US009513984B2

12 United States Patent
Wang

US 9,513,984 B2
Dec. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54) HARDWARE SIGNAL LOGGING IN References Cited

EMBEDDED BLOCK RANDOM ACCESS

(56)
U.S. PATENT DOCUMENTS

MEMORY
6,483,342 B2 11/2002 Britton
(71) Applicant: Hewlett-Packard Development 6,802,026 B1* 10/2004 Patterson GO6F 11/362
Company, L.P., Houston, TX (US) 712/227
7,187,203 Bl 3/2007 Hume
7,459,931 B1 12/2008 Tang
(72) Inventor: Yang Wang, Houston, TX (US) 7,568,074 B1* 7/2009 Kavipurapu GO6F 13/4022
711/114
: _ : 7,957,208 Bl 6/2011 Tang
(73) Assignee: Hewlett Packard Enterprise 2015/0128100 Al* 5/2015 FOiSy GO1R 31/318519
Development LP, Houston, TX (US) 716/108
2016/0217021 Al1* 7/2016 Wang GO6F 11/079
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATTONS
U.S.C. 154(b) by 139 days. “Reveal User Guide Lattice,” Mar. 2014, <http://www.latticesemi.
com/~/media/Documents/UserManuals/RZ/Reveal32UserGuide.
(21) Appl. No.: 14/605,384 pdf. >.
Stelios Pantelopoulos, “D2.4—Parallel Hardware System Specifi-
1. cations,” May 7, 2012, <http:// www.Ip7-heap.cu/Public’ HEAP__
(22) Filed: Jan. 26, 2015 D2 4 FINALpdf >
Xilinx, “Using Block RAM 1n Spartan-3 Generation FPGAs”,
(65) Prior Publication Data XILINX, XAPP463 (V20), Mar. 1, 2005, PP 1-40.
US 2016/0217021 Al Jul. 28, 2016 * c1ted by examiner
Primary Examiner — Philip Guyton
(51) Int. CL (74) Attorney, Agent, or Firm — Wall & Tong, LLP
Gool’ 11/00 (2006.01) (57) ABRSTRACT
Gool’ 11/07 2006.01
(H) A example method 1s described 1n which a programmable
Gool’ 11/34 (2006.01) . . .
H logic device: samples a first instance of a log data word
Gool’ 11/30 (2006.01) . . _
comprising at least one hardware signal; compares the first
(52) US. CL instance of the log data word to a previous instance of the log
CPC GO6F 11/079 (2013.01); GO6F 11/0751 data word; detects a change in the log data word when the
(2013.01); GO6F 110787 (2013.01); GO6F first instance of the log data word is different from the
11/3079 (2013.01); GO6F 11/3476 (2013.01) previous instance of the log data word; and stores the first
(58) Field of Classification Search instance of the log data word 1n a storage location 1n an

embedded block random access memory of the program-

CPC . GO6F 11/079; GO6F 11/0787; GO6F 11/0751; _ _ _ _
mable logic device when the change 1n the log data word 1s

GO6F 11/3013; GO6F 11/3065; GO6F

11/3079; GO6F 11/3476 detected.
See application file for complete search history. 20 Claims, 5 Drawing Sheets
100
ON-BOARD PDWEH—L ON-BOARD
SYSTEM — —» THERMAL SYSTEM
140 150

, S

MANAGEMENT cLB EBR

118 115

PROCESSOR |« o ==2 || _ | HOSTCPU
130 PLD 120
110

T

QOTHER ON-BOARD
COMPONENETS

LEDS, BUTTONS
160

» (NIC, MEMORY,
ETC.)

170

US 9,513,984 B2

Sheet 1 of 5

Dec. 6, 2016

U.S. Patent

QYVOS-NO ¥3HLO

A7
(*213

AHOWAW DIN) fa—

SLINANOdINOD

T 'Ol

|

09T
SNOLLNG ‘Sa3tT

or1l
d1d

OtT

81T
g1

0ct < .
NdD 1SOH TIT
E
— &
05T
NILSAS TVWHIHL e
a¥vog-NO

> H0SS3D0Ud
INFNIDVNVIA

or1

INJLSAS
43IMOd QHv04-NO

£ Il

US 9,513,984 B2

baJ 1ds D
3 ids T
poo3d SAs s
a5l t
3]e]Ss aujyseuwl B1e1s M1 Jamod -9
}nej aids £
\f,
Qo
-
gl
D
s
=
72
m 2|qeu3
~ JHIM
& ore
S pIEQ
= 00¢ 0EZ
WYY X019 Q3ad39iA3
d41 1ppy
0ccC
|

01t

I|qeus
S¥¢

elep Jnd

OLc

AVYOVIA NOILDINNOD T¥YNDSIS

U.S. Patent

T SEL

1d
5¢c

N|D SAS
STC

US 9,513,984 B2

Sheet 3 of 5

Dec. 6, 2016

U.S. Patent

¥ Ol

mmtu\m ..uzm_
-

(1104144 St GHOM vivad DOT 3HL NI 3DNVHD JHL
NIHM JHAIA 00T TTEVININTHOON JHL 40 AHOWIN 55300Y WOONYH XDO18 d3aa3giN3 NV NI NOLLVYOOT
IDVHOLS ¥ NI QHOM YIVA 901 JHL 40 IDNYLSNI 1SHIZ JHL “IDIAIA J1950T THRYINWVHDON FHL A ‘ONIHOIS

|

i o

{T8OM Y1vd 9017 JH1 40 IINVISN! SNOIATEd HL WO 1 NJHIHIA S1 GHOM YIVA 501 JH). 40 IDNVISNI
DEY 1SY1d IHL NIHM QUOM YLV 90T JHL NI IONYHD ¥V IDIAIT 1901 TTIVININYEDO YD JHL AE 'ONLLD31IA

