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(57) ABSTRACT

Methods and apparatus are provided for authenticated hier-
archical set operations. A third party server processes a
query (possibly from a client) on data sets outsourced by a
source of the data. The query comprises a hierarchical set
operation between at least two of the data sets. Authenticated
Set Operation techniques for flat set operations can be
iteratively applied for hierarchical set operations. In addi-
tion, bilinear accumulators are extended to provide an
extractable accumulation scheme comprising a primary
bilinear accumulator and a secondary bilinear accumulator.
The client receives (1) an encoding of an answer to the query,
(1) a verification comprising, for example, one or more of
subset witnesses, completeness witnesses, and/or accumu-
lation values, and (111) at least one argument for at least one
intersection operation, union operation and/or set difference
operation.
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FIG. 4
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AUTHENTICATED HIERARCHICAL SET
OPERATIONS AND APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a divisional of U.S. patent application
Ser. No. 13/829,374 filed Mar. 14, 2013 (now U.S. Pat. No.
9,049,185), incorporated by reference herein.

STATEMENT OF GOVERNMENT RIGHTS

This mvention was made, at least 1n part, with funding
provided by The National Science Foundation under grant
CNS-1012798. The United States government may have
rights in this imnvention pursuant to Award No. 1012798.

FIELD OF THE INVENTION

The present mnvention relates generally to techniques for
veritying data processing on outsourced data sets and, more
particularly, to techniques for authenticated hierarchical set

operations.

BACKGROUND

The outsourcing of computation has emerged as a com-
mon practice for enterprises and individuals, especially in
the cloud setting. For example, an owner of a data set, often
referred to as the source, wants to answer queries over the
data set 1ssued by one or more clients or users and, for
reasons of scalability and efliciency, chooses to do so by
employing a possibly untrusted server on the cloud.

An mmmediate by-product of outsourcing of data and
computation, however, 1s the need for verification of the
correctness of a computation. Such integrity protection 1s a
core security goal in cloud computing. Ensuring that data
contents remain 1ntact in the lifetime of an outsourced data
set and that query processing 1s handled correctly, producing
accurate and up-to-date answers, lies at the foundation of
secure cloud services.

Authenticated data structures provide cryptographically
hardened integrity guarantees in distributed or cloud-based
data management settings. They support authenticated que-
ries on a data set that i1s outsourced to a third party and
generally untrusted server, by allowing the server to
return—along with the answer to a query—a proof that can
validate the correct query execution.

C. Papamanthou et al., “Optimal Verification of Opera-
tions on Dynamic Sets,” Proc. CRYPTO 2011, 91-110
(2011) and/or United States Patent Publication No. 2012/
0030468, entitled “System and Method for Optimal Verifi-
cation of Operations on Dynamic Sets,” each incorporated
by reference herein, describe tools and techmiques ifor
Authenticated Set Operations (ASQO) for the case of “flat™ set
operations (1.e., only one set operation, €.g., mntersection, of
an arbitrary number of sets).

A need therefore exists for authenticated set operations for
the class of queries and computations involving hierarchical
set operations, over outsourced data, over which an arbitrary
number and type ol possibly nested set operations are
performed to produce the final result. A further need exists
for cryptographic protocols for securely verifying the cor-
rectness of the produced results.

SUMMARY OF THE INVENTION

The present mvention 1n the illustrative embodiments
described herein provides methods and apparatus for authen-
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2

ticated hierarchical set operations. According to one aspect
of the invention, a third party server processes a query on a
plurality of data sets S,, . .. ,S_ outsourced by a source of
the data. The query comprises a hierarchical set operation
between at least two of the data sets S, . . . ,S . At least one
level of a hierarchy of the hierarchical set operation of the
query comprises at least a first one of an intersection
operation, a union operation and a set difference operation
and at least a second level that 1s different than the first level

of the hierarchy comprises at least a second distinct one of
the itersection operation, the union operation and the set
difference operation.

In one exemplary embodiment, the server method com-
prises obtaining from the source the data sets S, . . . ,S |
corresponding encodings a,, . ,a, ol the data sets
S, ....,S5 ,and a verification of the encodings a,, . . .,
a _; generating an answer to the query using the data sets
S.,....,5 , parsing the query as a tree, wherein leaf nodes
in the tree correspond to at least two of the data sets relevant
to the query and non-leaf nodes i the tree correspond to at
least one of the intersection operation, the union operation
and the set diflerence operation; for each leaf node 1n the tree
corresponding to a data set S,, computing a verification for
encoding a, that 1s based on the obtamned encodings
a,, ....a and the obtained verification of the encodings
a,,...,a ; for each non-leat node in the tree, computing at
least one argument for a corresponding at least one of the
intersection operation, the union operation and the set dii-
ference operation; and providing an encoding of the answer
and a proof-of-correctness to the client, wherein the prooi-
of-correctness comprises the computed verification for each
leal node encoding, and the at least one argument for each
non-leal node set operation.

According to another aspect of the invention, a client
verifies a query on a plurality of data sets S,, . . . .S,
outsourced by a source of the data. In one exemplary
embodiment, the client method comprises receiving from
the server an encoding of an answer to the query and a
proof-of-correctness, wherein the proof-of-correctness com-
prises a verification for at least two encodings of one or more
of the data sets relevant to the query and at least one
argument for at least one of the intersection operation, the
union operation and the set difference operation; parsing the
received prooif-of-correctness as a tree, wherein leal nodes in
the tree correspond to at least two of the data sets relevant
to the query and non-leaf nodes 1n the tree correspond to at
least one of the intersection operation, the union operation
and the set diflerence operation; for each leal node 1n the tree
corresponding to data set S,, deriving and verilying a cor-
responding encoding a, using the corresponding recerved
verification; for each non-leaf node 1n the tree, veritying the
received at least one argument for a corresponding at least
one of the intersection operation, the union operation and the
set difference operation using the verified at least two
encodings; for the root node in the tree, verifying the
received encoding of an answer to the query using the
verified at least two encodings; and accepting the answer 1
the veritying steps for all nodes 1n the tree are correct.

In one or more exemplary embodiments, the encodings
a,,...,a ofthe datasets S,,....S comprise accumulation
values a,, . . . ,a, and the encoding of the answer comprises
one or more of the answer and coetlicients b, of a charac-
teristic polynomial of the answer. The at least one argument
comprises one or more ol an intersection argument com-
prising one or more of subset witnesses, completeness
witnesses, and accumulation values and a union argument
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comprising one or more of subset witnesses, completeness
witnesses, and accumulation values.

Various aspects of the invention may be employed by one
or more of an authenticated keyword search, an authenti-
cated SQL query answer, and a construction for verifying an
evaluation of a function computable by polynomial size
circuits.

According to an additional aspect of the mvention, the
source of the data performs the following steps prior to the
third party server processing the query: generating a public
key and a secret key; computing encodings a,, . . . ,a, of the
data sets S,, . . . ,S, ; obtaining a verification of the encod-
ings; providing the data sets S, . . . .S, , the corresponding
computed encodings a,, . . . .,a_ and the obtained verification
of the encodings to the third party server; and publishing the
public key and a digest of the verification.

The disclosed exemplary techmiques for authenticated
hierarchical set operations overcome one or more of the
problems associated with the conventional techniques
described previously. These and other features and advan-
tages of the present invention will become more readily
apparent from the accompanying drawings and the follow-
ing detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates an exemplary three party scenario,
where a source owns data sets S, . ...,S and multiple clients
ask queries of elaborate set operations over a given set S_;

FI1G. 2 illustrates an exemplary two party scenario where
a source owns data sets S, .. ..,S, that are authenticated by
the source and outsourced to the server with the correspond-
ing authentication information;

FIG. 3A 1llustrates exemplary pseudo code for an exem-
plary implementation of a conventional query algorithm;

FIG. 3B illustrates exemplary pseudo code for an exem-
plary implementation of a conventional verily algorithm;

FIG. 4 1llustrates an exemplary tree T for representing a
hierarchical set operation;

FI1G. 5 1llustrates an exemplary tree representing the union
of the result of two intersection operations I, and I, and a set
J;

FIG. 6 illustrates the application of the extractable accu-
mulation scheme to an exemplary tree comprised of a query
involving a hierarchical intersection set operation;

FIG. 7 illustrates the application of the extractable accu-
mulation scheme to the exemplary tree comprised of a query
involving a hierarchical union set operation having two sets;

FIG. 8 illustrates the application of the extractable accu-
mulation scheme to the exemplary tree comprised of a query
involving a hierarchical union set operation having multiple
sets;

FIG. 9 illustrates the application of the extractable accu-
mulation scheme to the exemplary original tree comprised of
a query mvolving hierarchical set operations having multiple
sets;

FIG. 10 1s a flow chart describing an exemplary imple-
mentation of a data set outsourcing process that may be
implemented by the source of FIG. 1 or 2;

FIG. 11 1s a flow chart describing an exemplary imple-
mentation of a query answering process that may be imple-
mented by the server of FIG. 1 or 2; and

FIG. 12 1s a flow chart describing an exemplary imple-
mentation of an answer verification process that may be

implemented by the client of FIG. 1.

