12 United States Patent

Goudreau et al.

US009501290B1

US 9,501,290 B1
*Nov. 22, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(51)

(52)

(58)

TECHNIQUES FOR GENERATING UNIQUE
IDENTIFIERS

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Robert F. Goudreau, Cary, NC (US);
James M. Holt, Raleigh, NC (US);
Karl M. Owen, Chapel Hill, NC (US);
Alan L. Taylor, Cary, NC (US);
Chung-Huy Chen, Cary, NC (US)

Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 14/847,583

Filed: Sep. 8, 2015

Related U.S. Application Data

Continuation of application No. 13/923,442, filed on
Jun. 21, 2013, now Pat. No. 9,158,735.

Int. CI.

GO6l 9/44 (2006.01)

U.S. CL

CPC GO6F 9/4411 (2013.01); GOGF 9/4405

(2013.01)

Field of Classification Search
CPC .. GO6F 9/44502; GO6F 9/44508; GO6F 1/24;

GO6F 9/44526; GO6F 15/177;, GO6F 9/44514;
GO6F 9/44523; GO6F 11/1417; GO6F
9/4435035

See application file for complete search history.

(36) References Cited

U.S. PATENT DOCUMENTS

6,594,756 B1* 7/2003 Moran et al. GO6F 15/177
713/1

7,370,190 B2* 5/2008 Calhoon et al. GOO6F 21/16
463/29

8,127,122 B2* 2/2012 Barry etal. GO6F 9/4406
713/1

8,874,915 B1* 10/2014 Rodoper et al. HO4L 63/061
380/278

2010/0325429 Al* 12/2010 Saha et al. HO4L 63/166
713/158

* cited by examiner

Primary Examiner — Zahid Choudhury

(74) Attorney, Agent, or Firm — Muirhead and Saturnells,
LLC

(57) ABSTRACT

Techniques are described for generating a unique i1dentifier
by a first processor using a plurality of values including a
shared value, the first processor’s identifier, a container
identifier and a time value. The shared value 1s a common
value used by a plurality of processors including the first
processor. The container 1dentifier identifies a memory loca-
tion. The time value denotes an amount of time that has
clapsed since the first processor was last booted.

22 Claims, 7 Drawing Sheets

Token driver reccives request to gencrate a token for a corresponding entity,

l

Obtain mputs including the shared value, SP 1D,
container 1D, and SP time-since-boot clock
for the SP gencrating the unique 1D,

h 4

Combinc the inputs to gencrate the unique 1D.

l

Generate a token including the unique ID.

v

Storc information mapping the gencrated token to
the corresponding cntity represcnted by the token,

500
\ 502
504~
506~
508N
S5T0 ~
ST

y

Generating SP scnds message to 1ts peer SP regarding the newly gencrated token,

v

312

Return token.

US 9,501,290 B1

Sheet 1 of 7

Nov. 22, 2016

U.S. Patent

eld
10SS2201]
JITAIG

U-1SOH

I OId

Z-150H

Nqp 1

ugli

491

9]

d0B]IdUI
JITAIP YSe[}

va |

¢z (S)aoerIaug
II1A(]

[¢ VH

L1

el

Arowdwr [eqo[H)

4s¢

1_YO

L3¢

O Vi

9¢

¢ DIA

US 9,501,290 B1

CE— 801 Yool
100Q-0UIS-OWI} JS

Cm— T FENTS

Sheet 2 of 7

011 QI onbrupn AH
CE— POT QI dS

Nov. 22, 2016

{1 o1 onpea pareys

U.S. Patent

¢ DId

US 9,501,290 B1

Uugce

20CC

Sheet 3 of 7

q0Z¢

Nov. 22, 2016

B(CC 011
(11 onbrun

U.S. Patent

N = Xopul

¢ = Xopul
__ (€T Sa1pu]

[= xopul

0 = Xopul

017 SINIONIS UdNO0)} JO AvITy

A/ 002

de DId

US 9,501,290 B1

™~

Sol

-—

-

2

=

s 9,

o 0CT (U9301) 909
& JOALID USYO]J,

R

&\

. (UdY01) 9092
~ ST WSAG

(Aud) Q9T

U.S. Patent

TSt
a1

/ 0ST

US 9,501,290 B1

Sheet 5 of 7

Nov. 22, 2016

U.S. Patent

NOTE N Ampud
PJUSAIdoYy

201¢ D Anud
PoJudsAIdoy

qOI€ g Amud
PAJudsAIdoy

BOIE V AIIUd
PoJudsAIdoy

7 DId

30¢

INJAvLI® UayO[

90t
|Z]Aeaae udyo[

14033
[1]Ae1I® UOYO],

c0t
|0]Avaae uoyoO],

0Ct

A/ 00€

U.S. Patent Nov. 22, 2016 Sheet 6 of 7 US 9,501,290 B1

Data storage
system 420

S 1
R1
S2
R2
R3
FIG. 5

Host 410

400 \

9 DId

U001 WINIOY

N TIS

TN 0] PAIBIAUIE A|MAU A} SUTPILSAT JS 132d S71 0] 98RSSAW SPUAS J§ SUNBIAUIN

R

U0} Y} AQ pajudsaidar Anud Surpuodsariod ay)
0} uoy0} pajeraudd oy Sutddews vonewiorur 2101 [\ OIS

1

US 9,501,290 B1

I~
> ‘(q[dnbrun ay) Surpnour udyo] B J)eIdUIN) Q06
I~
~—
W
Q
e
79
‘(I anbrun a1 2yer0udd 03 syndur 2y} JUIqUIO))
o N 908
o
—
3
2‘!
e
>
M (11 @nbrun 2y) unridudd J< 2y) 107

JJ0]D J00Q-20UIsS-aun) JS pue ‘(] Jourejuod
‘a1 dS ‘onyeA pareys a3 surpnpour syndur ureiqQ N 06

"AMud SUTpuodsaiIod e J0J UIN0) B JJBIAUIS 0] JSANDAT SOATIIAT JOALIP UINO],

U.S. Patent

c0s

A/ 00S

US 9,501,290 Bl

1

TECHNIQUES FOR GENERATING UNIQUE
IDENTIFIERS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/923,442 filed on Jun. 21, 2013 (pending).

BACKGROUND

1. Technical Field

This application generally relates to generation of unique
identifiers.

2. Description of Related Art

Computer systems may include different resources used
by one or more host processors. Resources and host proces-
sOrs 1n a computer system may be interconnected by one or
more communication connections. These resources may
include, for example, data storage devices such as those
included 1n the data storage systems manufactured by EMC
Corporation. These data storage systems may be coupled to
one or more host processors and provide storage services to
cach host processor. Multiple data storage systems from one
or more different vendors may be connected and may
provide common data storage for one or more host proces-
sOrs 11 a computer system.

A host processor may perform a variety of data processing
tasks and operations using the data storage system. For
example, a host processor may perform basic system [/O
operations 1n connection with data requests, such as data
read and write operations.