I f :

J¥OM Y1vd 90T JHL JO JIONVLSNI SNOIATEd
0f4 V OL QYOM Y1VQA ©07 IHL 40 IONVLISNI 1SHH IH1 "IDIAZA JID0T NIYWINYHOOUd FHL AS "ONINYdINOD

ot

TVNDIS IUVYMAYYH IND 15V
0T 1% DNISIHdINOD QHOM Y1va DOV 40 IINVLISNI LSHIS ¥ "IAAIA J1D0T TTEVINWVYD O ¥ A9 "ONITdINYS

\m LYVIS
S0v =

US 9,513,984 B2

Sheet 4 of 5

Dec. 6, 2016

U.S. Patent

HILNIOJ LNIWIHONI T
+ 05§
ON
Y
Y83 OL GHOM YLYC 483 40 AMINT 1SYI4 .
0951 ©OTLNIHEND ILIHM OLMIINIOd 13sTy |+ A 4483 20 AULNE 15V LV a31NIOd S e
Y cog—"
ON
QHOM YL¥a 50T
1, INTHRIND = QHOM V1v
907 SNOIATYd L35 LOHOM V.LYC
. 907 SNOIAIYd = GHOM YLYd 90T
_ INTHNND 5300
SdA
703193130 NOILIGNOD | _/
N ON v' QHOM Y.LY0 907 LNIHEND TTdAVS N oze
08S 4

S3A
Y

ONIODOT TVNDIS
JHVYMOHVYH 318VSIA

vﬂ an3 v/
565

] w

ONIDD0T TYNOIS JAVMOEVH H04 T'1d JHNDAANOD oTS

a
coc \m 1LUV1S v

005

US 9,513,984 B2

O "Dl
% 700 . 200
= ANONTIN HOSS3N0ud
\r,
>
&
i
7).
v _

&
y—
Q 00

- S09
& 391A30 IOVHOLS - —_— S1NQON
5 5’3 ‘s30IA3A O/
=

U.S. Patent

US 9,513,984 B2

1

HARDWARE SIGNAL LOGGING IN
EMBEDDED BLOCK RANDOM ACCESS
MEMORY

BACKGROUND

Computer servers often comprise a chassis containing
many 1dentical computing cartridges. Each cartridge may
have one or more central processing units (CPUs), an
onboard controller, a programmable logic device (PLD), and
various other hardware components, along with their corre-
sponding soltware/firmware programs. Alter each compo-
nent 1s individually developed, there comes a time for
system integration, which may involve hardware debugging.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example system, from a
PLD point of view, of the present disclosure;

FIG. 2 illustrates an example embedded block random
access memory (RAM);

FIG. 3 illustrates an example log data word;

FIG. 4 1s an example flowchart of a method for storing
hardware signals 1n an embedded block RAM;

FIG. 5 1s an example flowchart of a method for storing
hardware signals 1n an embedded block RAM; and

FIG. 6 1s an example high-level block diagram of a
computing device for use in performing the functions
described herein.

DETAILED DESCRIPTION

The present disclosure broadly discloses a method, non-
transitory machine-readable medium and device for storing
hardware signals in an embedded block random access
memory (EBR). During the development of computing
devices, such as servers, routers, switches and the like,
individual hardware components may be developed sepa-
rately to a certain point. Hardware debugging typically
occurs during system integration, when such components
are finally brought together. However, hardware debugging
at this stage 1s often diflicult insofar as problems may appear
randomly 1n any one of the components, making 1t diflicult
to find the source of a problem by conventional means.

A logic analyzer or scope 1s often used in hardware
debugging. However, on computer server systems, a prob-
lem may occur 1n any cartridge in a chassis, where it 1s not
apparent which cartridge 1s going to fail beforechand. When
a bug can be reproduced on one printed circuit board (PCB),
it still takes considerable eflort to identify the triggering
condition, find the relevant signals on the densely packed
board, and bring them out of the board before probing can
be done. There may also be a limited availability of person-
nel and equipment, making 1t even more diflicult to catch
bugs that only a large sample size can reveal. In addition,
team members imvolved 1n system development often work
at different sites. Therefore, the back and forth for debug
requests and responses can take considerable time and eflort.

After a problem occurs, test personnel may also look at
software logs or hardware registers. However, hardware
registers only provide after-the-fact static information. Soft-
ware has access to large amount of memory, and thus can
provide detailed log information. Nevertheless, the software
1s usually too far removed from the hardware to provide the
necessary details. For example, 1t takes many clock cycles
for software to read a signal value from a port. Therefore,
software logs have limited value 1n timing-critical hardware

10

15

20

25

30

35

40

45

50

55

60

65

2

debugging. In general, software also does not have access to
many of the hardware signals.

