatagtatc	agcaattatc	59520
agcacgccaa	aaatgtatat	ctatgattta	catcagatag	ataatcacac	aggattagaa	59580
gttattatga	ttgaagaacg	gggcaatgga	gttattatta	cgtttaatga	cggctctgct	59640
cgcaagttca	gaagtgattg	ttatagtttg	ttttatgagg	gagctgtagg	cttttgagtt	59700
ggcttacaag	aaggaaaaaa	gatgctagag	taggagagaa	ttatgttcct	aaaacagtgc	59760
caatgaataa	tataaagaat	ggagaagcta	aaatgccaga	acctattaaa	gaggtaaaaa	59820
tagaattacg	gtataaaatt	ggggaagaga	tttactattt	aaacccagaa	actaaggaac	59880
gagagttagc	caaagttttg	ggatttggag	tagaagaaga	tagtaaaatt	cagtattacc	59940
atatctctac	tttggatgaa	cctcagaagg	agcttaaggt	atatttaaaa	gacattggaa	60000
aagtatattt	aaaagttgaa	cacatcacta	ctttggtgtt	tgtatacttt	gctggaaaag	60060
aaattaagta	cattcccgga	gagaactgtg	aggatgttgt	agtaggaact	gataaagaga	60120
atgtttatgt	ttcttttaag	gatggaaaga	ctagatgtta	tcataaggta	ccatttatgc	60180
aagaacacgc	agagaaaaga	tacaagcact	ttacaaaaaa	tactcccgaa	ttttatttat	60240
acccacattc	tgggtaccgt	gaagcagaca	tatactataa	ctactatgac	gaggaaaaag	60300
tgggattata	tgaaggaagt	ggatattaaa	tggaaccacc	agatttagaa	agcctaacct	60360
tgtgggtgat	ttacgaccgt	gttagtgaca	cgttccacaa	aggcgggaat	caatacttct	60420
gctctagtcg	ccagaagaaa	gccattaaga	cgtatggaac	acttcaatct	gctacagctt	60480
tgttaaaaca	gatagaaggt	ggagggattc	acccagtaga	tttagtgtta	gtggaattag	60540
agtgtgagat	tatggatttt	atcgaagtag	aataaactaa	aaggagaatg	attagatgaa	60600
aaaatcaatg	atagctttag	caattggggc	agtattatta	cttggaggat	gtacttcttt	60660
tgatgattgg	agtaaagatt	gggaaagtga	caccaaagga	ttagaaagaa	caatcactat	60720
ctacagcaag	actggcgaag	ttcttaaaca	gtatgaagga	gaaaacgttc	gtactaaata	60780
ctcagatggc	gggactcaag	ttgttcttaa	cattgatgga	aagcgtgtcc	aagtagttaa	60840
tgcagatgtt	gttattacag	aaaaaggtgc	agagaaatac	gaaaccaaat	aatgtttgac	60900
aactaaataa	atgcgtgtta	taattagtta	taccaattaa	gaggagtgag	cgattatggc	60960
aaaggctaga	gatattctgg	atgctacgaa	gtggacagag	attagagatt	tccgaagata	61020
ttccataaac	agggatggtg	aggttgctaa	taatattaca	ggtcatttgc	ttaaagtatc	61080
gtttgctcct	cgtttgggtt	atacggttaa	actagtggat	gacgtggcta	acttgcagag	61140
agtggttaag	ctggcggatt	tactggctag	aacgtttgtt	cctagtgtat	taggtgctac	61200
acaagtagta	tttatagacg	gcgataaaaa	gaatttggat	ttaaataatt	tggaatacag	61260
attgtgaggt	ttaatcatga	agtattgtgt	ttgcgtatgg	gaagccactt	ttaacttctc	61320
	ggactatttg					61380
_			_	- -	- -	