Host processor systems may store and retrieve data using
a storage system containing a plurality of host interface
units, disk drives, and disk interface units. Such storage
systems are provided, for example, by EMC Corporation of
Hopkinton, Mass. The host systems access the storage
system through a plurality of channels provided therewith.
Host systems provide data and access control imnformation
through the channels to the storage system and the storage
system provides data to the host systems also through the
channels. The host systems do not address the disk drives of
the storage system directly, but rather, access what appears
to the host systems as a plurality of logical disk unaits, logical
devices, or logical volumes (LVs). The logical disk units
may or may not correspond to the actual disk drives.
Allowing multiple host systems to access the storage system
allows the host systems to share data stored therein.

In connection with data storage system, and more gener-
ally any suitable system such as a computer system, it may
be desirable to utilize techniques for generating unique
identifiers for any one of a variety of different purposes.

SUMMARY OF THE INVENTION

In accordance with one aspect of the mnvention 1s a method
for generating a unique identifier comprising: receiving a
shared value, said shared value being a common value used
by a plurality of processors; recerving a processor 1dentifier
of a first of the plurality of processors; receiving a container
identifier 1dentifying a memory location; receiving a time
value denoting an amount of time that has elapsed since the
first processor was last booted; and performing first pro-
cessing by the first processor to determine the unique
identifier using a plurality of values including the shared
value, the processor identifier, the container identifier and
the time value. The shared value may be a randomly selected

10

15

20

25

30

35

40

45

50

55

60

65

2

integer. The shared value may be incremented each time any
one of the plurality of processors 1s booted thereby produc-
ing a revised shared value each time any one of the plurality
ol processors 1s booted. The shared value may be stored 1n
a memory of the first processor and may be incremented by
the first processor to produce the revised shared value
responsive to booting a second of the plurality of processors.
The first processor may commumnicate the revised shared
value to the second processor. The container 1dentifier may
identily a memory location of a structure and the method
includes storing the unique identifier as a field in the
structure. The time value may represent an absolute amount
of time. The first processing may include concatenating the
plurality of values. The processor 1dentifier may be a world
wide name umquely 1dentifying the first processor. A token
driver may receive a request to generate a token where the
token 1s a structure including the unique identifier as a field
in the structure. The token driver may be code that is
executed by the first processor of a data storage system. The
container 1identifier may be a first index value 1dentifying an
clement 1n an array. The array may be an array of tokens and
cach element of the array may be a token structure repre-
senting a different token. The first index value may 1dentify
a first token structure including the unique i1dentifier.

In accordance with another aspect of the invention 1s a
system comprising: a host and a data storage system com-
prising a plurality of main processors, and wherein the host
includes a first memory comprising code stored therein for:
sending a first request to the data storage system to generate
a first token representing a first entity; and recerving the first
token from the data storage system; and wherein the data
storage system 1ncludes a second memory comprising code
stored therein for: receiving the first request from the host;
and performing first processing by a first of the plurality of
processors to generate the first token, said first processing,
including: obtaining a shared value, said shared value being
a common value used by the plurality of main processors;
obtaining a processor 1dentifier of the first processor; obtain-
ing a contamner identifier identifying a memory location;
obtaining a time value denoting an amount of time that has
clapsed since the first processor was last booted; generating
a unique 1dentifier using a plurality of values including the
shared value, the processor 1dentifier, the container 1dentifier
and the time value; and generating the first token using the
umique identifier. The unique 1dentifier may be represented
as a number of bits included as a portion of the first token.
The shared value may be randomly selected integer. The
shared value may be incremented each time any one of the
plurality of processors 1s booted thereby producing a revised
shared value each time any one of the plurality of processors
1s booted. The shared value may be stored in a memory used
by the first processor and may be incremented by the first
processor to produce the revised shared value responsive to
booting a second of the plurality of processors. The first
processor may communicate the revised shared value to the
second processor.

In accordance with another aspect of the invention 1s a
computer readable medium comprising code stored thereon
generating a unique 1dentifier the computer readable
medium comprising code for: receiving a shared value, said
shared value being a common value used by a plurality of
processors; receiving a processor identifier of a first of the
plurality of processors; receiving a container identifier iden-
tifying a memory location; receiving a time value denoting
an amount of time that has elapsed since the first processor
was last booted; and performing first processing by the first
processor to determine the unique 1dentifier using a plurality

US 9,501,290 Bl

3

of values including the shared value, the processor 1dentifier,
the container 1dentifier and the time value. The shared value
may be incremented each time any one of the plurality of
processors 1s booted thereby producing a revised shared
value each time any one of the plurality of processors 1s
booted. The shared value may be stored 1n a memory used
by the first processor and may be incremented by the first
processor to produce the revised shared value responsive to
booting a second of the plurality of processors. The first
processor may communicate the revised shared value to the
second processor.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken 1n conjunction
with the accompanying drawings in which:

FIG. 1 1s an example of an embodiment of a system that
may utilize the techniques described herein;

FIG. 2 1s an representation 1llustrating the different inputs
that may be used in generating unique identifiers 1 an
embodiment in accordance with techniques herein;

FIG. 3 1s an example illustrating an array of tokens
whereby each token incorporates a unique i1dentifier gener-
ated 1n accordance with techniques herein;

FIGS. 3B and 5 are examples 1llustrating information and
messages that may be exchanged between a client and a
system 1n an embodiment utilizing techniques herein;

FIG. 4 1s an example illustrating mapping of tokens to
corresponding entities represented the tokens 1n an embodi-
ment utilizing techniques herein; and

FIG. 6 1s a flowchart of processing steps that may be
performed 1n an embodiment in accordance with techniques
herein.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Referring to FIG. 1, shown 1s an example of an embodi-
ment of a system that may be used in connection with
performing the techniques described herein. The system 10
includes a data storage system 12 connected to host systems
14a-14n through communication medium 18. In thas
embodiment of the system 10, and the n hosts 14a-14» may
access the data storage system 12, for example, in perform-
ing iput/output (I/0) operations or data requests. The
communication medium 18 may be any one or more of a
variety of networks or other type of communication con-
nections as known to those skilled in the art. The commu-
nication medium 18 may be a network connection, bus,
and/or other type of data link, such as a hardwire or other
connections known 1n the art. For example, the communi-
cation medium 18 may be the Internet, an intranet, network
(including a Storage Area Network (SAN)) or other wireless
or other hardwired connection(s) by which the host systems
14a-14» may access and communicate with the data storage
system 12, and may also communicate with other compo-
nents included in the system 10.

Each of the host systems 14a-14» and the data storage
system 12 included 1n the system 10 may be connected to the
communication medium 18 by any one of a vanety of
connections as may be provided and supported in accor-
dance with the type of communication medium 18. The
processors included in the host computer systems 14a-14#
may be any one of a variety of proprietary or commercially
available single or multi-processor system, such as an Intel-

10

15

20

25

30

35

40

45

50

55

60

65

4

based processor, or other type of commercially available
processor able to support traflic 1n accordance with each
particular embodiment and application.