In contrast, embodiments of the present disclosure pro-
vide logging of hardware signals 1n an embedded block
RAM (EBR) portion of a programmable logic device (PLD).
In a server system, the PLD typically implements reset logic,
power sequencing, glue logic, and other functions. Because
of 1ts strategic position in the overall system, the PLD has
access to many of the hardware signals. Modern PLDs, such
as field programmable gate arrays (FPGAs), also typically
include embedded block RAM (EBR). If the project of the
PLD does not require all of the available EBR, then 1t 1s left
unused. The present disclosure utilizes the otherwise unused
EBR on the PLD. Therefore, logging of hardware signals 1n
accordance with the present disclosure incurs little or no
additional cost.

The log 1s embedded in the PLD hardware and can be
placed 1n the “on” setting continuously, thereby capturing a
failure state when 1t happens. It 1s especially useful for
random board failure among a chassis-full of boards. The set
of hardware signals to be logged can be changed since a
PLD i1s a programmable device, making 1t easy for trial-
and-error debugging. Therefore, a tester can pre-program the
PLD to log a number of selected signals and the log can be
used to quickly make progress in identifying and solving a
problem. In addition, when logging hardware signals in
EBR, the logging speed can match the speed(s) at which the
signals are changing. Thus, EBR-based hardware signal
logging 1s well suited for hardware debugging.

In one example, a portion of the EBR that 1s otherwise
unused 1s assigned to comprise a hardware signal log, also
referred to herein as an “EBR log” or bufler. In one example,
the EBR log 1s organized as a circular bufler. Prior to
operation of a system that 1s under test, it 1s first determined
which hardware signals are to be recorded. For example, a
tester may select one or more hardware signals that may help
to 1dentity a bug when it happens, such as the state of an
internal state machine, signals that cause state transitions,
tault signals, status indicator signals, and so forth. A unit for
storing hardware signals in the EBR log 1s referred to herein
as a “log data word.” A log data word may comprise n-bits,
¢.g., 8-bits, 16-bits, etc. In one example, the size of the EBR
log 1s conveniently a multiple of the n-bit size of the log data
word. In accordance with the present disclosure, all hard-
ware signals that are selected for logging are assigned one or
more bit positions within the log data word, as described 1n
greater detail below.

In one example, the hardware signals of the log data word
are logged on every clock cycle. This approach has the
benelit of knowing the exact timing when a change in a
hardware signal occurs. However, this may require a large
EBR log/bufler size to capture the whole event. In another
example, the log data word 1s recorded every time that there
1s a change 1in any one of the hardware signals 1n that log data
word. This provides the relative timing among the signals
and requires a smaller bufler size as compared to logging
every clock cycle. In one example, logging enable/disable
logic 1s provided to stop logging upon certain conditions
(e.g., when a bug condition happens or based upon a user
iput signal), to preserve the bufler and to prevent it from
being overwritten by new mcoming hardware signals of the
log data word.

Thus, the present disclosure provides various advantages
over prior techniques for hardware signal debugging. For
example, logging of hardware signals in an EBR log 1is
flexible: the signals to be logged are programmed 1nto the
PLD. It 1s far easier to select hardware signals and to change

US 9,513,984 B2

3

the hardware signals of interest as compared to scoping.
Logging of hardware signals in an EBR log can also be
performed simultaneously on multiple cartridges runming in
a chassis. In contrast, scoping 1s usually performed on each
cartridge at a time. EBR logging 1s in-line, and accesses
hardware signals that are already passing through the PLD.
Nevertheless, the EBR logging 1s out-of-band and does not
interfere with the normal operation of the system. EBR
logging can be “always-on,” requires no human attendance,
and can capture rare failures the first time around. If desired,
the EBR log can also be made more accurate down to a
single clock cycle. Finally, EBR logging uses components
that are already present 1n existing designs, thereby adding
little to no cost 1 deploying embodiments of the present
disclosure.

To aid 1n understanding the present disclosure, FIG. 1
illustrates an example system 100. System 100 may com-
prise a cartridge of a server comprising one or mMore car-
tridges. As illustrated 1n FIG. 1, system 100 comprises
vartous components including: a host CPU 120 that may
COmprise one or more cores, a management processor 130,
an on-board power system 140, an on-board thermal system
150, light emitting diodes (LEDs) and user input buttons
160, and other on-board components 170, e.g., an 1nput
device, an output device, network interface cards, a memory,
power and reset buttons, and so forth.

A programmable logic device (PLD) 110 1s coupled to
these other components and provides reset logic, power
sequencing, glue logic, and other functions. As used herein,
the term “coupled” i1s intended to refer to both direct
physical connections between components, e.g., through one
or more lines on a printed circuit board (PCB), as well as
indirect connections, €.g., by way of one or more interme-
diate components. Each of the connections between PLD
110 and the other components may comprise a multi-bit
wide interface for conveying signals between components.
PLD 110 includes an embedded block RAM (EBR) 115 and
configurable logic blocks (CLBs) 118. In one example, a
portion of EBR 115 1s assigned to function as an EBR log for
recording hardware signals. In one example, the hardware
signals to be logged, the conditions under which to perform
the logging and the conditions under which to stop the
logging may be implemented as logic within one or more of
the CLBs 118.

