12 United States Patent
Aahlad et al.

US009467510B2

US 9,467,510 B2
“Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(60)

(51)

(52)

METHODS, DEVICES AND SYSTEMS
ENABLING A SECURE AND AUTHORIZED
INDUCTION OF A NODE INTO A GROUP OF
NODES IN A DISTRIBUTED COMPUTING
ENVIRONMENT

Applicant: WANdisco, Inc., San Ramon, CA (US)

Inventors: Yeturu Aahlad, Foster City, CA (US);
Michael Parkin, San Ramon, CA (US);
Naeem Akhtar, Dublin, CA (US)

Assignee: WANdisco, Inc., San Ramon, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 15/004,144

Filed: Jan. 22, 2016

Prior Publication Data

US 2016/0191622 Al Jun. 30, 2016

Related U.S. Application Data

Continuation of application No. 13/8335,888, filed on
Mar. 15, 2013, now Pat. No. 9,264,3160.

Provisional application No. 61/746,867, filed on Dec.

28, 2012.

Int. CI.

GO6F 15/16 (2006.01)

HO4W 4/00 (2009.01)

HO4L 29/08 (2006.01)

HO4L 29/06 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC HO4L 67/1095 (2013.01); GO6F 9/5083

202

204

7 /

Admiristraine

eI 4

Lirmaba Fhotoa: tzad .I

(2013.01); HO4L 67/10 (2013.01); HO4L 67/34
(2013.01); HO4L 67/40 (2013.01); HO4L 69/24
(2013.01)

(38) Field of Classification Search
CPC HO4L 67/10; HO4L 41/0813; HO4L
41/0823; HO4L 41/0869; HO4L 41/12;
HO4L 41/50; HO4L 41/509; HO4L 43/04;
HO4L 43/08; HO4L 43/10; HO4L 47/70;

HO4L 61/10; HO4L 61/2507, HO4L 65/403;
HO4L 65/06

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,261,085 A 11/1993 Lamport

5,699,515 A 12/1997 Berkema et al.

5,737,601 A 4/1998 Jain et al.

(Continued)
FOREIGN PATENT DOCUMENTS

CN 102999635 A 3/2013
CN 103458044 A 12/2013

OTHER PUBLICATIONS

Office Action of Jun. 24, 2015 in U.S. Appl. No. 13/837,366.
(Continued)

Primary Examiner — Sargon Nano
(74) Attorney, Agent, or Firm — Young Law Firm, P.C.

(57) ABSTRACT

A messaging model and node induction methods and cor-
responding devices and systems are disclosed herein that are
ellective to enable an inductor node to induct an inductee
node mto a distributed computing system and to enable the
inducted node to carry out predetermined tasks.

21 Claims, 8 Drawing Sheets

2015 MR

;7

inductan :

US 9,467,510 B2

Page 2
(56) References Cited 2009/0040794 Al* 2/2009 Williams HO2M 3}/1533
363/21.14
U.S. PATENT DOCUMENTS 2009/0150566 Al 6/2009 Malkhi et al.
2010/0118842 Al 5/2010 Kalhan
5,781,910 A 7/1998 Gostanian et al. 2010/0153282 Al 6/2010 Graham
5,963,086 A * 10/1999 Hallccovevvennrnn.... HO3F 3/217 2010/0180146 Al 7/2010 Rousseau et al.
330/10 2010/0188969 Al 7/2010 Kim
6,014,669 A 1/2000 Slaughter et al. 2010/0192160 A1 7/2010 Taylor et al.
6,161,146 A 12/2000 Kley et al. 20_;0/0333166 Al 12/20_1_) Herrod
6,202,067 Bl 3/2001 Blood et al. 2011/0066296 Al 3/2011 Nelson
6,247,059 B 6/2001 Johnson 2011/0107358 Al 5/2011 Shyam et al.
6,261,085 B 7/2001 Steger et al. 2011/0302449 Al 12/2011 Douceur et al.
6,360,366 B 3/2002 Heath et al. 2011/0314163 A1 12/2011 Borins
6,401,120 Bl 6/2002 Gamache et al. 2012/0101991 Al 4/2012 Srivas et al.
6,763,013 B2 7/2004 Kennedy 2012/0130950 Al 52012 Jain et al.
6,763,014 B2 7/2004 Kennedy 2012/0197958 Al 8/2012 Nightingale
6,898,642 B2 5/9005 Chafle et al. 2012/0254412 A1 10/2012 Goose et al.
6,973,053 B1 12/2005 Passman 2013/0198332 Al1* 8/2013 Van Ackere HO041. 29/12018
7,069,320 Bl 6/2006 Chang | | | 709/217
7,155,524 B1 12/2006 Reiter et al. 2014/0019495 Al 12014 Borthakur
7,167,900 B2 1/2007 Berkowitz et al. 2014/0059310 Al 2/2014 Du et al.
7,185,076 B1* 2/2007 Novaes GOGF 9/5061 2014/0074996 Al 3/2014 Bortnikov et al.
709/217 2014/0081927 Al 3/2014 Lipcon
7,187,226 B2* 3/2007 Audyccoooonn... HO2M 1/38 2014/0164262 Al 6/2014 Graham
326/27 2014/0195558 Al 7/2014 Murthy et al.
7,272,129 B2 0/2007 Calcev 2014/0330787 Al 11/2014 Modukur et al.
7.280,040 B2 10/2007 DeVaul 2014/0344323 A1 11/2014 Pelavin
7.334.154 B2 2/2008 ILorch et al. 2014/0358844 Al 12/2014 Maudlapud:
7,400,596 B1* 7/2008 Robertson HO41. 12/189 2015/0120791 Al 4/2015 Gummaraju
370/312 2015/0234845 Al 8/2015 Moore
7,558,883 Bl 7/2009 Lamport
7,729,336 B2 6/2010 Pun
7,765,186 B1* 7/2010 Hu GO6F 17/30578 OTHER PUBLICATIONS
7.788.522 Bl* 82010 Abdelaziz HO47LOZI/I?S Oflice Action of Jun. 25, 2015 in U.S. Appl. No. 12/069,986.
709/209 International Preliminary Report on Patentability of Jul. 9, 2015 n
7.849.223 B2 12/2010 Malkhi PCT application PCT/US2013/063422.
8,194,422 B2* 6/2012 Djenguerian HO2M 3/33515 International Preliminary Report on Patentability of Jul. 9, 2015 1n
323/283 PCT application PCT/US2013/063454.
8,458,239 B2* 6/2013 Ananthanarayanan GOG6F 17/30132 International Search Report and Written Opinion of Jun. 25, 2015 in
PCT application PCT/US2015/18680.
707/737 Implementing Fault-Tolerant Services Using the State Machine
8,489,549 B2 7/2013 Guarraci Approach: A Tutorial, Fred B. Schneider Department of Computer
8,537,721 B2 o 2013 Patel Science, Cornell University, Ithaca, New York 14853, ACM Com-
3,093,453 B2 4/2()?4 Priyantha puting Surveys, vol. 22, No. 4, Dec. 1990.
3,818,951 Bl 82014 Muntz Paxos Made Simple, Leslie Lamport, Nov. 1, 2001
9,009,215 B2* 4/2015 Aahlad HO4L 67/1095 > pie, -ESIC LAMPOIT, NOV. 1, *
709/201 Specifying Systems, The TLA+ Language and Tools for Hardware
9,130,943 B1* 9/2015 Giardma HO041., 67/16 and Software Engineers Leslie Lamport, Microsoft Research, First
2002/0129087 Al 9/2002 Cachin et al. Printing, Version of Jun. 18, 2002, ISBN 0-321-14306-X.
2002/0184169 A1* 12/2002 Opitz GO6N 99/005 The Part-Time Parliament, Leslie Lamport, ACM Transactions on
706/20 Computer Systems 16, 2 (May 1998), 133-1609.
2003/0145020 Al 7/2003 Ngo et al. Time, Clocks, and the Ordering of Events in a Distributed System,
2004/0034822 Al 2/2004 Marchand Leslie Lamport, Massachusetts Computer Associates, Inc., Com-
2004/0042417 Al 3/2004 Kennedy munications of the ACM, Jul. 1978, vol. 21, No. 7.
2004/0111441 Ai‘ 6/2004 Sa!to USPTO Oflice Action of Dec. 19, 2014 1n related U.S. Appl. No.
2004/0172421 Al) 9/2004 Saito et al. 13/837.366.
2004/0221149 ALT 1172004 Rao oo GUOE 11/71143?/3 Notice of Allowance dated Jan. 29, 2015 in related U.S. Appl. No.
2005/0086384 Al 4/2005 Frnst 13/838,639 and Lists of References.
2005/0198493 Al 0/2005 Bartas USPTO Notice of Allowance dated Jul. 30, 2015 in U.S. Appl. No.
2005/0283644 A1 12/2005 Lorch et al. 14/464,030.
2006/0045055 Al 3/2006 Ramadas USPTO Oflice Action dated Sep. 24, 2015 in U.S. Appl. No.
2006/0143517 Al 6/2006 Douceur et al. 14/013,948.
2006/0155729 Al 7/2006 Aahlad et al. USPTO Oflice Action dated Sep. 24, 2015 in U.S. Appl. No.
2006/0203837 Al1* 9/2006 Shvodian HO4W 48/18 14/041,894.
370/445 USPTO Office Action in U.S. Appl. No. 14/041,894 dated Jun. 3,
2006/0235889 Al 10/2006 Rousseau et al. 2015.
2006/0259818 A'_‘ [1/2006 Howell et al. International Search Report and Written Opinion 1n PCT/US14/
2006/0265508 A1 11/2006 Angel 10451 dated Aue. 5. 2014
2007/0168412 Al 7/2007 DeVaul 7 S OUS. 2 L. .
2007/0189249 Al* 82007 Gurevichooooviiii., HO4T. 45/20 Oki et al. “Viewstamped Replication: A new Primary Copy Method
370/338 to Support Highly-Available Distributed Systems”, Technical Paper
2007/0204078 Al* 82007 Boccon-Gibod GOGF 21/64 submitted at ACM Sympoisium . . ., 1998, pp. 8-17.
710/54 Bernstein et al., “Concurrency Control & Recovery in Database
2007/0226160 Al* 9/2007 Acharya GO6N 7/005 Systems”’, published by Addison Wesley, 1987, Chapters 6, 7 and 8.
706/47 Eli Collins, Todd Lipcon, Aaron T Myers, HDFS High Availability.
2008/0133741 Al 6/2008 Kubota Sanjay Radia, Rob Chansler, Suresh Snnivas, High Availability
2008/0134052 Al 6/2008 Davis et al. Framework for the HDFS Namenode.

US 9,467,510 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Sanjay Radia, Suresh Srinivas, Yahoo! Inc. High Availability for the
HDFS Namenode.

Todd Lipcon, Quorum-Journal Design, Oct. 3, 2012.

International Search Report and Written Opinion 1n PCT/US13/
63454, dated Apr. 18, 2014.

Wiki Amazon S3, downloaded from http://en. wikipedia.org/wiki/
Amazon S3 on Mar. 4, 2014.

Introducing Geo-replication for Windows Azure Storage, Sep. 15,
2011 1:27 PM, downloaded {from http://blogs.msdn.com/b/
windowsazurestorage/archive/2011/09/15/introducing-geo-replica-
tion-for-windows-azure-storage.aspx on Mar. 4, 2014.

Google Cloud Storage Overview, downloaded from https://devel-
opers.google.com/storage/docs/overview on Mar. 4, 2014.
Cloudera Backup and Disaster Recovery, downloaded from https://
www.cloudera.com/content/cloudera-content/cloudera-docs/
CMA4Ent/latest/Cloudera-Backup-Disaster-Recovery/Cloudera-
Backup-Data-Recovery.html on Mar. 4, 2014.

What 1s Hadoop? >> Apache Falcon Apache Falcon A framework
for managing data processing in Hadoop Clusters, downloaded from
http://hortonworks.com/hadoop/falcon/ on Mar. 4, 2014.

MapR Disaster Recovery Scenario Data+Protection, Peter Conrad,
last edited by Anne Leeper on Feb. 22, 2014, downloaded from
http://doc.mapr.com/display/MapR/
Data+Protection#DataProtection-Disaster-RecoveryScenario:
DisasterRecovery on Mar. 4, 2014.

Hadoop HDFS HDFS-5442 Zero loss HDFES data replication for
multiple datacenters, The Apache Software Foundation , Created:
Oct. 29, 2013 13:11 Updated:Jan. 10, 2014 08:13, doownloaded
from https://1ssues.apache.org/jira’/browse/HDFS-5442 on Mar. 4,
2014,

Disaster Recovery Solution for Apache Hadoop Contributors: Chen
Haifeng (haifeng.chen@intel.com), Gangumalla Uma (uma.
gangumalla@intel.com), Dey Avik (avik.dey@intel.com), Li
Tianyou (tianyou.li@intel.com), Purtell, Andrew (andrew.k.
purtell@intel.com), downlaoded from https://issues.apache.org/jira/
secure/attachment/12620116/
Disaster%20Recovery%e20Solution%20for%20Hadoop.pdf on
Mar. 4, 2014.

Spanner: Google’s Globally-Distributed Database, James C.
Corbett, Jefirey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyr Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,

and Dale Woodford, downloaded from http://research.google.com/
archive/spanner.html on Mar. 4, 2014.

Transactional storage for geo-replicated systems Yair Sovran, Rus-
sell Power, Marcos K. Aguilera, Jinyang L1, downloaded from
http://research.microsoft.com/en-us/people/aguilera/walter-
sosp2011.pdf on Mar. 4, 2014.