It should be noted that the particular examples of the
hardware and software that may be included in the data
storage system 12 are described herein in more detail, and
may vary with each particular embodiment. Each of the host
computers 14a-14n» and data storage system may all be
located at the same physical site, or, alternatively, may also
be located in different physical locations. Examples of the
communication medium that may be used to provide the
different types of connections between the host computer
systems and the data storage system of the system 10 may
use a variety of diflerent communication protocols such as
SCSI, Fibre Channel, 1SCSI, and the like. Some or all of the
connections by which the hosts and data storage system may
be connected to the communication medium may pass
through other communication devices, such switching
equipment that may exist such as a phone line, a repeater, a
multiplexer or even a satellite.

Each of the host computer systems may perform different
types of data operations in accordance with diflerent types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data
storage system 12 to perform a data operation. For example,
an application executing on one of the host computers
14a-14n may perform a read or write operation resulting 1n
one or more data requests to the data storage system 12.

It should be noted that although element 12 1s 1llustrated
as a single data storage system, such as a single data storage
array, element 12 may also represent, for example, multiple
data storage arrays alone, or in combination with, other data
storage devices, systems, appliances, and/or components
having suitable connectivity, such as m a SAN, in an
embodiment using the techniques herein. It should also be
noted that an embodiment may include data storage arrays or
other components from one or more vendors. In subsequent
examples 1llustrated the techmiques herein, reference may be
made to a single data storage array by a vendor, such as by
EMC Corporation of Hopkinton, Mass. However, as will be
appreciated by those skilled 1n the art, the techniques herein
are applicable for use with other data storage arrays by other
vendors and with other components than as described herein
for purposes of example.

The data storage system 12 may be a data storage array
including a plurality of data storage devices 16a-16%. The
data storage devices 16a-16» may include one or more types
of data storage devices such as, for example, one or more
disk drives and/or one or more solid state drives (SSDs). An
SSD 1s a data storage device that uses solid-state memory to
store persistent data. An SSD using SRAM or DRAM, rather
than flash memory, may also be referred to as a RAM dnive.
SSD may refer to solid state electronics devices as distin-
guished from electromechanical devices, such as hard
drives, having moving parts. Flash devices or flash memory-
based SSDs are one type of SSD that contains no moving
parts. As described 1n more detail in following paragraphs,
the techniques herein may be used 1n an embodiment in
which one or more of the devices 16a-16% are flash drives
or devices. More generally, the techniques herein may also
be used with any type of SSD although following paragraphs
may make reference to a particular type such as a flash
device or tlash memory device.

The data storage array may also include different types of
adapters or directors, such as an HA 21 (host adapter), RA
40 (remote adapter), and/or device mtertace 23. Each of the
adapters may be implemented using hardware including a

US 9,501,290 Bl

S

processor with local memory with code stored thereon for
execution 1 connection with performing different opera-
tions. The HAs may be used to manage communications and
data operations between one or more host systems and the
global memory (GM). In an embodiment, the HA may be a 5
Fibre Channel Adapter (FA) or other adapter which facili-
tates host communication. The HA 21 may be characterized
as a Iront end component of the data storage system which
receives a request from the host. The data storage array may
include one or more RAs that may be used, for example, to 10
facilitate communications between data storage arrays. The
data storage array may also include one or more device
interfaces 23 for facilitating data transfers to/from the data
storage devices 16a-16#%. The data storage interfaces 23 may
include device interface modules, for example, one or more 15
disk adapters (DAs) (e.g., disk controllers), adapters used to
interface with the flash drives, and the like. The DAs may
also be characterized as back end components of the data
storage system which interface with the physical data stor-
age devices. 20

One or more internal logical communication paths may
exist between the device intertaces 23, the RAs 40, the HAs
21, and the memory 26. An embodiment, for example, may
use one or more internal busses and/or communication
modules. For example, the global memory portion 236 may 25
be used to facilitate data transiers and other communications
between the device interfaces, HAs and/or RAs 1n a data
storage array. In one embodiment, the device interfaces 23
may perform data operations using a cache that may be
included in the global memory 2556, for example, when 30
communicating with other device interfaces and other com-
ponents of the data storage array. The other portion 25a 1s
that portion ol memory that may be used in connection with
other designations that may vary in accordance with each
embodiment. 35

The data storage system may be a single unitary data
storage system, such as single data storage array, including
two main storage processors or computer processing units
(CPUs). Techniques herein may be more generally use 1n
connection with any one or more data storage system each 40
including a different number of main processors than as
illustrated herein. The data storage system 12 may be a data
storage array, such as a VNX™ data storage array by EMC
Corporation of Hopkinton, Mass., including a plurality of
data storage devices 13a-13» and two main storage proces- 45
sors or CPUs 17a, 17b. The processors 17a, 17b may be
CPUs 1ncluded in the data storage system for processing
requests and commands. In connection with performing
techniques herein, an embodiment of the data storage system
may include multiple service processors including more than 50
two main CPUs as described. The VNX™ data storage
system mentioned above may include two main processors
17a, 17b for performing processing 1n connection with
servicing requests such as, for example, received from hosts
or other clients of the data storage system. Additionally, the 55
two storage processors or CPUs 17a, 176 may be used 1n
connection with failover processing such as when commu-
nicating with the management system 16.

The particular data storage system as described 1n this
embodiment, or a particular device thereot, such as a disk or 60
particular aspects of a flash device, should not be construed
as a limitation. Other types of commercially available data
storage systems, as well as processors and hardware con-
trolling access to these particular devices, may also be
included in an embodiment. 65

Host systems provide data and access control information
through channels to the storage systems, and the storage

6

systems may also provide data to the host systems also
through the channels. The host systems do not address the
drives or devices 16a-16n of the storage systems directly,
but rather access to data may be provided to one or more host
systems from what the host systems view as a plurality of
logical devices, volumes, or logical units (LUNSs). The

LUNs may or may not correspond to the actual physical
devices or drives 16a-16%. For example, one or more LUNSs
may reside on a single physical drive or multiple drives.
Data 1n a single data storage system, such as a single data
storage array, may be accessed by multiple hosts allowing
the hosts to share the data residing therein. The HAs may be
used in connection with communications between a data
storage array and a host system. The RAs may be used 1n
facilitating communications between two data storage
arrays. The DAs may be one type of device interface used 1n
connection with facilitating data transiers to/from the asso-

ciated disk drive(s) and LUN(s) residing thereon. A flash

device interface may be another type of device interface
used 1n connection with facilitating data transfers to/from
the associated flash devices and LUN(s) residing thereon. It
should be noted that an embodiment may use the same or a
different device interface for one or more different types of
devices than as described herein.

The device interface, such as a DA, performs 1/O opera-
tions on a drive 16a-16x. In the following description, data
residing on an LUN may be accessed by the device interface
following a data request 1n connection with I/O operations
that other directors originate. Data may be accessed by LUN
in which a single device iterface manages data requests 1n
connection with the different one or more LUNs that may
reside on a drive 16a-16mn.