It should be noted that FIG. 1 has been simplified for ease
of explanation. For example, although EBR 115 and CLBs
118 are 1llustrated as singular and discrete components, it
should be appreciated that CLBs 118 may be arranged
throughout the PLD 110 and that the EBR 115 may be
segregated into a plurality of sections, e.g., where each
section 1s associated with a respective portion of the CLBs
118. Similarly, in one example, one or more of the connec-
tions between components may comprise a shared bus, as
opposed to mdependent connections between the PLD 110
and the other respective components. Thus, these and other
variations are all contemplated within the scope of the
present disclosure. In addition, the example of FIG. 1 1s
provided for illustrative purposes only. For instance, the
present disclosure 1s not limited to server cartridges and may
broadly apply to debugging any other type of device or
system that includes a PLD. As such, system 100 may
include additional components, such as, an mput device, an
output device and the like.

FI1G. 2 1llustrates a more detailed example of an embedded
block RAM (EBR) 200, in accordance with the present
disclosure. The EBR 200 may comprise various types of
RAM, such as dynamic RAM (DRAM), static RAM

10

15

20

25

30

35

40

45

50

55

60

65

4

(SRAM), synchronous DRAM (SDRAM), double data rate
(DRR) SRAM, DDR SDRAM, quad data rate (QDR)
SRAM, reduced latency DRAM (RLDRAM), and so forth.
In one example, EBR 200 includes a clock signal input port
210, an address 1mput port 220, a data input port 230, and a
write enable mput port 240 for recerving control signals,
e.g., a system clock 2135, an address pointer 225 and an
cnable signal 245 respectively, as well as a data signal 235.
In one example, data signal 235 may comprise a multi-bat
data word, also referred to herein as a log data word 1n
connection with the logging of hardware signals in accor-
dance with the present disclosure. Thus, although data input
port 230 appears to comprise a single input line, 1t should be
understood that the data input port 230 may comprise a
multi-bit wide bus, e.g., a 8-bit wide bus, a 16-bit wide bus,
and so forth.

It should be noted that EBR 200 has been simplified for
purposes of clarity and 1llustration. Thus, for example, EBR
200 may also include a data output port, an enable port, and
so forth, and may be configured to receive and transmit
control and data signals via these additional ports. In addi-
tion, EBR 200 1s 1llustrated as being configured with a single
clock signal mput port 210, a single address iput port 220,
ctc. However, 1t should be noted that in many applications,
an EBR, such as EBR 200, may be separated 1nto two equal
or substantially equal block RAMs (BRAMSs) with separate
clocks, separate data inputs and separate additional control
signals. This 1s often referred to as a “dual-port” configu-
ration. Thus, for instance, 1f the EBR 200 has a total of 18
Kbit memory locations, the EBR 200 may be configured to
function as a “single-port” 18 Kbit BRAM, or two 9 Kbit
BRAMs (a “dual-port” configuration). In addition, although
a single EBR 200 1s illustrated, 1t should be noted that
multiple EBRs may be cascaded together to form an
extended memory. For instance, four 18 Kbit EBRs arranged
in a single row or column and cascaded together may
comprise a 72 Kbit EBR. In addition, a PLD may include
multiple columns and/or multiple rows of EBRs. As such, in
accordance with the present disclosure, any EBR can be
assigned to perform or support functions 1n connection with
the design of the PLD, can be assigned to function as a
portion of a log/bufler for storing hardware signals, or can
be left unused.

FIG. 3 illustrates an example of a log data word 300, 1n
accordance with the present disclosure. For illustrative pur-
poses, log data word 300 comprises 8 bits, with several
different hardware signals (as shown in table 310) being
assigned to different bit positions of the log data word 300.
For instance, bit 0 1s assigned to a request for Serial
Peripheral Interface (SPI) read-only memory (ROM)
resource signal (spi_req). Bit 1 1s assigned to a grant of the
SPI ROM resource (sp1_gnt) in response to the request
signal. Access to a ROM may be shared by a CPU and an
onboard controller. Thus, these components may need to
request a resource of the ROM and be granted access to the
resource via these signals. Bit 2 1s assigned to a power to
host system monitoring signal (sys_pgood). Bit 3 1s assigned
to a reset signal to host system (resetb). Bits 4-6 are assigned
to a power controller state machine state signal (power_ctrl
state machine state). Lastly, bit 7 1s assigned to a fault signal
from a CPU (gpio_{1ault).

It should be noted that the assignment of bits 1n the log
data word 300 may be arranged in a different order than the
order 1illustrated in FIG. 3. In addition, one or more of the
hardware signals illustrated in log data word 300 may be
removed and substituted with a different hardware signal
that a tester may desire to log. For instance, a memory

US 9,513,984 B2

S

controller or a power controller may comprise a state
machine with signal values that can be logged in an EBR of
a PLD. Thus, in one example, bits 4-6 may be reassigned to
state machine state signals for a memory controller. In
another example, one of bits 0-7 may be reassigned to a
signal that indicates whether a network interface card 1s busy
or i use, a signal that indicates a current operating fre-
quency of a CPU or a memory, and so on.