DETAILED DESCRIPTION

Aspects of the present invention provide verifiable hier-
archical set operations (e.g., itersection and union) in an
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4

outsourced setting. Further aspects of the invention provide
cryptographic protocols for securely verifying the correct-
ness of the produced results.

In one exemplary embodiment, the disclosed exemplary
verification techniques support: (1) eflicient verification of
the computation result 1n time that 1s asymptotically less
than the time spent at the server to compute the result 1tself;
and (2) operation-sensitive verification of the computation
result 1n time that depends only on (the size of) the answer
and (the parameters) of the query.

The verifiable hierarchical set operations described herein
build upon the Authenticated Set Operation schemes by
modifying and expanding them to include an extractable
accumulator.

Two and Three Party Models

Aspects of the present invention may be employed 1n both
a 3-party and a 2-party model of outsourced computation.
Consider an owner of a data set, often referred to as the
source, that wants to answer queries over the data set i1ssued
by one or more clients or users and, for reasons of scalability
and efliciency, chooses to do so by employing a possibly
untrusted server on the cloud.

Generally, according to aspects of the present invention,
the source first performs some finger-printing signing opera-
tions on the data set, 1ssues some publicly accessible digest
information for 1ts customers (clients) and then outsources
the data set to the server. Following that, all query process-
ing 1s handled by the server which produces query answers
accompanied by cryptographic proofs that can be vernified by
the receiving user with respect to their consistency with
digest of the data set.

The exemplary cryptographic proofs are constructed such
that their successful venfication with respect to the pub-
lished digest corresponds (with overwhelming probability)
to the query answer being correct, as 1f the query was
answered locally by the trusted data owner and despite the
fact that the server may act maliciously by trying to subvert
the verification protocol so that incorrect answers and their
proofs are forged to pass the answer verification check.

The above 1s a generalization of the 2-party model, where
a single client owns a data set and outsources 1t at a cloud
server for storage and query processing. In this case, the
source owning the data set and the clients querying the data
set are 1n fact the same entity. Observe that the client does
not need to maintain a local copy of the data set for reasons
ol answer verification.

FIG. 1 1illustrates an exemplary three party scenario,
where a source 110 owns data sets S, . . . .,S and multiple
clients, such as client 130, ask queries of elaborate set
operations (such as 1ntersection and union) over one or more
given sets S,. In addition, as discussed below, the source 110
provides the data sets S, . . ..,S, and corresponding authen-
tication information to an untrusted server 120. The server
120 processes the queries q from the clients 130 and
provides an answer o with accompanying proof-of-validity
IT.

FIG. 2 illustrates an exemplary two party scenario where
a source 210 owns data sets S, .. ..,S that are authenticated
by the source 210 and outsourced to the server 220 with the
corresponding authentication information. The source 210
later asks the server 220 to process queries, g, and the source
210 recerves an answer o with accompanying proof-oi-
validity II from the server 220.

Exemplary aspects of the invention provide eflicient and
operation-sensitive authentication schemes, 1.e., schemes
where the verification time and proof size are more eflicient
than the corresponding verification times and proof sizes

e
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that would be obtained 1f the entire query-answering process
was verified step-by-step and, respectively, schemes where
the verification time and proof size are independent of the
s1ze ol the computation and only depend on the output size
and the query parameters. One important aspect of the
exemplary constructions 1s that they accommodate dynamic
data sets that change over time under insertions, deletions
and modifications 1 a way that maintains low upkeep
clliciency on behalt of the server. Thus, the exemplary
constructions can be used for instantiating general set opera-
tion queries over sets of data (such as shared documents and
public files) as well as for the implementation of secure
SQL-type queries over general outsourced relational data-
bases.

Two exemplary constructions are discussed herein for
ciiciently supporting authenticated queries via hierarchical
set operations 1n the above data outsourcing model. A first
exemplary construction supports queries that include hier-
archical intersections and union operations, but lacks the
clliciency or operation-sensitivity property, namely, the
prool size and the vernification time are related to the total
size ol intermediate sets. For instance, for a query that
demands the intersection of two unions, the proot size will
be linear to the sum of the sizes of the two unions, whereas
the final answer may be much smaller, or be even empty. The
second exemplary construction i1s eflicient and operation-
sensitive and produces short proofs that can be verified 1n
time only linear to the final prootf size with an additional
overhead equal to the number of sets imnvolved 1n the query.

The above results are achieved in the authenticated data
structure (ADS) paradigm which will be described in detail
in a section entitled “Authenticated Data Structure Scheme.”
Aspects of the present mnvention extend C. Papamanthou et

al., “Optimal Verification of Operations on Dynamic Sets,”
Proc. CRYPTO 2011, 91-110 (2011) and/or United States

Patent Publication No. 2012/0030468, entitled “System and
Method for Optimal Verification of Operations on Dynamic
Sets,” each incorporated by reference herein, where the
basic tools and techniques described herein were itroduced,
for the case of “tlat” set operations (i.e., only one set
operation, €.g., intersection, of an arbitrary number of sets).

Aspects of the present invention are directed to a wider
class of computations, namely hierarchical set operations
consisting of an arbitrarily large combination of intersec-
tions and unions, but also set diflerences and negations. The
problem of hierarchical set operations 1s inherently more
difficult, since at some points along the path of the compu-
tation, authenticated results must be provided over non-
authenticated sets (that have been produced as intermediate,
partial, results up to that point in the computation). Appli-
cations of authenticated hierarchical set operations include
authenticated SQL queries over relational databases, authen-
ticated keyword searches over texts and authenticated com-
putations via Boolean circuit evaluation.

As used herein, 1 denotes the security parameter and v(1)
denotes a negligible function. A function (1) is negligible if
for each polynomial function poly(l) and all large enough
values of 1, F(1)<1/(poly(l). An event can occur with negli-
gible probability 1f 1ts occurence probability 1s upper
bounded by a negligible function. Respectively, an event
takes place with overwhelming probability 11 1ts complement
takes place with negligible probability.

Bilinear Pairings

Let G be a cyclic multiplicative group of prime order p,
generated by g. Let also G- be a cyclic multiplicative group
with the same order p and e: GxG—G, be a bilinear pairing,
with the following properties: (1) Bilinearity: e(P*,Q”)=e(P,
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6

Q)** for all PQeG and a,be/ . (2) Non-degeneracy:
e(g,2)=1. (3) Computability: There 1s an eflicient algorithm
to compute e(P,Q) for all P,QeG. pub:=(p,G,G,e,g) denotes
the bilinear pairings parameters, output by the randomized
polynomial-time algorithm GenKey on input 1°.

Bilinear Accumulators

An accumulation function acc maps multiple elements
X,€2*, t0 a single element (accumulation value) in Z* for
any 1eN. Namely given a set X=(X,, . . . ,Xg):

ace(X) = ganEX(If+S)

where seZ*  1s the secret value of the disclosed exemplary
scheme. The above 1s a bilinear map accumulator introduced
in L. Nguyen, “Accumulators from Bilinear Pairings and
Applications,” CT-RSA 2003, Lecture Notes 1n Computer
Science Volume 3376, 275-292 (2003), incorporated by
reference herein. Subject to the above accumulation func-
tion, a set S X has a subset witness W - calculated as

W,y = gnxi‘EX’kS (xj+s).

Now a user that wishes to verify that a provided set S 1s a
subset of set X can check the equality:

?
e(acc(S),Ws x) = elacc(X).g).

The Bilinear Accumulator represents each set S, by one
group element a, referred to as an accumulation value.

In order to facilitate the calculation of accumulation
values by an entity that has access only to public key
information, the values (g7, . . . ,g*) also become publicly
available.

Aspects of the present invention extend bilinear accumus-
lators to provide an extractable accumulation scheme. See
also, J. Groth, “Short Pairing-Based Non-Interactive Zero-
Knowledge Arguments.” ASIACRYPT 2010, Lecture Notes
in Computer Science, Vol. 64777, (2010, Masayuki Abe ed.).
The extractable accumulation scheme couples two appro-
priately defined bilinear accumulators 1n a way that a certain
extractability property 1s satisfied as 1t will become clear
later. The 1mntuition behind this coupling comes from observ-
ing that the input o given to the adversary A can be seen as
the public key for two related bilinear accumulators, with
different (but related) accumulation bases. Then an adver-
sary producing accumulation values for a set X under both
of these accumulators must have knowledge of the set X.

Authenticated Data Structure Scheme

Let D be any data structure supporting queries and
updates. auth(D) denotes the authenticated data structure
and d denotes the digest of the authenticated data structure,
1.€., a constant-size description of D. An authenticated data
structure scheme A i1s a collection of the following six
polynomial-time algorithms: {genkey; setup; update;
refresh; query; verify}:

(1) {sk,pk}<—genkey(1%). Outputs secret and public keys
sk and pk, given the security parameter k.