Also shown 1n FIG. 1 1s a service processor 22a that may
be used to manage and monitor the system 12. In one
embodiment, the service processor 22a may be used 1n
collecting performance data, for example, regarding the I/O
performance in connection with data storage system 12. This
performance data may relate to, for example, performance
measurements in connection with a data request as may be
made from the different host computer systems 14a 14n.
This performance data may be gathered and stored in a
storage area.

It should be noted that a service processor 22a may exist
external to the data storage system 12 and may commumnicate
with the data storage system 12 using any one of a variety
of communication connections. In one embodiment, the
service processor 22a may communicate with the data
storage system 12 through three diflerent connections, a
serial port, a parallel port and using a network interface card,
for example, with an FEthernet connection. Using the Ether-
net connection, for example, a service processor may com-
municate directly with DAs and HAs within the data storage
system 12.

With reference to FIG. 1, components of the data storage
system may communicate using GM 2355b. For example, 1n
connection with a write operation, an embodiment may {first
store the data in cache included 1n a portion of GM 255,
mark the cache slot including the write operation data as
write pending (WP), and then later destage the WP data from
cache to one of the devices 16a-16%. In connection with
returning data to a host from one of the devices as part of a
read operation, the data may be copied from the device by
the appropriate device interface, such as a DA servicing the
device. The device interface may copy the data read into a
cache slot included 1n GM which 1is, 1n turn, communicated
to the appropriate HA in communication with the host.

US 9,501,290 Bl

7

What will now be described in the context of a data
storage system are techniques that may be used to generate
unique 1dentifiers (IDs) that are umique within the storage
system. Such techniques may be performed without reliance

on persistent data storage or a system clock. For purposes of 5

illustration, following paragraphs utilize the techniques for
generating unique IDs 1n a data storage system having two
main CPUs or storage processors (SPs). As such, generation
of a unique ID may be performed by either of the two SPs
and techniques herein provide for ensuring uniqueness
among all such IDs when generated by either SP within the
data storage system. In other words, two different IDs
generated using techniques herein are guaranteed to be
unique 1independent of which SP generated the IDs.

As a first step, each SP may have a copy of a same
arbitrary or random value. For purposes of reference herein,
the commonly shared arbitrary or random wvalue used in
generating unique 1Ds may also be referred to as a shared
value. The shared value may be stored on each SP such as
cached 1n memory of each SP. Such memory may be, for
example, local to each SP. In one embodiment, the shared
value may be 64 bit integer although other suitable values
having a different size may be utilized. For example, an
embodiment may also use an integer that 1s 16-bits, 32 bits,
or another number of bits. The shared value may be, for
example, a randomly generated 64 bit integer.

The shared value may be incremented each time any one
of the SPs reboots. For example, assume there are two SPs,
SP A and SP B. At a first point 1n time, each of SP A and SP
B has a copy of the same first shared value. At a second
subsequent point 1n time, SP A may crash or go oflline such
that SP B 1s the surviving SP at the second point 1n time. At
a third point 1n time, SP A may reboot. As part of SP A’s
rebooting process, SP A may commumnicate with SP B
thereby signaling to SP B that SP A 1s rebooting and/or has
rebooted. In response to SP B receiving such notification
regarding the rebooting of SP A, SP B may increment, or
more generally, modily the first shared value to generate a
second shared value that 1s different from the first shared
value. SP B may then communicate the second shared value
to SP A to use as the new current shared value commonly
used by both SP A and SP B. The shared value may be
incremented by the surviving SP, such as SP B, each time 1ts
peer SP, such as SP A, boots. In this manner, the shared value
may have a diflerent value each time any one of the SPs
reboots whereby a new revised shared value may be deter-
mined using the current shared value maintained in the
memory of the surviving or non-booting SP. Thus, as long as
one of the SPs 1s up and running, the shared value may be
maintained and valid. In one embodiment 1n which the
shared value 1s a 64 bit integer, the shared value may be
incremented by one (1) each time one of the SPs boots.

The shared value may be a first input or element used in
generating a unique ID 1in accordance with techniques
herein. The unique ID may be generated or created by one
of the SPs whereby the shared value may be combined with
other inputs or elements to generate the unique ID as the
resulting output.

Referring to FIG. 2, shown 1s an example 100 of mputs
that may be combined and used in generating the unique
identifier 1n an embodiment 1n accordance with techniques
herein. The shared value 102 may be combined with other
inputs mcluding an identifier of the SP (SP 1D) 104 creating
or generating the unique ID, an idenftifier of an allocated
resource’s container (container ID) 106, and the current
value of the creating SP’s time-since-boot clock 108. The
iputs 102, 104, 106 and 108 may be used to generate the

10

15

20

25

30

35

40

45

50

55

60

65

8

unmque 1D 110. In one embodiment, the inputs 102, 104, 106
and 108 may be combined, such as by concatenating the
iputs, to generate the unique ID 110. For example, the
inputs 102, 104, 106 and 108 may be sequentially appended
to each other 1n the foregoing order to generate the unique
ID 110. It should be noted that an embodiment may utilize
or otherwise combine the foregoing mputs 102, 104, 106 and
108 1n other suitable ways to generate the unique ID 110. For
example, the inputs 102, 104, 106 and 108 may be concat-
enated 1n any order.

The shared value 102 may be as described above. The SP
ID 104 may be a globally unique 1dentifier or name, such as
a world wide name (WWN) or world wide identifier
(WWID) uniquely i1dentitying the SP i1n the data storage
system. The container ID 106 may 1dentify a location or
instance ol a data structure, or more generally a container,
which will incorporate the unique 1D 110 being generated.
Generally, the unique 1D 110 may be utilized 1n any suitable
manner and may denote a memory location, address or
identifier associated with this larger structure or container
that will include or otherwise utilize the unique 1D 110. In
one embodiment, the unique ID 110 may be a field or
clement 1included 1n a larger data structure and the container
ID 106 may denote the location or address of this larger data
structure. For example, the contamner ID 106 may be an
address of the larger structure in memory. In one embodi-
ment, the larger structure incorporating or including the
umque ID 110 may be an element 1n an array 1n which each
clement of the array 1s a diflerent one of the larger structures.
In this case, the container ID 106 may be an integer denoting
the array index or array element of the particular structure
including the unique ID 110. Additional details regarding a
particular container that may include the unique ID 110 are
described elsewhere herein.

The SP time-since-boot clock 108 may be an absolute
amount of time denoting the amount of time that has elapsed
since the creating SP was last booted. Each SP may maintain
a time value used as 108 which 1s initialized or set to 0 each
time the SP 1s booted and which 1s monotonically increasing
as the amount of time since last booted subsequently elapses.

In this manner, the shared value 102 may be combined
with the creating SP’s 1D 104, the container ID 106, and the
current value of the creating SP’s monotonically increasing
time-since-boot clock 108 to generate the unique 1D 110
having a value that 1s guaranteed to be unique across both
SPs.