In one example, the assignment and reassignment of bits
to different hardware signals can be accomplished through
the programming of configurable logic blocks (CLBs) 1n a
PLD. Thus, in reference to FIG. 1, a tester may configure or
program CLBs 118 to log certain hardware signals from the
various connected components 120, 130, 140, 150, 160 and
170 1nto a log/butler 1n EBR 115. The system 100 may also
be shut down and the CLBs 118 reprogrammed to log
different hardware signals when system 100 1s restarted.
Notably, any hardware signal of a connected component
(c.g., an external hardware signal) or any hardware signal
generated by the PLD 1itself (e.g., an internal hardware
signal) may be logged 1n this manner.

FIG. 4 illustrates a flowchart of a method 400 for storing
hardware signals in an embedded block random access
memory (EBR). In one example, the method 400 may be
performed by a programmable logic device as illustrated in
FIG. 1.

At block 405 the method 400 begins. At block 410, the
method 400 samples a first instance of a log data word, 1.¢.,
the current instance of log data word. In particular, the
method 400 samples present values of at least one hardware
data signal that comprises the log data word. Notably,
hardware signals from external components that pass
through the PLD are copied 1n parallel, which does not affect
the normal passing of the hardware signals through the PLD.
In addition, as mentioned above, hardware signals that are
generated by the PLD 1tself may also be assigned to the log
data word and sampled at block 410. In one example, the
current instance of the log data word 1s sampled on every
clock cycle, or periodically every n-th clock cycle. Example
hardware signals that may be assigned to the log data word
include: a fault signal from a central processing unit, a
power system to host system signal, a reset signal to the host
system, a resource request signal, a grant of request signal,
and so forth.

At block 420, the method 400 compares the first instance
of the log data word, 1.¢., the current instance of the log data
word, to a previous instance of the log data word. For
example, a previous instance of the log data word may be
stored 1n a bufler in a CLB portion of the PLD.

At block 430, the method 400 detects a change 1n the log
data word when the first instance of the log data word 1s
different from the previous instance of the log data word. In
one example, when there 1s a change 1n any one bit of the log
data word, the method 400 may determine that the first
instance of the log data word and the previous instance of the
log data word are not equivalent.

At block 440, the method 400 stores the first instance of
the log data word 1n a storage location in an embedded block
RAM (EBR) of the PLD. For example, the current instance
of the log data word that 1s sampled at block 410 may be
written to a memory location in an EBR log that 1s refer-
enced by a current address pointer.

Following block 440, the method 400 proceeds to block
495 where the method ends.

FI1G. 3 1llustrates a flowchart of an additional method 500
for storing hardware signals 1n an embedded block random

10

15

20

25

30

35

40

45

50

55

60

65

6

access memory (EBR). In one example, the method 500 may
be performed by a programmable logic device as illustrated

in FIG. 1.

At block 505 the method 500 begins. At block 510, a
programmable logic device (PLD) 1s configured for hard-
ware signal logging. For example, a configurable logic block
(CLB) portion of the PLD may be programmed to pass
certain hardware signals from one or more other components
in communication with the PLD to a portion of an embedded
block RAM (EBR) of the PLD. In one example, the hard-
ware signals are organized into a log data word comprising
a number of bits. In one example, the method 500 also sets
one or more initial parameters for supporting the logging of
hardware signals 1n the EBR. For instance, the method 500
may 1nitialize a pointer to point to a first address in the EBR
that 1s assigned to the logging of hardware signals. The
method 500 may also configure a portion of the CLBs to
function as a buller that stores a previous instance of a log
data word. In one example, the method 500 may further
configure a portion of the CLBs to function as an additional
bufter that stores a first instance, or a current instance of the
log data word.

At block 520, the method 500 samples the first instance of
a log data word, 1.e., the current instance of log data word.
In particular, the method 500 samples present values of
hardware data signals that comprise the log data word.
Notably, hardware signals from external components that
pass through the PLD are copied 1n parallel, which does not
allect the normal passing of the hardware signals through the
PLD. In addition, as mentioned above, hardware signals that
are generated by the PLD 1tself may also be assigned to the
log data word and sampled at block 520. In one example, the
current 1stance of the log data word 1s sampled on every
clock cycle, or periodically every n-th clock cycle. Example
hardware signals that may be assigned to the log data word
include: a fault signal from a central processing unit, a
power system to host system signal, a reset signal to the host
system, a resource request signal, a grant of request signal,
and so forth. In one example, block 520 may comprise the

same or substantially similar operations to those described
above 1n connection with block 410 of the method 400.

At block 530, the method 500 determines whether the
current instance of the log data word 1s equivalent to a
previous istance of the log data word. For example, 11 there
1s a change 1n any one bit of the log data word, the method
500 may determine that the current instance of the log data
word and the previous instance of the log data word are not
equivalent. In one example, block 530 may comprise the
same or substantially similar operations to those described
above 1n connection with blocks 420 and 430 of the method
400. If the method 500 determines that the current and
previous instances of the log data word are the same, the
method 500 returns to step 520 where the method samples
a next imstance ol the log data word. Otherwise, if the
method 500 determines that the current and previous
instances of the log data word are different, then the method
500 proceeds to block 540.