(2) dauth(D,),d,}<—setup(D,.sk.pk): Computes the
authenticated data structure auth(D,) and the respective
digest of 1t, d,, given a plain data structure D, the secret key
sk and the public key pk.

(3) {Dypauth(D,,,).d,.,.upd} <update(u,D, auth(D,),
d,.sk,pk): On mput an update u on data structure D,, the
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authenticated data structure auth(D,) and the digest d,, 1t
outputs the wupdated data structure D, , along with
auth(D, ), the updated digest d,_, and some relative infor-
mation upd. It requires the secret key for execution.

(4) {Dh+1l,auth(D,_,)d,_,}<refresh(u,D,,auth(D,).d,,
upd,pk): On mput an update u on data structure D,, the
authenticated data structure auth(D,), the digest d, and
relative information upd output by update( ), 1t outputs the
updated data structure D, _, along with auth(D,_,) and the
updated digest d, _ ,, without having the secret key as iput.

(5) {a(@).11(q)} <query(q.D,.auth(D,).pk): On input a
query q on data structure D, and auth(D,) this algorithm
returns the answer to the query a(q), along with a proof 11(q).

(6) {accept,reject }<—verify(q,a(q).I1(q),d, pk): On input a
query g, an answer a(q), a proof I1I{q), a digest d, and pk, 1t
outputs either accept or reject.

Let {acceptreject}=check(q,a(q),D,) be a method that
decides whether a(q) 1s a correct answer for query q on data
structure D, . check( ) 1s not part of the ADS scheme and 1s
only mtroduced for ease of notation. There are two proper-
ties that an authenticated data structure scheme should
satisiy, 1.e., correctness and security:

Correctness of Authenticated Data Structure Scheme:

Let A be an authenticated data structure scheme {genkey:
setup; update; refresh; query; verify }. The authenticated data
structure scheme A 1s correct 1f, for all keN, for all (sk,pk)
output by algorithm genkey( ), for all (D,;auth(D,);d,)
output by one invocation of setup( ) followed by polyno-
mially-many invocations of refresh( ), where h=0, for all
queries q and for all a(q);II(q) output by query(q;D, ;auth
(D, );pk), with all but negligible probabaility, whenever algo-
rithm check(qg;a(q),D,) accepts, so does algorithm veriiy(q;
a(q):11(q):d:pk).

Security of Authenticated Data Structure Scheme:

Let A be an authenticated data structure scheme {genkey:
setup; update; refresh; query; verify}, k be the security
parameter, v(k) be a negligible function and (sk,pk)<—gen-
key(1%). Let also A be a polynomially-bounded adversary

that 1s only given pk. The adversary has unlimited access to
all algorithms of A, except for algorithms setup( ) and
update( ) to which he has only oracle access. The adversary
picks an 1nitial state of the data structure D, and computes
D,;auth(D,);d, through oracle access to algorithm setup( ).
Then, for 1=0; . . . ,h=poly(k), A 1ssues an update u, for the
data structure D, and outputs D, ,.auth(D, ,) and d_,
through oracle access to algorithm update( ). Finally the
adversary picks an index O=t=h+1, a query g, an answer a(q)
and a proof 1I(q). We say that the authenticated data struc-
ture scheme A 1s secure 1f for all keN, for all (sk;pk) output
by algorithm genkey( ), and for all polynomially-bounded
adversaries A 1t holds that:

(g, alg), 1l(g), 1) < A5 (accept) « veritylg, alg), Il(g). di, pk) |
(reject) « check(qg, a(g), D;)] -

Pr

neg(k).

Efliciency of ADS Schemes

Regarding the complexity of an ADS scheme, the verifi-
cation time (and consequently the proof size) should be
asymptotically less than the time needed for a user to
compute a(q) by itsell or asymptotically the same as the
answer computation size. A scheme that satisfies the above
property 1s said to be an eflicient scheme.
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ADS Scheme for Basic Set Operations
As 1ndicated above, C. Papamanthou et al., “Optimal

- Operations on Dynamic Sets,” Proc.

Verification of

CRYPTO 2011, 91-110 (2011) presents basic tools and
techniques for “tlat” set operations (i.e., only one set opera-
tion, e.g., intersection, of an arbitrary number of sets),
referred to herein as ASO for “authenticated set operations.”™
As described above, a 3-party model 1s considered where the
involved parties are

1. a source 110 (or owner) O maintaining a data set D,
comprising of sets S;, . .. ,S.

2. numerous end users or clients 130 1ssuing set operation
queries regarding Dy;

3. an mtermediate server S (server 120) in charge of
handling queries, computing answers and 1ssuing answer-
prool pairs for the users.

The scheme 1s based on the bilinear accumulator pre-
sented above. Another construction used 1s an accumulation
tree which 1s used to verily the correctness of accumulation
values for the sets involved 1n a particular query. For a more
detailed discussion of the accumulation tree primitive, see,

for example, C. Papamanthou et al., “Authenticated Hash
Tables,” CCS, 4377-448 (2008) and/or United States Patent

Publication No. 2011/0225429, entitled “Cryptographic
Accumulators for Authenticated Hash Tables,” each incor-
porated by reference herein.

An imformal overview of the actions mnvolved in the
protocol follows:

1. Source 110 picks security parameter k and acquires
fpk,sk}<—genkey(1%). Consequently, by running algorithm
setup, source 110 constructs an authenticated version of Dy,
namely auth(D,) as well as a digest d,.

2. Source 110 communicates {D,,auth(D,),d,,pk} to the
server S (120), and publishes {d,.pk} that serve as the public
key information for the scheme. It should be noted here that
this scheme has the property of being publicly verifiable.

3. A user 130 that wants a query q answered, sends g to
the server S (120). The server 120 computes an answer a(q)
and proof II(q) using algorithm query which will be
explained 1n more detail below.

4. Upon receiving {a(q),P(q)}., the user 130 verifies
correctness by running verily, as discussed further below 1n
conjunction with FIG. 12.

ASO also includes algorithms update, refresh that are
used to accommodate updates on the original data set
without the source having to recompute the new authenti-
cated version of the data set from scratch. Namely, source
110 runs update and produces new tuple {D,,  ,auth(D,_ .
d.. )} in constant time (independent of the size of D,) as well
as update digest upd. Consequently the server 120 receives
upd and by running refresh produces {D,, ;,auth(D,_ ,.d,_ )}
also 1n constant time. It 1s noted that the ability to accom-
modate dynamic data sets 1s what puts the above scheme
apart from constructions that only address the problem of
static, pre-defined sets.

The exemplary algorithms query and vernily come with
two modes of operation, e.g., one for the case of union and
one for intersection. The operation can be described 1n both
cases 1n three steps. Firstly, the accumulation values of all t
sets mvolved 1n the query q are returned, accompanied by
corresponding proofs II,, . . . ,IL that can be verified by the
use of public mformation d, with use of algorithms que-
ryTree, verity'Iree related with the accumulation tree primi-
tive. This step can be distinguished by the rest of the query
answering procedure. Secondly, polynomial coetlicients of
the accumulation value of the answer set a(q) are computed.
These coethicients could be calculated by the user 130 (since
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he has access to the set and pk) but the fact that they are
given by the server 120 helps lower the verification time
complexity. Finally, depending on the type of query (union
or intersection) a set of bilinear equalities are checked based
on witness values computed by the server 120.

FIG. 3A 1llustrates exemplary pseudo code 300 for an
exemplary implementation of the query algorithm and FIG.
3B illustrates exemplary pseudo code 350 for an exemplary
implementation of the verily algorithm.

Scheme 1: ADS Scheme for Hierarchical Set Operations

A first exemplary approach to hierarchical set operations
extends ASO 1n order to accommodate hierarchical set
operations.

FIG. 4 1illustrates an exemplary tree T (400) for repre-
senting a hierarchical set operation. The exemplary hierar-

chical set operation comprises:

g—=(ANB)UCND)UENFEF)UGMNH)(KUL)).
As shown 1n FIG. 4, a set operation query can be parsed as
a tree T (400) with original sets (A, B, C, D, E, F, G, H, K,
L) at the leat nodes, set operations (e.g., U and I) at internal
nodes and output a_, set at the root node.

Consider an example having a two-level operation such as
(ADB)DC where @ can either be union or intersection (but
not the same in both positions since that would trivially
reduce to the “tlat” case). Assume A,B,C are sets that have
originally been authenticated by the source. Then one strat-
egy 1n order to get an authenticated result for the final
answer, would be to first verily the correctness of the
intermediate result I:=A®B, using ASO, and consequently
verify the correctness of the final result F:=IbC again by
using the original verification algorithm after returning I to
the user. In this manner, the security of the exemplary
hierarchical scheme 1s directly reduced to the security of the
underlying ADS.