agaagattat	acagaaagag	aattagataa	ctaccaagtt	tttgttagag	gagtgtctgg	61440
attttatgtg	taacttaaaa	ccagctatac	cagatatgta	tgtttctgct	gtaaaggatt	61500
tatatatgga	taattattt	aatgagagtt	ccacagccat	cactaaaata	attataggat	61560
attctgaata	ctgtaaaagc	acatgtatag	gagtaacaag	tggggactat	aaacatgtaa	61620
agctgtttgg	ggaagatggt	attactctac	acataggaga	ggtggtttgg	aactagttat	61680
gcactatctt	tccaaacaga	aaggggaata	atcactacta	tgtatatttt	aatacagcta	61740
gtagattggc	aaaaggatga	tgaagttgtt	gctggaaaag	tattaaaagt	aggaggttgc	61800
tcctttcaag	gagttaagat	attgttaagt	aaacacatga	aagatatggc	tagtttgcat	61860
gacagagcct	cctacaggta	tgctactgca	cttatggata	gatgtatgaa	tttagatagc	61920
atatcccgca	cattaagaac	acacacagag	tggcgagtaa	aatttaaagt	agtttttaga	61980
gaggaatggt	atgaataatg	gaaaaattag	atactatgga	acaaattact	aagttacaga	62040
agaaagcaat	tgaggtggcg	aaagagttat	atggtgatat	taaagaaaca	gactttacgg	62100
taattcagcc	atatgcagat	ggacacggaa	ttttgtttag	tgttagtgat	gacgaccaag	62160
gagaacgcac	tatgagtgtt	aacgttgtag	acacgttgac	agtgcttcct	gctattgatg	62220
ggactttaga	tgcttacgag	gaagaaacag	aatgatgata	gtgtggataa	tcttaattat	62280
tagtatcaca	ttcttttaa	cagcacgcaa	actagaagac	gatgtggcaa	ttgtttggat	62340
acttgttata	tatttagcaa	tatcttttct	tttagtaaat	ttgacaaaca	cgtaagtaag	62400
tggtatactt	gtaatataga	aggaggaaa	cacatgtatg	aatattgttg	caaagaagta	62460
aatgaacgta	agcgtgatac	caacttaatg	tatccagaca	agggattatc	ctatttagat	62520
gaggaggatt	gtttggcaat	tttcttagga	gattttggag	atgacatacc	ccatacatta	62580
tatgtgctag	ttaagcactg	tccatggtgt	ggaagaaatt	tggaagagga	tgttatgtgt	62640
gagtactgta	atagagacca	caatttaaga	caaacaaaag	aactacatgg	atataacgag	62700
gtaaaaatag	atggagacaa	cgatttacag	gtaacttatg	aattaggtgg	tgcagaggaa	62760
gaccttttgc	tagaaataag	ttattgccct	tggtgtggta	gtaagttgga	aggtagtgaa	62820
ttaaaatggc	taaattccaa	gtaggtgatg	aagtatatgc	ttcctatgta	gatgaaatag	62880
gaacagttat	tagaatcgta	tgggaattat	cagaaggcaa	ctcaggtttt	aatgcttatg	62940
aagtacaatt	taacgaccag	tcaagagttg	tagccgaact	agctttacaa	ccatcaacca	63000
agcaatagta	cgtattaaat	taaatggagg	aatattgatg	gaattttata	atggtcaaaa	63060
gatagagttc	atttcttgta	ataaaaaaca	agtagggaa	atagtagaag	ttcatcctga	63120
aagcgggata	ttgagcatta	gagatagtga	tggaatagag	ctaggtgtaa	gaatcaacaa	63180
tgtagttgaa	tataaagaac	cagaattacc	tgtagttccg	aagtgtgtgg	cgggttggtt	63240
tgaaaagaat	aagaataatt	tagataatga	aatttggcga	tatattcgca	actttgatga	63300
gcagaacaca	gatagtaatt	tttacatgtt	catgaatgat	gcgacaagta	atcctattga	63360
gatattggtg	gaaatgaaga	atggatataa	gattgaagct	acacctgcta	cgtatgtgtc	63420
tacgtgtgga	gaagatacag	aagtaaagta	tgtaatttta	agagataaag	aaacaactaa	63480
ggtagatggt	acgtattacg	ttaggatggg	cacacccgta	gctaaatcat	ttgaatatgc	63540
tcttacacca	gataaggaat	gtgctattat	tggagataag	gtaaacatga	ccgcaattgc	63600
atgtttctta	gcttcccaaa	atactagcca	cacgtttgac	gttgtgccat	atgaggaaga	63660
gatttaatga	agcacaaggt	aggagataaa	gtagaactaa	tttggtacga	ggtaataaga	63720