Stronger Semantics for Low-Latency Geo-Replicated Storage,
Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David
G. Andersen, To appear in Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’13), Lombard, IL, Apr. 2013, downlaoded from http://sns.
cs.princeton.edu/docs/eiger-nsdi13.pdf on Mar. 4, 2014.

CSPAN: Cost-Effective Geo-Replicated Storate Spanning Multiple
Cloud Services, Zhe Wu, Michael Butkiewicz, Dorian Perkins,
Ethan Katz-Bassett, Harsha V. Madhyastha, downloaded from
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/
p545.pdf on Mar. 4, 2014.

USPTO Notice of Allowance dated Mar. 8, 2016 in U.S. Appl. No.
13/837,366.

USPTO Ofhice Action of Feb. 3, 2016 in U.S. Appl. No. 14/231,311.
USPTO Notice of Allowance dated Jun. 21, 2016 in U.S. Appl. No.
14/041,894.

Geo-replication, downloaded from http://searchwindowsserver.
techtarget.com/definition/geo-replication on Mar. 4, 2014.
Amazon Simple Storage Service Developer Guide API Version Mar.
1, 2006, downloaded from http://awsdocs.s3.amazonaws.com/S3/
latest/s3-dg.pdf on Mar. 4, 2014,

USPTO Ofhice Action of Jul. 27, 2016 n U.S. Appl. No. 14/231,311.
Extended European Search Report dated Jul. 14, 2016 in EP
application 138694 4.

Extended European Search Report dated Jul. 7, 2016 in EP appli-
cation 138676.1.

* cited by examiner

ll

Y A o oo o A S A A

|

ottt]

T =

T

T T i e T T T R R L L

-

+

Tt b b b R R R B M M T o T T M T B B B B P, P S O,

T B, B, B T T TR T

-

US 9,467,510 B2

I A A A A A

4
7

Tt T T T T T L, L e R e T

L

S

‘

W

i A e ol ”w
1..

m

e

b

T T T T T T T T T T T T W e o

-
T oa

TARE

T T

L]

7

-
T T T

T e M P B B

R Aha s

m\.\\.\.\\f.\\.\\.\.\ "

* + L r T r T
L E B B R B R B BN B
LY - [Y LY

+
-

... , i
aanadada A FE

+
['Y
- T

+ +
-

e e e e

Frxr-r

BN e e

+

lllllllll

£3

Sheet 1 of 8

g g g B g e M e e

+

wreie R e R R e e ¢

+

lllllllllllllllllllllllllllllllllllll

T TSI II I IS I TIE R EIFETEE ZE P

+

b b o b b b A IS,

+ +
[l

+ +

+ +
[y

F o+

Fs

Fs

— ;
o : /
) % 2
,.__“H MWTT.,__TTTTTTTTE‘E‘TTEEE A ot ,...m..__ﬂ._ %
.__..... ﬂ “.-. “__. ﬁ .HT- [
- . X 4 o W-»
y— . ; ,) % -, .
s : T 5 z , &
— mm 7 = m 7
h1 r . L] L] i.- 1 t.l _.1 Ty 3 - ol
o, . - ”
2 " r ¢ ’ % . ﬁ‘
: L mp L apon » B x
~N! v) S 'y v . S ” 5 - A . L
2 L uonpapddy e b s
. : L ' T r ' r . oy - .
S L uonddy | uogesgddy ity e
e i *- 3 3 o r - 4 - i * : T T
4 o v - A e
o’ .‘1 + + r -I_. - r \ rar -, . LI []
4 4 s , - o A i 4 ity ey o N A AR o n v , - .m. 97
L peygpswl 0 peumIKe WY]
% e MWﬂ s Hoke vz T “ .1M..$w~ Tt ? % e uﬂm A ’ FE NGRS
. 0 . : ST w o o o
m I EIIIIITEIIIFITIIITIIITITIIIIIIETIES, \é1 ut oSN U o P U F o U AR e e i e e R
f
< :
| w
Z
Fi

e e e e T T T T T T T e

- a

4

ehidny DmTRRIEILS

o O O o v O O o o o oo

Dk

w.
o
#
*
o
&
&
;
w
£
e
A
’
2
.
a
£
*
s
£
2
e
e
A
A
2
A
A
P
A
A
-
%
%
z
’
z
s
7
7
Fi
z
M
_.
A
-
7
A
A
A
T
W
o
4
%
#
&
&
¥
,.____q
o
o
tr
.y
o
o+
H
w

................................ R i g e e i

U.S. Patent

US 9,467,510 B2

Sheet 2 of 8

Oct. 11, 2016

U.S. Patent

G0 BPRON
UOEAaY |BOD]

GLe
LIBISAS

HIABN

0072
SLILDEIN
gielS pejeoltey

b

G0Z 9PON
uonesiiddy (g0

0Lé
LUSISAR
HIOMION

002
SUIYDIEIA
2lels paledlday

GOZ 9PON
uoeoiday {8507 |

002
aviynein
SIBIS PRlRddsy

Z 'Hro

U.S. Patent Oct. 11, 2016 Sheet 3 of 8 US 9.467.510 B2

] Haplicated Siale Machine
: 204

| | Storage Reclaimer290

WY

GiobaiSequencer28Q |

LocaiSequencer2?Q
Gmﬁsi;n & Baﬁkmﬁﬁﬁ";ﬁ {
TI g' 3 PP Layer 280
pgreerment Store 245

mmm I Ty,

Froposal Store 230

I Proposal Manager 220

 Proposaizec
- &gmeman? Cm:;tent
GSN340 | Numberaso| 360

FIG. 4

U.S. Patent Oct. 11, 2016 Sheet 4 of 8 US 9.467.510 B2

Logal Seqﬂéﬁe

e 400 e
Proposer Agresmaeant
Do 0123 GSN Content

Number

Hroposer ﬁgi;éémaﬂt |
Broposer Agreement
| ID=0x123 i SN 55N | Number Content |

*
-
3
ool . *‘WW\WW-—_“J

G!sz;;éequ BNCe
DU
(GOSN Loacal Sequencs Mandle
#1 400
I G3N Local Ssquence Handle
- #e gl

{GSN Local Sequence Handle
#3 , 400

- Local Sequence Handle
400 _

U.S. Patent Oct. 11, 2016 Sheet 5 of 8 US 9.467.510 B2

T o om o ode e e e ol ol e e ol ol ol e e e e e e e e ol e e e e e e TR

18
S S —
| N .
% D Pra-Gualifier
5 = 820
u E T
R ‘§ Replicated State Machine
S®ig 830
@ 2 —
%: = Sohedulsr
g |© 640

Replicator Repository interface
G50

FIG. 7

US 9,467,510 B2

Sheet 6 of 8

Oct. 11, 2016

U.S. Patent

G869
Aio)sodsn

069
2oRal

a0 Alopsoday

uigsAs uoneanddy pangrYsIg

lllll

068
soeLsu)
sy Alousadey

560
e

009
Joyeadas

0BY
WUBHT)

100
wasAs uoieaddy pepngigsiQ

B0

m e}
Emmuaemmn%m

002

wesljdoy

089
RSO

(g9

14

wejsAg uohednddy pengusig

U.S. Patent

Oct. 11, 2016

202

I

Admmnistrabor

Sheet 7 of 8

204 206

i ’

-

B’ e i e T e T e e e e e

i il i Ll iy il iyl i i

ait

IN

US 9,467,510 B2

208

Vet

ingucior inguciae

Loreais pwdunton Bk

Enginaer

Aeng IRguCiion Hokat 7T B21

¢ Bochtrag: Memrarship Faguast

\

ot Hon Hok 2Hot? ~
rokacton Hoket prasant i~ _B23

Listort 522
PRI

&ﬁﬁ““ﬁ’-u—%m#ﬂﬁﬁﬁﬁﬁﬁ-:'l-h'l--h?lr'h'lu**ﬁ*ﬁ“ﬂ-ﬂ-%m#ﬂﬁﬁﬁﬁﬁﬁﬁ&&&ﬂ**“““ﬂ-qhﬂ-w-ﬁﬁﬁﬁﬁﬁﬁ&& i B e i T g T Mg Mgt Mgt

Swieh on bagoon

,‘_

Boclehap Mambashin Bey pﬁﬂsﬁb

“‘—

Lot b bt TeoRon

B26

Rade & heaion roognized?

«_ ~_B28

B29

Lonvitedy ort heaonh

«—

Socteiap Memsrstip Ask ~w_. B31

r

* SEAT HOdaCIR

L RO redueangd

~_ B24

~B27

B30

B 8 Lieaoem

i ¥~ B32

End of inductivn process j

Dyspiay Bootsinsn Sdembsere s

T
:

apioy Detamirestis State Machine

. R35 B36

wdtah o Daaoan

837

Craphoy Boctatrap Mambarehip

Dploy Ratanninisils State Machne 1/

(- Eeistan Memherstip Aok

Fwihh b eaean

840 \ """

_Agr =0 et of vddes and IDCREONS

YO oY Isnabiedys s fraies F’

WS OF WG Bro0RsS j

Adminisirabor

- -t

1 _B42

Inductor inducise

Engineer

oI ‘H1.b

US 9,467,510 B2

Sheet 8 of 8

Oct. 11, 2016

U.S. Patent

0001

1001

L0001

d0SS5300¥d

J01IA30

NOLLVOINNNNOD

€01

3001

sNd

=

AJIA3d

d9VHOLS

9001

7001

INOY AJONWZN NIVIA

TOHLNOOD
_ d0SdNO

cc0t

| | Q¥vOsA3

| 0107

:

—

v AV 1dSId

US 9,467,510 B2

1

METHODS, DEVICES AND SYSTEMS
ENABLING A SECURE AND AUTHORIZED
INDUCTION OF A NODE INTO A GROUP OF

NODES IN A DISTRIBUTED COMPUTING
ENVIRONMENT

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s a Continuation of co-pending,

and commonly assigned U.S. patent application Ser. No.
13/835,888 filed Mar. 15, 2013 and claims the benefit of

U.S. provisional application No. 61/746,867, filed Dec, 28,
2012.

BACKGROUND

Collaborative projects, which are often facilitated in a
concurrent manner between globally separated resources
(1.e., multi-site collaborative projects), have become com-
monplace for any number of different types of projects.
Examples of such projects include, but are not limited to,
developing software, designing jetliners and designing auto-
mobiles. Relying upon distributed resources (e.g., resources
at physically different locations, logically different loca-
tions, etc.) to accelerate project time lines through optimi-
zation of human resource utilization and leveraging of
global resource skill sets has proven 1tself to ofler advanta-
geous results.

A distributed computing solution used 1n facilitating a
multi-site collaborative project 1s referred to heremn as a
distributed multi-site collaborative computing solution.
However, a distributed multi-site collaborative computing
solution 1s only one example of a distributed computing
solution. In one example, a distributed computing solution
comprises a network of computers operating an automobile.
In another example, a distributed computing solution com-
prises a network of computers in one geographic location (a
data center). In still another example, a distributed comput-
ing solution i1s a plurality of computers connected to one
router (1.e., a subnet).

While conventional distributed computing solutions do
exist, they are not without limitations that adversely impact
their effectiveness, reliability, availability, scalability, trans-
parency and/or security. In particular, with respect to con-
ventional distributed multi-site collaborative computing
solutions are limited 1n their ability to synchronize work
from globally distributed development sites 1n a real-time,
tault-tolerant manner. This 1nability forces changes in soit-
ware development and delivery procedures that often cause
delays and increase risk. Accordingly, cost savings and
productivity improvements that should be realized from
implementing a collaborative project utilizing a conven-
tional distributed computing solution are not fully achieved.

Conventional distributed multi-site collaborative comput-
ing solutions undesirably force users to change their devel-
opment procedures. For example, conventional distributed
multi-site collaborative computing solutions that lack
advantageous functionalities associated with real-time 1nfor-
mation management capabilities have a fundamental prob-
lem 1n that they cannot guarantee that local and remote
Concurrent Versions Systems (CVS) repositories will be 1n
sync at any point 1n time. This means that there 1s a great
likelihood that developers at diflerent sites can inadvertently
overwrite or corrupt each other’s work. To prevent such
potential for overwriting and corruption, these conventional
distributed multi-site collaborative computing solutions

10

15

20

25

30

35

40

45

50

55

60

65

2

require excessive and/or error prone source code branching
and manual file merging to become part of the development
process. This eflectively forces development work to be
partitioned based on time zones and makes collaboration
between distributed development teams extremely challeng-
ing, 11 not impossible.

A replicated state machine i1s a preferred enabler of
distributed computing solutions. One of several possible
examples of a distributed computing solution 1s a replicated
information repository. Therefore, more particularly, a rep-
licated state machine 1s a preferred enabler of replicated
information repositories. One of several possible applica-
tions of replicated information repositories 1s distributed
multi-site collaborative computing solutions. Therefore,
more particularly, a replicated state machine 1s a preferred
cnabler of distributed multi-site collaborative computing
solutions.

Accordingly, distributed computing solutions often rely
upon replicated state machines, replicated information
repositories or both. Replicated state machines and/or rep-
licated information repositories provide for concurrent gen-
eration, manipulation and management of information and,
thus, are 1mportant aspects of most distributed computing
solutions. However, known approaches for facilitating rep-
lication of state machines and facilitating replication of
information repositories are not without their shortcomings.