FIG. 5 illustrates an exemplary tree 500 representing the
union (node 510) of the result of two 1ntersection operations
I, and I, (nodes 3520, 530) and a set J (node 3540). The
intersection operations I, and I, (nodes 520, 5330) are applied
to a plurality of sets A-D and E-H, respectively.

The techniques of C. Papamanthou et al., “Optimal Veri-

fication of Operations on Dynamic Sets,” Proc. CRYPTO

2011, 91-110 (2011) and/or United States Patent Publication
No. 2012/0030468, entitled “System and Method for Opti-
mal Verification of Operations on Dynamic Sets,” can be
applied iteratively for each hierarchical operation 1n a “black
box”” manner to process the output of a previous operation.
In addition, for such hierarchical queries, this technique is
repeated 1teratively (for each operation) providing all inter-
mediate results.

For example, the intersection operations I, and I, can be
processed separately as “flat” operations to obtain the cor-
responding Intersection proof for each intersection operation
and intermediate results for I, and I,. The Intersection proof
for each intersection operation comprises values W, F. for
cach set S mvolved 1n the respective 1ntersection operation.
Thereatter, the union operation U can be processed as a
“flat” operation to obtain the corresponding Union proof for
the union operation and the final result (answer element) for
U. The Union proof for the union operation comprises
values W for each set S involved 1n the union operation
(here, W, W,, and W), as well as a value w, for each
answer element w_.

The accumulation values of sets A, . .. .H and J in FIG.
5 are verified by an accumulation tree and the accumulation
values of sets I, and I, are verified because the correspond-
ing sets (intermediate results) are explicitly given.
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It can be observed that, in the original ASO scheme, a
proof 11(q) that 1s paired with an answer a(q) for query q can
be partitioned 1n two parts I1,, I1, such that II,=r,, . . . &,
1s related with veritying the correctness of the accumulation
values of the t sets involved 1n the computation (see step (2)
of query algorithm 300 of FIG. 3A) and IT,={(b,, ... .,b,), W}
where b, are the polynomaial coeflicients of the accumulation
value of a(q) and W 1s the set of witnesses depending on the
type of query. Respectively, the verification procedure can
be separated into two subroutines, one for the verification of
the correctness of the returned accumulation values of the
involved sets (using only I1,(q)) and one for the verification
of the correctness of a(q).

Based on the above observation, the following modified
algorithms are defined:

Algorithm {a(q),IT,(q)}<—query*(q,D,,auth(D,,),pk):

Run algorithm query (FIG. 3A), discard I1,(q) and return

OI]_ly {a(q):Hl }
Algorithm  {accept,reject }<—verify*(q,a(q).I1,(q),(acc

(I,), ... ,acc(l)),d,.pk):

Run algornthm verity (FIG. 3B) skipping step (1) and use
the provided acc(S,) as the accumulated values for step (3).
S,,...,5 are thet sets involved in the computation. Observe
that 1t 1s assumed that the verifying client 130 already has
access to the accumulation values of the original (not
intermediate) sets that are mmvolved in the computation.
Using the above modified algorithms, a query answering and
verification procedure 1s constructed for an ADS scheme for
hierarchical set operations incorporating aspects of the pres-
ent 1nvention.

In a n-level operation for a query q involving k interme-
diate results, the server 120 must return a(q),P(q), where
P(q) will contain proofs of correctness for all intermediate
results. These intermediate proois of correctness are defined
herein as P,(q) for 1=1, . . . k. Observe that at each level 1
of computation there may be more than one intermediate set
results which we denote by [, , . . .,

Now the query answering and verification algorithms of
the exemplary hierarchical scheme are:

Algorithm ta(q),P(q)}<—hquery(q,D,,auth(D,),pk):
Where P(q) contains:

(a) For each of the intermediate results at the first level of
computation, run query and add its output (including the
intermediate set itsell) to P(q)

(b) For =2, . .. nrun query* for each of the intermediate
results 1n the j-th level and add 1ts output to P(q).

Algorithm {accept,reject} <—hverify(q,a(q),P(q).d,.pk):

(a) For each of the results on the first level of the
computation, run verily in order to verily the correctness of
all partial results I, ;, . .. I, ;. Output reject 1t any run of
verily outputs reject. Store all computed accumulation val-
ues of I, ; in table ACC

(b) For 1=2, . . . ,n run for every one of the partial results
on the j-th level, the algorithm verity™* looking up accumu-
lation values from ACC. After each run for set I ; add its
accumulation value to ACC. If at any point verify™ outputs
reject, output reject otherwise output accept.

All other algorithms, namely, genkey, setup, update, and
refresh remain the same as 1n ASO.

The intuition behind this construction 1s that after verifi-
cation of intermediate results for each level, these sets are
elevated to the same level of trust, on behalt of the client
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130, as the sets originally signed by the trusted source 110
of the scheme. This allows a reduction of breaking the
security of a multi-level computation to breaking the secu-
rity of a single-level computation. One final observation 1s
that, at intermediate levels, 1t might be that the mput 1s not
only the partial results from the previous level but also one
or more ol the original sets.

The above verification algorithm verifies the correctness
of all the intermediate results using the original verification
algorithm which runs 1n time linear to the size of each set
and also to the number of sets participating 1n the compu-
tation. Since each partial result on level 1 contributes to only
one partial result on level j+1, it follows that the total
running time of the verification algorithm (as well as the
total proof size) 1s

where 0, 1s the cardinality of the 1-th intermediate result and
t. 1s the number of sets involved 1n the computation. Since a
tree having t leals can contain at most t—1 internal nodes
(this happens for a full binary tree) the above can be written
as

{ b

@, I+Zc5; .

=1

Efficient Authenticated Hierarchical Set Operations

The above construction yields a secure scheme. Assume
for example that a 2-level query must be answered consist-
ing of unions of sets in the first level and an intersection of
these unions 1n level two, 1.e. (A, UAN(AJUAL) . . .
M(A,_,UA ). The final result may be small compared with
the original A’s (indeed, since 1t 1s an intersection, 1t may
even be that the final result 1s empty), therefore, following
the spirit of the original AXO scheme, a vernfication algo-
rithm 1s needed that runs independently of the size of the
intermediate sets. The previous construction, however, does
not have this property, as it runs in time linear to the total
s1ze of all the intermediate results (which 1n this case, since
the intermediate computations are unions, can be as large as
the sum of the sizes of all the original sets). However, 1n a
case where the final answer output 1s the largest set involved
in the computation, (for example when query corresponds to
a set union), efliciency 1s achieved. In order to construct an
ellicient ADS scheme for hierarchical set operations, some
tools are first defined.

Extractable Accumulation Scheme

One way to improve the above scheme 1s by removing all
intermediate sets of the proof. The problem with such an
approach 1s that, under certain assumptions, an adversary
must be provided with the set for which the false answer 1s
being provided. Hence, an adversary that cheats for one of
the intermediate results will not be caught since he does not
reveal the supposed set for which he cheated. Observe that
it might be that all subsequent sets 1n the query (including
the final answer) may be computed truthfully with respect to
this cheating intermediate result.
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Another observation 1s that any adversary that cheats
using accumulation values of sets he has knowledge of can
be used to break ASO. Hence, a way to “force” a server 120
to prove to the client 130 that he knows all the intermediate
sets used to compute the accumulation values 1n the proof 1s
needed. One way to achieve this, 1s to include these sets in
the proof and indeed that 1s on a high level what the security
of our first scheme 1s based on. However, this 1s achieved at
the cost of efliciency as discussed above.

An extractable accumulation scheme 1s defined herein as
an extension ol the one-way accumulator by adding the
following two algorithms:

Algorithm ka<—KnowledgeAccumulate(pk,{x,, . . . .x, })
Algorithm {accept,reject } < VerifyKnowledge(pk.ka)

ka 1s a knowledge accumulation for set X and, 1n a sense,
serves as a short argument of knowledge for set X. The
security definition for this extended accumulation scheme 1s
the same as for the bilinear accumulator of the ASO. The
additional following property 1s provided:

Extractability—An accumulation scheme 1s extractable 11
for any non-uniform probabilistic polynomial time adver-
sary A that, upon mput the public key of the extractable
accumulation scheme, outputs value ka such that Verity-
Knowledge(pk,ka)=accept, there exists non-uniform proba-
bilistic polynomial time extractor E that upon the same input
as A outputs set X={x,, . .. .x,} such that KnowledgeAc-
cumulate(pk,X)=ka with overwhelming probability.

Generally, extractability forces the server 120 to produce
accumulation values only for allowed sets without providing
these sets. This is achieved with an additional element a.. In
this manner, hierarchical queries can be processed without
processing (possibly huge) mtermediate results.

