US009477508B1

a2y United States Patent (10) Patent No.: US 9.477,508 B1

Vemuri 45) Date of Patent: Oct. 25, 2016
(54) STORAGE DEVICE SHARING AMONG 9,294,558 B1* 3/2016 Vincent HO41. 67/1006
VIRTUAL MACHINES 2013/0282994 Al1* 10/2013 WIres ..oovvvvevvvnnn, GO6F 9/45558
711/158
(71) Applicant: Symantec Corporation, Mountain 2014/0025770 Al* 1/2014 Wartield GO6F 15/17331
View, CA (US) 709/213
2014/0052877 Al1* 2/2014 Maoooocvevvvevnvnnnn, HO4I. 61/103
(72) Inventor: Hari Krishna Vemuri, Pune (IN) | 709/245
2014/0095826 Al* 4/2014 Rajagopal GO6F 3/0605
(73) Assignee: Veritas Technologies LLC, Mountain 71171770
View. CA (US) 2014/0136809 Al* 5/2014 Englecoooeeeenenen, GO6F 3/067
’ 711/170

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 123 days.

Primary Examiner — Pierre-Michel Bataille

(21) Appl. No.: 14/227,081 (74) Attorney, Agent, or Firm — Campbell Stephenson

(22) Filed: Mar. 27, 2014 LLP
(51) Int. CL

GO6F 12/06 (2006.01) (57) ABSTRACT

gggﬁ 39?01.;5 (38828) Disclosed herein are various systems and methods for shar-
59 US. Cl (O1) ing a storage device with multiple virtual machines are
(>2) CPC ' GOGF 9/45558 (2013.01); GO6F 3/067 disclosed. One such method involves creating a pseudo-

identity for a storage device and assigning a portion of an
address space of the storage device to a virtual machine
(58) Tield of Classification Search using the‘pseudoi-identity. The storage de}fica? 1s coupled to
CPC ... GO6F 3/0605; GOGF 3/0631: GOGF 3/0647 & computing device and the pseudo-identity 1s created by a
USPC e, 711/103, 170 hypervisor associated with the computing device. lhe
j pseudo-i1dentity facilitates access to the storage device by the

virtual machine associated with the hypervisor and also

(2013.01); GO6F 3/0608 (2013.01); GO6F
3/0647 (2013.01); GO6F 2009/4557 (2013.01)

See application file for complete search history.

(56) References Cited facilitates presentation of one or more physical characteris-
| tics of the storage device to the virtual machine. The method
U.S. PATENT DOCUMENTS also assigns a portion of an address space of the storage
8291150 B2* 10/2012 Rajagopal GOGT 3/0605 device to the virtual machine using the pseudo-identity.
709/226
8,996,807 B2* 3/2015 Joshi GO6F 9/45558
711/100 21 Claims, 9 Drawing Sheets

\'

Cresate pseudo-identity for storage device
a0%

Y

Prepare information in hypenvisor t modify response to
read-capacity command issued to storage device by
virtual maching

210

Y

Datermine physical characteristics/paramaters
of storage davice
215

Physical characteristics/parametars YES

acceplable?
24l

|

Lse virtual disk
Migrate VM mapping to anciher stiorage device associated with

230 virtual machine
243

YES

US 9,477,508 B1

Sheet 1 of 9

Oct. 25, 2016

U.S. Patent

INJSZT

90IA8(]
bunndwon

vi Ol

A (N0}

SONAC 301A3(

Bunndwon 30e.I0)S

Gl | Jabeuely awn|oA

2l e)0vl
2810 [EnMIA 2810 [eNMIA

(7)0Z1 (£]0C1
SUIYOB [ENMIA SUIUDEW [enlIA

G| J0SS220.4 GC T 9beimiS 8207

LJOLL
50IAS(]

aberi0)Q

g2 0001

Z71 We)SAS 9|14
D¢ JosiniedAy

¢)ovl L0 |
2810 [enMIA ASIQ [ENMIA

rd h |

(Z)0Z) (1J0Z]
BUIUOB [enlIA sUIYOB [ENHIA

0G| Alowsy

(1JGZT 221ma(bunndwon

V00l

US 9,477,508 B1

Sheet 2 of 9

Oct. 25, 2016

U.S. Patent

(7)0C}
SUIYOBIN
[ENMIA

9

0001-108

acv}
WeysAS 9|1

(7071
AS10 [BNUIA

001 we)sAS bunessdp

GGl uoneol|ddy

(7)OCT QUIUOBN [ENMIA

g} Old
| |
FAR. (0T
SUIPE PesiUf] | uIyoe
EMA- [
T
ogazs | SESISE | 08erlg)
. [P0V 8d1a8Q abeuois

Gal
9INPOA

uoljejuasaldsy
82IA8(] abeloIQ

[joct |
auiyoepy |
|

[ENUIA

¢

0G1-10}

091 wa)sAg bunesadp

— Gl

=INPON Apede)n
oneibiy 025

£)0C| (C)0CT

SUIUOBN

[enIA

[ENMIA

9NPO
a0edg

$Sa.IppY

AUIYOBN

nasnu

|

0010

G9l 081

Bl 8npoy Juswabeuepy sbeiolg

9[NPo
Anuap
-0pNasy

T JOSIAIS

1)0C 1

SUIYDBN

[BNIA

Vvl
WIISAS 9]14

dAH

d00}

US 9,477,508 B1

Sheet 3 of 9

Oct. 25, 2016

U.S. Patent

GIOC|
SUIYOBIN
[ENUIA

Jb Old

¢)OL1
801A8(]

1)0L 1
80IA8(]

¢0L1
801A8(]

abeI0)S abelin)g abrInIS

CIGH 2,561 (1)G6]

I dNC

a21Aaq 4N 3lne(d d4INC

661 1004 UEWS

x 2

(G)96 (7)961, (€)961

(Z)96 1, (1]96 1

RIS [ENLIA 92IAS([ENUIA 90IAS([ENHIA

161
S0l N(OY

(7)0C]

SUIYOB
[ENUIA

¢)0¢|

£)0C| SUILOB\

SUIYOE [BNMIA [BNUIA

lAS([ENHIA S9AS({ [ENHIA

——— —

£l

J0SIAJadA

L)OC
SUIYORIA

[ENUIA

2001

U.S. Patent Oct. 25, 2016 Sheet 4 of 9 US 9.477,508 B1

200A

N

Create pseudo-identity for storage device
205

Prepare information in hypervisor to modify response to
read-capacity command issued to storage device by

virtual machine
210

Determine physical characteristics/parameters
of storage device

219

Physical characteristics/parameters

acceptable?
220

NO
Use virtual disk
Migrate VM mapping to another storage device assoclated with
230 virtual machine
225

Migration successful?
239

YES

NO

Error
240

U.S. Patent Oct. 25, 2016 Sheet 5 of 9 US 9.477,508 B1

200B

Modify response to command issued to storage device by virtual

machine based oh portionh of address space
249

Should modified response
Include physical
characteristics?
260

Should modified response NO

include pseudo-identity?
250

Add physical
characteristics to
modified response

269

Emulate and add pseudo-
[dentity to modified
response
255

Transmit modified response to virtual machine
270

FIG. 2B

U.S. Patent Oct. 25, 2016 Sheet 6 of 9 US 9.477,508 B1

200C

N

Receive modified response with physical

characteristics of storage device
279

Determine operating condition of storage device

based on physical characteristics
260

Compare operating condition of storage device to operating
condition of another storage device

285

Does another storage device
have more optimal operating
condition?