Conventional implementations of facilitating replication
ol state machines have one or more shortcomings that limait
their effectiveness. One such shortcoming 1s being prone to
repeated pre-emption of proposers 1n an agreement protocol,
which adversely impacts scalability. Another such shortcom-
ing 1s that the implementation of weak leader optimization
requires the election of a leader, which contributes to such
optimization adversely impacting complexity, speed and
scalability, and requires one more message per agreement
(e.g., 4 mstead of 3), which adversely impacts speed and
scalability. Another such shortcoming i1s that agreements
have to be reached sequentially, which adversely impacts
speed and scalability. Another such shortcoming 1s that
reclamation of persistent storage 1s limited, if not absent
altogether, which imposes a considerable burden on deploy-
ment because storage needs of such a deployment will grow
continuously and, potentially, without bound. Another such
shortcoming 1s that eflicient handling of large proposals and
of large numbers of small proposals 1s limited, 11 not absent
altogether, which adversely aflects scalability. Another such
shortcoming 1s that a relatively high number of messages
must be communicated for facilitating state machine repli-
cation, which adversely aflects scalability and wide area
network compatibility. Another limitation 1s that delays in
communicating messages adversely impact scalability.
Another such shortcoming 1s that addressing failure sce-
narios by dynamically changing (e.g., including and exclud-
Ing as necessary) participants in the replicated state machine
adversely impacts complexity and scalability.

Conventional implementations of facilitating replication
ol information repositories have one or more shortcomings
that limit their effectiveness. One such shortcoming 1s that
certain conventional multi-site collaborative computing
solutions require a single central coordinator for facilitating
replication of centrally coordinated information repositories.
Undesirably, the central coordinator adversely aflects scal-
ability because all updates to the information repository
must be routed through the single central coordinator. Fur-
thermore, such an implementation 1s not highly available
because failure of the single central coordinator will cause
the implementation to cease to be able to update any replica

US 9,467,510 B2

3

of the information repository. Another such shortcoming is
that, 1n an information repository replication implementation
relying upon log replays, information repository replication
1s facilitated 1n an active-passive manner. Therefore, only
one of the replicas can be updated at any given time.
Because of this, resource utilization 1s poor because other
replicas are either idle or limited to serving a read-only
application such as, for example, a data-mining application.
Another such shortcoming results when i1mplementation
relies upon weakly consistent replication backed by contlict-
resolution heuristics and/or application-intervention mecha-
nisms. This type of information repository replication allows
conflicting updates to the replicas of the information reposi-
tory and requires an application using the information
repository to resolve these conflicts. Thus, such an 1mple-
mentation adversely aflects transparency with respect to the
application.

Still referring to conventional implementations of facili-
tating replication of information repositories have one or
more shortcomings that limit their efiectiveness, implemen-
tations relying upon a disk mirroring solution are known to
have one or more shortcomings. This type of implementa-
tion 1s an active-passive implementation. Therefore, one
such shortcoming 1s that only one of the replicas can be used
by the application at any given time. Because of this,
resource utilization 1s poor because the other replicas (1.e.,
the passive mirrors) are neither readable nor writable while
in their role as passive mirrors. Another such shortcoming of
this particular implementation is that the replication method
1s not aware ol the application’s transaction boundaries.
Because of this, at the point of a failure, the mirror may have
a partial outcome of a transaction, and may therefore be
unusable. Another such shortcoming is that replication
method propagates changes to the information from the node
at which the change originated to all other nodes. Because
the size of the changes to the information 1s often much
larger than the size of the command that caused the change,
such an implementation may require an undesirably large
amount of bandwidth. Another such shortcoming is that, 1f
the information in the master repository were to become
corrupted for any reason, that corruption would be propa-
gated to all other replicas of the repository. Because of this,
the information repository may not be recoverable or may
have to be recovered from an older backup copy, thus
entailing further loss of information.

Therefore, a replicated state machine that overcomes
drawbacks associated with conventional replicated state
machines would be useful and advantageous. More specifi-
cally, a replicated information repository built using such a
replicated state machine would be superior to a conventional
replicated information repository. Even more specifically, a
replicated CVS repository built using such a replicated state
machine would be superior to a conventional replicated CVS
repository.

The use of distributed computing solutions such as
described above, therefore, has been a key enabler of such
collaborative projects 1n that 1t provides a relatively effective
and etlicient means of sharing information between physi-
cally separated locations, logically separated locations, etc.
At each such location, there may be one or more computing,
nodes of the distributed computing system. A new node, to
participate 1n the collaborative project, must be mnvited to
jo1n the existing nodes, and must be told about the locations
and nodes that are to be visible to 1t and with whom the
newly invited node 1s allowed to exchange messages and
interact.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing functional relation-
ships of elements within a multi-site computing system
architecture 1n accordance with one embodiment.

FIG. 2 1s a high-level block diagram showing deployment
of elements making up a multi-site computing system archi-
tecture 1n accordance with one embodiment.

FIG. 3 1s a block diagram showing functional components
of a replicated state machine 1n accordance with one
embodiment.

FIG. 4 1s a block diagram showing a proposal 1ssued by
a local application node 1n accordance with one embodi-
ment.

FIG. 5 1s a block diagram showing entry structure of a
global sequencer of the replicated state machine of FIG. 3.

FIG. 6 1s a block diagram showing entry structure of a
local sequencer of the replicated state machine of FIG. 3.

FIG. 7. 1s a block diagram showing a replicator in
accordance with one embodiment.

FIG. 8 15 a detailed-level block diagram showing deploy-
ment of elements making up a multi-site computing system
architecture in accordance with one embodiment.

FIG. 9 1s a diagram showing aspects of the devices,
methods and systems enabling a secure and authorized
induction of a node 1nto a group of nodes according to one
embodiment.

FIG. 10 1s a block diagram of a computing device with
which embodiments may be carried out.

DETAILED DESCRIPTION

Disclosed herein are various aspects for facilitating a
practical implementation of a replicated state machine 1n a
variety of distributed computing system architectures (e.g.,
distributed multi-site collaborative computing system archi-
tecture). A skilled person will be aware of one or more
conventional implementations of a replicated state machine.
For example, such a conventional implementation of a state
machine 1s disclosed 1n the publication entitled “Implement-
ing fault-tolerant services using the state machine approach:
A tutonal” (pages 299-319), authored by F. B. Schneider,
published 1n ACM Computing Surveys 22 in December of
1990 and 1s 1incorporated herein by reference 1n 1ts entirety.
With respect to conventional implementation of a state
machine 1n a distributed application system architecture and
as discussed below 1n greater detail, embodiments enhance
aspects of scalability, reliability, availability and fault-toler-
ance.

Embodiments provide for a practical implementation of a
replicated state machine 1n a variety of distributed comput-
ing system architectures (e.g., distributed multi-site collab-
orative computing system architectures). More specifically,
embodiments enhance scalability, reliability, availability and
fault-tolerance of a replicated state machine and/or repli-
cated information repository in a distributed computing
system architecture. Accordingly, embodiments advanta-
geously overcome one or more shortcomings associated
with conventional approaches for implementing a replicated
state machine and/or a replicated information repository 1n
a distributed computing system architecture.

In one embodiment, a replicated state machine may
comprise a proposal manager, an agreement manager, a
collision/back-ofl timer and a storage reclaimer. The pro-
posal manager facilitates management of proposals 1ssued
by a node of a distributed application for enabling coordi-
nated execution of the proposals by all the nodes of the

US 9,467,510 B2

S

distributed application that need to do so, possibly, but not
necessarily including itself. The agreement manager facili-
tates agreement on the proposals. The collision/back-ofl
timer precludes repeated pre-emptions of rounds 1n attempt-
ing to achieve agreement on the proposals. The storage
reclaimer reclaims persistent storage utilized for storing
proposal agreements and/or the proposals.

In another embodiment, a distributed computing system
architecture may comprise a network system and a plurality
of distributed computing systems interconnected via the
network system. Each one of the distributed computing
systems may include a respective replicated state machine
and a respective local application node connected to the
respective replicated state machine. The respective repli-
cated state machine of each one of the distributed computing
systems facilitates management of proposals for enabling
coordinated execution of the proposals by the distributed
application node of all other ones of the distributed com-
puting systems, facilitates agreement on the proposals, pre-
cludes repeated pre-emptions of rounds 1n attempting to
achieve agreement on the proposals and reclaims persistent
storage utilized for storing at least one of proposal agree-
ments and the proposals.

In another embodiment, a method may comprise a plu-
rality of operations. An operation may be performed for
facilitating agreement on proposals received from a local
application node. An operation may be performed for pre-
cluding repeated preemptions of rounds in attempting to
achieve agreement on the proposals. An operation may be
performed for reclaiming respective persistent storage uti-
lized for storing at least one of proposal agreements and the
proposals.

In at least one embodiment, at least a portion of the
proposals include proposed steps corresponding to 1mple-
mentation of an information update mnitiated by a node of a
distributed application. An 1ssuance order of the proposals
may be preserved while concurrent agreement on the pro-
posals 1s facilitated. A portion of the proposals may be
proposed write steps corresponding to a respective informa-
tion update and the proposal manager may assign a local
sequence number to each one of the proposed write steps and
create a globally unique interleaving of the proposed write
steps such that all nodes of a distributed application execut-
ing the proposed write steps execute the proposed write
steps 1n a common sequence. A local sequencer including a
plurality of entries each associated with a respective one of
the proposals may be provided, as may be a global sequencer
including a plurality of entries each referencing a respective
one of the entries of the local sequencer. Each one of the
entries of the local sequencer may have a unique local
sequence number assigned thereto, each one of the entries of
the local sequencer may be sequentially arranged with
respect to the assigned local sequence number and, after the
agreement manager facilitates agreement on one of the
proposals, an entry corresponding to the one proposal upon
which agreement 1s facilitated may be created within the
global sequencer 1n response to determining a position 1n
which the entry 1s positioned within the global sequencer.
The storage reclaimer may reclaim persistent storage by
deleting a record for the one proposal from persistent
proposal storage after the position of the entry 1n the global
sequencer 1s determined and known to all nodes. The
collision/back-ofl timer may be configured to preclude
repeated pre-emptions by performing an operation of wait-
ing for a computed pre-emption-delay duration to pass after
starting a current one of the rounds for a first proposer before
initiating a next one of the round for the first proposer and/or

10

15

20

25

30

35

40

45

50

55

60

65

6

an operation of waiting for a computed round-in-progress
delay duration to pass after starting a current one of the
rounds for the first proposer before starting a next one of the
rounds for a second proposer.

Turning now to the figures, FIG. 1 shows a multi-site
computing system architecture in accordance with one
embodiment (i.e., referred to herein as the multi-site com-
puting system architecture 100) may include a plurality of
distributed application systems 1035 interconnected by a
Wide Area Network (WAN) 110. Each one of the distributed
application systems 105 may include a plurality of distrib-
uted application nodes 115 (e.g., an application running on
a workstation), a replicator 120 and a repository replica 125.
The replicator 120 of each distributed application system
105 may be connected between the WAN 110, the distrib-
uted application nodes 115 of the respective distributed
application system 105 and the repository replica 1235 of the
respective distributed application system 105.

In one embodiment, each repository replica 125 1s a
Concurrent Versions System (CVS) repository. CVS 1s a
known open source code versioning system. CVS, like most
other source code versioning systems, 1s designed to run as
a central server to which multiple CVS clients (e.g., a
distributed application nodes 1135) connect using a CVS
protocol over, for example, Transmission Control Protocol
(TCP). The CVS server, as implemented, forks a process per
client connection to handle a CVS request from each client.
Accordingly, the replicator 120 and the repository replica
125 allows for multiple replicas of a CVS repository. While
a CVS information repository 1s one example of an infor-
mation repository useful with one embodiment, the subject
matter of the present disclosure 1s useful in replicating other
types ol information repositories. Databases and file systems
are examples of other such types of information repositories.
Accordingly, usefulness and applicability of embodiments
are not limited to a particular type of information repository.

As 1s discussed below 1n greater detail, each replicator
120 may be configured for writing information updates from
its respective distributed application system 105 to the
repository replica 125 of each other distributed application
system 105. Each replicator 120 may be the mtermediary
that acts as an application gateway between CVS clients
(1.e., a respective distributed application node 1135) and a
given CVS server (1.e., the respective repository replica
125). Each replicator 120 coordinates with other peer rep-
licators to ensure that all of the repository replicas 125 stay
in sync with each other.

Unlike conventional solutions, the multi-site computing
system architecture 100 does not rely on a central transac-
tion coordinator that 1s known to be a single-point-of-failure.
The multi-site computing system architecture 100 provides
a unique approach to real-time active-active replication,
operating on the principle of one-copy equivalence across all
CVS repository replicas of a distributed application system.
Accordingly, 1n accordance with one embodiment, every
repository replica 1s 1 sync with every other repository
replica in a real-time manner, so users at every node of the
distributed application system (1.e., distributed application
node) are always working from the same information base
(e.g., programmers working from the same code base).

Through integration of the replicator 120 with the respec-
tive repository replica 125, each repository replica becomes
an active node on the WAN 110 with 1ts own transaction
coordinator (1.e., the respective replicator 120). Each dis-
tributed transaction coordinator accepts local updates and
propagate them to all of the other repository replicas 1235 in
real-time. Accordingly, all users within the multi-site com-

US 9,467,510 B2

7

puting system architecture 100 are effectively working from
the same repository information (e.g., a single CVS 1nifor-
mation repository) regardless of location. To this end, a
multi-site computing system architecture 1n accordance with
one embodiment 1s a cost-effective, fault-tolerant software
configuration management (SCM) solution that synchro-
nizes work from globally distributed development teams in
real-time.