In order to construct an extractable accumulation scheme,
two bilinear accumulators (1.e., a primary bilinear accumu-
lator and a secondary bilinear accumulator), must be set up
that are related 1 a particular way. The public key of the
secondary accumulator 1s created by raising each element 1n
the public key of the primary bilinear accumulator to an
clement x that remains hidden from adversaries and
becomes part of the secret key of the scheme. a, denotes the
accumulation value of set S, created by the primary accu-
mulator and a, denotes the accumulation value of the same
set S, created by the secondary accumulator. On a high level,
the (provable) claim 1s that any adversary that produces
(given both public keys) any two elements such that one of
them raised to x equals the other one, knows a particular
corresponding set such that the first element 1s the accumu-
lation value of this set with respect to the primary accumu-
lator and the second set 1s the accumulation of the same set
with respect to the secondary accumulator.

The following 1s an extension to the bilinear accumulator
for the construction of an extractable accumulation scheme,
consisting of the following algorithms:

1. Algorithm {pk,sk}<—GenKey(1%) Choose (p,G,G e.,2)
exactly as before. Choose uniformly at random from Z*
elements s,a. Compute tuple {g,g°, . .. g% 0% 0% o
where the first part 1s the same as the secret key of the
original bilinear accumulator. Let us for ease ol notation
denote h:=g”. Output pk=(p,G.G e,g,2°, 2% h,
h*, . ...h%) and sk=(s,a).

Here, the bilinear accumulator 1s enhanced with a second
accumulation function for a different exponentiation base h,
the discrete log of which with respect to the exponentiation
base of the original accumulation base g 1s part of the secret
key. The accumulators defined by these two accumulation
functions are referred to as primary accumulator and sec-
ondary accumulator, respectively. All algorithms of the




US 9,465,874 Bl

13

exemplary extractable accumulation scheme make use only
of the primary accumulator and in the following discussion,
whenever the accumulation value acc(') of a set 1s refer-
enced, 1t refers to the accumulation value computed using
the primary accumulator. That 1s, set accumulation, witness
computation and verification essentially 1gnore the second
part of the public key.

2. Algorithm
X, ...,X ) Glven a

{d,d}«<KnowledgeAccumulate(pk,

set X =1{xy,... ,x,} with n <g compute d :=

gnx,_'EX (xi+8) ond g = pllxex xits)

P

Output values {a’, d}.

3. Algorithm {accept,reject}<—VerifyKnowledge(pk,d,d)
?
Check the equality e(d,g?) = e(d,g)
Observe that these values can be computed using only the
public key since the polynomial

X(s) = | | (x; +5) can be written as Z bs'.
. i=1
i=1

The values

can be directly computed using the pk and then multiplied to
form d,d. Also,

H

. x;+s g all_ (x;+5) . ab,_-si
E(gnx;EX( it ), g ): E(g xje XWit : g) — E(gZzzl , g) = e(h, g).

Intersection Argument

A further aspect of the mvention provides a method for
verilying that an intersection operation i1s performed cor-
rectly. This construction 1s a natural extension of ASO but
mainly using an extractable accumulation scheme. I=
S,M ... NS, 1s the wanted operation. Access 1s assumed to
the public key of an extractable accumulation scheme for all
parties. Let also a,, . . . ,a, be the accumulation values
corresponding to sets S.. The intersection set I 1s uniquely
characterized by the following two properties: (a) I=S, for
all S, and (b) N._,(S\D)=. The first captures that all
elements of I belong 1n all of S, and the second that no
clements are left out. The above properties can be efliciently
verified, given elements W F. for 1=1, . . . ,t and a (candi-
date) accumulation value a, for I, by the following bilinear
equalities:

ela,Woi=ela,g) Vi=1, . .., t (1)

r (2)
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T'he above two checks are suflicient to prove that a,=acc(I)
if the verifier also has access to the set 1. It 1s desirable to

prove a claim for a, without providing set 1. If the verifier 1s
provided with element a,, by checking

-

e(dng”)=elag), (3)

the verifier can gain confidence that a, indeed refers to the
correctly computed intersection (or a soit cheating).

The algorithms provelntersection and verifylntersection
are the two methods described above to construct the
necessary elements for the intersection argument and to
verily the relations (1)-(3).

FIG. 6 illustrates the application of the extractable accu-
mulation scheme to the exemplary tree 600 comprised of a
query involving the following exemplary hierarchical inter-
section set operation, 1 accordance with aspects of the
present 1nvention:

qg—=AMNBMNCNMND.

The proof of the query answer generated by the exem-
plary extractable accumulation scheme comprises the fol-
lowing accumulation values and witness values:

[~{(ap3,),W ;W5 W, Wi F FrFoFpl,
where a, denotes the accumulation value created by the
primary accumulator, a, denotes the accumulation value
created by the secondary accumulator, W, _ denotes subset
witnesses and F, denotes completeness witnesses, as more
tully described 1 C. Papamanthou et al., “Optimal Verifi-
cation of Operations on Dynamic Sets,” Proc. CRYPTO
2011, 91-110 (2011) and/or United States Patent Publication
No. 2012/0030468, entitled “System and Method for Opti-
mal Verification of Operations on Dynamic Sets.”

Union Argument

Another aspect of the mvention provides a method for
proving the correctness of a union method. Again, set
U=S,U, . .. ,US, and let a, be the corresponding accumu-
lation values as above. The union set U 1s umiquely charac-
terized by the following two properties: (a) S, = U for all S,
and (b) For each element x,€U, x €S, for some 1 between 1
and t. The above properties can be efliciently verified, given
elements W,w, for 1=1, . . . t and j=1, . . . ,|Ul and a
(candidate) accumulation value a,, by checking the follow-
ing equalities:

e(gig’ w)=elar,g) Vj=1, . . ., 1.

Observe that 1n order to check the above, the verifier must
have access to U; indeed, under that condition these checks
are sullicient to provide security. However, as before, 1t 1s
desired to prove a claim for a,, without access to U. More-
over, the number of equalities to be checked for the union
case 1s linear to the number of elements in the output set.
Such an approach (even if having to provide U explicitly 1s
avoilded) would lead us to a scheme lacking efliciency. One
can easily observe the similarity such a scheme would have
with the first exemplary construction 1n terms of proof size
and verification time. Therefore, 1t 1s desirable to not only
avold the necessity to provide U, but also to restrict the
number of necessary checks.

The exemplary approach stems from the inclusion-exclu-
s1on principle of set theory. Namely, for set U=AUB 1t holds
that U=(A+B)\(AMB) where A+B 1s a simple concatenation
of elements from sets A,B (allowing for multisets) or, 1n a
more usetul manner, A+B=UU(AMNB). Given the accumu-
lation values a ,,a; the above can be checked by the bilinear
equality e(a,az)=e(a,a,~z). Thus, with access to U,
[I=AMB and a proof-of-correctness for I, one can verity the
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correctness of a,, checking a number of equalities 1ndepen-
dent of the size of U by checking equalities (2),(3) and the

above. This reduces the number of necessary equality checks
but there are still two issues to be dealt with. Firstly, the
verifier still needs access to U (1n addition access to I 1s also
necessary, but it must be that [I|<|Ul) and, secondly, the
above approach does not scale well with the number of input
sets for the union operation.

In order to deal with the first of the above 1ssues, the prootf
values also include a,a,,a, where the verifier can check
e(a,,g“)=e(a,,g) and e(a,g”“)=e(a,g). Hence the verifier gets
a proot of validity for the accumulation of set I and corre-
spondingly can verily the correctness of the accumulation
value of U (once again, except for the case of soit cheating).
The semantics of a set union operation over t sets 1s now
described. For the rest of the section, without loss of
generality, assume JkeN such that 2°=t, i.e., t is a power of

2. Let uvs define U, . . . ,U, as the sets
(S,US,), . . . ,(S,_,US). For set U, 1t holds that U=
U,,.... U, due to commutativity of the union operation.

One can use the mtuition explaimned above 1 order to
prove the correctness of (candidate) accumulation values a,,
corresponding to sets U. and, following that, apply repeat-l
edly until set U 1s reached. Semantically this corresponds to
a binary tree T of height k with the original sets S, at the t
leats (level 0), sets U, as defined above at level 1, and so on,
with set U at the root at level k. Each internal node of the tree
corresponds to the set resulting from the union operation
over the sets of 1ts children nodes. In general,
U,?, .. .,U . denotes the sets appearing at level j. Each
internal node of T has exactly two kids and 1, denotes the
intersection of the sets corresponding to 1ts children nodes.
The following proves the validity of the accumulation value
ol a union set operation that can be constructed with access
to the public key of an extractable accumulation scheme and
accumulation values a, corresponding to original sets S..

Each internal node of the binary tree T corresponding to
the union operation 1s as described above. For ease of
notation A,B denotes the two sets corresponding to its
children nodes, U,I their union and intersection respectively.
The proof contains:

1. For each Uf) of level j=1, . . . )k, knowledge accumu-
lation values d, .d, ,d,d, corresponding to sets U,I as defined
above.