290

NO

YES

Emulate pseudo-identity of storage device and assign to
another storage device

295

Migrate virtual machine mapping from storage device

to another storage device
299

FIG. 2C

U.S. Patent Oct. 25, 2016 Sheet 7 of 9 US 9.477,508 B1

300A
Mapping Table 310
Virtual Machi Storage Device dentity) Address Space
nual viathine 3 Characteristics P
120(1) 110(1) 101-150
120(2) 110(1) 151-350
e | 1o (26,500
120(4) 110(1) X/Y 801-1000
FIG. 3A
300B
Migration Table 320

. . . [dentity/
Virtual Machine | Storage Device Characteristics Address Space
120(1) 110(N) 1-80

120(2) 110(N) 51-200
120(4) 110(N) 201-400

FIG. 3B

US 9,477,508 B1

Sheet 8 of 9

Oct. 25, 2016

U.S. Patent

y Old

L)0L) 0S¥

(ass) (QaH)
90I1A3(] 9brIOIS 921A8(] ebrl0)S

(157 0l
80IA8(] 921A9(]
1ndu Aeidsi

127 (147 Gly GOy
9oBJIaU| 9dBJIaU| 19)depy a1n)onJiselju
abel0)s Indu Aejdsi(UONBIIUNWIWON

1% 081

90BIa)U|
UONEDIUNWLIOY

(%7 (147 S|NDOIA Grl
J3Jj0JU0Y) O] J3J|0JJU0Y) AJOWS Anusp 108S820.d
-0pNasy

00F

US 9,477,508 B1

Sheet 9 of 9

Oct. 25, 2016

U.S. Patent

(NJOTT

821A8(9belInIS

LJ0L)
99IA9(] abeInIS

0cS
JU(e4 NVS

0€S

Jun 2be101S

=

01G
Wa)SAS uonezi|enuiA

(NJGC I

921A9(] bupndwo)

OCT JosinJedAH

(NJOCI 1)0C)

SUIYOB\ SUILPEN
[ENJIA [ENJIA

[JGCT 921A8(bupndwo)

00G

US 9,477,508 Bl

1

STORAGE DEVICE SHARING AMONG
VIRTUAL MACHINES

FIELD OF THE INVENTION

This mvention relates to data storage 1 a virtual envi-
ronment, and more particularly, to storage device sharing
among virtual machines.

DESCRIPTION OF THE RELATED ART

A virtual machine (VM) 1s a software implementation of
a computing system that executes on a physical computing
system (e.g., a computing device). A computing device
supporting multiple virtual machines typically does so, at
least 1n part, through the use of system software and/or
hardware that manages the host computing device’s
resources 1n a manner that allows the host computing device
to present a hosted virtual environment 1n each of the virtual
machines. A hosted virtual environment permits multiple
virtual machines supported by the computing device to share
a physical storage device (e.g., a solid state disk).

Multiple virtual volumes of a physical storage device can
be created and shared with multiple virtual machines. If a
virtual machine uses physical space of the physical storage
device to store data, 1t becomes bound to the physical
storage device. Therefore, virtual machines use virtual vol-
umes because virtual volumes utilize a virtual storage space
and hence the virtual machines are not bound to the physical
storage device. However, 1 a virtual machine uses a virtual
volume, the virtual machine i1s not privy to the physical
behavior and/or operating characteristics of the physical
storage device because the hosted virtual environment only
presents a virtualized model behavior of the physical storage
device to the virtual machine.

SUMMARY OF THE INVENTION

Various systems and methods for sharing a storage device
with multiple virtual machines are disclosed. One such
method nvolves creating a pseudo-identity for a storage
device (or multiple storage devices) and assigning a portion
of an address space of the storage device (or multiple storage
devices) to a virtual machine using the pseudo-identity. The
storage device 1s coupled to a computing device and the
pseudo-identity 1s created by a hypervisor associated with
the computing device. The pseudo-i1dentity facilitates access
to the storage device by the virtual machine associated with
the hypervisor and also facilitates presentation of one or
more physical characteristics of the storage device to the
virtual machine. The method assigns a portion of an address
space of the storage device to the virtual machine using the
pseudo-identity.

The method also mmvolves modifying a response to a
command 1ssued to the storage device by the virtual machine
to obtain a capacity and one or more physical characteristics
of the storage device, where the response to the command
includes the capacity and the one or more physical charac-
teristics of the pseudo-i1dentity of the storage device and one
or more physical characteristics of the storage device that 1s
exposed to the virtual machine. Calculating the read-capac-
ity of the storage device obtains details related to the storage
device (e.g., storage device capacity). The capacity of the
storage device 1s determined by the read-capacity command
and pseudo-identity and the physical characteristics of the
storage device are determined by an inquiry command. The
mapping of the virtual machine can be migrated (changed)

10

15

20

25

30

35

40

45

50

55

60

65

2

from the storage device to another storage device, where
prior to the migration (change), the hypervisor emulates and

assigns the pseudo-identity of the storage device to another
storage device.

In some embodiments, each virtual machine associated
with the hypervisor 1s assigned to a unique address space of
the storage device. The unique address space assigned to
each virtual machine 1s different, and each virtual machine
can share the pseudo-identity of the storage device.

In other embodiments, each virtual machine has access to
one or more physical characteristics of the storage device.
The physical characteristics of the storage device are visible
to the virtual machine and can include an operating tem-
perature of the storage device, a wear-leveling associated
with the storage device, a cleanup activity associated with
the storage device, or an administrator provided command to
stop or start using the storage device. The physical charac-
teristics of the storage device are associated with an oper-
ating condition of the storage device.

The method also mvolves calculating the operating con-
dition of the storage device and another operating condition
of another storage device, and comparing the operating
condition and the another operating condition. Based on the
comparison, the method determines whether to migrate the
mapping (change the mapping) of the virtual machine (and
its allocated address space) from the storage device to
another storage device. The migration of the mapping (map-
ping change) 1s performed 11 another operating condition of
another storage device 1s optimal compared to the operating
condition of the storage device.

The foregoing 1s a summary and thus contains, by neces-
sity, stmplifications, generalizations and omissions of detail;
consequently those skilled 1n the art will appreciate that the
summary 1s 1llustrative only and 1s not imntended to be in any
way limiting. Other aspects, inventive features, and advan-
tages of the present invention, as defined solely by the
claims, will become apparent in the non-limiting detailed
description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled 1n the art by referencing the accompanying
drawings.

FIG. 1A 1s a block diagram of a computing device that
supports virtual machines, according to one embodiment of
the present invention.

FIG. 1B 1s a block diagram of a storage device that 1s
shared among multiple virtual machines, according to one
embodiment of the present invention.

FIG. 1C 1s a block diagram that illustrates the mapping
between storage devices and virtual machines using a hyper-
visor, according to one embodiment of the present invention.

FIG. 2A 1s a flowchart of a method of using a storage
device with a pseudo-identity, according to one embodiment
of the present invention.

FIG. 2B 1s a flowchart of a method of transmitting a
modified response to a virtual machine, according to one
embodiment of the present invention.

FIG. 2C 1s a flowchart of migrating the address space
mapping of a virtual machine to another storage device,
according to one embodiment of the present invention.

FIG. 3A 1illustrates a mapping table, according to one
embodiment of the present invention.

FIG. 3B illustrates a migration table, according to one
embodiment of the present invention.

US 9,477,508 Bl

3

FIG. 4 1s a block diagram of a computing device, 1llus-
trating how a pseudo-identity module can be implemented in

soltware, according to one embodiment of the present inven-
tion.

FIG. 5 1s a block diagram of a networked system, 1llus-
trating how various computing devices can communicate via
a network, according to one embodiment of the present
invention.

While the ivention 1s susceptible to various modifica-
tions and alternative forms, specific embodiments of the
invention are provided as examples 1n the drawings and
detailed description. It should be understood that the draw-
ings and detailed description are not intended to limit the
invention to the particular form disclosed. Instead, the
intention 1s to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the inven-
tion as defined by the appended claims.

DETAILED DESCRIPTION

Introduction

A physical storage device can be partitioned into multiple
partitions and each partition can be assigned to a virtual
machine. In this manner, multiple virtual machines sup-
ported by the computing device can share a physical storage
device. In a virtual machine environment, a logical partition
realizes the advantages ol virtualization but like wvirtual
volumes, the virtual machine assigned to the partition 1s not
privy to the physical behavior and/or characteristics of the
physical storage device. On the other hand, a physical
partition permits the virtual machine to view, access, and
take advantage of the physical storage device’s physical
behavior and/or characteristics, but because the wvirtual
machine 1s bound to the physical storage device, the benefits
of virtualization are not realized.

Embodiments of the present invention allow a storage
device (or multiple storage devices) to be shared between
multiple virtual machines. In some embodiments, the stor-
age device can be a solid state disk (SSD) and can be used
by a virtual machine associated with a hypervisor to store
data. A virtual machine 1s a software implementation of a
computing system that executes on a computing device.
Virtual machines are simulations of the computing device
that execute computer instructions in a manner that produces
results expected of the computing device. Resources of the
computing device are allocated to support the wirtual
machine (or several virtual machines). These allocated
resources can include both *“time shares” of a physical
resource, such as a “cycle” of a processor and semi-perma-
nent allocations, such as the allocation of space on a disk
volume. For example, storage space can be allocated to a
virtual machine in the form of a container file on a physical
drive. These container files are typically referred to as virtual
disks. The computing device (e.g., a hosting server) can
allocate disk space on physical disks associated with the
computing device to multiple virtual machines.