At block 540, the method 500 determines 1if an address
pointer 1s at a last entry of an EBR portion that 1s assigned
to log hardware signals. For example, a PLD may include
multiple EBRs that may be utilized separately or that may be
cascaded to comprise an extended EBR. Each EBR of the
PLD may also be dividable for “dual-port” configuration.
Thus, as referred to herein, all or a portion of each of the one
or more EBRs may be assigned to log hardware signals.
Collectively, these assigned portions of the EBRs may be

US 9,513,984 B2

7

referred to as an EBR log, or EBR bufler. In other words, the
EBR log may extend across one or more of the EBR blocks.

If at block 540 1t 1s determined that the address pointer 1s
not at a last entry of the EBR log, the method 500 proceeds
to block 550. Otherwise, the method proceeds to block 555.

At block 550, the method 500 increments the address
pointer to a next address in the EBR log. In other words, the
pointer 1s advanced to point to a next memory location in the
portion of the EBR assigned to log hardware data signals. In
one example, the current instance of the log data word may
be larger than the data word size of the EBRs (or the width
of the read/write interface(s) of the EBRs). For example, the
log data word may comprise 56 bits, 64 bits, and so forth,
while the EBR data word size may be a lesser amount of 8
bits, 16 bits, etc. Thus, 1n one example, the address pointer
may be advanced by a number of bits equivalent to the size
of the log data word. However, the storage locations of the
EBRs may alternatively or additionally be data word-ad-
dressable. Thus, 1n another example, the address pointer may
be advanced by a value equivalent to the number of native
EBR data words that are required to store an entire single log
data word. In one example, the writing of the log data word
to the EBR log may take more than a single clock cycle.
However, it 1s contemplated that the present method 500 will
not necessarily result in writing to the EBR log each clock
cycle. Thus, the actual storing of the log data word to the
EBR log may extend across several clock cycles (if neces-
sary based upon the data word size of the EBRs).

At block 533, the method 500 resets the address pointer
to point to a first address 1n the EBR log. In other words, the
pointer 1s advanced to point to a first memory location in the
portion of the EBR assigned to log hardware data signals.
Following either of blocks 550 or 535, the method 500
proceeds to block 560.

At block 560, the method 500 writes the current instance
of the log data word to the EBR log. For example, the current
instance of the log data word that 1s sampled at block 520
may be written to a memory location 1n the EBR log that 1s
referenced by the address pointer. In one example, block 560
may comprise the same or substantially similar operations to
those described above 1n connection with block 440 of the
method 400.

At block 570, the method 500 sets the previous instance
of the log data word to the current instance of the log data
word. For example, a bufler in a CLB portion of the PLD
may be overwritten with the current instance of the log data
word. Thus, the current instance of the log data word
becomes the previous instance of the log data word for a
subsequent 1teration of blocks 520-570.

At block 580, the method 500 determines whether an
end-of-logging condition 1s detected. In one example, the
end-of-logging condition may indicate an anomaly occurred,
such as: a power failure signal, an over-temperature signal,
a fault signal from a central processing unit, a power system
to host system signal, a reset signal to the host system, a
resource request signal, a grant of request signal, and so
forth. Notably, some of the same hardware signals that may
be assigned to a log data word for storing 1in the EBR log
may also be considered as indicators of an anomalous
condition. In another example, the condition may comprise
a user mput signal (which may be consider a special type of
external hardware signal), such as a signal indicating a
button 1s pushed or a shutdown command 1s 1ssued to the
CPU, or any other condition that an operator may devise.

If an end-of-logging condition 1s not detected, the method
500 returns to block 520, where block 520 and the subse-

quent blocks of the method 500 are repeated with respect to

10

15

20

25

30

35

40

45

50

55

60

65

8

a next mstance of the log data word. Otherwise, if an
end-of-logging condition 1s detected, the method 500 pro-
ceeds to block 590. It should be noted that while the method
500 1s illustrated 1n flow chart form, the method 500 1s
implemented 1n hardware 1n a CLB portion of a PLD. Thus,
blocks 520 through 580 are actually accomplished concur-
rently in one clock cycle (or however many cycles are used
to sample the log word).

In block 590, the method 500 disables hardware signal
logging. In other words, the method 500 prevents the storing
of any additional instances of the log data word, thereby
preventing the potential overwriting of old instances of the
log data word in the EBR log with new instances of the log
data word. In one example, block 590 comprises toggling an
enable signal input to the EBRs from “‘enable” to “disable”
(e.g., from a “1” to a “0,” or vice-versa depending upon
when the PLD and/or the EBRs comprise active high or
active low devices). In another example, the disabling of
hardware signal logging 1s achieved via additional logic
within the CLBs. Following block 590, the method 500
proceeds to block 595 where the method ends.

Notably, the contents of the EBR log may be read out
following the operations of method 400 or method 500.
Advantageously, the EBR log will include the last instance
of the log data word prior to or contemporaneous with the
end-of-logging condition as well as a number of previous
instances of the log data word, up to a capacity of the EBR
log or up to a number of 1nstances of the log data word stored
in the EBR log prior to the detection of the end-of-logging
condition. It should be noted that the methods 400 and 500
are 1llustrative of just two examples of the present disclo-
sure. As such, 1t should be appreciated that the present
disclosure may be modified or expanded to include various
other embodiments. For instance, in another example the
EBR log may also include a number of instances of the log
data word after the detection of the end-of-logging condi-
tion. For example, the PLD may be programmed to continue
to store a fixed number of mnstances of the log data word after
the detection of the end-of-logging condition. This may be
usetul to a tester who 1s interested in how these hardware
signals behave 1n the times leading up to, during and after
the end-of-logging condition.