2. For each UY of level j=1, . . . .k, values W W, F .F..
as defined 1n the intersection argument.

Observe that a,, 1s by definition equivalent to the first
element in the knowledge accumulation of set U:=U,%*_ In
order to verily the correctness of a,, the verifier checks the
tollowing;:

1. Parse all knowledge accumulations as

a,()s G, ()

{ {

and

a0 8,3

2. Check that the following equalities hold for each
internal node U, at level 1 in T:
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E(ﬂl!}fl), Wﬂ) =elay, g) (4)

E(aél), WB) =el(ag, g) (5)

e(W 4, F 4 )e(Wp,Fp)=1 (6)

(7)

E(a 1), a 1)=€(ﬂmﬂﬂ)
{0 “y)

E(Eif;l), g) = E(ﬂf‘g”, g) (8)

o) =

3. Check that the following equalities hold for each
internal node U.Y” in T for j=2:

D g) (10)

E(ﬂ (/) Wa) = E(ﬂ (j-
f; Usi_l

E(ﬂ!:}fj), WB) = E’:‘(:‘:IU%;'_“, g) (11)

e(W o, 4)e(Wp,Fp)=1 (12)

13)
E(ﬂf (H>d (j)) — E(ﬂ (j—1), d (j—l)) (
f; U Urict Yz

o 5)=dogo-o

E(aUEﬁ’ g) = E(HU}*‘F)’ g). (15)

Intuitively any verifier can, by checking the above equali-
ties, gain confidence that a,, indeed refers to the correctly
computed intersection (or a soit cheating).

Both proof size and verification time of the above con-
struction are independent of intermediate set sizes and only
linear to the number of mnvolved original sets. This follows
casily from the semantic representation of the union opera-
tion as a binary tree with the t original 1nput sets to the union.
It follows that the total number of internal nodes 1n this tree
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1s O(t) (technically t-1) and checking each equality above
can be done 1n constant time (all pairing mmputs are pre-

computed) thus both proof size and verification time are
O(1).

The algorithms proveUmion and verifyUnion are the two
methods described above to construct the necessary ele-
ments for the intersection argument and to verily the rela-
tions (4)-(15).

FI1G. 7 illustrates the application of the extractable accu-
mulation scheme to the exemplary tree 700 comprised of a
query involving the following exemplary hierarchical union
set operation having two sets, 1n accordance with aspects of
the present invention:

qg—=AUB

The proof of the query answer generated by the exem-
plary extractable accumulation scheme comprises the fol-
lowing accumulation values and witness values:

[T, =1 (apap),(arsa ), W 4, WsW o, Wi F  FaF o Fp)
where a, and a,, denote the accumulation values created by
the primary accumulator, a, and a,, denote the accumulation
value created by the secondary accumulator, W, denotes
subset witnesses and F, denotes completeness witnesses, as
more fully described in C. Papamanthou et al., “Optimal
Verfication of Operations on Dynamic Sets,” Proc.
CRYPTO 2011, 91-110 (2011) and/or Umted States Patent
Publication No. 2012/0030468, enfitled “System and
Method for Optimal Verification of Operations on Dynamic
Sets.”

FIG. 8 illustrates the application of the extractable accu-
mulation scheme to the exemplary original tree 800 com-
prised ol a query mvolving the following exemplary hier-
archical union set operations having multiple sets, 1n
accordance with aspects of the present invention:

qg>AUBUCUDUEUFUGUH

The exemplary original tree 800 1s transformed into a
transformed tree 850, as shown 1n FIG. 8 using a combina-
tion of two-set unions. The prool of the query answer
generated by the exemplary extractable accumulation
scheme comprises the following:

II=concatenation of union argument proofs for two ¢le-

ments (FI1G. 7).

FIG. 9 illustrates the application of the extractable accu-
mulation scheme to the exemplary original tree 900 com-
prised ol a query mvolving the following exemplary hier-
archical set operations having multiple sets, 1n accordance
with aspects of the present invention:

g—>((ANBIUCNDUENEHUGMNH NKU

L)

The proof of the query answer generated by the exem-
plary extractable accumulation scheme comprises the fol-
lowing:

II=concatenation of union/intersection argument proofs

(FIGS. 6-8).

Scheme 2: An Eflicient ADS Scheme for
Hierarchical Set Operations

Using the above constructions, it has been shown how one
can verily the correctness of candidate accumulation values
for set unions and operations. On a high level, by composing
all of the above methods one can prove (and verniy) the
correctness ol a computation corresponding to general hier-
archical set operations. Observe that so far, it has been
assumed that the verifier has access to (or can efliciently
verily the validity of) the accumulation values of all original
sets, 1.e., “trusts” that a =S, for all original sets. In the context
of an ADS scheme, the trusted source 110 must provide an
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cilicient way for the client 130 to verify that. To this end, an
accumulation tree 1s employed. This cryptographic primitive
can be seen as an analog of Merkle trees for proving set
membership with respect to a digest value h with the
additional benefit that 1t provides constant size proois that
are also verifiable 1n constant time for the set membership
problem, while at the same time, maintaining eflicient
updates.

Assume a data structure D, comprised of sets S, . .
with elements from Z*,.

1. Algorithm {pk,sk}<genkey(1’) Run key-generating
algorithms for the extractable accumulation scheme defined
above and an accumulation tree with corresponding security
parameters to receive keys pk,,pk,.sk;,sk,. Output pk=pk,,
pk, and sk=sk,,sk..

2. Algorithm {auth,, ,h, }<—setup(D,,pk,sk) Compute
accumulation values a, for S, where 1=1, . . . 1. Moreover,
compute accumulation tree AT over values {i,a,}. The
authenticated data structure consists of {a,, ... ,a,ATl} and
h, 1s the digest of the accumulation tree.

3. Algornithms update and refresh are similar to ASO.

Now, given a query Q that corresponds to a number of
hierarchical set operations over sets S,, . . . S, (without loss
ol generality, let these be the t first of the T sets) and T be
the tree that maps q with S, . . . ,S_ at 1ts leafs. For ease of
illustration, the mode of operation of the exemplary algo-
rithms are described for the case where all sets S, are at the
same level of the computation, 1.e., all leafs of T are at the
same level. The necessary modifications 1 order to explic-
itly cover the case where original sets are higher 1n the query,
follow 1n a straight-forward manner from the following
analysis, since any set S, encountered at an advanced stage
of the process 1s treated 1n the exact same manner as for the
sets residing at the tree leafs. The following algorithms are

defined:

4. Algorithm {o,IT}—hquery(q,D,auth,,,h,pk) Let D be
the most up to date version and auth,,h be the corresponding
authenticated values. Compute the result of the set opera-
tions described 1n q over sets S, as 0=x,, . . . ,X, and denote
lal=0. Construct prootf II as follows:

(a) Compute prooi-of-membership m, for each pair (1,a,)
using AT.

(b) For each internal node vel compute prootf P(v):

If v corresponds to a set intersection, let P(v) be computed
using algorithm provelntersection.

If v corresponds to a set union, let P(v) be computed using
algorithm proveUnion.

'S,

S §
(c) Compute values b, ... , bs such that ]_[ (x; +.5) = Z b:s'.
i=1 i=1

The values b={b,, . . . ,b,} are the coeflicients of the
characteristic polynomial of set .

(d) Output {o,Il=(a,,
nr:P(Vl): ot :P(VITI—r))!b}

Observe that the size of the proof Il 1s O(t+06). This
follows from the fact that the values a,,mt, are of constant size
and each of P(v) 1s of size linear to the number of children
on v. Since each node of T has a unique parent and there are
at most t—1 internal nodes at T, the combined size of all
prooils P(v) taken together 1s O(t). Also, there are exactly o
coellicients b, therefore the total size of 11 1s O(t+0).

5. Algorithm {accept,reject }<—hverify(a.I1,q,pk,h) Parse
proof as [1=(a,, . . . ,a,m, . ... t.P(v)), ... . P(v;_).b}.
Proceed as follows:

¥2 P) . : . .
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(a) Verily the validity of the original accumulated values.
For each value a,, run the verification algorithm of AT on
mput a7, pk,h. If 1t outputs reject for any of them, output
reject and halt.

(b) Verily the correctness of all intermediate accumulation
values. For each internal node v, run verityUnion or veri-
tyIntersection accordingly on input P(v). IT it outputs reject
for any of them, output reject and halt.

(c) Validate the correctness of coeflicients b by running
algorithm checkCoellicients on input o.,b. I 1t outputs reject,
output reject and halt.

(d) Verity that the following equality holds:

= e(aq, Z).

Observe that a_, 1s included 1n II as part of P(v,__,). If the
equality holds output accept, otherwise reject.

The runtime of the above verification algorithm 1s O(t+0)
as steps 1 & 2 take time O(t) from a similar argument as
above and steps 3 & 4 take time O(0).

The scheme AHSO,={genkey, setup, hquery, hverify,
update, refresh} is a dynamic ADS scheme for queries g
from the class of hierarchical set operations queries with
proof size and verification time O(t+0), where t 1s the
number of sets appearing 1in g and 0 1s the size of the query
answer d.