A hypervisor 1s soitware and/or hardware that provides a
computing device the ability to concurrently support mul-
tiple virtual machines. The hypervisor coordinates distribu-
tion of the computing device’s resources (e.g., processing,
power, memory, etc.) among several virtual machines. The
computing device, acting as a host computer system, sup-
ports multiple wvirtual machines and manages system
resources to present a hosted virtual environment to each of
the virtual machines. Each virtual machine shares the host
computer system’s resources. Processor resources and

10

15

20

25

30

35

40

45

50

55

60

65

4

memory management are provided to each virtual machine.
Virtualization functionality can be provided, for example,
through the use of a system virtual machine (sometimes
referred to as a hardware virtual machine), or via software
virtualization. Regardless of the approach employed, virtu-
alization allows sharing of the underlying computing
device’s resources between different virtual machines, each
running 1ts own copy of a given operating system. For
example, when a hypervisor 1s used, the hypervisor also acts
as a virtualization component (e.g., a software abstraction
layer), and coordinates and manages host resources. The
hypervisor coordinates processor resources to execute
instructions on behalt of virtual machines, and performs
memory management to ensure effective sharing of the host
system memory.

A hypervisor can also assist one or more virtual machines
to store data 1n one or more storage devices. A storage device
can be shared among multiple virtual machines using, for
example, unique address spaces. An address space defines a
range ol discrete addresses in the storage device, each of
which may correspond to a different virtual machine. If a
virtual machine needs to store data on a storage device, the
virtual machine can use a Small Computer System Interface
(SCSI) command to determine the storage capacity of the
storage device (e.g., using a SCSI read-capacity command).
The virtual machine sends a SCSI command to the storage
device via the hypervisor. Data 1s then transferred between
the virtual machine and the storage device. A storage
device’s response to a SCSI command from the virtual
machine typically includes the size and identity of the
storage device.

A hypervisor, by acting as a soltware abstraction layer,
can be particularly usetul 1n sharing a single storage device
between multiple virtual machines such that a storage solu-
tion implemented 1n a virtual environment can realize the
benelits of a physical device’s physical characteristics as
well as the advantages of virtualization. For example, by
moditying the response to a read-capacity command, the
hypervisor can carve out multiple virtual storage spaces on
a single storage device (which may be a physical and/or
logical storage device) by creating a pseudo-identity for the
storage device, and assign only a portion of an address space
of the storage device to each virtual machine. In addition, the
response to the command can also be modified to include
one or more physical characteristics of the storage device,
which can be useful 1n determining whether the mapping of
the virtual machine should be migrated (mapped to) to
another storage device (e.g., by using a mapping file) with
a better operating condition.

An Example for Storage Device Sharing Among Virtual
Machines

FIG. 1A 1s a block diagram of a computing device.
Computing device 125(1) i1s coupled to storage device
110(1) that can implement a cache. Computing device
125(1) includes hypervisor 130 that provides computing
device 125(1) the ability to concurrently support multiple
virtual machines 120(1)-120(4). Virtual machines 120(1)-
120(4) each implement corresponding virtual disks 140(1)-
140(4). Storage device 110(1) 1s coupled to computing
device 125(1), and can include one or more of a variety of
different storage devices, including hard disks, compact
discs, digital versatile discs, solid state drive (SSD) memory
such as Flash memory, and/or other storage devices, such as
described subsequently herein.

In this example, computing device 125(1) implements a
file system 142. File system 142 1s a software program that
organizes and controls access to files. The term “file system”™

US 9,477,508 Bl

S

can refer to both the software application (which 1itself can
be part of an operating system or database) that organizes the
files and the collection of files that are organized by that
application. Files can be organized hierarchically, with
directories collecting groups of files and/or other directories.
A file system application like file system 142 can provide
another application, such as a DBMS application, with
access to files (e.g., to open, read, modily, create, delete, and
otherwise interact with the data within the files).

FIG. 1B 1s a block diagram of a storage device that 1s
shared among multiple virtual machines. An advantageous
feature of a computing device that supports at least one
virtual machine 1s the ability to support the execution of an
operating system (e.g., operating system 160) on those
virtual machines. Hypervisor 130 provides the ability for
computing device 125(1) to implement virtual machines
120(1)-120(4). For example, hypervisor 130 permaits virtual
machine 120(4) to run application 155 and execute operating,
system 160. File system 142D implemented on virtual
machine 120(4) tracks (e.g., by monitoring the movement of
files) how the files file system 142D organizes map to blocks
of data within storage device 110(1) (e.g., using file system
metadata). This way, when application 155 requests access
to a particular file (e.g., using the file name of the file), file
system 142D can translate that request into information
hypervisor 130 and operating system 160 can use to make a
request for the particular blocks of data included in the
requested file. Accordingly, file system 142D knows which
blocks of data in storage device 110(1) belong to each file.

Typically, when multiple virtual machines try to read to
and/or write from the same storage device, such virtual
machines either read to and/or write from a partition on the
storage device and/or a virtual volume associated with the
storage device. I a virtual machine accesses a storage device
that 1s partitioned, each virtual machine i1s only permitted to
read to and/or write from a dedicated partition. For example,
i a storage device i1s partitioned, a virtual machine 1is
assigned to a pre-determined storage space on the storage
device that 1s smaller than the total capacity of the storage
device. In the case of a logical partition, the virtual machine
does not see (nor 1s able to access and benefit from the
knowledge of) the physical characteristics of the storage
device because the storage device 1s virtualized as a separate
storage device. Reading to and/or writing from a virtual
volume also faces similar limitations. In the case of a
physical partition, which 1s done at the hardware level, the
virtual machine 1s bound to the physical characteristics of
the storage device and 1s unable to utilize the virtualization
characteristics of the storage device.

To remedy the aforementioned limitations encountered
when a virtual machine reads to and/or writes from a storage
device (represented by a virtual storage device), hypervisor
130 implements read-capacity module 175 1n conjunction
with address space module 165. Read-capacity module 175
modifies a response to a command 1ssued to the storage
device by a virtual machine. For example, 1f virtual machine
120(4) requires 200 GB of storage space for a storage
operation and issues a read-capacity command to storage
device 110(1), read-capacity module 1735 does not return the
total storage capacity of storage device 100(1), which 1s
1000 GB. Instead, read-capacity module 175 modifies the
expected response to the read-capacity command and returns
a value of 200 GB to virtual machine 120(4). In addition,
address space module 165 assigns 200 GB to wvirtual
machine 120(4) at address space 6 (801-1000) of storage
device 110(1). By virtue of recerving a modified response to
its read-capacity command, virtual machine 120(4) 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

assigned to address space 6 (801-1000) which has 200 GB
(the storage space requested by virtual machine 120(4) for
the storage operation) and 1n addition, according to virtual
machine 120(4), storage device 110(1) appears to have a
total storage capacity of 200 GB.

A similar command response modification and address
space assignment process can be contemplated for virtual
machines 120(1), 120(2) and 120(3). In this example, virtual
machine 120(1) 1s assigned to address space 2 (101-150) on
storage device 110(1), virtual machine 120(2) 1s assigned to
address space 3 (151-300) on storage device 110(1) and
virtual machine 120(3) 1s assigned to address space 3
(526-800) on storage device 110(1). The address space need
not be contiguous and can contain a list of portions on one
or more storage devices that include the pseudo-identity.
According to virtual machines 120(1), 120(2) and 120(3),
the total storage capacity of storage device 110(1) 1s 50 GB,
200 GB and 275 GB respectively. In this example, unbe-
known to virtual machines 120(1)-120(4), storage device
110(1) still has a total of 275 GB of unused/ifree storage
space. In one embodiment, a pseudo storage device can be
backed up one or more portions ol one or more physical
storage devices to construct the required address space.

In addition to modifying the response to read-capacity
command (e.g., by using read-capacity module 1735) and
assigning only a portion of an address space of storage
device 110(1) (or a set of one or more storage devices that
represent the pseudo storage device) to virtual machines
120(1)-120(4), hypervisor 130 also implements a pseudo-
identity module 180 that replicates the identity of storage
device 110(1). In one embodiment, various storage devices
have the same pseudo-identity. For example, storage device
110(1) and storage device 110(N) can share the same
pseudo-identity. In addition to implementing read-capacity
module 175 and address space module 165, hypervisor 130
can also implement pseudo-identity module 180 to assign a
static value to the identity of storage device 110(1). In the
example of FIG. 1B, pseudo-identity module 180 presents,
via hypervisor 130, the same simulated pseudo-identity of
storage device 110(1) to virtual machines 120(1)-120(4) by
modifying, for example, the response to a SCSI mnquiry. In
alternate embodiments, a pseudo-identity i1s associated with
a virtual machine. Every virtual machine can have the same
pseudo-identity, or each virtual machine can have a different
pseudo-identity. However, the mapping of the wvirtual
machine to a storage device can be changed as long as the
pseudo-i1dentity 1s constant for each virtual machine.