When network or server failures occur, developers can
continue working. Changes are logged in a transaction
journal of the local one of the replicators 120. The transac-
tion journal 1s similar 1n function to a database redo log.
When connectivity 1s restored, the local one of the replica-
tors 120 reaches out to the replicator 120 of other ones of the
distributed application systems 105 to bring the local one of
the repository replicas 125 up to date, as well as apply the
changes captured 1n the local transaction journal while the
network or system was down. Recovery may be imple-
mented automatically, without any intervention from a CVS
administrator. This self-healing capability ensures zero loss
of data, no lost development time, and eliminates the risk of
human error in a disaster recovery scenario.

The benefits of working from essentially the same reposi-
tory information mclude not having to change development
procedures when development moves abroad, not having to
sit 1dle while waiting for large builds to complete when work
from multiple sites 1s being integrated, being able to detect
development problems earlier and spending less resources
(e.g., reducing redundant resource utilization) 1 Quality
Assurance. In addition, disaster recovery isn’t an issue
because the integrated seli-healing capability provides
disaster avoidance. Work 1s never lost when a system goes
down.

As disclosed above, implementation of a replicated state
machine in accordance with one embodiment advanta-
geously impacts scalability, reliability, availability and fault-
tolerance of such a replicated state machine. By advanta-
geously 1mpacting scalability, reliability, availability and
tault-tolerance, the present provides a practical approach to
implementing a replicated state machine in a multi-site
computing system architecture. In implementing a replicated
state machine 1n accordance with one embodiment, all or a
portion of the following objects will be met: allowing nodes
of a distributed computing system of computers to evolve
their state 1n a coordinated manner; allowing the consistency
of a distributed system of computers to be preserved despite
arbitrary failures or partial failures of the computer net-
works, computers or computing resources; allowing a reli-
able system of distributed application nodes to be created
out ol components with modest reliability; ensuring the
termination of the agreement protocol with probability as a
function of time asymptotically approaching 1, despite col-
lisions 1n the agreement protocol; eliminating collisions 1n
the agreement protocol under normal operating conditions;
improving the efliciency of the agreement protocol; reducing
and bounding the memory and disk usage of the replicated
state machine; reducing the usage of network resources by
the replicated state machine; increasing the throughput of
state transitions realizable by the replicated state machine;
and enabling more eflicient management of memory and
disk resources by the distributed application nodes served by
the replicated state machine.

As shown 1n FIG. 2, multi-site computing functionality 1n
accordance with one embodiment 1s facilitated by a plurality
of replicated state machines 200 that interact with each other
and with a respective local application node 205 through a
network system 210. Preferably, but not necessarily, each

10

15

20

25

30

35

40

45

50

55

60

65

8

local application node 205 may be that of a distributed
application and serves as a proposal proposer or proposal
acceptor at any given point in time. In one embodiment, the
network system 210 may include a Wide Area Network
(WAN) connected between the replicated state machines 200
and a respective Local Area Network (LAN) connected
between each replicated state machine 200 and the respec-
tive local application node 205. For example, each replicated
state machine 200 and its respective local application node
2035 are situated at a respective site for a multi-site collab-
orative computing project. The LAN-portion of the network
system 210 facilitates sharing of information on a local basis
(1.e., between each replicated state machine 200 and 1its
respective local application node 205) and the WAN-portion
ol the network system 210 facilitates sharing of information
on a global basis (1.e., between the replicated state machines
200). While a LAN, a WAN or both are examples of
constituent components of a network system 1n accordance
with one embodiment, embodiments are not limited to a
particular configuration of network system. For example,
other embodiments of a network system 1n accordance with
one embodiment 1include an ad-hoc network system includ-
ing embedded computers 1n an automobile, a network sys-
tem comprising a plurality of subnets in a data center and a
network system including a subnet within a data center.

FIG. 3 1s a block diagram showing functional components
of each replicated state machine 200 shown 1n FIG. 2. Each
replicated state machine 200 may include a proposal man-
ager 220, persistence proposal storage 230, an agreement
manager 240, an agreement store, 245, a Distributed File
Transier Protocol (DFTP) layer 250, a collision & back-off
timer 260, a local sequencer 270, a global sequencer 280 and
a storage reclaimer 290 (i.e., a persistent storage garbage
collector). The proposal manager 220, persistence proposal
storage 230, the agreement manager 240, the agreement
store, 245, the DFTP layer 250, the collision & back-off
timer 260, the local sequencer 270, the global sequencer 280
and the storage reclaimer 290 are interconnected to at least
a portion of each other for enabling interaction therebe-
tween. As will be seen 1n the following discussion, each of
the replicated state machine functional components supports
advantageous functionality in accordance with one embodi-
ment.
Proposal Management

Each local application node 205 proposes a sequence of
proposals to the respective replicated state machine 200. The
sequence ol proposals proposed by each local node 6
constitutes a local sequence of that respective local node
205, which may be maintained within the local sequencer
270 of the respective replicated state machine 200. The
proposal manager 220 of each replicated state machine 200
organizes the respective sequence of proposals 1into a single
respective global sequence of proposals, which may be
maintained within the global sequencer 280 of the respective
replicated state machine 200. Each global sequence of
proposals has the following properties: each proposal of
cach local sequence occurs exactly once in the respective
global sequence, the relative ordering of any two proposals
in a local sequence may be optionally preserved in the
respective global sequence, and the global sequences (with
or without local ordering preserved) associated with all of
the local application nodes 2035 are identical.

When a thread of the local application node 203 proposes
a proposal (e.g., write steps) to the respective replicated state
machine 200, the replicated state machine 200 assigns a
local sequence number to the proposal. That replicated state
machine 200 then determines an agreement number for that

US 9,467,510 B2

9

proposal. As will become apparent from the discussions
below, the agreement number determines the position of a
respective proposal in the global sequence. The replicated
state machine 200 then saves a record of the proposal 1n 1ts
persistent proposal storage 230. The replicated state
machine 200 then returns control of the local application
node’s thread back to the local application node, so the
thread may be available for use by the local application, and
not 1dle while the agreement protocol executes. The replicate
state machine then mnitiates an agreement protocol for the
proposal via the agreement manager 240. When the agree-
ment protocol terminates, the replicated state machine 200
compares the agreement reached by the agreement protocol
with proposed agreement contained within the proposal. IT
the agreement reached by the agreement manager 240 may
be the same as that of the proposal, the replicated state
machine 200 concludes processing of the proposal. Other-
wise, the replicated state machine 200 repeatedly attempts
agreement on the proposal using a new agreement number
until the agreement reached by the agreement manager may
be the same as that of the proposal. Upon the conclusion of
an agreement, each local application node 2035 enqueues the
now agreed upon proposal 1n 1ts global sequence. Thereatter,
cach local application node 205 of the distributed applica-
tion dequeues and executes the proposals contained within
the global sequence.

FIG. 4 shows an embodiment of a proposal 1n accordance
with one embodiment, which 1s referred to herein as the
proposal 300. The proposal 300 may include a proposer
identifier 320 (1.e., an 1dentifier of a local application node),
a local sequence number (LSN) 330, a global sequence
number (GSN) 340, an agreement number 350 and proposal
content 360. Preferably, but not necessarily, the proposals
1ssued by each local application node 203 have the structure
of the proposal 300.

FIG. 5 shows an embodiment of a local sequence in
accordance with one embodiment, which 1s referred to
herein as the local sequence 400. The local sequence 400
may include the contents of each one of the proposals for the
respective local application node 205. More specifically,
such contents include the proposer identifier, the local
sequence number (LSN), the global sequence number
(GSN), the agreement number and the proposal content.
Preferably, but not necessarily, the local sequence associated
with each replicated state machine 200 have the structure of
the local sequence 400.

FIG. 6 shows an embodiment of a global sequence in
accordance with one embodiment, which 1s referred to
herein as the global sequence 500. The global sequence may
include the global sequence number for a series of proposals
and a local sequence handle. In one embodiment, the local
sequence handle may be a pointer to the respective local
sequence (1.e., as depicted, the local sequence 400). In
another embodiment, the local sequence handle may be a
key to a table of local sequences. Preferably, but not nec-
essarily, the global sequence associated with each replicated
state machine 200 have the structure of the global sequence
500.

Concurrent Agreements

The replicated state machines 200 depicted in FIGS. 2 and
3, which are replicated state machines 1n accordance with
one embodiment, incorporate a concurrent agreement
mechanism that allows agreement on multiple proposals
from a proposer to progress concurrently while, optionally,
preserving the order i which the proposer submitted the
proposals. In contrast, conventional replicated state
machines attempt agreement on a proposal after reaching

10

15

20

25

30

35

40

45

50

55

60

65

10

agreement on a previous proposal. This conventional repli-
cated state machine methodology ensures that a conven-
tional replicated state machine preserves the local order of
proposals. Thus, 1f a proposer first proposes proposal A and
then proposes proposal B, the conventional replicated state
machine ensures that proposal A 1s agreed upon and before
proposal B. However, unlike a replicated state machine
implementing a back-ofl mechamism 1n accordance with one
embodiment, this convention methodology slows down the
operation of the conventional replicated state machine as
agreement on proposal B may not be imnitiated until proposal
A has reached agreement.

Referring now to aspects of one embodiment, each object
(1.e., an entry) in the global sequence may be sequentially
numbered. The number associated with an object 1n the
global sequence 1dentifies i1ts position relative to the other
objects 1n the global sequence. For example, an object
numbered 5 precedes an object numbered 6 and may be
preceded by an object numbered 4. Furthermore, each object
in the global sequence contains a handle to a local sequence,
such as the local sequence handle 400 shown 1n FIG. 5. If the
application does not require preservation of the submission
order (1.e., order as 1ssued from source), each object 1n the
global sequence contains the proposal itself. In this case, the
proposal may be obtained directly from the global sequence
rather than indirectly via the local sequence. In one of
several possible embodiments, the handle to the local
sequence may be a pointer to the local sequence. In another
embodiment, the handle to the local sequence may be a key
to a table of local sequences.

Referring now to FIGS. 2 and 3, each local sequence
contains the proposals of the replicated state machine 200
proposed by one of the proposers of the replicated state
machine 200. Each local application node 205 of the repli-
cated state machine 200 maintains a local sequence for each
of the proposers associated with the replicated state machine
200. The objects in the local sequence are sequentially
numbered. The number associated with an object in the local
sequence 1dentifies 1ts position relative to the other objects
in the local sequence. For example, the object numbered 5
precedes the object numbered 6 and may be preceded by the
object numbered 4. Each object 1n the local sequence
contains a proposal of the replicated state machine 200.

At each local application node 205 of the replicated state
machine 200, after agreement has been reached on a pro-
posal, the proposal may be added to the global sequence.
The 1dentity of the proposer (e.g., proposer 1D 320 1n FIG.
4) may be used as the key to look up a local sequence from
the table of local sequences. The local sequence number
(LSN) of the proposal determines the position of the pro-
posal in the local sequence. The proposal may then be
inserted 1n the determined position in the local sequence.
The agreement number of the proposal (e.g., agreement
number 350 in FIG. 4) determines the position of the
proposal 1n the global sequence. A handle to the local
sequence may be inserted in the determined position in the
global sequence (1.e., based on the agreement number). The
GSN 1s an optional bookkeeping field to associate with the
proposal for designating the proposal’s actual position in the
global sequence when 1t 1s consumed as described in the
paragraph below.

In one embodiment, a dedicated thread consumes the
global sequence. The thread waits until the next position 1n
the global sequence 1s populated. The thread then extracts
the local sequence stored in that position of the global
sequence. The thread then waits until the next position 1n the
local sequence 1s populated. The thread then extracts the

US 9,467,510 B2

11

proposal of the replicated state machine 200 stored 1n that
position of the local sequence. A skilled person will appre-
ciate that the proposals will not necessarily be extracted
according to the sequence of agreement numbers, but will be
extracted 1n exactly the same sequence at all the application
nodes. This extraction sequence may be recorded for book-
keeping convenience 1n the GSN field, but 1s otherwise not
essential to the operation of the replicated state machine 200.
For example, assume that an application node (A) submits
its first two proposals to the replicated state machine (LSN
1 and LSN 2). Assume further that the replicated state
machine happened to reach agreement on LSN 2 before

reaching agreement on LSN 1. Hence, the agreement num-
ber for A:1 (LSN 1 from application node A) 1s 27 and the

agreement number for LSN 2 1s 26 (1.e., there were a total
of 25 preceding agreements on proposals from other appli-
cation nodes and no itervening agreements on proposals
from other application nodes between A:1 and A:2). Using
the above method, A:1 will be extracted from the global
sequence 1n position 26, and A:2 in position 27. Thus, the
GSN will respect LSN order, but the agreement number does
necessarily not need to do so. This methodology enables a
replicated state machine 1n accordance with one embodi-
ment to process agreements concurrently.

The thread then applies the proposal of the replicated state
machine 200. In an embodiment, application of the proposal
may be accomplished by invoking a call-back function

registered by an application of the replicated state machine
200.