As a result, examples of the present disclosure improve
the functioning of a server, a computer or any hardware
device employing a PLD. For example, some prior hardware
debugging solutions ivolve the use of a server or computer
to generate software logs, which are generally too {far
removed from the hardware signals and too slow to provide
information that 1s useful for hardware debugging. Other
prior hardware debugging solutions involve a computer or
server examining hardware registers, which only provides
static information about one point 1n time, and 1s of little use
when 1t 1s not known 1n advance when a bug will occur. Still
other prior hardware debugging solutions utilize a logic
analyzer, e.g., a computer, which 1s difhicult to setup and
does not work well 1n the situation of a chassis full of server
cartridges.

Thus, existing computers and servers are improved by
examples ol the present disclosure for storing hardware
signals 1n an embedded block random access memory (EBR)
by a programmable logic device (PLD). In other words, the
technological art of hardware debugging 1s improved by
providing a computer that 1s modified with the ability to
automatically store hardware signals in an EBR by a PLD,
as disclosed by the present disclosure.

It should be noted that although not explicitly specified,
one or more blocks, functions, or operations of the methods

US 9,513,984 B2

9

400 and 500 described above may include a storing, dis-
playing and/or outputting step as required for a particular
application. In other words, any data, records, fields, and/or
intermediate results discussed 1n the methods can be stored,
displayed, and/or outputted to another device as required for
a particular application. Furthermore, steps, functions, or
operations 1 FIGS. 4 and 5 that recite a determining
operation, or mvolve a decision, do not necessarily require
that both branches of the determining operation be practiced.
In other words, one of the branches of the determining
operation can be deemed as an optional step.

FIG. 6 depicts an example high-level block diagram of a
computer 600 that comprises a hardware processor element
602, c.g., a central processing unit (CPU), a microprocessor,
or a multi-core processor, a memory 604, e¢.g., random
access memory (RAM) and/or read only memory (ROM), a
module 605 for storing hardware signals in an embedded
block random access memory (EBR) by a programmable
logic device (PLD), and various input/output devices 606,
¢.g., storage devices, mcluding but not limited to, a tape
drive, a floppy drive, a hard disk drive or a compact disk
drive, a recerver, a transmitter, a speaker, a display, a speech
synthesizer, an output port, an mput port and a user input
device, such as a keyboard, a keypad, a mouse, a micro-
phone, and the like. Although only one processor element
602 1s shown, 1t should be noted that the computer 600 may
employ a plurality of processor elements. Furthermore,
although only one computer 600 1s shown 1n the figure, the
functions of a single computer 600 may be implemented 1n
a distributed or parallel manner for a particular illustrative
example. In such a case, the general-purpose computer of
this figure 1s intended to represent each of those multiple
general-purpose computers. Furthermore, one or more hard-
ware processors can be utilized in supporting a virtualized or
shared computing environment. The virtualized computing
environment may support one or more virtual machines
representing computers, servers, or other computing
devices. In such virtualized wvirtual machines, hardware
components such as hardware processors and computer-
readable storage devices may be virtualized or logically
represented.

It should be noted that the present disclosure can be
implemented by machine-readable instructions and/or 1n a
combination of machine readable instructions and hardware,
¢.g., using a programmable logic device (PLD), including a
programmable logic array (PLA), a field-programmable gate
array (FPGA), a state machine deployed on a hardware
device, and the like. For example, machine/computer-read-
able 1nstructions pertaining to the method(s) discussed
above can be used to configure a PLD to perform the steps,
functions and/or operations of the above disclosed method
(s). In one embodiment, istructions and data for configuring
a PLD to perform the steps, functions and/or operations of
the above disclosed method(s) can be stored by module 505
for storing hardware signals in an EBR by a PLD, e.g.,
computer-readable instructions can be loaded into memory
604 and executed by hardware processor element 602 to
cause the hardware processor element 602 to program a PLD
to perform the steps, functions or operations as discussed
above 1n connection with the exemplary method 600. For
example, 1n order to program a PLD, a Verilog or Hardware
Description Language (HDL) code may be created, com-
piled (on a computer) and used to configure the PLD.

The PLD executing the computer-readable instructions
relating to the above described method(s) can be percerved
as a programmed processor or a specialized processor. As
such, the present module 603 for storing hardware signals 1n

10

15

20

25

30

35

40

45

50

55

60

10

an EBR by a PLD, including associated data structures, of
the present disclosure can be stored on a tangible or physical
(broadly non-transitory) computer-readable storage device
or medium, e.g., volatile memory, non-volatile memory,
ROM memory, RAM memory, magnetic or optical drive,
device or diskette and the like. More specifically, the com-
puter-readable storage device may comprise any physical
devices that provide the ability to store information such as
data and/or instructions to be accessed by a processor or a
computing device such as a computer or an application
server and to be programmed into a PLD.