It should be noted that, in some embodiments, hypervisor
130 can modily the response to a variety of commands.
These commands can include a read-capacity command, a
read command, a write command, an inquiry command, or
any other SCSI command, whether mandatory, optional or
vendor-specific. For example, the identity of the storage
device 1s determined by a SCSI inquiry command (which 1s
used to obtain a world wide name, physical characteristics,
etc.) and a SCSI read-capacity command 1s used to obtain
the size of the storage device. In addition, although the
present imvention only references SCSI commands (e.g., a
SCSI read-capacity command), the present invention envi-
sions any computer command that one or more virtual
machines and/or computing devices use to read to, write
from, and/or access, one or more storage devices.

The result of hypervisor 130 implementing read-capacity
module 175, address space module 165, and pseudo-i1dentity
module 180 1n the example of FIG. 1B has at least three
consequences. First, read-capacity module 175, 1 one
embodiment, modifies the response from storage device

US 9,477,508 Bl

7

110(1) to a read-capacity command from virtual machines
120(1)-120(4) and returns a value that 1s appropriate to the
storage space requested and/or required by each virtual
machine, for example, 1n relation to a storage operation.
Second, address space module 165, in other embodiments,
assigns a portion of an address space of storage device
110(1) to wvirtual machines 120(1)-120(4). Third, and 1n
some embodiments, pseudo-identity module 180 presents
the same pseudo-identity, or a set of pseudo-identities, of
storage device 110(1) to virtual machines 120(1)-120(4).

Sharing storage device 110(1) among virtual machines
120(1)-120(4) in this manner presents a single storage
device as four different storage devices, each with a different
capacity—but the same pseudo-identity, to virtual machines
120(1)-120(4). Because each virtual machine reads from
and/or writes to a diflerent address space on storage device
110(1), each virtual machine works in its own space, which
1s a portion of storage device 110(1). However, each virtual
machine 1s also privy to the physical characteristics of
storage device 110(1). This method permits dynamically
growing or shrinking the storage space allocated in storage
device 110(1) for a particular virtual machine. For example,
the unused space 1n address space 351-523 of storage device
110(1) can be allocated to virtual machine 120(2) by modi-
tying the response to a command to include an address space
from 151-525 and a storage capacity of 375 GB for storage
device 110(1).

FIG. 1C 1s a block diagram of a mapping between storage
devices and virtual machines using a hypervisor. Virtual
devices 196(1)-196(5) as illustrated herein are representa-
tions of virtual disks 140(1)-140(5) in a mapping module
(not shown). Hypervisor 130 includes Dynamic Multi-Path-
ing (DMP) devices 195(1)-195(3) which are coupled to
storage devices 110(1)-110(3) respectively. In the technol-
ogy field of computer data storage, DMP refers to a multi-
path input/output (I/O) enhancement technique that balances
I/O across many available paths from a computing device
(e.g., hypervisor 130 implemented on computing device
125(1)) to a storage device to improve performance and
reliability. DMP devices 195(1)-195(3) can interact with
mapped representations of wvirtual disks 140(1)-140(5)
(shown as virtual devices 196(1)-196(5)) through smart pool
199. A smart pool can be any connection pooling component
(e.g., a Java™ component) modeled on connection pooling
teatures provided by an application server and/or computing

device.
In one embodiment, mapped representations of virtual

disks 140(1)-140(5) (shown as virtual devices 196(1)-196
(5)), as illustrated in FIG. 1C, respond to I/O and read-
capacity. Virtual machines 120(1)-120(5) all share the same
Raw Device Mapping (RDM) device 197 and access to the
RDM device 1s mapped to the mapped representations of
virtual disks 140(1)-140(5) (shown as virtual devices 196
(1)-196(5)) 1n hypervisor 130 based on the pseudo-identity
of virtual machines 120(1)-120(5). RDM device 197 can
enable a Storage Logical Unit Number (LUN) to be directly
connected to a virtual machine from a Storage Area Network
(SAN). An RDM device can enable virtual disk access in a
virtual machine environment.

In an alternate embodiment, disk access can also be
enabled by implementing file system 142 for data center
applications (including databases, customer relationship
management (CRM) applications and enterprise resource
planning (ERP) applications. However, an RDM device can
be preferable for configurations involving clustering

10

15

20

25

30

35

40

45

50

55

60

65

8

between virtual machines, between physical and virtual
machines, or where SAN-aware applications are running
inside virtual machines.

FIG. 2A 1s a flowchart of a method for sharing a storage
device with multiple virtual machines. The methods begins
at 205 by creating a pseudo-identity for storage device
110(1). In one embodiment, the pseudo-identity of storage
device 110(1) shown and/or presented to virtual machines
120(1)-102(4) by hypervisor 130 1s held constant. The upper
layer of hypervisor 130 presents a constant pseudo-identity
of storage device 110(1) and also makes visible physical
characteristics of storage device 110(1) to virtual machines
120(1)-120(4). In this embodiment, the physical character-
1stics of storage device 110(1) are also held constant when
presented to virtual machines 120(1)-120(4). Because all
virtual machines supported by the hypervisor see a pseudo-
identity of the storage device, address space module 165 can
assign only a portion of an address space of storage device
110(1), while the virtual machine 1s under the 1mpression
that the virtual machine has access to the entire and/or
complete storage device.

Storage devices can be described by their physical storage
characteristics. These characteristics can include, among
other things, whether or not the storage device can store data
permanently, how the computing device locates data 1n the
storage device (e.g., by implementing file system 142), and
whether or not the storage device needs constant electric
power to store data. For example, storage device 110(1) can
be a persistent storage device (e.g., a hard disk), a SSD-
based storage device, or some other non-transitory com-
puter-readable medium.

A persistent storage device 1s described as providing
persistent storage because data stored on the persistent
storage device can be maintained (e.g., for a non-negligible
time, such as several minutes, hours, days, weeks, years,
decades, and so on), even 1f power to the persistent storage
device and/or to a drive that reads and writes to persistent
storage device 1s mterrupted or cycled off for a non-negli-
gible time. Because storage devices (e.g., persistent storage
devices) are often, due to reasons of cost, reliability, and the
like, unable to provide access performance as high other
types of storage devices, the time needed to access data on
such a persistent storage device can be a limiting factor.
Accordingly, many systems use a storage device than can be
accessed more quickly to temporarily store the portion of an
application’s data that are currently needed, for example, by
a database management system (DBMS), i order to
improve DBMS performance. In certain embodiments of the
present invention, such storage can be implemented on such
a storage device, which for example, can be an SSD-based
storage device.

The method continues at 210 by preparing information
(e.g., 1 hypervisor 130) needed to modily a response to a
command (e.g., a SCSI mquiry command) 1ssued to a
storage device by a virtual machine. In one embodiment, by
modifying the response to the command, hypervisor 130
introduces several capabilities applicable to storage device
110(1) into the hypervisor’s upper layer. Hypervisor 130 can
model (e.g., the upper layer of the hypervisor can present a
unified and constant view of the identity and characteristics
of the underlying storage device by acting as a solftware
abstraction layer) the characteristics of the storage device
betore hypervisor 130 presents these characteristics to vir-
tual machines 120(1)-120(4). For example, hypervisor 130
can convey the physical characteristics of the storage device
to the virtual machine accessing the virtual storage device
that presents the storage device. This physical to virtual

US 9,477,508 Bl

9

mapping can then be held constant by hypervisor 130 and
presented 1n a consistent manner to virtual machines 120
(1)-120(4), for example, in the form of metadata.