Back-Off & Collision Avoidance

A replicated state machine in accordance with one
embodiment (e.g., the replicated state machine 200) may
include a back-ofl mechanism for avoiding repeated pre-
emption of proposers (e.g., local application nodes 2035) 1n
the agreement protocol of the agreement manager 240. In
contrast, when a round 1nitiated by a first proposer pre-empts
a round i1mtiated by a second proposer, a conventional
replicated state machines allows the pre-empted proposer to
immediately initiate a new round with a round number
higher than that of the pre-emptor. Undesirably, this con-
ventional methodology sets the stage for repeated pre-
emptions of rounds, which can lead an agreement protocol
to thrash for a unacceptably long time (e.g., perpetually).

In facilitating back-off in accordance with one embodi-
ment, when a round 1s pre-empted, the proposer computes
the duration of a pre-emption-delay. The proposer then waits
for that computed duration before mitiating the next round
in accordance with a conventional algorithm for inmitiating
such a next round.

In facilitating collision avoidance in accordance with one
embodiment, when a first proposer senses that a second
proposer has initiated a round, the first proposer computes
the duration of a round-in-progress-delay. The first proposer
refrains from 1initiating a round until the duration of the
computed delay has expired.

In an embodiment, a given delay grows exponentially
with subsequent pre-emptions of a round. In addition, the
delay 1s preferably randomaized.

There are several possible methods that can be used to
determine the duration of a given delay. One source of
ispiration for viable methods 1s the literature on Carrier
Sense Multiple Access/Collision Detection (CSMA/CD)
protocols for non-switched Ethernet. A CSMA/CD protocol
1s a set of rules determining how network devices respond
when two network devices attempt to use a data channel
simultaneously.

10

15

20

25

30

35

40

45

50

55

60

65

12

In one of several possible embodiments, the following
method determines the duration of a calculated delay. An
administrator deploying the replicated state machine 200
configures four numerical values. For the purpose of the
description of this embodiment, the values are called A, U,
R and X. In a valid configuration, the Value R 1s greater than
zero, and less than one; the value A 1s greater than zero; the
value X 1s greater than one; the value U 1s greater than the
value A. The execution time of the agreement protocol may
be estimated. One of several possible estimators of the
execution time of the agreement protocol may be a moving-
window average ol past execution times of the agreement
protocol. For the purpose of this discussion, this estimated
value will 1s called E. A 1s multiplied by U to determine the
value M. The greater of the two values A and E 1s selected.
For the purpose of this discussion, this selected value 1s
called F. F 1s multiplied by X to determine the value C. A
random value V 1s generated from a uniform distribution
between zero and C times R. IT C 15 greater than M, V 1s
subtracted from C to compute D. Otherwise, V 1s added to
C to compute D.

The computed value D may be used as the round-in-
progress-delay. It may be also used as the pre-emption delay
the first time a local application node 205 is pre-empted in
the execution of an agreement protocol instance. Each
subsequent time the local application node 205 may be
pre-empted 1n the execution of the agreement protocol
instance, a new value D may be computed using the old
value D 1n place of the value A 1n the above method. The
new value D may be used as the pre-emption delay.
Reclaiming Persistent Storage

A replicated state machine in accordance with one
embodiment (e.g., the replicated state machine 200)
reclaims persistent storage used to ensure 1ts fault tolerance
and high availability. Referring to FIGS. 2 and 3, the storage
reclaimer 290 deletes a record of a proposed proposal from
the proposal store 230 after the replicated state machine 200
has determined the position of the proposed proposal 1n the
global sequence and all application nodes are informed of
this position. At periodic intervals, each local application
node 205 sends a message to each other local nodes 205
indicating the highest contiguously populated position 1n 1ts
copy of the global sequence. At periodic intervals, the
storage reclaimer 290 deletes all agreements up to the
highest contiguously populated position in all copies of the
global sequence that are no longer required by the local
application node. In this manner, each replicated state
machine 200 reclaims persistent storage.

Weak Reservations

A replicated state machine i1n accordance with one
embodiment (e.g., the replicated state machine 200) pro-
vides an optional weak reservation mechanism to eliminate
pre-emption ol proposers under normal operating condi-
tions. Referring to FIGS. 2 and 3, each proposer driving a
respective replicated state machine 200 may be contiguously
numbered. For example, if there are three proposers, they
may be numbered 1, 2, and 3. A proposer’s number deter-
mines which proposals of the respective replicated state
machine 200 that a corresponding proposer will drive. If a
proposer’s number 1s M, and if there are N proposers, the
proposer will drive proposals numbered M+(k.times.N) (1.¢.,
M plus k multiplied by N, for all integer values of k greater
than or equal to 0). To allow a distributed application system
to make progress when all of the proposers of such system
are not available, 11 a proposal of the replicated state
machine 200 may not be determined 1n a timely manner, any
proposer associated with the respective replicated state

US 9,467,510 B2

13

machine 200 may propose a “no operation” (1.e., no-op) for
that proposal. To make this optimization transparent to the
distributed application, the replicated state machine 200
does not deliver the no-op proposals to the distributed
application. No operation refers to a computation step that,
in general, does not have any etlect, and in particular, does
not change the state of the associated replicated state
machine.

Distinguished and Fair Round Numbers

A replicated state machine in accordance with one
embodiment ensures that one of a plurality of competing
proposers will not be pre-empted when using the same round
number for competing proposals. In contrast, conventional
replicated state machines do not include a mechamism that
ensures that one of a plurality of competing proposers will
not be pre-empted when using the same round number for
competing proposals. A round number 1n such conventional
replicated state machines may be a monotonic value, which
makes 1t possible for all of the proposers to be pre-empted.

In addition to the monotonic component, 1n one embodi-
ment, the round number may contain a distinguished com-
ponent. In one embodiment, a small distinct integer may be
associated with each proposer of each replicated state
machine 200. The distinct integer serves to resolve contlicts
in favor of the proposer with the highest distinguished
component. In addition to the monotonic component and the
distinguished component, the round number contains a
random component. A round number of this fashion ensures
that one of a plurality of competing proposers will not be
pre-empted when using the same round number for com-
peting proposals (1.e., via the distinct component of the
round number) and ensures that the contlict resolution does
not perpetually favor or disfavor any particular one of the
proposers (1.e., via the random component of the round
number).

A mechanism to compare two round numbers operates as
follows. The round number with the larger monotonic com-
ponent 1s larger than the other. If the monotonic components
of the two round numbers are equal, the round number with
the larger random component 1s larger than the other. If the
two comparisons above do not distinguish the round num-
bers, the round number with the larger distinguished com-
ponent 1s larger than the other. If the three comparisons
above do not distinguish the round numbers, the round
numbers are equal.

Reclaiming Persistent Storage Efliciently

Referring to FIGS. 3 and 4, the records 1n the persistent
proposal store 230 of a replicated state machine 200 are
organized ito groups. Each group stores records of pro-
posed proposals with contiguous local sequence numbers
330. For example, records with local sequence numbers #1
through #10000 may belong in group-1, records with local
sequence numbers #10001 through #20000 may belong 1n
group-2, and so on.

Referring to groups of persistent proposals, each group
may be stored 1n such a way that the storage resources used
by the entire group can be efhiciently reclaimed. For

example, 1n a file-based storage system, each group uses its
own file or set of files.

Still referring to groups of persistent proposals, the stor-
age reclaimer 290 tracks requests to delete individual
records, but does not delete individual records at the time of
the requests. When the accumulated requests to delete
individual records include all the records 1 a group, the
storage reclaimer 290 efliciently reclaims the storage

5

10

15

20

25

30

35

40

45

50

55

60

65

14

resources used by the group. For example, in a file-based
storage system, the file or set of files used by the group may
be deleted.

The records 1n the agreement store 243 of the replicated
state machine 200 are organized into groups. Each group
stores records of agreement protocol 1mstances with contigu-
ous agreement instance numbers 150. For example, records
with agreement instance numbers #1 through #10000 may
belong in group-1, records with agreement instance numbers
#10001 through #20000 may belong 1n group-2, and so on.

Referring to groups of agreement protocol 1nstances, each
group may be stored in such a way that the storage resources
used by the entire group can be efliciently reclaimed. For
example, 1n a file-based storage system, each group uses its
own file or set of files.

Still referring to groups of agreement protocol instances,
the storage reclaimer 290 tracks requests to delete individual
records, but does not delete individual records at the time of
the requests. When the accumulated requests to delete
individual records include all the records 1 a group, the
storage reclaimer 290 efliciently reclaims the storage
resources used by the group. For example, 1n a file-based
storage system, the file or set of files used by the group may
be deleted.

Handling Small Proposals Efficiently

Referring to FIGS. 3 and 4, a replicated state machine 1n
accordance with one embodiment (e.g., the replicated state
machine 200) batches the transmission of the proposed
proposals to the replicated state machine 200 from an
originating one of the local application nodes 205 to recipi-
ent ones of the local application nodes 205. Such a practice
allows a replicated state machine in accordance with one
embodiment to efliciently utilize a packet-based communi-
cation protocol in a situation where the size of proposals of
the replicated state machine are small relative to the size of
a packet of data 1n the underlying packet-based communi-
cation protocol used by the replicated state machine.

In one embodiment, such a batch of proposals may be
treated as a single proposal by the agreement protocol. In
this manner, at each local node 205, while a respective
replicated state machine 200 1s determining the agreement
number 350 of a first batch of proposed proposals, the
proposals proposed at the respective local application node
205 may be accumulated 1n a second batch of proposals.
When the agreement number 150 of the first batch 1is
determined, the replicated state machine 200 initiates the
determination of the agreement instance number 350 of the
second batch, and the proposals proposed at that local
application node 205 are accumulated in a third batch—and
SO On.

Handling Large Proposals 110 Eihiciently

To reduce network bandwidth for large proposals, a
replicated state machine 1n accordance with one embodi-
ment allows proposals to be tagged by a short proposal 1d
(e.g., a 16 bytes globally unmique 1d) and/or proposals can be
encoded 1nto a format referred to as file based proposal. In
contrast, large proposals present a problem to conventional
replicated state machines in that such large proposals are
essentially sent multiple time over a network as driven by
the agreement protocol of a conventional replicated state
machine. Such multiple transmission may not be preferred
because the size of large proposals can be several megabytes
or even gigabytes.

When transmitting large proposals, one embodiment only
transmits short proposal 1dentifiers once the actual proposal
has been transmitted successtully to a network end-point.
File-based proposals essentially carry an mm-memory file

US 9,467,510 B2

15

pointer while the actual proposal content may be kept on
disk 1n a file. When transporting such a file-based proposal
on the network, a replicated state machine 1n accordance
with one embodiment uses an eflicient fault-tolerant file
streaming protocol. Such transporting may be handled by
the DFTP layer 250 of a replicated state machine 200 (FIG.
3). The DFTP layer 250 tracks the pair-file based proposal
and a network end-point. It ensures a file-based proposal 1s
only transmitted once to a network end-point. In the event of
tailures leading to partial transfers, the file-based proposal
can be retrieved from any available end-point that has the
required portion of the file.

In one embodiment, implementation of DFTP uses native
sendfile or memory-mapped files for efficient file transter 1f
the operating system supports these features. It the original
sender 1s not reachable by a node that requires a file, that
node will locate an alternate sender—a different node 1n the
system which happens to have the file. When operating over
the TCP protocol, DFTP uses multiple TCP connections to
take best advantage of high bandwidth connections that are
also subject to high latency. In addition, to take best advan-
tage of high bandwidth connections that are also subject to
high latency, a window size of the TCP protocol can be
appropriately and/or desirably tuned.

Turning now to a discussion of scalable and active rep-
lication of information repositories, in one embodiment,
implementation of such replication 1n accordance with one
embodiment utilizes the abovementioned replicated state
machine. More specifically, providing for such replication in
accordance with one embodiment advantageously impacts
scalability, reliability, availability and fault-tolerance of such
a replicated state machine. Accordingly, implementation of
a replicated state machine in accordance with one embodi-
ment advantageously impacts such replication 1n a distrib-
uted computing system architecture. In implementing rep-
lication of an information repository 1 accordance with one
embodiment, all or a portion of the following objects will be
met: enabling replicating a CVS repository, a database, or
any information repository in general; allowing concurrent
use, including modification, of all the replicas of an infor-
mation repository; preserving the consistency of the replicas
despite essentially arbitrary failures or partial failures of the
computer networks used in the replication infrastructure;
preserving the consistency of the replicas despite essentially
arbitrary failures or partial failures of the computers or
computing resources associated with the replicas; ensuring
the continuous availability of the information repository
despite significant failures of the nature described above;
allowing geographic distribution of replicas such that there
are no constraints on how far apart (e.g., on different
continents) or how close (e.g., 1n the same data center, or
even 1n the same rack) the replicas are to each other;
allowing all the replicas of the information repository in
conjunction to handle a higher load than can be handled by
one 1nstance of the repository; preserving one-copy-equiva-
lence of the replicas; enabling the replication of the infor-
mation repository without introducing a single point of
fallure 1n the system; allowing the replication of an infor-
mation repository without modifications to the implemen-
tations of the information repository; allowing the replica-
tion of an information repository without modifications to
the implementations of the clients of the information reposi-
tory; oflering clients of a CVS repository response times of
a collocated local CVS repository via rotating quorum of
replica; reducing the network communication between cli-
ents of CVS repository and remote CVS repository by a
factor of about 3 on a wide area network (e.g., about 4.5

10

15

20

25

30

35

40

45

50

55

60

65

16

round trips to about 1.5 round trips); allowing remote
recovery of failed replicas 1n an automated fashion without
requiring administrator’s itervention; and ensuring distrib-
uted state cleanup of all replicas 1n an automated fashion
without requiring administrator’s intervention.