gaagtaatta	ttgtagagga	acttccaaaa	ggggaatatg	tagtagaatt	tgtgcacgat	63780
ggggaaagag	agacaatcca	tgaagcaggt	atgatggaaa	cgggaacgat	tacaaagtta	63840
gcaagtgaag	agctagttaa	acttcccact	tatatggaag	attggttaga	gtttggagat	63900
aggcagggat	atgatttagt	cgatttgttt	aattactata	atagtaacat	gtccaaagag	63960
gtagaagagt	ggatagtaaa	tagtgaaacg	aaccagtata	aatttgctat	ggcttggtta	64020
tgtggatatg	ttgtggagga	ggaattagca	aatggataaa	tcacgtataa	ccgtattgct	64080
aaaatcgggt	aatagatgtc	agattactca	tccagatgtg	gtggaggaag	tttgggaaga	64140
gttttcttta	gaaaaggtaa	aacaaggagt	tactttacaa	gatagacact	ccaaaacaat	64200
tatcccgtat	gagtctatcg	attgtatcta	tattgaagaa	ttggaggcgg	aagaatgaac	64260
gataaaaaga	cagattataa	agtatataaa	ataacataca	agcaacgttt	tatgggggaa	64320
gttattgttg	actcatatga	aagaacggta	aaagatgata	acgaattacg	gtctgcaatt	64380
aacgctttat	atgacgaccc	acatgtgttt	tcagttagta	gtgaagaggt	ggcggaataa	64440
atgggagtga	gtattgattt	atacagttat	gattatgaag	cacttgtgga	aggcattcaa	64500
agctatacaa	aagcggaaaa	tacggaagtt	ataagaaaaa	tacttctaat	aggcggaaat	64560
gtcgtaggtg	ataaatatat	cattttaaac	aatgaactct	gggaagataa	cagttcatat	64620
tacaacgttc	cgaacgcttt	agagcgtttg	tataaagttg	atgatgtctt	tggaaaaatc	64680
ttctgtactt	ttgatgatag	gttcggtaga	gagacgctaa	ttaatggttg	tgatacccca	64740
gaagaaatat	tagaagaggt	gatggaatga	cgacatttaa	accgagaaac	atcctaagtt	64800
ggcgcagtgg	attgccttac	gataatacga	gattttcaat	aggtagacct	ccagcaggcg	64860
gacaacatag	tgatgaatgg	tataacggag	aaatgaatgt	aaatgtaatc	agcattgaat	64920
atatactgcc	taatccaatc	acggaaagca	caggaaacta	tattatcaag	ttggaagatg	64980
ataggagaat	tgttatctcc	gaagaaattc	cgtcttttat	tgaggaggtg	gcggaataaa	65040
cgtagtggat	attaacgtat	cagagttgat	gaaggagtta	cagaaaatcc	cgccagatag	65100
ttcaattttt	atagaggaat	attgttacgt	ttctgatacg	gctagggtaa	agtatagtga	65160
aaaatatggt	gaggtacgtt	tgtgtactaa	tgaataggag	gaaataacat	ggctaaagaa	65220
ccaagagacg	tgtggatagt	ttattatgaa	gtacttggcg	gggtggaata	ttacttagct	65280
agctccaaca	tagacaagct	tatttttaga	ccaagtacac	tagaaggaaa	tgctttagaa	65340
ttccctacac	aagattccgc	agagggaatg	gctaaggtgg	ctaatgcgtt	ggatactaac	65400
caagaccatt	ggtggaagat	taagaaagtg	gataacactc	aagtgtatgt	gatgtttgca	65460
ccagttatta	ctcacttgat	acaggtggca	gtaaataccg	acacgccaag	agatttagca	65520
gatttacagg	tgtgtgaggc	tttctttagt	gagtttcacg	aattagaacc	tgttacccta	65580
gccaagagat	ttacaagaga	agaatttgaa	gaacttaaaa	caagatacac	aggtattatg	65640
gctattccag	tagatgacgt	tatgaatact	ttagaaagat	tctataacac	ttcctcttat	65700
aataaactta	agaagggtaa	agcagttatg	gaagtgttcc	gggagtataa	agcaagtggg	65760
aactaatatg	ttcgtagtgt	ggttcgcaat	tattagctac	ttttttggaa	gtattactac	65820
catatttact	ggtgtgtgca	aagtaagaag	tggtgaagaa	gtggttggtg	gcgttataga	65880
catattggct	ggtctcctat	ttgctggaat	gagttggtta	tttatagtta	tatttctata	65940
gataaggaag	gagttgttta	atttgttggt	agtgctagga	attgtgttct	ttctttctat	66000
actgtcaatt	gctggtttcg	gactggttat	ttatagttgg	agaagtgaaa	tagtcgtagc	66060
tctttttgga	ttatttttag	ggatgattac	tttatttagt	gtttttgtat	tgttgtttaa	66120
~ ~	-		_	_		