After modifying a response to a command, the method
continues at 215 and determines the physical characteristics
of the storage device. At 220, the method checks 1f the
physical characteristics and/or parameters of the storage
device 1s acceptable and/or optimal. For example, hypervi-
sor 130 facilitates the procurement of the physical charac-
teristics of the storage device by mapping to the storage
device. Hypervisor 130 then models the physical character-
istics of the storage device (e.g., the hypervisor virtualizes
the physical characteristics of the storage device as pseudo-
characteristics) and presents the virtualized version of the
physical characteristics to the virtual machines accessing the
storage device via their respective virtual storage devices. It
the physical characteristics of the storage device are deemed
acceptable and/or optimal, the method, at 225, uses the
virtual disk associated with the wvirtual machine, for
example, to store data. If the physical characteristics are not
acceptable and/or optimal, the method, at 230, migrates the
mapping of the virtual machine to another storage device.

Physical characteristics and/or parameters deemed
acceptable and/or optimal can include a safe or reliable
operating temperature, an ample amount of free space for
additional storage operations, a cleanup activity that has
already been completed, and/or the implementation of a
dynamic and/or static wear-leveling operation for prolong-
ing the service life of the storage device. For example, an
acceptable and/or optimal physical characteristic and/or
parameter may include the implementation of a dynamic
wear-leveling operation on the storage device by using a
map to link the storage device’s Logical Block Addresses
(LBAs) from the operating system to the storage device. A
storage device with wear-leveling enabled can last longer
than another storage device with no wear-leveling. Thus, the
presence of an ongoing wear-leveling operation or the future
implementation of a wear-leveling operation can be deemed
to be an acceptable and/or optimal physical characteristic
and/or parameter of the storage device.

FIG. 2B 1s a flowchart of a method of modifying and
transmitting a response from a storage device to a virtual
machine, via a hypervisor. Pseudo-identity module 180
running on hypervisor 130 can show a pseudo-identity of
storage device 110(1) to hypervisor 130, which 1n turns
presents the same pseudo-identity to all the virtual machines
the hypervisor implements and supports. In some embodi-
ments, a storage device’s pseudo-identity can span other
storage devices on alternate computing devices. For
example, computing device 125(1) can be coupled to storage
device 110(1) and computing device 125(2) can be coupled
to storage device 110(N). Each storage device can also have
its own hypervisor running pseudo-identity module 180. In
this example, the pseudo-identity module 180 running on
both computing device 125(1) and computing device 125(2)
(coupled by network 105) can present the same pseudo-
identity ol any storage device coupled to each computing
device (e.g., storage device 110(1) and storage device 110
(N)), to the hypervisor associated with each computing
device, and by extension, to each virtual machine imple-
mented and supported by the corresponding hypervisor (e.g.,
virtual machines 120(1)-120(4)).

In one embodiment, the presentation of the same pseudo-
identity can be achieved by assigning a unique World Wide
Name (WWN) or World Wide Identifier (WWID) to each
storage device. A WWN is a unique 1dentifier used 1n storage
technologies including Fiber Channel, Advanced Technol-

10

15

20

25

30

35

40

45

50

55

60

65

10

ogy Attachment (ATA), and as discussed herein, Serial
Attached SCSI (SAS). A WWN may be employed i a
variety of roles, such a serial number or for addressability.
In this example, a WWN can be used to assign the same
pseudo-identity to a variety of storage devices, including
storage device 110(1) and storage device 110(N). In other
embodiments, a WWN, when implemented as a pseudo-
identity, can be used to mask the identities of multiple
storage devices from multiple vendors, and present the
identities of the various storage devices in a unified manner
to multiple virtual machines as belonging to the same
vendor. Because the hypervisor sees the pseudo-identity
(e.g., assigned by pseudo-identity module 180) and passes
and/or transmits the pseudo-identity to the virtual machine
based on a direct mapping and/or a pass through mapping
strategy, even the virtual machine starts seeing the identities
of multiple storage devices from multiple vendors as a single
unified pseudo-1dentity associated with same vendor and the
same storage device. Because the virtual machines sup-
ported by the hypervisor are presented with a pseudo-
identity of the storage device, address space module 165 can
assign only a portion of an address space of storage device
110(1), while from the perspective of the virtual machine,
that portion of the storage device appears as the entire
storage device to the virtual machine.

At 250, the method checks to determine i1f the modified
response should include the pseudo-identity. If the modified
response should include the pseudo-identity, the method, at
2355, emulates and adds the pseudo-identity to the modified
response. If the modified response should not include the
pseudo-identity, the method, at 260, checks to determine 1
the modified response should also include the physical
characteristics of the storage device. It the physical charac-
teristics should not be included in the modified response, the
method, at 265, adds the physical characteristics to the
modified response. If the physical characteristics should be
included in the modified response, the method ends at 270
by transmitting the modified response to the virtual machine.
By checking the modified response for the inclusion of the
pseudo-identity of the storage device and the physical char-
acteristics of the storage device, the method facilitates
sharing of storage devices with virtual machines while at the
same time proilering the benefits of both virtualization and
actions that can be taken 1n response to being aware of the
physical characteristics of a storage device. These actions,
both remedial and/or preemptive, which include migrating
(or moving) the mapping of a virtual machine from one
storage device to another, are described next.

An Example of Changing a Virtual Machine Mapping

It should be noted that virtual machine migration 1s
typically associated with moving a virtual machine from one
physical machine (or hypervisor) to another physical
machine. In embodiments of this invention, the mapping of
a pseudo storage device 1s changed from one storage device
to another storage device (after copying the contents of the
storage device) due to changes 1n operating conditions (or
change 1n physical characteristics) of the physical storage
device or due to the migration of the virtual machine from
one physical machine to another. In one embodiment, the
movement and/or migration of the virtual machine from one
hypervisor to another hypervisor (e.g., from hypervisor 130
on computing device 125(2) to a different hypervisor imple-
mented on computing device 125(2)) can also trigger a
change and/or migration ol mapping of the virtual device
seen by the virtual machine.

FIG. 2C 1s a flowchart of a method of migrating/changing
a mapping of a virtual machine from one storage to another

US 9,477,508 Bl

11

storage device. Changing the mapping can be user-initiated.
The method begins at 275 by recetving a modified response
with physical characteristics of the storage device. It should
be noted that the modified response also includes the
pseudo-identity of the storage device. The method continues
at 280 by determining an operating condition of the storage
device based on the physical characteristics of the storage
device. In one embodiment, one or more physical charac-
teristics of the storage device include, but are not limited to,
an operating temperature of the storage device, a wear-
leveling associated with the storage device, and/or a cleanup
activity associated with the storage device. The one or more
physical characteristics of the storage device are associated
with the operating condition of the storage device. Although
the pseudo-identity of the storage device 1s constant, the
operating condition of the storage device can change based
on the physical characteristics of the storage device. Con-
sequently, another storage device can have a better and/or
more optimal operating condition compared to the storage
device.

Accordingly, at 283, the method compares the operating
condition of the storage device to the operating condition of
another storage device. For example, storage device 110(N)
may have a better and/or more optimal operating condition
compared to storage device 110(1) measured by an operating
temperature of the two storage devices. An operating tem-
perature 1s the temperature at which an electrical or
mechanical device, operates. Here, storage device 110(1)
can only operate effectively within a specified temperature
range which can vary based on the storage device’s function
and application context. For example, over-utilization of
storage device 110(1) caused by excessive read and/or write
operations by virtual machines 120(1)-120(4) may result 1n
a high operating temperature of storage device 110(1).
Outside the specified range, storage device 110(1) may fail.
Therefore, it can be desirable for the wvirtual machines
utilizing storage device 110(1) for storage purposes to move
to an alternate storage device with an operating temperature
which 1s within the specified and/or safe temperature range.

The method, at 290, determines whether another storage
device (e.g., storage device 110(N)) has a more optimal (or
acceptable) operating condition (e.g., compared to storage
device 110(1)). Whether another storage device has a more
optimal operating condition can be determined 1n a variety
of ways. In one embodiment, migration module 170 moni-
tors the operating condition of storage device 110(1), and 11
the given operating condition (e.g., operating temperature)
of storage device 110(1) exceeds a certain specified range,
migration module 170 determines that storage device 110(1)
1s not optimal, and further determines whether storage
device 110(N) 1s within the specified operating (tempera-
ture) range. In another embodiment, an administrator can
pre-determine an optimal operating condition of the storage
device. In yet another embodiment, an error and operating
condition tracking mechanism of multiple storage devices
can be momitored to determine which storage device has an
optimal operation condition.