The unique ID 110 may be used 1n any suitable applica-
tion. In one embodiment, the unique 1D 110 may be incor-
porated 1nto a larger structure as noted above. The larger
structure may be a token structure representing a generated
token. Tokens have a wide variety of uses. Generally, a token
may be generated as a representation or identifier of any
entity such as, for example, a data item, depending on the
particular usage. An exemplary use of tokens imcorporating
the unique ID 110 1s described in more detail elsewhere
herein.

Referring to FIG. 3, shown 1s an example 200 of an array
of token structures 210 that may be used 1n an embodiment
in accordance with techniques herein. The array 210 may be
an array ol token structures whereby each array element 1s
a token structure. For reference purposes, let token_array
denote the array of token structures 210 and token_array|[i],
having index 17, denotes a particular element or entry in the
array 1dentitying one of the token structures for a different
generated token. In this example, the token_array may have
“N+1” elements, N being an iteger equal to or greater than
0 and 1index *“1” may be an integer, whereby O=i1=N. In the

US 9,501,290 Bl

9

example 200, index values from O to N, inclusively, for each
token_array element are illustrated as indices 230 whereby
220a 1s token_array[0], 2205 1s token_array[1], 220c¢ 1s
token_array[2], and 2202 1s token_array[N].

Each of the token structures of elements 220a-220% of the
token_array 210 may correspond to an instance of a con-
tainer or larger structure such as described above in con-
nection with FIG. 2 whereby the container or larger structure
may incorporate or include a unique 1D 110 therein such as
illustrated 1n 220q. It should be noted that each of the token
structures 220a-220n» may similarly include a different
unique ID 110 generated in accordance with techniques
herein although only 220a 1s so illustrated. With reference
back to FIG. 2 1n one embodiment using the token_array of
token structures as 1n FIG. 3, processing may be performed
to generate the unique ID 110 which 1s incorporated into one
of the token structures of the array 210. The contamner 1D
106 used 1n generating the unique ID 110 may be the index
“1” denoting the particular entry or token structure of the
array 210. For example with reference to FIGS. 2 and 3,
techniques herein may be used to generate umique 1D 110
which 1s included as a field in token structure 220q 1dentified
by index=0 within the array 210. In this case, the container
ID 106=0, denoting index=0, may be used 1n generating the
unique ID 110 incorporated into token structure 110.

With reference to FIG. 3 and token structure 220a, 1t
should be noted that the unique ID 110 may be included as
a field located anywhere within the token structure 220a. For
example, 1n one embodiment, each token structure 220a-r
may be 512 bytes and the unique ID 110 may be included as
a portion of the 512 bytes (e.g., the unique ID may be
represented as a first number of bits included as a portion of
the total bits 1n the token).

With reference back to FIG. 2, 1n one embodiment, the
s1ze of the unique ID may be 20 bytes comprising 4 bytes for
the shared value 102, 4 bytes for the SP ID 104, 4 bytes for
the container ID 106 (whereby the container 1D may be the
token 1ndex as just described 1n connection with FIG. 3), and
8 bytes for the SP time-since-boot clock 108. The foregoing
are exemplary sizes and an embodiment in accordance with
techniques herein may more generally use any suitable size
fields.

In one embodiment tokens may be generated by a token
driver that ensure that no two tokens 1t generates are
identical. The token driver may be code executed by a
processor, such as an SP generating the token. Since each
token generated includes a different unique ID 110, then
cach such generated token may also be guaranteed to be
unique. Thus, the token driver may generate a token in an
embodiment 1n accordance with techniques herein by incor-
porating a umque ID 110 into each token. As described
above, the driver starts with an arbitrary in-memory value,
shared value 102, that 1s kept 1n sync between peer SPs. It
one SP reboots, this shared value 102 1s incremented to
reflect that a new “generation” of time-since-boot clock
values 108 (of the creating SP) can be used without com-
promising the goal of uniqueness. The time-since-boot clock
108 of a creating SP 1s used because 1t can never be “wound
back™ or reset to repeat previous values. The foregoing
time-since-boot clock 108 1s 1n contrast to the system clock,
which may be reset. The 1dentifier of the creating SP, SP 1D
106, 1s also incorporated into the unique ID 110 to ensure
that even tokens created at the exact same time on two SPs
that booted at the exact same time will be unique. Finally, an
index number, or more generally container 1D 106, repre-
senting the container where the token data 1s stored on the
creating SP may be included 1n the generated unique ID 110

10

15

20

25

30

35

40

45

50

55

60

65

10

to guarantee that two tokens created at the exact same time
on the same SP will be distinct from each other. It should be
noted that techmques described herein may be characterized
as impervious to, or unatlected by, system clock changes and
resets. Such techmiques described hereimn for unmique ID
generation by the token driver allow the token driver to
generate these unique IDs allowing for a high-performance
use case. For example, as described in more detail below,
generation of the unique IDs 1n accordance with techniques
herein may be used in connection with performing I/O
related requests on the 1/0 path.

In one embodiment with reference to FIG. 3B, a client 252
may 1ssue a first request 260a to a system 254 including the
token driver 256 that generates a token representing a
particular entity, such as a data item. The particular entity
may be included or identified 1n the first request 260a. In
response, the token driver 256 may generate a unique 1D 110
as described above and then include or incorporate the
unique ID 110 imnto a generated token representing the
particular data i1tem of the first request. The token may be
returned 2605 to the client 252 and the client 252 may
subsequently make other requests, such as to the system 2354,
using the generated token. For example, the client 252 may
make a second request 260¢ to perform an operation where
the request 260¢c may 1nclude the token used to identity the
particular entity rather than explicitly specity the particular
entity 1n the request 260c. The system 254 receives the
second request 260c including the token and may use the
token to identify the particular entity represented by the
token. Thus, the system 254 receiving the token may use the
token to map to, point to, or otherwise 1dentily the particular
entity for which the token had previously been generated. In
other words, a system may include a token driver that, for a
particular entity, generates a token including the unique 1D
at a first point 1n time. At a later point in time, the system
may use the token to determine or identity the particular
entity uniquely represented by the token. As will be
described 1n more detail below, the system 254 may be a data
storage system, the client 252 may be a host, and the second
request 260a may be a request to perform a data operation
with respect to location of data represented by the token.

Referring to FIG. 4, shown 1s an example 300 1llustrating,
tokens mapped to represented entities in an embodiment in
accordance with techmiques herein. The example 300
includes an array of tokens 320 such as described elsewhere
herein. The array 320 may be the token_array as described
above having eclements token_ array[0] 302 through toke-
n_array[N] 308. Thus, each of 302, 304, 306, and 308 may
be a token structure representing a token which includes a
unmique ID 110 generated in accordance with techniques
herein. The array 320 may be included 1n system 2354 having
token generator 256. During operation, the token driver may
receive a request to generate a first token 302 for a repre-
sented entity A 310a. The token driver may generate the first
token 302 including a unique ID 1n accordance with tech-
niques herein. The system 254 may also store information
denoting the represented entity A 310q and may map the
corresponding first token 302 to the represented entity A
310aq. In this manner, the system 254 1s able to uniquely
identify the particular entity A represented by the first token
302 at a later point in time when presented with the first
token 302.