Source Operations

FIG. 10 1s a flow chart describing an exemplary imple-
mentation of a data set outsourcing process 1000 that may be
implemented by the source 110, 210 of FIG. 1 or 2. As
shown 1 FIG. 10, the source 110, 210 mitially generates
public and secret keys (pk,sk) during step 1010. Thereafter,
the source 110, 210 computes accumulation values a,, .. . ,a
for corresponding sets S,, . .. .S during step 1020.

The source 110, 210 then computes a verification over
values a,, . . . ,a_ during step 1030. The verification may
comprise an accumulation tree (AT) or any other public key
authentication scheme, such as digital signatures, Merkle
Trees and publishing the accumulation values at a (secure)
public access repository that 1s authenticated by the source.

The source 110, 210 then sends the server 120, 220 sets
S, corresponding values a, and the verification during step
1040.

Finally, the source 110, 210 publishes the public key pk
and a verification digest during step 10350.

It 1s noted that 1f the verification comprises an accumu-
lation tree (AT), the source 110 computes the AT and
corresponding digest, sends them to the server 120 and
publishes the digest. The server 120 includes in each proof,
accumulation tree proofs-of-membership for each of the
accumulation values of the sets mvolved i the query with
respect to AT. The client 130 verifies validity of accumula-
tion values using the public key, the digest and the verifi-
cation algorithm of AT.

When the verification comprises a Merkle Tree, it 1s
processed 1n a similar manner by the parties as an AT. There
1s no need to send the Merkle tree to the server 120,
however; since 1t 1s a deterministic construction for a chosen
hash function and can be re-constructed by the server 120.

When the verification comprises a Digital Signature
Scheme, the source 110 computes signatures Sig, and sends
them to the server 120. The source also publishes the public
key to the digital signature scheme. For each set involved in
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a query, the corresponding signature for its accumulation
value 1s included by the server 120 1n the prootf. The client

130, using the public verification key, verifies the integrity
of each accumulation value.

When the verification comprises a Public Access Reposi-
tory, the source 110 sets up some authentication information
for the repository and populates 1t with accumulation values
a.. The source 110 also publishes its certificate. No authen-
tication information 1s included by the server 120 in the
prool regarding accumulation values a,. The client 130
accesses the repository and using the certificate of the source
110 verifies the integrity of values a, used 1n the proof.

Server Operations

FIG. 11 1s a flow chart describing an exemplary imple-
mentation of a query answering process 1100 that may be
implemented by the server 120, 220 of FIG. 1 or 2. As shown
in FIG. 11, the server 120, 220 mtially uses the sets
S;, ....,5 toproduce an answer o during step 1110, 1n a
conventional manner. The server 120, 220 then parses the
query g as a tree T during step 1120.

For each original set S, 1n g, the server 120, 220 computes
the verification proof-of-correctness for a, during step 1130
(1.e., Tor each a, relevant to the query).

For each internal node of T, the server 120, 220 computes
the Unmon/Intersection argument during step 1140, as dis-
cussed above 1n conjunction with FIGS. 6-9.

The server 120, 220 then outputs the verification proois
(step 1130), arguments (step 1140) and coeflicients b, of the
characteristic polynomial of set . during step 1150.

Client Operations

FIG. 12 1s a flow chart describing an exemplary imple-
mentation of an answer verification process 1200 that may
be implemented by the client 130 of FIG. 1. As shown 1n
FIG. 12, for each set S, 1n the query g, the client 130 verifies
the validity of accumulation value a, using provided verifi-
cation proof during step 1210. In addition, for each internal
node of T, the client 130 validates the provided Union/
Intersection arguments during step 1220, using the verified
accumulation value a,.

The client 130 then uses an FFT interpolation to verily the
validity of the coeflicients b, of the characteristic polynomaal
during step 1230. A test 1s performed during step 1240 to
determine 11 all checks hold. If 1t 1s determined during step
1240 that all checks hold, then an acceptance 1s output
during step 1250. If, however, 1t 1s determined during step
1240 that all checks do not hold, then a rejection 1s output
during step 1260.

Improvements and Extensions

Reducing Proof Size

The si1ze of proot 11 can be reduced to being independent
of the size of the final answer a.. Observe that what makes
the proot be of size O(t+0) 1s the presence of coellicients b.
However, given a itsell, coeflicients b=(b,, . . . ,bs) can be
computed using an FFT algorithm 1n time O(0 log 0). Thus,
an alternative to the above scheme would be:

Replace proof Il with IT'={a,, . . . ,a,m, . . .,
nr:P(Vl)a ot :P(VITI—r)}'

Replace step 3 in the verification algorithm by: polyno-
mial 1nterpolation with FF'T compute coeflicients b for the
characteristic polynomial of set .

The above modifications yield an ADS scheme with
similar properties as AHSO,, except that proof size 1s O(t)
and verification time 1s O(0 log 0). Since, 1 general,
computing o given sets S, can be done 1n time O(d) (if the
final output size 1s larger than all involved sets, 1.e., a “flat”
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union query), this scheme 1s not etflicient. However, since in
most real world applications, a proot that has size indepen-
dent of 0 1s usetul, especially 1f one considers that the
additional overhead for verification 1s logarithmic only.

Reducing Public Key Size

In the exemplary construction, the public key pk 1s of size
linear to the parameter q where q 1s an upper bound on the
s1ze of the sets that can be accumulated. This holds not only
tfor the original sets S|, . . . ,S,-but for any set that can result
from hierarchical set operations among them. A natural
lower bound for q 1s IS;U . . . US/|. While computing this
public key cannot be avoided and 1t 1s necessary for proof
computation at the server 120, a client 130 that needs to
verity the correctness of query Q with corresponding answer
a. of size 0, only needs values g, . .., g and h,....,h” 1n
order to run algorithm hverity.

To this end, the following modifications can be made to
the AHSO, scheme:

Algorithm genkey runs the key-generation algorithm of
an additional accumulation tree AT" and values pk and sk are
defined as pk=(pk,.pk,.pk,),sk=(sk,,sk,,sk;). Following
that pk 1s only shared with the server and not necessarily
with the clients. |

Let i=0, . .. ,q and g,~¢*. Algorithm setup runs an extra
step, computing accumulation tree digest h' for tree AT" over
pairs (1,g,). Digests h,h' are published.

Algorithm hprove runs an additional step, including in the
proof values g, . . . ,g° and corresponding proofs p, for proof
membership with respect to up to date digest value h' of tree
AT

Algorithm hverily runs an additional step, validating the
correctness of values g, . . . ,g° with respect to h'.

The above modifications yield a secure ADS scheme for
hierarchical set operations with prootf size and verification
time O(t+0). Moreover, the public key necessary for the
verification 1s of size O(0) mnstead of O(q). The only truly
public key of the scheme are digest values h, h' for the
accumulation trees of the scheme (which, as before, needs to
be kept up to date).

The above procedure can be integrated into any similar
scheme that 1s making use of a g-type assumption 1n order
to reduce the public key size to constant size from O(q). It
must be stated that the approach that involves an accumu-
lation tree 1s not the only one since the elements of the public
key are static. For example, one can compute digital signa-
tures using any EU-CMA secure scheme in order to prove
the validity of the values 1n the public key. The correspond-
ing o signatures would then be included in any proof of
correctness and verified accordingly.

Proving Set Difference and Negation

The exemplary construction can be extended to accom-
modate set differences as well as unions and intersections. In
order to facilitate that, assuming trusted accumulation values
a ,,a, for an operation of the form C=A\B the proot would
consist of a knowledge accumulation a_,.a, for set C. Veri-
fication can be performed simply by checking the equalities:

(16)

e(asap)=e(a ,g)

eldng)=elacg”). (17)

For any non-uniform polynomial time adversary A that
upon iput the public key of an extractable accumulation
scheme and sets A,B with accumulation values a ,,a, out-
puts prool such that equalities (14)-(15) hold, with over-
whelming probability a=acc(C)”* for some relZ™ .

As above, this can be extended even when values a ;,a, are
soit cheatings themselves. The above technique can be used
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in order to provide proois for the case of set negation 1n a
manner that 1s, at least theoretically, feasible. The source 110

simply needs to incorporate in the data structure a set S*
corresponding to set S,U . . . US., and its corresponding
accumulation value that must be inserted in the accumula-
tion tree AT. The client 130 can verily that a set A' 1s the
negation of A (with respect to all elements present at data
structure D) by using the above technique for set difference
and substituting S* for B.