Referring to FIG. 7, one embodiment of a replicator in
accordance with one embodiment 1s shown, which 1s
referred to herein as the replicator 600. The replicator 600
consists of a plurality of functional modules, including a
replicator client interface 610, a pre-qualifier 620, a repli-
cated state machine 630, a scheduler 640, a replicator
repository interface 650, an outcome handler 660 and an
administrator console 670. The replicator client interface
610, the pre-qualifier 620, the replicated state machine 630,
the scheduler 640, the replicator repository interface 650, the
outcome handler 660 and the administrator console 670 are
cach interconnected to at least a portion of the other modules
for enabling interaction therebetween. The replicated state
machine 200, whose functionality was discussed 1n refer-
ence to FIGS. 2-6, 1s an example of the replicated state
machine 630 of the replicator 600. Thus, the replicated state
machine 630 1s reliable, available, scalable and fault toler-
ant.

FIG. 8 shows an embodiment of deployment of the
replicator 600 within a multi-site computing system archi-
tecture in accordance with one embodiment. The multi-site
computing system architecture may include a plurality of
distributed application systems 601. Each distributed appli-
cation system 601 may include a plurality of clients 680, a
replicator 600, a repository client interface 690, a repository
695 (1.¢., an information repository) and a network 699. The
network 699, which 1s generally not necessarily a compo-
nent of any one plurality of distributed application systems
601, may be connected between the clients 680 of each
distributed application system 601 and the respective repli-
cator 600 and between the repository client interface 690 of
cach distributed application system 601 and the respective
replicator 600, thus interconnecting the clients 680, replica-
tor 600 and repository 695 of each distributed application
system 601 for enabling interaction such components of
cach distributed application system 601. The network may
be also connected between the replicator 600 of all of the
distributed application system 601, thus enabling 1interaction
between all of the distributed application system 601. The
networks 699 can be 1solated from each other, but they do
not need to be. For example, the same network can fulfill all
three of the above disclosed roles.

As shown 1n FIG. 8, three clients 680 are “near’ each one
of the repositories 693 (i.e., a system element of the distrib-
uted application systems 601 comprising a respective reposi-
tory 695). By near, 1t 1s meant that a particular one of the
clients 680 near a particular one of the repositories 695
would prefer to access that particular one of the repositories
695. Alternatively, that particular one of the clients 680
could potentially access the repository 693 of any one of the
distributed application systems 601.

The operators of a distributed computing system 1n accor-
dance with one embodiment include the users of the client
680 and the administrator or administrators of the distributed
application systems 601. The users of the client 680 follow
the instructions of their client user’s manual. A user could
remain oblivious to the fact that they are using a replicator
in accordance with one embodiment, as many of the advan-
tageous aspects of embodiments may be transparent to the
user. An administrator, in addition to the standard tasks of
administering the repository 693 itself, will configure the
networks accordingly, as needed and 11 needed for operation.

US 9,467,510 B2

17

The replicated state machines 630 of each distributed
application system 601 communicate with each other over
the network 699. Each replicator repository interface 6350
interacts through the network 699 with the repository 695 of
the respective distributed application system 601. The client 5
680 interacts through the network 699 with the replicator
client interface 610. Optionally, a product such as, for
example, Cisco Systems Director may be used to enable a
particular client 680 of a particular one of the distributed
application systems 601 to fail over to any of the other 10
distributed application systems 601, if the distributed appli-
cation system 601 comprising the client 680 may be not
available at a particular time for providing a required
functionality.

Referring now to FIGS. 7 and 8, the replicator chient 15
interface 610 may be responsible for interfacing with a
particular one of the clients 680 (1.c., the particular client
680) associated with a targeted repository 695. The replica-
tor client interface 610 reconstructs the commands 1ssued by
the particular client 680 over the network 699 and delivers 20
the commands to the pre-qualifier 620. The pre-qualifier 620
enables etlicient operation of the replicator 600, but may not
be required for the useful and advantageous operation of the
replicator 600.

For each command, the pre-qualifier 620 may optionally 25
determine whether the command 1s doomed to fail, and 11 so,
determine an appropriate error message or error status to be
returned to the particular client 680. If so, that error message
or error status may be returned to the replicator client
interface 610 and the replicator client interface 610 delivers 30
that error message or error status to the particular client 680.
Thereatter, the command may not be processed any further
by the replicator 600.

For each command, the pre-qualifier 620 may optionally
determine whether the command can bypass the replicated 35
state machine 630 or both the replicated state machine 630
and the scheduler 640. If the pre-qualifier 620 did not
determine that the replicated state machine 630 could be
bypassed, the command may be delivered to the replicated
state machine 630. The replicated state machine 630 collates 40
all of the commands submitted to it and its peer replicated
state machines 630 at each other associated replicator 600 of
the distributed application system 601. This sequence of
operations may be assured to be identical at all the distrib-
uted application systems 601. At each of the distributed 45
application systems 601, the respective replicated state
machine 630 delivers the commands collated as above, 1n
sequence, to the respective scheduler 640.

The Scheduler 640 performs a dependency analysis on the
commands delivered to 1t, and determines the weakest 50
partial ordering of commands that would still ensure one-
copy serializability. Such dependency analysis and one-copy
serializability are disclosed in the prior art reference of
Wesley Addison entitled “Concurrent Control & Recovery
in Database Systems” and published 1n a reference book by 55
P. Berstein et. al. The scheduler 640 then delivers the
commands to the replicator repository interface 6350, con-
currently when permitted by the constructed partial order,
sequentially otherwise.

The replicator repository interface 650 delivers the com- 60
mands to the repository 695. In response, one of three
outcomes ensues. Thereafter, the replicator repository 1nter-
face 650 delivers the ensuing outcome to the outcome
handler 660.

A first one of the outcomes may include the repository 695 65
returning a response to the command. This response contains
a result, a status or both, indicating that nothing went wrong

18

during the execution of the command. If the command
originated locally, the outcome handler 660 delivers the
response to the replicator client interface 610, which 1n turn
delivers the response to the client 680. If the command
originated at a replicator of a different distributed applica-
tion system 601, the response 1s preferably discarded.

A second one of the outcomes may include the repository
695 responds with an error status. The outcome handler 660
determines whether the error status indicates a deterministic
error 1n the repository 695 (1.e., whether the same or
comparable error would occur at each of the other distrib-
uted application systems 601). If the determination of the
error may be ambiguous, the outcome handler 660 attempts
to compare the error with the outcome at other distributed
application systems 601. If this does not resolve the ambi-
guity, or 1f the error may be unambiguously non-determin-
1stic, the outcome handler 660 will suspend the operation of
the replicator 600 and inform the operator via the adminis-
trator console 670 (i.e., via 1ssuance of a notification via the
administrative console 670).

In the case where the replicator 1s a CVS replicator, as 1s
discussed below 1n reference to CVS-specific Tunctionality,
a list of error patterns may be used by the outcome handler
to flag deterministic error. The outcome handler 660 uses
these patterns to do a regular expression match 1n the
response stream.

A third one of the outcomes may include the repository
695 hanging (1.e., does not return from the execution of the
command). In one embodiment, this outcome may be treated
exactly like a non-deterministic error as discussed 1n refer-
ence to the second one of the outcomes.

In accordance with one embodiment, each replicator 600
can be alternatively configured. In one alternative embodi-
ment, the replicator 600 may be embedded in and driven
directly by the client 680 of the repository 695. In another
alternative embodiment, the replicator 600 may be embed-
ded in the client interface 690 to the repository 695. In
another alternative embodiment, the replicator 600 may be
embedded 1n the repository 695. In another alternative
embodiment, the global sequencer of the replicator (e.g., the
global sequencer 280 shown 1n the replicated state machine
200 1n FIG. 3) may be based on other technologies, with
corresponding compromises of robustness and quality of
service. One of several possible examples of such a tech-
nology 1s Group Communication. In another alternative
embodiment, the replicator 600 drives more than one reposi-
tory 695, with corresponding compromise of robustness and
quality of service. In another alternative embodiment, the
modules of the replicator 600 are merged 1nto more coarse-
grained modules, split into more fine-grained modules, or
both. In another alternative embodiment, as a redundant
safeguard against deviation from one-copy-serializability,
responses of all the distributed application systems 601 are
compared to ensure that the information contained in the
repositories 6935 of each distributed application system 601
remains consistent with respect to each other distributed
application system 601.

In reference to FIGS. 7 and 8, each one of the repositories
695 discussed above may be a Concurrent Versions System
(CVS) repository and the clients 680 may correspondingly
be CVS clients. Where the repositories 695 are CVS reposi-
tories and the clients 680 are CVS clients, the interfaces
associated with the repositories 693 and the clients 680 are
CVS specific interfaces (e.g., a replicator CVS client inter-
face, a replicator CVS repository interface and a repository
CVS client interface). Furthermore, 1n accordance with one
embodiment, the replicator 600 can be modified to include

US 9,467,510 B2

19

functionality that 1s specifically and especially configured
for use with a CVS repository.

The replicator client interface 610 disclosed herein may
be configured specifically for interfacing with a CVS client
of a targeted CVS repository. To this end, the replicator
client interface 610 stores incoming bytes from the CVS
Client mnto a memory mapped file bufler. The replicator
client interface 610 detects the end of CVS command when
it sees a valid command string in the incoming byte stream.
A non-limiting, list of such valid command strings may
include, but 1s not limited to, “Root”, “Valid-responses”,
“valid-requests”, “Repository”, “Directory”, “Max-dotdot”,
“Static-directory”, “Sticky”, “Entry”, “Kopt”, “Checkin-
time”, “Modified”, “Is-modified”, “UseUnchanged”,
“Unchanged”, “Notily”, “Questionable”, “Argument”,
“Argumentx”, “Global_option”, “Gzip-stream”, “wrapper-
sendme-rcsOptions™, “Set”, “expand-modules™, “c1”, “co”,
“update”, “difl”, “log”, “rlog™, “list”, “rlist”, “global-list-
quiet”, “Is”, “add”, “remove”, “update-patches”, “gzip-file-
contents”, “status”, “rdifl”, “tag”, “rtag”, “import”, “admin”,
“export”, “history”, “release”, “‘watch-on”, “watch-oil”,
“watch-add”, “watch-remove”, “watchers”, “editors”, “init”,
“annotate”, “rannotate”, “noop” and *“version”.

The replicator client interface 610 then tries to classity the
incoming CVS command as a read command or a write
command. A non-limiting, list of valid write command
strings may include, but 1s not limited to, “c1”, “tag”, “rtag’,
“admin”, “mmport”, “add”, “remove”, “watch-on”, “watch-
off” and “mit”. Any command within the list of valid
command strings that does not belong to the list of valid
write command strings 1s deemed herein to be a read
command string with respect to the list of valid command
strings.

The read commands are directly delivered to the CVS
replicator repository interface for execution by the targeted
CVS repository. The CVS write commands are optionally
delivered to the Pre-qualifier module 20.

For each CVS write command, the Pre-qualifier module
20 may optionally determine whether the CVS command 1s
doomed to fail, and 1f so, determine an appropriate error
message or error status to be returned to the CVS client. The
fallure detection may be based on matching the result or
status byte stream returned by the CVS repository with
known error patterns. Examples of known system error
patterns 1ncluded, but are not limited to, cannot create
symbolic link from .* to .*; cannot start server via rsh;
cannot fstat .*; failed to create temporary file; cannot open
dbm file .* for creation; cannot write to .*; can’t stat history
file; cannot open history file: .*; cannot open °.*”; could not
stat RCS archuve .* for mapping; cannot open file .* for
comparing; virtual memory exhausted; cannot ftello in RCS
file .*; can’t read .*; unable to get list of auxiliary groups;
cannot Isync file .* after copying; cannot stat .*; cannot open
current directory; cannot stat directory .*; cannot write .*;
cannot readlink .*; cannot close pipe; cannot change to
directory .*; cannot create temporary {ile; could not get file
information for .*; could not open diffoutput file .*; cannot
create .*; cannot get working directory; cannot Istat .*; fork
for diff failed on .*; could not get info for *.*’; cannot change
mode for .*; cannot ftello for .*; Message verification failed;
cannot stat temp file .*; out of memory;, cannot make
directory .* 1n .*; login: Failed to read password; error
reading history file; could not get working directory; can’t
set close-on-exec flag on \d+; error writing to lock file .*;
cannot write to history file: .*; cannot rename file .* to .*;
cannot change to .* directory; cannot get file information