An optimal (or acceptable) operating condition of a
storage device compared to another storage device may be
determined by comparing one or more physical character-
istics of the storage devices including, but not limited to, an
operating temperature of the storage devices, a wear-level-
ing associated with the storage devices, or a cleanup activity
associated with the storage devices. For example, after a
SSD-based storage device reaches a threshold, a cleanup
activity 1s performed on the storage device to free up empty
slots on the storage device, which can subsequently be used

10

15

20

25

30

35

40

45

50

55

60

65

12

for reads and/or writes. This so called garbage collection rate
can be different for different storage devices. Because
cleanup activities are typically accumulated over a period of
time and performed at a later time, a storage device may
inadvertently accumulate a lot of garbage data (e.g., occu-
pied space on the storage device that should be cleared out
by the cleaning activity but for the waiting period). For
example, 1f the extra storage space in storage device 110(1)
1s occupied by garbage data and virtual machine 120(4)
requires an additional 200 GB {for a storage operation, this
additional 200 GB may not be available to virtual machine
120(4) until the cleanup activity has been completed.

By presenting a pseudo-identity to virtual machine 120
(4), hypervisor 130 permits virtual machine 120(4) to
migrate the virtual machine mapping to computing device
125(2) which 1s coupled to storage device 110(N) via
network 105. It storage device 110(N) does not have a later
scheduled cleanup activity or has already completed its
cleanup activity, then, at least from the point of view of
virtual machine 120(4), storage device 110(N) 1s a fresh
storage device with the necessary storage space provided by
address space module 165. Because hypervisor 130 relays
the same pseudo-identity for both storage device 110(1) and
storage device 110(N) to virtual machine 120(4), the map-
ping ol virtual machine 120(4), 1 migrated to storage device
110(N) from storage device 110(1), can enable virtual
machine 120(4) to operate under the assumption that virtual
machine 120(4) 1s reading from and/or writing to the same
storage device, albeit with more optimal (or, at least,
improved/acceptable) operating conditions.

In one embodiment, the modified response provides the
virtual machine with the physical characteristics of the
storage device by using the hypervisor to map the storage
device to the virtual machine such that the virtual machine
sees the virtual characteristics of the storage device. Under
this scenario, even 1f the virtual machine 1s migrated to
another storage device, the requested characteristics remain
the same because the hypervisor attaches a modeled virtual
value of the physical characteristics of the storage device to
the virtual machine. Accordingly, if another storage device
has a more optimal operating condition compared to the
storage device, the method, at 295, emulates the pseudo-
identity of the storage device and assigns the emulated
pseudo-identity to another storage device. This emulation
and assignment can be carried out by pseudo-identity mod-
ule 180. Finally, at 299, the method migrates/changes the
mapping of the virtual machine from the storage device to
another storage device. Therefore, migration based on an
assigned pseudo-identity and modeled physical characteris-
tics provides the advantages of virtualization without sacri-
ficing the benefits of being aware of a storage device’s
physical characteristics. The method not only permits utili-
zation of physical characteristics of a storage device, but
also permits a virtualization function by dynamically chang-
ing the mapping of the virtual machine from one storage
device to another storage device. The contents of the storage
device can also be transterred prior to the change of mapping
so that the virtual machine has the same data available from
the new storage device.

FIGS. 3A and 3B illustrate a mapping table and a migra-
tion table respectively. In one embodiment, hypervisor 130
acts as a broker and/or an abstraction layer between the
virtual machine and the storage device. For example, if
virtual machine 120(3) 1s using storage device 110(1) and
virtual machine 120(4) 1s using storage device 110(IN),
hypervisor 130 presents the characteristics of storage device
110(1) as a modeled value. There are at least two types of

US 9,477,508 Bl

13

characteristics of a storage device that be presented by the
hypervisor as a unified modeled value to the wirtual
machines. First, the identity of the storage device can be
emulated and presented as a pseudo-identity to the virtual
machines (e.g., identity X). The device identity, when pre-
sented as the pseudo-identity, 1s a static value and does not
change. Second, the operating condition based on the physi-
cal characteristics of the storage device can also be virtual-
ized by the hypervisor as a umified characteristic (e.g.,
characteristic Y). But it should be noted that a change 1n the
operating condition based on the physical characteristics of
the storage device can necessitate migration of the mapping,
of the virtual machine from one storage device to another
storage device.

However, although the operating condition of a storage
device can change, thus requiring migration, because of the
virtualization of the storage devices provided within the
hypervisor, the virtual machine still views the new storage
device as being the same virtual storage device as the old
storage device. In addition, because address space module
165 ensures that the virtual machine, upon migration of the
mapping, 1s still presented with the same amount and
arrangement of storage space (albeit 1n a different address
space on a different storage device), the virtual machine can
avoild a negative or less than optimal operating condition
associated with the old storage device and can migrate the
virtual machine mapping to another storage device while
maintaining the benefits provided by virtualization (e.g.,
running application 155 and/or utilizing virtual disk 140(4)
for storage operations without interruption). From the per-
spective of the virtual machine, reading and/or writing of the
storage device employs the same storage device, when 1n
reality, the physical storage device has changed.

The hypervisor, by providing an abstraction layer, pro-
vides what appears to each virtual machine as 1ts own virtual
drive. However, the translations taking place within the
hypervisor map not just the pseudo-identity of the storage
device, but also the physical characteristics of the storage
device. Accordingly, the abstraction layer provided by the
hypervisor permits live migration of the mapping (change of
mapping) ol the virtual machine between two or more
storage devices.

The systems described herein decouple the storage device
and the mapping of the virtual storage devices thereto, and
permit a virtual machine to migrate (or move) virtual
machine mapping from one physical storage device to
another without notice to an interception of the aflected
virtual machine. At the same time, the present invention also
takes advantage of the operating condition of the storage
device, and thus allows dynamic growing or shrinking of
virtual machine storage based on devices of the wvirtual
machine(s) 1 question.

An Example of a Computing Environment

IG. 4 1s a block diagram of a computing system 400
capable of implementing a pseudo-identity module 180 as
described above. Computing system 400 broadly represents
any single or multi-processor computing device or system
capable of executing computer-readable 1nstructions.
Examples of computing system 400 include, without limi-
tation, any one or more of a variety of devices including
workstations, personal computers, laptops, client-side ter-
minals, servers, distributed computing systems, handheld
devices (e.g., personal digital assistants and mobile phones),
network appliances, storage controllers (e.g., array control-
lers, tape drive controller, or hard drive controller), and the
like. In 1ts most basic configuration, computing system 400
may include at least one processor 145 and a system memory

10

15

20

25

30

35

40

45

50

55

60

65

14

150. By executing the software that implements pseudo-
identity module 180, computing system 400 becomes a
special purpose computing device that 1s configured to share
storage devices with virtual machines.

Processor 145 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing istructions. In certain embodiments, proces-
sor 145 may receive istructions from a software application
or module. These 1nstructions may cause processor 145 to
perform the functions of one or more of the embodiments
described and/or illustrated herein. For example, processor
145 may perform and/or be a means for performing all or
some of the operations described herein. Processor 145 may
also perform and/or be a means for performing any other
operations, methods, or processes described and/or 1llus-
trated herein.

Memory 150 generally represents any type or form of
volatile or non-volatile storage device or medium capable of
storing data and/or other computer-readable instructions.
Examples of memory 150 include, without limitation, ran-
dom access memory (RAM), read only memory (ROM),
flash memory, or any other suitable memory device.
Although not required, 1n certain embodiments computing
system 400 may include both a volatile memory unit (such
as, for example, memory 150) and a non-volatile storage
device (such as, for example, storage device 110(1) as
described in detail below). In one example, program instruc-
tions 1implementing a pseudo-identity module 180 may be
loaded 1nto memory 150.

In certain embodiments, computing system 400 may also
include one or more components or elements 1n addition to
processor 145 and memory 150. For example, as 1llustrated
in FIG. 5, computing system 300 may include a memory
controller 420, an Input/Output (I/0O) controller 435, and a
communication interface 445, each of which may be inter-
connected via a communication inirastructure 405. Commu-
nication inirastructure 405 generally represents any type or
form of infrastructure capable of facilitating communication
between one or more components ol a computing device.
Examples of communication infrastructure 405 include,
without limitation, a communication bus (such as an Indus-
try Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI express (PCle), or stmilar bus) and
a network.

Memory controller 420 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents ol computing system 400. For example, 1n certain
embodiments memory controller 420 may control commu-
nication between processor 145, memory 130, and [/O
controller 435 via communication infrastructure 405. In
certain embodiments, memory controller 420 may perform
and/or be a means for performing, either alone or 1n com-
bination with other elements, one or more of the operations
or features described and/or illustrated herein.