-continued

tacttaagga ggtgaaaaac acaatgacag atatagtagt gcagatttta acttatatat 66180 tgatagtggg ctttagcttc ttcgggataa ctaaccttat tgagggtatt aaaaataaag ggaaaagacc cgcttattct aggttcctag atattactac tggtgtggga ttgttagcac 66300 tagtttggct ttggtttacc caaggtggag tatcttaatg aaaattcccg catagtttaa 66360 ccagagagtg ccagttaggt actctttttg gcgtgttgtg gaatagttgt ggctagtgtg 66420 gacgtgttgt ggcgtgttgt gacaaggtgg cggtttactt ggtaccccca gtcgtaaccc atacagtgaa aataggaaac gtgaaattgt aatagtctgc ggagaattat cagaattttt 66540 tgaacacccc tacgtctccg aattttccga ctcttctaac tactcagtct actcgctcgc tttcgctcgc tcctcgttag ctcgacacgt attgcacact tgctttattt atattacatg 66660 tattagcatg tgagtgcgtg tgtgcacgtg tactacagta actacacata gatatacatg 66720 ctacaggtac tatttaatat aagggctaat aaaacgctta cattcgatta gctaattata 66780 cttcctataa catacattat gttaacttgt tagatgagta taaaataata gataattata 66840

The invention claimed is:

tttagataa

- 1. A food product comprising a bacteriophage having a genome
 - i) comprising the DNA sequence of SEQ ID NO: 7;
 - ii) having at least 90% or 95% sequence identity with the DNA sequence of SEQ ID NO: 7; or
 - iii) having at least 90% or 95% sequence identity with the DNA sequence of the genome of bacteriophage ProCC P825 deposited under Accession No. DSM 23783;
 - wherein the food product is selected from the group consisting of a dairy product, a fruit product, a vegetable product, a meat product, and a fish product.
 - 2. The food product of claim 1, which is a dairy product.
 - 3. The food product of claim 1, which is a fruit product. 40
- 4. The food product of claim 1, which is a vegetable product.
 - **5**. The food product of claim **1**, which is a meat product.
 - 6. The food product of claim 1, which is a fish product.
- 7. The dairy product of claim 2, which is a pasteurized 45 dairy product.

8. The dairy product of claim 2, selected from the group consisting of yoghurt, ice cream, cheese and butter.

66849

9. The meat product of claim 5, selected from the group consisting of pate, hot dog, bologna, salami and cold cuts.

- 10. The food product of claim 1, wherein the food product has undergone thermal treatment prior to introducing the bacteriophage.
- 11. The food product of claim 10, wherein the thermal treatment is at a temperature of at least 70° C.
- 12. The food product of claim 2, wherein the bacteriophage has a genome comprising the DNA sequence of SEQ ID NO: 7.
- 13. The food product of claim 1, wherein the bacterio-phage has a genome having at least 90% or 95% sequence identity with the DNA sequence of SEQ ID NO: 7.
- 14. The food product of claim 1, wherein the bacteriophage has a genome having at least 90% or 95% sequence identity with the DNA sequence of the genome of bacteriophage ProCC P825 deposited under Accession No. DSM 23783.

* * * *