for .*; cannot create .* for copying; cannot write temporary

10

15

20

25

30

35

40

45

50

55

60

65

20

file .*; cannot open .*; flow control read failed; writing to
server; cannot close .*; could not open lock file “.*” cannot
tdopen \d+ for read; cannot close temporary file .*; not
change directory to requested checkout directory °.*”; can-
not make directory .*; mvalid umask value 1n; failed to
open .* for reading; unable to get number of auxihary
groups; could not open .* for writing; could not chdir to .*;
fork failed while dithing .*; could not open .*; cannot id
open \d+ for write; write to .* failed; cannot create tempo-
rary file .*; could not read .*; cannot write file .* for copying;
cannot open .* for copying; cannot dup2 pipe; cannot getwd
in .*; cannot open .* for writing; cannot fork; error writing
to server; could not check 1n .*—fork failed; cannot read
file .* for comparing; cannot link .* to .*; error closing .*;
cannot dup net connection; read of data failed; cannot
read .*; cannot remove .*; could not chdir to *.*’; unable to
open temp file .*; could not stat .*; cannot open directory .*;
twrite failed; cannot create temporary file °.*’; cannot stat
temp file; can’t stat .*; cannot read °.*’; error difhng .*;
could not create special file .*; cannot close history file: .*;
could not map memory to RCS archive *; cannot make
directory *.*’; cannot read file .* for copying; cannot create
pipe; cannot open temporary file .*; cannot remove file .*;
cannot open; cannot seek to end of history file: .*; cannot
chdir to .*; read of length failed; cannot exec .*; cannot
tdopen .* and cannot find size of temp file. Examples of
known non-system error patterns included, but are not
limited to, iternal error, no such repository; could not find
desired version; getsockname failed; warning: ferror set
while rewriting RCS file; internal error: 1slink doesn’t like
readlink; access denied; cannot compare device files on this
system; server internal error: unhandled case in server_up-
dated; received .* signal; internal error: no revision infor-
mation for; protocol error: duplicate Mode; server internal
error: no mode 1n server_updated; rcsbul cache open: inter-
nal error; Fatal error, aborting; fatal error: exiting; .*:
unexpected EOF; .*: confused revision number; mvalid rcs
file; EOF 1n key 1n RCS file; RCS files 1n CVS always end
in, v; lost hardlink info for; cannot read .*: end of file: rcsbuf
open: internal error; out of memory; cannot allocate info-
path; dving gasps from .* unexpected; internal error: bad
date .*; kerberos authentication failed: .*; .*, delta .*:
unexpected EOF; unexpected EOF reading RCS file .*;
ERROR: out of space-aborting; flow control EOF; cannot
fseeko RCS file .*; checksum failure on .*; CVS internal
error: unknown status \d+; internal error: bad argument to
run_print; cannot copy device files on this system; unex-
pected end of file reading .*; out of memory; internal error:
no parsed RCS file; internal error: EOF too early in RCS_
copydeltas; internal error: testing support for unknown
response\?; EOF 1n value i RCS file .*; PANICV* admin-
istration files missing\!; premature end of file reading .*;
EOF while looking for value in RCS file .*; cannot continue;
read lock failed-giving up; unexpected EOF reading .*;
cannot resurrect *.*’; RCS file removed by second party;
your apparent username .* 1s unknown to this system; file
attribute database corruption: tab missing in .*; can’t
import .*: unable to import device files on this system; can’t
import .*: unknown kind of special file; cannot import .*:
special file of unknown type; ERROR: cannot mkdir .*—mnot
added; cannot create write lock 1n repository .*; cannot
create .*: unable to create special files on this system; can’t
preserve .*: unable to save device files on this system; error
parsing repository file .* file may be corrupt and unknown
file status \d+ for file .*.

As discussed above 1n reference to FIGS. 7 and 8, for each
command, the pre-qualifier module 620 may determine that
the command 1s doomed to fail and can bypass both the

US 9,467,510 B2

21

replicated state machine 630 and the scheduler 640. In the
case of CVS specific functionality, if the pre-qualifier mod-
ule 620 did not determine that the replicated state machine
630 could be bypassed, the command may be converted into
a CVS proposal command. The CVS proposal command
contains the actual CVS command byte array as well as a
lock set describing the write locks this CVS command
would cause the CVS repository to obtain 1f 1t was executed
by it directly. As 1s discussed below, the scheduler 640
utilizes this lock set.

The CVS proposal command may be delivered to the
replicated state machine 630. The replicated state machine
630 collates all the commands submitted to 1t and 1ts peer
replicated state machines 630 at each of the other replicators,
into a sequence. This sequence 1s assured to be i1dentical at
all the replicas. At each of the distributed application sys-
tems 601, the replicated state machine 630 delivers the

commands collated as above, 1n sequence, to the scheduler
640.

The scheduler 640 performs a dependency analysis on the
commands delivered to 1t, and determines the weakest
partial ordering of commands that would still ensure one-
copy serializability. The scheduler 640 delivers the com-
mands to the CVS replicator repository interface, concur-
rently when permitted by the constructed partial order,
sequentially otherwise.

In accordance with one embodiment, the dependency
analysis may be based on testing for lock conflicts. Each
CVS proposal command submitted to the scheduler contains
a lock set. The scheduler ensures a command 1s delivered to
the CVS repository interface 1f and only 1f no other com-
mand’s lock set contlicts with its lock set. If a conflict 1s
detected the command waits in queue to be scheduled at a
latter point when all the locks 1n the lock set can be obtained
without conflicts.

As disclosed above, implementation of a multi-site com-
puting system architecture advantageously impacts scalabil-
ity, reliability, availability and fault-tolerance of such repli-
cated state machines. Eilicient scaling requires eflicient
processes for adding new distributed application nodes (or
simply, nodes) to the system. Newly added nodes, however,
must be given a certain amount of information to enable
them to participate in the distributed computing system. For
example, a new node must be given the necessary creden-
tials to jo1n the collaborative project and must be told about
the existing locations and nodes that are to be visible to it
and with whom the newly invited node 1s allowed to
exchange messages and interact. According to one embodi-
ment, such 1s achieved by a messaging model and node
induction methods and corresponding devices and systems
that are eflective to enable an inductor node to bring an
inductee node into the distributed computing system and
enabling the inducted node to do useful work.

Messaging Model

Herein, 1t 1s to be understood that the term “inductor” or
“inductor node” refers to a node that at least initiates the
induction of another node, the “inductee node” into the
distributed computing system. According to one embodi-
ment, 1t 1S assumed the inductor and inductee nodes com-
municate with each other by sending messages using an
asynchronous, non-byzantine model where:

Either process may operate at an arbitrary speed, may {fail

by stopping and may restart;

Since a process may fail at any point, some information

must be remembered (1.e., be persistent) across restarts;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

22

Messages can take an arbitrarily long time to be delivered,
can be duplicated and lost, but messages are not cor-
rupted (as a corrupted message 1s treated the same as an
undelivered message as it will be discarded by the
receiver).

FIG. 9 1s a diagram showing aspects of the devices,
methods and systems enabling a secure and authorized
induction of a node 1nto a group of nodes according to one
embodiment. As shown therein and according to one
embodiment, a method of inducting a node 1nto a distributed
computing systems may comprise, and the present systems
and devices may be configured to execute, several phases
such as, for example, a Pre-Authorization Phase, Inductee
Startup Phase, a Deployment of a Bootstrap Membership
Phase and an Inductee Node and Location Awareness. In
addition, a plurality of post-induction tasks may be carried
out. Each of these phases 1s described 1n detail below.

A. Pre-Authorization Phase

According to one embodiment, the pre-authorization
phase may be carried out before the mductee node 206 1s
started and may provide the opportunity for an administrator
202 to create an induction task that may comprise informa-
tion to be used in the induction process and enable the
pre-configuration of the induction process so 1t may, accord-
ing to one embodiment, proceed without any human inter-
action.

A.0 Creation of a New Induction Task

Before the inductee node 206 1s started, an induction task
may be created at the inductor node 204 that contains the
information required for a successtul and complete induc-
tion process. The use of a persistent task allows the infor-
mation required in the mduction process to be stored in the
same place, for this information and the state of the imnduc-
tion process to be persisted across restarts of the inductor
node 204 and for the same induction task to be copied
(cloned) and re-used 1n other inductions.

According to one embodiment, an induction task may be
configured to comprise three elements: an induction ticket;
the set of nodes of which the inductee node 206 should be
made aware; and a set of post-induction tasks. It 1s to be
understood that other elements may be added or substituted
for these three elements.

A.1 the Induction Ticket

An induction may be generated, for example, by an
administrator and sent to the inductee node 206, as shown at
B21 1n FIG. 9. This induction ticket provides a mechanism
for the admimstrator 202 to package the contact details of
the inductor node 204, specily (and control) the new node’s
details and also to specily some other platform or applica-
tion configuration parameters for the new node, for example.
According to one embodiment, the induction ticket may
comprise:

the induction task identity;

the node and location 1dentity of the inductee node 206;

the location 1dentity, hostname and port of the inductor
node 204 (the basic information necessary for the
inductee node 206 to contact the inductor node 204);
and/or

other, arbitrary, platform/application configuration infor-
mation.

The induction ticket may comprise other information that
achieves the same or functionally similar result of enabling
the inductee node 206 to see, be visible to and communicate
with selected other nodes i the distributed computing
system. The induction ticket may be configured, for
example, as a file. To enhance security, such an induction
ticket, therefore, may be code-signed using the inductor

US 9,467,510 B2

23

node’s private key i a PKI system. In turn, the inductee
node 206 may be configured to validate the authenticity of
the details contained in the induction ticket by using the
inductor node 204’s public key. Other authentication and
authority-defining methods may be utilized to good eflect, as
the implementations described and shown herein are not
limited to the PKI model of security. The induction ticket
may, according to one embodiment, then be sent out-of-band
to an engineer 208 performing the installation of the
inductee node 206. According to one embodiment, the
induction ticket may remain with the inductor node 204 and
may be ‘pushed’ to the inductee node 206 when the inductee
node 206 starts.

A.2 the Set of Nodes of which the Inductee Node should
be Made Aware

According to one embodiment, the induction task may
comprise details of which existing nodes the inductee node
206 should be informed about during the induction process.
The inductee node 206, 1t 1s recalled, 1s made aware of the
other nodes within the distributed computing system with
which the inductee node 206 1s enabled and/or allowed to
communicate/work. Such information, therefore, may
advantageously be specified before the induction process 1s
started 11 there 1s to be no human interaction. The selection
of the node or nodes with which the inductee node 206 1s
enabled or allowed to communicate may be carried out using
a User Interface (UI) that allows the administrator 202 to
choose a set of nodes from the complete set or a sub-set of
existing nodes that have already been inducted into the
network of nodes. This information may be stored in the
induction task so it may be accessed later. The Ul may
comprise, for example, a browser or a mobile device app.

A.3. Post Induction Tasks

According to one embodiment, the mduction task may
comprise details of a plurality of other tasks, one or more of
which may be applied to the new inductee node 206 fol-
lowing induction such as, for example, to join an existing
membership. Note this set of tasks may be empty 1f the
inductee node 206 1s not required to do anything following
induction. Once the induction task has been created and
persisted (e.g., stored in a non-volatile memory), the
inductee node 206 may be started.

B. Inductee Startup

According to one embodiment, an inductee node 206 may
be started:

B.1. Without the Induction Ticket Present at the Inductee
Node:

According to one embodiment, 11 the induction ticket 1s
not present at the inductee node 206, the inductee node 206
may start or be caused to start 1n a basic configuration and
wait (1.e., listen as shown at B22) to be contacted by the
inductor node 204 with details of the bootstrap membership
of which the inductee node 206 will become a member, as
described hereunder.

B.2. With the Induction Ticket Present at the Inductee
Node:

According to one embodiment, 1f the induction ticket 1s
indeed present at the inductee node 206 at startup as shown
at B23, the inductee node 206 may be configured to:

a) parse (and optionally validate, as appropriate) the

information 1n the induction ticket,

b) use this information to configure the application plat-

form, and

¢) use this mformation to create and switch on a Boot-

strapMembershipRequest beacon as shown at B24 that
may be configured to inform the inductor node 204 that,
as shown at B235, the inductee node 206 1s initiating the

5

10

15

20

25

30

35

40

45

50

55

60

65

24

induction process. According to one embodiment, a
beacon 1s a process configured to repeatedly broadcast
a message to a predetermined list of target recipients,
removing target recipients from the predetermined list
to which the message 1s broadcast until a reply
acknowledgment has been received from each of the
target recipients. According to one embodiment, the
BootstrapMembershipRequest may be configured to
contain the induction task’s 1dentity and the inductee’s
node and location identity, hostname and port.

According to one embodiment, in response to the inductor
node 204 receiving the BoostrapMembershipRequest from
the mductee node 206, the mnductor node 204 may send a
BootstrapMembershipResponse back to the inductee node
206 as shown at B26 to disable the request beacon, as shown
at B27. The inductor node 204 may then look up the
induction task and check to see 1f the node and location
identity matches what was specified in the previously-
recetved induction ticket, as shown at B28. If the check
faills—i.e., the node and/or location identity do not match
those 1n the induction ticket—the inductor node 204 may
beacon a BootstrapMembershipDenied message to the
inductee node 206, as shown at B29.

When the imnductee node 206 receives the BootstrapMem-
bershipDemed message, the inductee node 206 may be
configured to send a BoolstrapMembershipAck message 1n
response and terminate, as shown at B30. When the inductor
node 204 receives the BootstrapMembershipAck message
from the inductee node 206 as shown at B31, the inductor
node 204 may disable the BootstrapMembershipDenied
beacon, as shown at B32.

C. Deployment of the Bootstrap Membership

According to one embodiment, when the inductee node
206 has been started without the induction ticket and the
administrator 202 has imitiated the induction process at the
inductor node 204, or the lookup of the induction task has
been successiul, the creation and deployment of the boot-
strap membership may be carried out using the following
Process:

According to one embodiment, the inductor node 204
may, according to one embodiment:

1. create a bootstrap membership with:

a. a determimstically created membership 1dentity;

b. the mductor node 204 in the role of Agreement
Proposer and Agreement Acceptor;

c. the inductee node in the role of Leamer.

2. deploy the membership as shown at B33;

3. create a deterministic state machine referencing the

bootstrap membership as shown at B34, and

4. beacon a BootstrapMembershipReady message to the

inductee node 206, as shown at B35.