The token driver may receive another request to generate
a second token 304 for a represented entity B 3105. The
token driver may generate the second token 304 including a
unmique ID 1n accordance with techniques herein. The system
254 may also store information denoting the represented

US 9,501,290 Bl

11

entity B 3105 and may map the corresponding second token
304 to the represented entity B 31056, In this manner, the
system 254 1s able to uniquely 1dentify the particular entity
B represented by the second token 304 at a later point 1n time
when presented with the second token 304. In a similar
manner, the token drniver may generate additional tokens,
such as denoted by 306 and 308, and may map each such
generated token 306, 308 to the entity 310C, 310N repre-
sented by each generated token (or to information describing
or denoting the represented entity).

In one embodiment as described 1n more detail below, the
token may represent a source location of an I/O operation
request to copy data to a destination or target location. Thus,
the represented entity may be the source location(s) of the
data. A source location may be specified, for example, by
identifving a device (e.g., LUN) and location on the device
(e.g., LUN oflset range or logical block address range on the
LUN). It should be noted that the source location may
identify data located on one or more diflerent devices, one
or more locations on the same device (whereby such loca-
tions may or may not be logically consecutive or sequential),
and/or one or more locations on different devices (e.g.,
different LUNSs). The token may not actually include data
denoting the source location whereby a client receiving the
token may not be able to identily the source location from
the token. In this manner, the token may be passed from the
system 254 to the client 252 and also possibly to other
clients without the need for encypting the token. In other
words, the token may be passed between clients whereby
cach such client may be unable to determine the source
location or represented entity from the token. However, the
system 254 which generated the token or otherwise has
access to mformation such as illustrated 1n FIG. 4 may be
able to map a previously generated token to the represented
source location such as, for example, 1n connection with
servicing a request, such as 260¢ of FIG. 3B, including such
a token.

In connection with a data storage system, one operation
that may be performed 1s to copy data from a source area to
a target area whereby both of the foregoing may be included
in the same data storage system. Generally, the source area
may comprise one or more source ranges each correspond-
ing to a possibly diflerent LBA (logical block address) range
of a source device (e.g., LUN). In a similar manner, the
target area may comprise one or more target ranges each
corresponding to a possibly different LBA range of a target
device (e.g., LUN). Each of the source ranges may be on the
same or a different source device than other source ranges,
and each of the target ranges may be on the same or a
different target device than other target ranges. Furthermore,
the copy operation may result from an originating request
within the data storage system (e.g., data storage system
internally generated the copy operation) as well as external
from the data storage system (e.g., 1ssued by an external
client such as a host). In one embodiment, each source range
for a particular source device may be expressed using a
starting oflset and length whereby starting offset denotes the
starting oflset of the source range on the particular source
device and the length denotes the size or span of the source
range.

Each source range (expressed using a starting offset
and length) and associated source device may be specified as
a triple or set of location iformation including the source
device, starting oflset and length. In a similar manner, each
target range (expressed using a starting oflset and length)
and associated target device may be specified as a triple or
set of location information. In an embodiment 1n accordance
with techniques herein, the size of the data portion identified

10

15

20

25

30

35

40

45

50

55

60

65

12
by each such triple or set of location information may diifer.
However, the total length or size represented by all triples of
the source areca may be greater than or equal to the total
length of size represented by all triples of the target area.

As an example, consider a request to a copy operation
originating ifrom a client, such as a host, that 1s external with
respect to the data storage system whereby the source and
target areas of the copy operation are included 1n the same
data storage system.

In this example, the host may want to copy data from a
source area to a target area. As noted elsewhere herein, the
source area (including the source data to be copied) may
include one or more source ranges. Each source range itself
may specily a contiguous logical address range of a source
device. However, each source range with respect to another
source range may not be so contiguously located on the same
source device. In a similar manner, the target areca may be
expressed as one or more target ranges. Each target range
itself may specily a contiguous logical address range of a
target device. However, each target range with respect to
another target range may not be so contiguously located on
the same target device. Furthermore, each of the foregoing
source and target ranges may possﬂ:)ly be located on different
devices (e.g., different LUN) 1n the data storage system.

What will be described 1s use of a token-based exchange
of commands between the host and the data storage system
whereby the source area may be represented using a token.
For simplicity, discussion may refer to a single source device
including all the source ranges and a single target device
including all target ranges. However, each of the source and
target ranges may be located on a different device within the
data storage system.

With reference to FIG. 5, shown 1s an example illustrating
exchanges between a host 410 and a data storage system 420
in an embodiment in accordance with techniques herein. In
a first step, S1, the host sends the source device of the data
storage system a “populate token” (PT) command identify-
ing the source area, from which data 1s copied, as a set of one
or more source ranges (e.g. different possibly non-contigu-
ous LBA ranges) on the source device. The command
requests that the data storage system generate a token, also
referred to as an opaque token. Generally, the opaque token
represents the source area (e.g., representing the set of one
or more source ranges on the source device) as well as the
particular data contents stored in the source area at a point
in time when the opaque token 1s generated. The opaque
token 1s described 1n more detail below and elsewhere
herein. The one or more source ranges representing the
source arca may be included as parameters in the PT
command along with possibly other parameters depending
on the embodiment. The data storage system may send a
response or reply R1 indicating receipt of the command S1
and successtul generation of the requested token corre-
sponding to the source area. Responsive to receiving the PT
command, a token driver, such as represented by element
256 of FIG. 3B, may generate a token representing the
source area 1n accordance with techniques described herein.
For example, with reference to FIG. 4, the source area
specified 1n the PT command may 1dentify an entity to be
represented using the generated token. "

The data storage
system may store information describing the source area as
an clement of the illustrated data structure of 300. For
example, the source area may be represented by 310a and
the generated token representing the source area may be 302.

In a second step S2, the host may send another command
request to the data storage system to obtain or retrieve the
opaque token generated by the data storage system 1n S1 for

US 9,501,290 Bl

13

the PT command. In response R2, the opaque token repre-
senting the source area may be returned to the host by the
data storage system. The host may use the opaque token to
request 1n a third step S3 to copy data from a source area (as
represented by the opaque token) to a destination or target
area.