It will be appreciated that variants of the above-disclosed
and other features and functions, or alternatives thereof, may
be combined into many other different systems or applica-
tions. Various presently unforeseen or unanticipated alter-
natives, modifications, variations, or improvements therein
may be subsequently made by those skilled in the art which
are also intended to be encompassed by the following
claims.

What 1s claimed 1s:

1. A method, comprising:

sampling, by a programmable logic device, a first instance

of a log data word comprising at least one hardware
signal;

comparing, by the programmable logic device, the first

instance of the log data word to a previous instance of
the log data word;

detecting, by the programmable logic device, a change 1n

the log data word when the first instance of the log data
word 1s diflerent from the previous instance of the log
data word; and

storing, by the programmable logic device, the first

instance of the log data word 1n a storage location in an
embedded block random access memory of the pro-
grammable logic device when the change in the log
data word 1s detected.

2. The method of claim 1, where the storage location 1n
the embedded block random access memory 1s a current
storage location of an assigned portion of the embedded
block random access memory that 1s assigned to store
instances of the log data word, wherein the current storage
location 1s indicated by a pointer.

3. The method of claim 2, further comprising;:

advancing the pointer to a next storage location 1n the

assigned portion of the embedded block random access
memory, when the current storage location 1s not a last
storage location 1n the assigned portion of the embed-
ded block random access memory.

4. The method of claim 2, further comprising:

setting the pointer to a first storage location in the

assigned portion of the embedded block random access
memory, when the current storage location 1s a last
storage location 1n the assigned portion of the embed-
ded block random access memory.

5. The method of claim 1, further comprising:

detecting an end-oi-logging condition; and

activating a signal for disabling a storage of any new

instances of the log data word 1n the embedded block
random access memory.

6. The method of claim 5, wherein the end-of-logging
condition 1s detected upon recerving at least one of:

an internal hardware signal; or

an external hardware signal.

7. The method of claim 1, wherein the at least one

65 hardware signal comprises at least one of:

an internal hardware signal; or
an external hardware signal.

US 9,513,984 B2

11

8. The method of claim 1, wherein at least a portion of the
programmable logic device comprises glue logic for trans-
mitting and receiving signals from at least one component
device on a same board as the programmable logic device.

9. The method of claim 8, wherein the at least one
hardware signal 1s received by the programmable logic
device from the at least one component device.

10. A programmable logic device, comprising:

an embedded block random access memory; and

at least one configurable logic block to:

sample a first instance of a log data word comprising at
least one hardware signal;

compare the first instance of the log data word to a
previous instance of the log data word;

detect a change 1n the log data word when the first
instance of the log data word 1s different from the
previous instance the log data word; and

store the first instance of the log data word 1n a storage
location 1 the embedded block random access
memory when the change in the log data word 1s
detected.

11. The programmable logic device of claim 10, where the
storage location in the embedded block random access
memory 1s a current storage location of an assigned portion
of the embedded block random access memory that is
assigned to store instances of the log data word, wherein the
current storage location 1s indicated by a pointer.

12. The programmable logic device of claim 11, wherein
the at least one configurable logic block 1s further to:

advance the pointer to a next storage location in the

assigned portion of the embedded block random access
memory, when the current storage location 1s not a last
storage location 1n the assigned portion of the embed-
ded block random access memory.

13. The programmable logic device of claim 11, wherein
the at least one configurable logic block 1s further to:

set the pointer to a first storage location 1n the assigned

portion of the embedded block random access memory,
when the current storage location 1s a last storage
location 1n the assigned portion of the embedded block
random access memory.

14. The programmable logic device of claim 10, wherein
the at least one configurable logic block 1s further to:

detect an end-of-logging condition; and

5

10

15

20

25

30

35

40

12

activate a signal for disabling a storage of any new
instances of the log data word 1n the embedded block
random access memory.

15. The method of claim 14, wherein the end-oi-logging
condition 1s detected upon recerving at least one of:

an internal hardware signal; or
an external hardware signal.

16. The programmable logic device of claim 10, wherein
the at least one hardware signal comprises at least one of:

an internal hardware signal; or
an external hardware signal.

17. The programmable logic device of claim 10, wherein
at least a portion of the programmable logic device com-
prises glue logic to transmit and recerve signals from at least
one component device on a same board as the programmable
logic device.

18. The programmable logic device of claim 16, wherein
the at least one hardware signal 1s received by the program-
mable logic device from the at least one component device.

19. A non-transitory computer-readable storage medium
storing 1nstructions which when executed by a processor,
cause the processor to program a programmable logic device
to:

sample a first istance of a log data word comprising at
least one hardware signal;

compare the first instance of the log data word to a
previous instance of the log data word;

detect a change in the log data word when the first
instance of the log data word i1s different from the
previous instance the log data word; and

store the first instance of the log data word 1n a storage
location 1n an embedded block random access memory
when the change 1n the log data word 1s detected.

20. The non-transitory computer-readable storage
medium of claim 19, wherein the storage location in the
embedded block random access memory 1s a current storage
location of an assigned portion of the embedded block
random access memory that 1s assigned to store mstances of
the log data word, wherein the current storage location 1s
indicated by a pointer.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