I/O controller 435 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, 1 certain embodiments I/O controller 435 may
control or facilitate transfer of data between one or more
clements of computing system 400, such as processor 145,
memory 150, communication interface 445, display adapter
415, mput interface 425, and storage interface 440.

Communication mterface 445 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between computing system 400
and one or more additional devices. For example, 1n certain

US 9,477,508 Bl

15

embodiments communication intertace 445 may facilitate
communication between computing system 400 and a pri-
vate or public network including additional computing sys-
tems. Examples of communication interface 445 include,
without limitation, a wired network interface (such as a
network interface card), a wireless network interface (such
as a wireless network interface card), a modem, and any
other suitable interface. In at least one embodiment, com-
munication interface 445 may provide a direct connection to
a remote server via a direct link to a network, such as the
Internet. Communication interface 445 may also indirectly
provide such a connection through, for example, a local area
network (such as an Ethernet network), a personal area
network, a telephone or cable network, a cellular telephone
connection, a satellite data connection, or any other suitable
connection.

In certain embodiments, communication interface 445
may also represent a host adapter configured to facilitate
communication between computing system 400 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
tace (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Flectrical and Electronics Engineers
(IEEE) 1394 host adapters, Serial Advanced Technology
Attachment (SATA), Serial Attached SCSI (SAS), and exter-
nal SATA (eSATA) host adapters, Advanced Technology
Attachment (ATA) and Parallel ATA (PATA) host adapters,
Fibre Channel mterface adapters, Ethernet adapters, or the
like.

Communication 1nterface 445 may also allow computing
system 500 to engage 1n distributed or remote computing.
For example, communication interface 445 may receive
instructions from a remote device or send structions to a
remote device for execution.

As 1llustrated 1 FIG. 4, computing system 400 may also
include at least one display device 410 coupled to commu-
nication infrastructure 4035 via a display adapter 415. Dis-
play device 410 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 415. Similarly, display adapter 415
generally represents any type or form of device configured
to forward graphics, text, and other data from communica-
tion infrastructure 405 (or from a frame builer, as known in
the art) for display on display device 410.

As 1llustrated 1n FIG. 4, computing system 400 may also
include at least one 1nput device 430 coupled to communi-
cation inirastructure 405 via an mnput interface 425. Input
device 430 generally represents any type or form of 1put
device capable of providing mput, either computer or human
generated, to computing system 400. Examples of input
device 430 include, without limitation, a keyboard, a point-
ing device, a speech recognition device, or any other mput
device.

As 1llustrated 1n FIG. 4, computing system 400 may also
include a storage device 450 and a storage device 110(1)
coupled to communication infrastructure 405 via a storage
interface 440. Devices 450 and 110(1) generally represent
any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.
For example, devices 450 and 110(1) may each include a
magnetic disk drive (e.g., a so-called hard drive), a tloppy
disk drive, a magnetic tape drive, an optical disk drive, a
flash drive, or the like. Storage interface 440 generally
represents any type or form of interface or device for
transferring data between storage devices 450 and 110(1)
and other components of computing system 400.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

In certain embodiments, devices 450 and 110(1) may be
configured to read from and/or write to a removable storage
unmit configured to store computer software, data, or other
computer-readable 1nformation. Examples of suitable
removable storage units include, without limitation, a floppy
disk, a magnetic tape, an optical disk, a flash memory
device, or the like. Devices 450 and 110(1) may also include
other similar structures or devices for allowing computer
software, data, or other computer-readable 1nstructions to be
loaded into computing system 400. For example, devices
450 and 110(1) may be configured to read and write sofit-
ware, data, or other computer-readable information. Devices
450 and 110(1) may also be a part of computing system 500
or may be a separate device accessed through other interface
systems.

Many other devices or subsystems may be connected to
computing system 400. Conversely, all of the components
and devices illustrated 1n FIG. 4 need not be present to
practice the embodiments described and/or illustrated
hereimn. The devices and subsystems referenced above may
also be interconnected 1n different ways from that shown 1n
FIG. 4.

Computing system 400 may also employ any number of
software, firmware, and/or hardware configurations. For
example, one or more of the embodiments disclosed herein
may be encoded as a computer program (also referred to as
computer software, software applications, computer-read-
able instructions, or computer control logic) on a computer-
readable storage medium. Examples of computer-readable
storage media include magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and flash media), and the like. Such computer
programs can also be transferred to computing system 500
for storage 1n memory via a network such as the Internet or
upon a carrier medium.

The computer-readable medium containing the computer
program may be loaded into computing system 400. All or
a portion of the computer program stored on the computer-
readable medium may then be stored 1n memory 150 and/or
various portions of devices 450 and 110(1). When executed
by processor 145, a computer program loaded into comput-
ing system 400 may cause processor 145 to perform and/or
be a means for performing the functions of one or more of
the embodiments described and/or illustrated herein. Addi-
tionally or alternatively, one or more of the embodiments
described and/or illustrated herein may be implemented 1n
firmware and/or hardware. For example, computing system
400 may be configured as an application specific integrated
circuit (ASIC) adapted to implement one or more of the
embodiments disclosed herein.

FIG. 5 1s a block diagram of a network architecture 500
in which virtualization system 510, computing devices 125
(1)-(N) and storage unit 530 may be coupled to a network
105. Computing devices 125(1)-(N) generally represent any
type or form of computing device or system, such as
computing system 400 1 FIG. 4.

As 1illustrated in FIG. 5§, a storage unit 530 may be
attached to computing device 125(1) through network 105.
Storage unit 330 generally represents any type or form of
storage device or medium capable of storing data and/or
other computer-readable instructions. In certain embodi-
ments, storage devices 110(1)-(N) may represent network-
attached storage (NAS) devices configured to communicate

with computing devices 125(1)-(N) using various protocols,
such as Network File System (NFS), Server Message Block

(SMB), or Common Internet File System (CIFS).

US 9,477,508 Bl

17

Computing devices 125(1)-(N) may also be connected to
a storage area network (SAN) fabric 520. SAN fabric 520
generally represents any type or form of computer network
or architecture capable of facilitating communication
between multiple storage devices. SAN fabric 520 may
facilitate commumnication between computing devices 1235
(1)-(N) and a plurality of storage devices 110(1)-(N). SAN
tabric 520 may also facilitate, via network 105, communi-
cation between virtualization system 510 and storage
devices 110(1)-(N). As with storage unit 530, storage
devices 110(1)-(N) generally represent any type or form of
storage device or medium capable of storing data and/or
other computer-readable instructions.

In certain embodiments, and with reference to computing,
system 400 of FIG. 4, a communication interface, such as
communication interface 445 in FIG. 4, may be used to
provide connectivity between virtualization system 510 and
network 105. Although FIG. 5 depicts the use of a network
(such as the Internet) for exchanging data, the embodiments
described and/or illustrated herein are not limited to the
Internet or any particular network-based environment.

In at least one embodiment, all or a portion of one or more
of the embodiments disclosed herein may be encoded as a
computer program and loaded onto and executed by com-
puting devices 125(1)-(N), storage devices 110(1)-(N) or
any combination thereof. All or a portion of one or more of
the embodiments disclosed herein may also be encoded as a
computer program, stored in computing devices 125(1)-(N),
computing devices 125(1)-(N), and distributed to virtualiza-
tion system 510 over network 105.

In some examples, all or a portion of the computing
devices 1n FIGS. 1A, 1B and 4 may represent portions of a
cloud-computing or network-based environment. Cloud-
computing environments may provide various services and
applications via the Internet. These cloud-based services
(e.g., software as a service, platform as a service, infrastruc-
ture as a service, etc.) may be accessible through a web
browser or other remote interface. Various functions
described herein may be provided through a remote desktop
environment or any other cloud-based computing environ-
ment.

In addition, one or more of the components described
herein may transform data, physical devices, and/or repre-
sentations of physical devices from one form to another. For
example, a pseudo-identity module 180 1n FIG. 1B may
transform behavior of a computing device 1n order to cause
the computing device to share storages devices with virtual
machines.