In step S3 the host may 1ssue a “write using token”
(WUT) command request to a target device of the data
storage system whereby the WU'T command may specity the
source area by including the opaque token in the WUT
command. The WUT command request may be generally
characterized as the request from the host to perform a data
movement or copy operation from a source area to a target
arca whereby the source area including the data to be copied
1s denoted by the opaque token. Parameters specified 1n the
WUT command request payload may also identily the target
area as one or more target ranges (e.g. different possibly
non-contiguous LBA ranges). Additionally, the parameters
of the WUT command request may include, for example, a
copy location offset, such as 1n logical blocks. The entire set
ol source ranges specified as the source area may be col-
lectively viewed as a single logical representation of source
data whereby each of the source ranges may be appended or
concatenated in the logical representation. The starting loca-
tion from which data 1s copied may be determined with
respect to such a collective logical representation of
appended source ranges whereby the copy location offset
represents an ofiset with respect to the start of the logical
representation of the source area or collectively appended
source ranges. For example, assuming the oflset represents
a number of blocks, the starting copy location of the source
data to be copied 1s obtained by adding the block offset
relative to the first location 1n the above-mentioned logical
representation of the source ranges. The oflset may be an
integer that 1s equal to or greater than zero and does not
exceed the size of the logical representation. It should be
noted that the host 1ssuing the WUT command request may
be the same host or a different host (or more generally
different client) than the host which performed steps S1 and
S2.

The opaque token 1s a token representing the source area
(e.g., representing the set of one or more source ranges on
the source device) as well as the particular data contents
stored at the source copy location at a point in time when the
opaque token 1s generated. The opaque token may be
generated using any suitable technique. The opaque token
may be generally characterized as an identifier formed to
uniquely represent the source copy location on the source
device at the particular point 1n time when the token 1is
generated. The token generated may be dependent upon
(e.g., may be generated using), for example, the source area
(e.g. set of subranges or logical block addresses of the source
device) and the date and time information (e.g., date/time
stamp) at which the token 1s generated and/or the actual data
contents stored at the source area when the token 1s gener-
ated. Thus, the token may serve to represent a point 1n time
copy ol the source data stored at the source area. The
technique used to generate the token may allow the data
storage system to also, given the token, determine the source
area (e.g., the one or more source ranges) and whether the
data content stored at the source area has been modified
since the token was previously generated.

The token generated by the data storage system respon-
s1ve to recerving the PT command, which 1s then returned to
a host and included as a parameter representing a source
location 1n the subsequent WUT command, may be gener-

ated 1n accordance with techniques herein. For example, the

10

15

20

25

30

35

40

45

50

55

60

65

14

generated token may be represented as a structure including
information such as described in connection with one of
220a-220n of FIG. 3. The token may include a unique 1D
110 generated i1n accordance with techniques described
herein, for example, such as illustrated 1n connection with
FIGS. 2 and 3.

When the data storage system receives the opaque token
as 1 connection with the WUT command, the data storage
system may perform processing to determine the source area
(e.g., set of source ranges) and whether the data of the source
area has been modified since the token was previously
generated. For example, the data storage system may use
structures such as described in connection with the example
300 of FIG. 3B to map a received token (e.g., 302) that was
previously generated to its corresponding represented entity
(e.g., 310qa), the source area. If any data of the source area
has been modified since the token was generated, the token
may be invalidated since 1t no longer represents the same
point in time copy of the source data at the source area.

In one embodiment using the above-mentioned tokens, all
the ranges of the source area denoted by the opaque token
may be included 1n a single source device (e.g., all source
ranges ol the source areca may 1dentily LBA ranges of the
same source LUN). The source device may be mmplicitly
specified as the device to which the PT command request 1s
directed 1n S1. In a similar manner, all the ranges of the
target areca may be included 1n a single target device. The
target device may be implicitly specified as the device to
which the WUT command request 1s directed 1n S3. How-
ever, as a variation, the same techmques using tokens may
be generally directed to a source area including multiple
non-contiguous LBA ranges whereby such ranges are not all
located on the same source device. Each of the one or more
of the source ranges may be located 1n a different source
device. For example, as described elsewhere herein, each of
the source ranges may be included in a different source
device. In such an embodiment, the PT command request
may allow a client to specily a particular source device for
cach of the source ranges. Accordingly, the opaque token
may be generated to also retlect the particular source device
associated with each such range. In a similar manner, the
techniques using tokens may be generally directed to a target
area 1ncluding multiple non-contiguous LBA ranges
whereby such ranges are not all located on the same target
device. Fach of the target ranges may be included in a
different target device. In such an embodiment, the WUT
command request may allow a client to specily a different
target device for each of the ranges of the target area. Thus,
the WUT command request may include parameters
whereby for each target range, a target device associated
with the target range may be 1dentified.

In one embodiment, the ranges, copy location offset, and
the like, may be expressed 1n terms of atomic units which are
blocks. Each block may be, for example 512 bytes. Addi-
tionally, the commands described 1in the exchanges between
the host and data storage system may be SCSI commands.

With reference back to FIG. 5, 1n response to the com-
mand S3 1ssued to the data storage system, the data storage
system may return a response R3 denoting, for example, the
status of the requested command of S3 (e.g., whether the
command was successiully executed by the data storage
system).

Use of such a token-based exchange of commands
between the host and data storage system provides for an
accelerated copying technique for reading and writing data
within the data storage system. Without use of the token
based mechanism such as described herein, the host may

US 9,501,290 Bl

15

otherwise have to 1ssue a first command to read data from
the data storage system whereby the data 1s returned to the
host, and a second command to write the data to the data
storage system at the target location. In contrast, the token-
based exchange of commands as described herein may be
used to accelerate copy operations and optimize data transier
requests 1mitiated from the host without requiring transfer of
the data to be copied from the data storage system to the host
and then from the host back to the data storage system. With
the token-based technique, the data storage system deter-
mines the source data included at a source area using the

opaque token and the copy location oflset specified 1n the
WUT command.

In response to recerving the WUT command request, the
data storage system may translate the WUT command
request 1nto a copy request. It should be noted that the WU'T
command request may be generally characterized as one
way in which an external data storage system client may
initiate a copy request. Additionally, 1t should be noted that
the data movement copy request may be initiated as a data
storage system internal request rather than from an external
client copy request. The data storage system internal request
may be performed, for example, 1n connection with various
operations and tasks performed within the data storage
system and 1ts management activities. For example, there
may be code executing on the data storage system that
initiates and 1ssues a copy request.

The foregoing use of tokens 1s merely one application
utilizing the unique ID generated in accordance with tech-
niques herein. As will be appreciated by those skilled 1n the
art, the umique ID generated 1n accordance with techniques
herein may be generally used 1n connection with any suit-
able application and the foregoing 1s one exemplary use.

Referring to FIG. 6, shown 1s a flowchart 500 of process-
ing steps that may be performed in an embodiment 1n
accordance with techniques herein. The flowchart 500 sum-
marizes processing described above illustrating the exem-
plary use of unique ID generation herein with tokens. At step
502, the token driver receives a request to generate a token
for a corresponding entity. At step 504, inputs used to
generate a unique ID 1n accordance with techniques herein
are obtained. As described 1n connection with FIG. 2, such
inputs may include shared value, SP ID of the creating SP,
a container ID, and the creating SP’s time-since-boot clock.
At step 506, the mputs obtamned in step 504 may be
combined, or more generally, used 1n generating the unique
ID. In one embodiment, the inputs may be concatenated or
appended sequentially to one another to obtain the resulting
unique ID. At step 508, token 1s generated including the
unique ID. At step 510, information may be stored, such as
on the data storage system, mapping the generated token to
the corresponding entity represented by the token. At step
511, in an embodiment including two SP as noted above, the
SP generating the token may send a message to its peer SP
thereby alerting the peer SP regarding the creation of the
newly generated token. The message sent from the creating
SP to 1ts peer SP may include the newly generated token. At
step 512, the generated token may be returned by the token
driver to the requester, such as the host or other client
(internal or external within the data storage system), which
requested the token.