According to one embodiment, when the inductee node
206 receives the BootstrapMembershipReady message as
shown at B36 1t may, according to one embodiment:

1. create a bootstrap Membership with:

a) a deterministically created membership 1dentity;
b) the inductor node 204 in the role of Agreement
Proposer and Agreement Acceptor;
¢) the inductee node 206 1n the role of Learner.
2. deploys the membership as shown at B37, and

3. create a deterministic state machine referencing the
bootstrap membership as shown at B38, and

4. send a BootstrapMembershipAck message to the
inductee node 206, as shown at B39.

US 9,467,510 B2

25

According to one embodiment, when the inductor node
204 receives the BootstrapMembershipAck message 1t
should disable the BootstrapMembershipReady beacon, as
shown at B40.

D. Inductee Node and Location Awareness

Following deployment of the bootstrap membership, the
inductee node 206 may be informed of nodes and locations
of which 1t should be aware. This may be achieved, accord-
ing to one embodiment, using the following process:

1. The mductor node 204 consulting the induction task to
determine which locations and nodes of which the
inductee node 206 should be informed;

2. The induction task returming the list of locations and
nodes for this inductee node 206;

3. The mductor node 204 proposing to the deterministic
state machine the set of nodes and locations:

4. When an agreement 1s formed as shown at B41, the
inductee node 206 learning about the locations and
nodes 1t needs to know, as shown at B42.

5. Following the inductee node 206 learning of the nodes
and locations, the induction process 1s completed.

E. Post-Induction Tasks

Following the agreement of the nodes and locations—i.¢.,
the completion of the induction process,—it should now be
possible to now run the set of tasks specified 1n the induction
task. These tasks may comprise creating new memberships
containing the newly-inducted node, joining existing mem-
berships (1.e., perform a membership change to include the
newly-inducted node into an existing membership), and
performing a deployment and synchronization of a repli-
cated entity, for example.

FI1G. 10 1llustrates a block diagram of a computer system
1000 upon which embodiments may be implemented. Com-
puter system 1000 may include a bus 1001 or other com-
munication mechanism for communicating information, and
one or more processors 1002 coupled with bus 1001 for
processing information. Computer system 1000 further may
comprise a random access memory (RAM) or other dynamic
storage device 1004 (referred to as main memory), coupled
to bus 1001 for storing information and instructions to be
executed by processor(s) 1002. Main memory 1004 also
may be used for storing temporary variables or other inter-
mediate information during execution of imstructions by
processor 1002. Computer system 1000 also may include a
read only memory (ROM) and/or other static storage device
1006 coupled to bus 1001 for storing static information and
istructions for processor 1002. A data storage device 1007,
such as a magnetic disk or Flash memory for example, may
be coupled to bus 1001 for storing information and nstruc-
tions. The computer system 1000 may also be coupled via
the bus 1001 to a display device 1010 for displaying
information to a computer user. An alphanumeric nput
device 1022, including alphanumeric and other keys, may be
coupled to bus 1001 for communicating information and
command selections to processor(s) 1002. Another type of
user mput device 1s cursor control 1023, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion information and command selections to processor 1002
and for controlling cursor movement on display 1021. The
computer system 1000 may be coupled, via a communica-
tion device (e.g., modem, NIC) to a network 1026 and to one
or more nodes of a distributed computing system.

Embodiments are related to the use of computer system
and/or to a plurality of such computer systems to induct
nodes into a distributed computing system. According to one
embodiment, the methods and systems described herein may
be provided by one or more computer systems 1000 in

10

15

20

25

30

35

40

45

50

55

60

65

26

response to processor(s) 1002 executing sequences of
instructions contained in memory 1004. Such instructions
may be read mto memory 1004 from another computer-
readable medium, such as data storage device 1007. Execu-
tion of the sequences of instructions contained 1n memory
1004 causes processor(s) 1002 to perform the steps and have
the functionality described herein. In alternative embodi-
ments, hard-wired circuitry may be used 1n place of or in
combination with software instructions to implement the
embodiments. Thus, embodiments are not limited to any
specific combination of hardware circuitry and software.
Indeed, 1t should be understood by those skilled 1n the art
that any suitable computer system may implement the
functionality described herein. The computer system may
include one or a plurality of microprocessors working to
perform the desired functions. In one embodiment, the
istructions executed by the microprocessor or micropro-
cessors are operable to cause the microprocessor(s) to per-
form the steps described herein. The instructions may be
stored 1n any computer-readable medium. In one embodi-
ment, they may be stored on a non-volatile semiconductor
memory external to the microprocessor, or integrated with
the microprocessor. In another embodiment, the instructions
may be stored on a disk and read into a volatile semicon-
ductor memory before execution by the microprocessor.

While certain embodiments of the disclosure have been
described, these embodiments have been presented by way
of example only, and are not intended to limit the scope of
the disclosure. Indeed, the novel methods, devices and
systems described herein may be embodied in a vanety of
other forms. Furthermore, various omissions, substitutions
and changes in the form of the methods and systems
described herein may be made without departing from the
spirit of the disclosure. The accompanying claims and their
equivalents are intended to cover such forms or modifica-
tions as would fall within the scope and spinit of the
disclosure. For example, those skilled in the art will appre-
ciate that in various embodiments, the actual physical and
logical structures may difler from those shown 1n the figures.
Depending on the embodiment, certain steps described 1n
the example above may be removed, others may be added.
Also, the features and attributes of the specific embodiments
disclosed above may be combined in different ways to form
additional embodiments, all of which fall within the scope of
the present disclosure. Although the present disclosure pro-
vides certain embodiments and applications, other embodi-
ments that are apparent to those of ordinary skill in the art,
including embodiments which do not provide all of the
features and advantages set forth herein, are also within the
scope of this disclosure. Accordingly, the scope of the
present disclosure 1s intended to be defined only by refer-
ence to the appended claims.

The mmvention claimed 1s:

1. A computer-implemented method for an inductor node
to induct a selected 1inductee node nto a distributed com-
puting system, comprising;:

creating an induction task comprising at least:

an induction ticket that defines an identity of the
induction task, information that enables the inductor
node and the inductee node to communicate, and
configuration mformation;

at least one other node of the distributed computing
system of which the inductee node should be aware
and;

at least one post-induction task;

storing the created induction task in a persistent memory

accessible to the inductor node;

US 9,467,510 B2

27

sending the induction task to the selected inductee node

over a computer network;

responsive to the inductee node having received the

induction task, receiving a membership request 1ndi-
cating that the selected inductee node has initiated an
induction process;

creating a bootstrap membership that defines roles of the

inductor node and of the selected inductee node and
deploying the bootstrap membership; and

creating a deterministic state machine referencing the

created bootstrap membership.

2. The computer-implemented method of claim 1, further
comprising accessing the stored induction task from the
persistent memory and cloning the induction task for use in
inducting another selected inductee node into the distributed
computing system.

3. The computer-implemented method of claim 1, further
comprising accessing the stored induction task from the
persistent memory and continuing the induction of the
selected 1inductee node into the distributed computing sys-
tem after a restart of the inductor node before the determin-
1stic state machine 1s created.

4. The computer-implemented method of claim 1, further
comprising encrypting the induction ticket.

5. The computer-implemented method of claim 1, further
comprising validating the membership request received
from the selected inductee node and terminating the induc-
tion if the membership request 1s mnvalid.

6. The computer-implemented method of claim 1,
wherein the bootstrap membership comprises:

a determinalistically created membership i1dentity; and

roles of the inductor node and of the selected inductee

node.

7. A computing device, comprising:

a memory; and

a processor, the processor being configured to execute

instructions stored 1n the memory to run the computing
device as an inductor node configured to induct a
selected inductee node into a distributed computing
system, the stored instructions being configured to
cause the processor to:

create an induction task comprising at least:

an induction ticket that defines an identity of the
induction task, information that enables the inductor
node and the inductee node to communicate, and
configuration iformation;

at least one other node of the distributed computing
system of which the inductee node should be aware
and;
at least one post-induction task;
store the created induction task in a persistent memory
accessible to the inductor node;
send the induction task to the selected inductee node over
a computer network;
responsive to the inductee node having received the
induction task, receive a membership request indicating
that the selected inductee node has 1mitiated an induc-
tion process;
create a bootstrap membership that defines roles of the
inductor node and of the selected inductee node and
deploy the bootstrap membership; and
create a deterministic state machine referencing the cre-
ated bootstrap membership.
8. A non-transitory, tangible data storage medium storing,
data and instructions that configure a computing device as an
inductor node configured to induct a selected inductee node

10

15

20

25

30

35

40

45

50

55

60

65

28

into a distributed computing system, the stored data and
istructions being configured to cause the computing device
to:

create an induction task comprising at least:

an induction ticket that defines an identity of the
induction task, information that enables the inductor
node and the inductee node to communicate, and
configuration information;

at least one other node of the distributed computing
system of which the inductee node should be aware
and;

at least one post-induction task;

store the created induction tail 1n a persistent memory

accessible to the inductor node;
send the induction task to the selected inductee node over
a computer network;

responsive to the inductee node having received the
induction task, receive a membership request indicating
that the selected inductee node has initiated an induc-
tion process;

create a bootstrap membership that defines roles of the

inductor node and of the selected inductee node and
deploy the bootstrap membership; and

create a deterministic state machine referencing the cre-

ated bootstrap membership.

9. A computer-implemented method for a selected
inductee node to be inducted into a distributed computing
system b an inductor node, comprising:

recerving irom the inductor node, over a computer net-

work, an induction task that comprises:

an 1mnduction ticket that defines at least an 1dentity of the
induction task and information that enables the
selected inductee node to communicate with the
inductor node;

at least one other node of the distributed computing
system of which the selected inductee node should
be aware and;

at least one post-induction task;

imtiating an mduction process according to the received

induction task;

sending to the inductor task an indication that the induc-

tion process has initiated;

creating a bootstrap membership that defines roles of the

inductor node and of the selected inductee node and
deploying the bootstrap membership;

creating a deterministic state machine referencing the

bootstrap membership; and

carrying out the at least one post-induction task.

10. The computer-implemented method claim 9, further
comprising the deterministic state machine receiving, from
the inductor node, a list of locations and nodes of which the
selected inductee node should be aware.

11. The computer-implemented method claim 9, further
comprising the deterministic state machine receiving, from
the inductor node, a proposal comprising a list of locations
and nodes of which the selected inductee node should be
aware.

12. The computer-implemented method claim 9, further
comprising validating the received induction ticket.

13. The computer-implemented method of claim 9,
wherein creating the bootstrap membership comprises cre-
ating the bootstrap membership with a determimstically-
created membership identity, and roles of the inductor and
inductee nodes.

14. The computer-implemented method of claim 9,
wherein the recerved induction task 1s a clone of a previously

US 9,467,510 B2

29

used induction task that was stored 1n a persistent memory
accessible to the inductor node.

15. The computer-implemented method of claim 9,
wherein the received induction ticket comprises a location
identity, hostname and port of the inductor node on the
computer network.

16. The computer-implemented method of claim 9,
wherein the induction ticket 1s encrypted using a Private Key
Infrastructure (PKI) encryption system and wherein the
method further comprises the mnduction node decrypting the
induction ticket using a public key of the inductor node.

17. The computer-implemented method of claim 9,
wherein carrying out the at least one post-induction task
comprises at least one of:

creating a new membership;

joiming an existing membership; and

performing a deployment and synchronization of a repli-

cated entity.

18. The computer-implemented method of claim 9,
wherein sending to the inductor task an indication that the
induction process has initiated comprises creating and
switching on a beacon that broadcasts, over the computer
network, an i1dentity of the induction task, an identity,
location, hostname and port of the inductee node on the
computer network.

19. The computer-implemented method of claim 9,
wherein creating the bootstrap membership comprises con-
figuring the bootstrap membership with a deterministically-
created membership 1dentity, the inductor node 1n a role of
agreement proposer and agreement acceptor and the selected
inductee node 1n a role of leamer.

20. A computing device, comprising:

a memory; and

a processor, the processor being configured to execute

instructions stored in the memory to configure the

computing device as a selected inductee node to be

inducted 1nto a distributed computing system by an

inductor node, the stored instructions being configured

to cause the processor to:

receive from the inductor node, over a computer net-
work, an induction task that comprises:

an induction ticket that defines an identity of the
induction task, information that enables the selected

10

15

20

25

30

35

40

30

inductee node to communicate with the inductor
node, and configuration information;
at least one other node of the distributed computing
system of which the selected inductee node should
be aware and;
at least one post-induction task;
initiate an induction process according to the received
induction task;
send to the inductor task an indication that the induction

process has mitiated;

create a bootstrap membership that defines roles of the
inductor node and of the selected inductee node and
deploy the bootstrap membership;

create a deterministic state machine referencing the boot-

strap membership; and

carry out the at least one post-induction task.

21. A non-transitory, tangible data storage medium storing,
data and 1nstructions that configure a computing device as a
selected 1nductee node to be inducted into a distributed
computing system by an inductor node, the stored instruc-
tions being configured to cause the computing device to:

recerve from the inductor node, over a computer network,

an induction task that comprises:

an induction ticket that defines an identity of the
induction task, information that enables the selected
inductee node to communicate with the inductor
node, and configuration information;

at least one other node of the distributed computing
system of which the selected inductee node should
be aware and;

at least one post-induction task;

imitiate an induction process according to the received

induction task:

send to the inductor task an indication that the induction

process has mitiated;

create a bootstrap membership that defines roles of the

inductor node and of the selected inductee node and
deploy the bootstrap membership;

create a deterministic state machine referencing the boot-

strap membership; and

carry out the at least one post-induction task.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