Although the present mmvention has been described in
connection with several embodiments, the invention 1s not
intended to be limited to the specific forms set forth herein.
On the contrary, 1t 1s mtended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

What 1s claimed 1s:

1. A method comprising;

creating a pseudo-identity for a physical storage device of

a plurality of physical storage devices, wherein
the physical storage device i1s coupled to a computing
device,
the pseudo-identity 1s created by a hypervisor associ-
ated with the computing device, and
the pseudo-identity facilitates
access to the physical storage device by a virtual
machine of a plurality of virtual machines asso-
ciated with the hypervisor, and

10

15

20

25

30

35

40

45

50

55

60

65

18

presentation of one or more physical characteristics
of the physical storage device to the wvirtual
machine; and
assigning a portion of an address space of the physical
storage device to the virtual machine using the pseudo-
identity.
2. The method of claim 1 comprising:
modifying a response to a command 1ssued to the physical
storage device, wherein
the command 1s 1ssued by the virtual machine to obtain
a capacity and the one or more physical character-
1stics of the physical storage device, and
the response to the command comprises the capacity
and the one or more physical characteristics of the
pseudo-identity of the physical storage device, and
the one or more physical characteristics of the physi-
cal storage device exposed to the virtual machine.
3. The method of claim 2 comprising:
migrating a mapping of the virtual machine to an another
physical storage device, wherein
prior to the migration of the mapping, the hypervisor
emulates the pseudo-identity of the physical storage
device, and assigns the pseudo-identity to the
another physical storage device.
4. The method of claim 1, wherein
cach virtual machine of the plurality of virtual machines
associated with the hypervisor 1s assigned a unique
address space of the physical storage device, and
the address space of the physical storage device assigned
to each virtual machine 1s diflerent.
5. The method of claim 3, wherein
cach virtual machine of the plurality of virtual machines
shares the pseudo-identity of the physical storage
device.
6. The method of claim 5, wherein
cach virtual machine of the plurality of virtual machines
has access to the one or more physical characteristics of
the physical storage device, and
the one or more physical characteristics of the physical
storage device are visible to the virtual machine.
7. The method of claim 6, wherein
the one or more physical characteristics of the physical
storage device comprise:
an operating temperature of the physical storage
device,
a wear-leveling associated with the physical storage
device, or
a cleanup activity associated with the physical storage
device.
8. The method of claim 6, wherein
the one or more physical characteristics of the physical
storage device are associated with an operating condi-
tion of the physical storage device.
9. The method of claim 8, comprising:
calculating the operating condition of the physical storage
device,
calculating an another operating condition of the another
physical storage device,
comparing the operating condition of the physical storage
device and the another operating condition of the
another physical storage device, and
based on the comparing, determining whether to migrate
the mapping of the virtual machine from the physical
storage device to the another physical storage device,
wherein

US 9,477,508 Bl

19

if the another operating condition 1s optimal compared
to the operating condition, performing the migration,
and
if the operating condition 1s optimal compared to the
another operating condition, not performing the
migration.
10. The method of claim 1, wherein
the physical storage device 1s a solid state disk, and
the solid state disk 1s used by the virtual machine asso-
ciated with the hypervisor to cache data.
11. A method comprising:
creating a pseudo-identity for a physical storage device,
wherein
the physical storage device 1s coupled to a computing
device, the pseudo-identity 1s created by a hypervisor
associated with the computing device, and the
pseudo-identity facilitates access to the physical stor-
age device by a virtual machine of a plurality of
virtual machines associated with the hypervisor and
presentation ol one or more physical characteristics
of the physical storage device to the virtual machine;
assigning a portion of an address space of the physical
storage device to the virtual machine using the pseudo-
identity;
calculating an operating condition of the physical storage
device based on the one or more physical characteris-
tics; and
migrating a mapping of the virtual machine from the
physical storage device to another physical storage
device, 1f the operating condition of the physical stor-
age device 1s optimal compared to an another operating
condition of the another physical storage device.
12. A system comprising:
one or more processors; and
a memory coupled to the one or more processors, wherein
the memory stores program instructions executable by
the one or more processors 1o:
create a pseudo-identity for a storage device of a
plurality of physical storage devices, wherein
the physical storage device 1s coupled to a computing
device,
the pseudo-identity 1s created by a hypervisor asso-
ciated with the computing device, and
the pseudo-identity facilitates
access to the physical storage device by a virtual
machine of a plurality of virtual machines asso-
ciated with the hypervisor, and
presentation ol one or more physical characteris-
tics of the physical storage device to the virtual
machine; and
assign a portion ol an address space of the physical
storage device to the virtual machine using the
pseudo-identity.
13. The system of claim 12, comprising
modifying a response to a command issued to the physical
storage device, wherein
the command 1s 1ssued by the virtual machine to obtain
a capacity and the one or more physical character-
1stics of the physical storage device, and
the response to the command comprises the capacity
and the one or more physical characteristics of the
pseudo-identity of the physical storage device, and
the one or more physical characteristics of the physi-
cal storage device exposed to the virtual machine;
and
migrating a mapping of the virtual machine to an another
physical storage device, wherein

10

15

20

25

30

35

40

45

50

55

60

65

20

prior to the migration of the mapping, the hypervisor
emulates the pseudo-identity of the physical storage
device, and assigns the pseudo-identity to the
another physical storage device.
14. The system of claim 13, wherein
cach virtual machine of the plurality of virtual machines
shares the pseudo-identity of the physical storage
device,
cach virtual machine of the plurality of virtual machines
has access to the one or more physical characteristics of
the physical storage device, and
the one or more physical characteristics of the physical
storage device are visible to the virtual machine.
15. The system of claim 14, wherein
the one or more physical characteristics of the physical

storage device comprise:
an operating temperature of the physical storage
device,
a wear-leveling associated with the physical storage
device, or
a cleanup activity associated with the physical storage
device; and
the one or more physical characteristics of the physical
storage device are associated with an operating condi-
tion of the physical storage device.
16. The system of claim 15, comprising
calculating the operating condition of the physical storage
device;
calculating an another operating condition of the another
physical storage device;
comparing the operating condition of the physical storage
device and the another operating condition of the
another physical storage device; and
based on the comparing, determining whether to migrate
the mapping of the virtual machine from the physical
storage device to the another physical storage device,
wherein 1f the another operating condition 1s optimal
compared to the operating condition, performing the
migration, and if the operating condition 1s optimal
compared to the another operating condition, not per-
forming the migration.
17. A computer readable storage medium comprising

program 1instructions executable to:

create a pseudo-identity for a storage device of a plurality
of physical storage devices, wherein
the physical storage device i1s coupled to a computing
device,
the pseudo-identity 1s created by a hypervisor associ-
ated with the computing device, and
the pseudo-identity facilitates
access to the physical storage device by a virtual
machine of a plurality of virtual machines asso-
ciated with the hypervisor, and
presentation of one or more physical characteristics
of the physical storage device to the virtual
machine; and
assign a portion of an address space of the physical
storage device to the virtual machine using the pseudo-
identity.

18. The computer readable storage medium of claim 17,

comprising

moditying a response to a command 1ssued to the physical
storage device, wherein
the command 1s 1ssued by the virtual machine to obtain
a capacity and the one or more physical character-
1stics of the physical storage device,

US 9,477,508 Bl

21

the response to the command comprises the capacity
and the one or more physical characteristics of the
pseudo-identity of the physical storage device, and
the one or more physical characteristics of the physi-
cal storage device exposed to the virtual machine; s
and

migrating a mapping of the virtual machine to an another
physical storage device, wherein

prior to the migration of the mapping,
the hypervisor emulates the pseudo-identity of the

physical storage device, and
assigns the pseudo-identity to the another physical

storage device.
19. The computer readable storage medium of claim 18,
wherein
cach virtual machine of the plurality of virtual machines
shares the pseudo-identity of the physical storage
device,
cach virtual machine of the plurality of virtual machines
has access to the one or more physical characteristics of
the physical storage device, and
the one or more physical characteristics of the physical
storage device are visible to the virtual machine.
20. The computer readable storage medium of claim 19,
wherein
the one or more physical characteristics of the physica
storage device comprise:
an operating temperature of the physical storage
device,

10

15

20

125

22

a wear-leveling associated with the physical storage
device, or
a cleanup activity associated with the physical storage
device; and

the one or more physical characteristics of the physical
storage device are associated with an operating condi-
tion of the physical storage device.

21. The computer readable storage medium of claim 20,

comprising

calculating the operating condition of the physical storage
device;

calculating an another operating condition of the another
physical storage device;

comparing the operating condition of the physical storage
device and the another operating condition of the
another physical storage device; and

based on the comparing, determining whether to migrate
the mapping of the virtual machine from the physical
storage device to the another physical storage device,
wherein

if the another operating condition 1s optimal compared
to the operating condition, performing the migration,
and

if the operating condition 1s optimal compared to the
another operating condition, not performing the
migration.

	Front Page
	Drawings
	Specification
	Claims