As described herein, the techniques for unique ID gen-
eration may be performed for any application or usage. For
example, the steps 504 and 506 may be performed 1n
connection with any application 1n which unique IDs are
utilized.

10

15

20

25

30

35

40

45

50

55

60

65

16

The techniques herein may be performed by executing
code which 1s stored on any one or more different forms of
computer-readable media. Computer-readable media may
include different forms of volatile (e.g., RAM) and non-
volatile (e.g., ROM, flash memory, magnetic or optical
disks, or tape) storage which may be removable or non-
removable.

While the invention has been disclosed in connection with
preferred embodiments shown and described 1n detail, their
modifications and improvements thereon will become read-
1ly apparent to those skilled 1n the art. Accordingly, the spirit
and scope of the present invention should be limited only by
the following claims.

What 1s claimed 1s:

1. A method of generating and using a unique identifier
comprising;

recerving a request from a client to generate a token

representing a data item;

responsive to receiving the request, performing first pro-

cessing by a token driver that generates the unique

identifier and that generates the token using the unique

identifier, wherein said token driver comprises code of

the first processing executed by a first of a plurality of

processors to generate the token, said first processing

including:

obtaining a shared value that 1s a common value used
by the plurality of processors;

obtaining a processor i1dentifier of the first processor;

obtaining a container identifier identifying a memory
location;

obtaining a time value denoting an amount of time that
has elapsed since the first processor was last booted;

generating a unique identifier using a plurality of values
including the shared value, the processor i1dentifier,
the container identifier and the time value; and

generating the token using the unique i1dentifier.

2. The method of claim 1, further comprising:

sending the token to the client; and

receiving a second request from the client to perform an

operation with respect to the data item, the second
request including the token as a representation of the
data 1item rather than having the second request include
the data item, the second request being a request to
perform a data operation using first data of the data item
represented by the token.

3. The method of claim 2, wherein a system receives the
second request and maps the token to the data item to
retrieve the first data of the data item and perform the
requested data operation.

4. The method of claim 2, wherein the client includes code
executing within the system and the second request 1is
internally generated within the system.

5. The method of claim 2, wherein the client 1s external
with respect to the system and the second request 1s an
externally generated request generated by the client.

6. The method of claim 3, wherein the token represents a
source location of an I/O (input/output) operation request to
copy data from the source location to a target location, said
data 1item being the source location which 1s 1dentified 1n the
request.

7. The method of claim 6, wherein the source location
1dentifies at least one device and at least one location on the
one device.

8. The method of claim 6, wherein the source location
identifies at least a first logical device and at least one logical
address range of the first logical device.

US 9,501,290 Bl

17

9. The method of claim 2, wherein the client 1s unable to
determine the source location from the token.

10. The method of claim 6, wherein the token 1s generated
at a first point 1n time and represents a copy of data stored
at the source location at the first point 1n time, and the
method further comprising;

modilying the source location subsequent to the first point

in time; and

invalidating the token since the token no longer represents

the copy of data at the source location at the first point
in time.

11. The method of claim 1, wherein said generating a
unique 1dentifier using a plurality of values includes con-
catenating the shared value, the processor identifier, the
container 1dentifier and the time value.

12. The method of claim 1, wherein the shared value 1s a
randomly selected integer that 1s incremented each time any
one of the plurality of processors 1s booted thereby produc-
ing a revised shared value each time any one of the plurality
ol processors 1s booted.

13. The method of claim 12, wherein the shared value 1s
stored 1n a memory of the first processor and 1s incremented
by the first processor to produce the revised shared value
responsive to booting a second of the plurality of processors,
and wherein the first processor communicates the revised
shared value to the second processor.

14. The method of claim 1, wherein the container i1den-
tifier 1dentifies a memory location of a structure and the
method includes storing the unique 1dentifier as a field 1n the
structure and wherein the time value represents an absolute
amount of time.

15. The method of claim 1, wherein the processor 1den-
tifier 1s a world wide name uniquely i1dentifying the first
Processor.

16. The method of claim 1, wherein said token i1s a
structure including the unique identifier as a field 1n the
structure.

17. The method of claim 1, wherein the container i1den-
tifier 1s a first index value 1dentifying an element 1n an array,
the array 1s an array of tokens, and each element of said array
1s a token structure representing a different token, and
wherein the first index value 1dentifies a first token structure
including the unique 1dentifier.

18. A system comprising:

a plurality of processors; and

a memory comprising code stored therein that, when

executed, performs a method of generating and using a

umque 1dentifier comprising:

receiving a request from a client to generate a token
representing a data item;

responsive to receiving the request, performing first
processing by a token driver that generates the
unique 1dentifier and that generates the token using
the unique 1dentifier, wherein said token driver com-
prises code of the first processing executed by a first

10

15

20

25

30

35

40

45

50

18

of the plurality of processors to generate the token,

said first processing including;

obtaining a shared value that 1s a common value used
by the plurality of processors;

obtaining a processor identifier of the first processor;

obtaining a container identifier identifying a memory
location;

obtaining a time value denoting an amount of time
that has elapsed since the first processor was last

booted;

generating a unique identifier using a plurality of
values including the shared value, the processor
identifier, the container identifier and the time
value:; and

generating the token using the unique identifier.

19. A non-transitory computer readable medium compris-
ing code stored thereon that, when executed, performs a
method of generating and using a unique 1dentifier compris-
ng:

receiving a request from a client to generate a token

representing a data item;

responsive to receiving the request, performing first pro-

cessing by a token driver that generates the unique

identifier and that generates the token using the unique

identifier, wherein said token driver comprises code of

the first processing executed by a first of a plurality of

processors to generate the token, said first processing

including:

generating a unique identifier using a plurality of values
including a shared value that 1s a common value used
by the plurality of processors, a processor 1dentifier
of the first processor, a container 1dentifier 1dentify-
ing a memory location, and a time value denoting an
amount of time that has elapsed since the first
processor was last booted; and

generating the token using the unique i1dentifier;

sending the token to the client; and

recerving a second request from the client to perform a

copy operation from a source location to a destination
location, wherein the source location i1s the data item
and the second request 1includes the token representing
the source location.

20. The non-transitory computer readable medium of
claim 19, wherein a system receives the second request and
maps the token to the first data item used as the source
location of the copy operation.

21. The non-transitory computer readable medium of
claim 20, wherein the source location 1dentifies at least one
device and at least one location on the one device.

22. The non-transitory computer readable medium of
claiam 19, wherein said generating a unique i1dentifier
includes concatenating the shared value, the processor 1den-
tifier, the container identifier, and the time value.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