Set S* and 1ts corresponding accumulation value may
potentially need to be updated for every element addition or
removal at one of the sets S, (while at all times |S*|<q). The
additional overhead of algorithms update and refresh 1s only
constant hence such a modification 1s not prohibitive.
Depending on the context of the scheme (data structure input
domain, number of elements per set, number of sets etc.) 1t
may be a better 1dea to define the element domain of sets
Si,....5rasEwith EEZ* and IEl 1s of order poly(l) where
1 1s the security parameter of the scheme. This has the
advantage that S*={x|xeE} and its accumulation value are
fixed ahead of time during the setup algorithm. On the other
hand, for this approach to be facilitated, g must be chosen
ahead of time as |E| possibly adding a significant overhead
for genkey and setup. This 1s more of an implementation
choice than a security related concern. One final observation
1s that such a modification pairs nicely with the previous
improvement for reducing the verification key size, essen-
tially sparing the user form the additional cost of the larger
public key (unless a query 1ssued by the user calls for a large

answer).

A More Lightweight Construction

The use of extractable accumulation schemes in the above
construction allows the production of short proofs that are
ciliciently verifiable. However, it 1s believed that there 1s no
known attack for the exemplary scheme even if these
additional accumulation values are removed. Indeed such an
alternative scheme 1s still provably secure. To achieve this,
the exemplary construction 1s modified accordingly:

Replace the extractable accumulation scheme with a
bilinear accumulator.

Replace knowledge accumulations 1n the proof with regu-
lar set accumulation values.

Omuit steps (3) 1n the mtersection argument and (8),(9),
(14) and (15) 1n the union argument.

The above changes remove at most t—1 elements from the
prool and corresponding t—1 steps from verification, as well
as cutting the public key size down by half. All asymptotic
notations still hold, but in practice this yields a scheme that
1s more lightweight for implementation purposes.

Applications

The disclosed constructions can be employed 1n a wide
range ol applications and environments where computation
related to query answering 1s performed by an untrusted
party.

Authenticated Keyword Search

The prominent application where the exemplary authen-
tication scheme can find use 1s keyword-search queries
implemented by an mnverted index data structure. The gen-
cral flexibility of the exemplary construction allows for
claborate queries consisting of nested set operations while
maintaining efliciency thus making it ideal for use in such an
environment. Namely, assuming keywords k,, . . . .k and
corresponding sets S, . . . ,S , the exemplary scheme can
accommodate queries of the form “Return all documents
containing keywords from q” where q can be an elaborate
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(hierarchical) number of set operations over S, such as
“keyword k, and/or k; . . . and/or k;” including even set
difference or set negation terms such as “Return all docu-
ments with keyword k. and not k,,.”

The expressive nature of the exemplary construction can >
accommodate even an extension of the keyword-search
problem, namely timestamped keyword-search where an
additional dimension 1s introduced to the problem, namely
cach document 1s accompanied by some time period attri-
bute (1.e., time of creation or date of addition to the dataset
etc.). In this setting, clients are interested not only 1n
particular keywords, but also in receiving documents that
are related with certain time-periods. Assuming time periods
t,, . . ..t 1n the system, we can define related sets
T,,....,T_.Any elaborate query, such as the previous ones,
can now be extended to include set operations involving sets
T, yielding a very expressive query language very closely
related to real-world query answering problems, including
queries such as “Return all documents with keywords k, and »g
k, created at days t,, t, or t. without keyword k..” Recall
that, for the exemplary eflicient construction, the verification
of the above query answer would only depend on the answer
of the final size (plus the number of 1volved sets which 1n
this case 1s 6) and would be entirely independent of the sizes 25
of the oniginal and intermediate sets. Setup time of such a
construction would only be linear to the dataset size and the
same holds for storage purposes at source and server (there
1s no need to explicitly store separately sets ST, since
queries are answered using the original datasets. Only their 30
accumulation values should be stored which result 1n addi-
tional storage of one group element per set).

Authenticated SQL Query Answering

Another field where the exemplary schemes can be used
1s authenticated SQL queries. A wide range of relational 35
algebra operations can be mapped to set operations and our
schemes can be adopted to provide eflicient verification
techniques and proofs. Since, any type of nested set opera-
tion consisting of set operations can be accommodated, any
SQL query that can be translated to a number of set 40
operations over appropriately defined sets (1n the context of
a particular implementation) can be handled 1n a provably
secure mannet.

Consider relational tables R,(r,,, . . . ,r,,.), . . .,
R,.(T,1, - - - ) RuR, are a-compatible 1f they share a 45
common attribute a. Let S,,, . . . ,S__ denote the sets
corresponding to attributesr,,, . . . ,r,  respectively. Without
loss of generality, assume that for attributes o so that two
tables are . compatible, there are no duplicate values. This
can be achieved by maintaining an additional mapping data 50
structure that maps such attribute values to the correspond-
ing database records.

The following operations can be defined over a.-compat-
ible tables:

(1) Multiple Equi-Joins Followed by Set Diflerence or 55
Union. Equi-join queries can be mapped to intersection
queries over sets S,, . . . .S, . Following that, other
meaningiul operations can be added such as a set union to
receive a corresponding result such as an SQL query (infor-
mally written here) “Return the union of R, R, joined on a. 60
and R,, R, joined on a.” Accommodating such queries may
or may not require some additional authenticated data struc-
ture (depending on the database context and the types of
queries the database owner wants to accommodate). For
example a separate number of sets O,,, . . . ,Omn may be 65
required in order to verily the ordering of attribute values in
the answer of a projection query.
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(11) General Projection Queries. A projection query (that
may span multiple tables) can be seen as a union of an
arbitrary number of sets S,,, .. .,S _ resulting in a new table
R*. This can be combined with any other meaningful set
operation to accommodate queries of the form “Return a
table with columns r, ,,r;; except for values contained inr,, ,.”

(111) General Selection Queries. Assuming that each tuple
in the database 1s given a umique numerical i1d, for each
attribute value v 1n the dataset, the set le("’) contaiming the
numerical id’s of all tuples that have value v for attribute r,,
can be defined. Observe that, while there are numerous such
sets, their total number 1s bounded by the size of the
database. Such an encoding allows eflicient authenticated
answering ol queries of the form “Return all tuples from
table R, such that r,,=50 and r,.=3 or r,,= John’.”” A slightly
more elaborate encoding can be adopted to include 1nequal-
ity checks for the selection query.

In all cases, the content authenticity of tuples contained 1n
the final answer can be achieved in numerous ways, such
that defining an accumulation value over each tuple as a set,
appropriate use of digital signatures over the tuples, or
careful use of hash functions. All of the above examples
contain explicitly nested operations 1n order to exemplify the
expressiveness obtained with our constructions. However 1t
should be noted that both of our schemes optionally accom-
modate the “flat” alternatives, 1.e. simple equi-join queries,
projections or selections.

It should become obvious from the given examples, that
depending on the selection of appropriate original sets from
the database, a wide range of SQL queries can be handled
and the above examples are only a small characteristic
number of approaches. All of the above proposals maintain
setup time and storage space linear to the size of the
database. It 1s expected that the disclosed techniques will
achieve even easier adoption in scenarios where the type of
queries oflered to an end-user 1s somehow structured (e.g.,
for website forms where predefined fields can be filled with
values that correspond to an SQL query in a relational
database). This would allow the database owner/manager to
select a particular set encoding that would minimize the
necessary overhead 1n order to address that specific type of
SQL queries.

In general, the disclosed authentication scheme finds
applications 1n the authentication of general SQL queries,
including sophisticated join queries and nested queries of the
form SELECT-FROM-WHERE.

Verilying Evaluation of Functions Computable by Poly-
nomial Size Circuits

The disclosed construction for hierarchical set operations
can be generalized 11 an appropriate encoding 1s considered
from binary functions to set operations. Namely, 1t 1s shown
how to encode boolean circuits including AND, OR and
NOT operations, to tree circuits similar to the ones discussed
above so that, if a function  1s computable by a boolean
circuit C, there exists an efliciently constructible circuit TC
similar to tree T defined for hierarchical set operations but
with potentially multiple output wires, at the output wires of
which lies a sequence of accumulation values of 1’s or 0’s
that can be securely mapped to the output of f(-) for any
input X.

One way to capture this mapping function is to map the
boolean values true, false with sets A,B respectively where
A={a} and B=U, a being an appropriate group element
according to our scheme. Then, function OR 1s captured by
set union, and function AND by set intersection. Finally,
operation NOT(X) is captured by {a}\X The validity of the
mapping can be inferred by the following semantic tables.
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Subject to this encoding, any boolean circuit C can be
outsourced and evaluated for particular values in a secure
way, by mapping boolean values to sets and then applying
our construction for hierarchical set operations, with proof
size and verification time O(TC)=0O(C). The source 110
simply outputs values acc(A),acc(B). A query will generally
be of the form f(-) for a polynomial time computable
function and X where x comes from the appropriate domain
for F(*). For ease of notation, it is assumed that x, (the 1-th
bit of X) 1s the corresponding 1nput to a gate of circuit C and
correspondingly a leal node of TC. The proof 1s 1dentical as
in the hierarchical set operations construction except that no
proofs of correctness for the original accumulation values
and no knowledge accumulations are necessary. Verification
includes a single pass over the accumulation values at the
leats of TC to validate that they correspond to the bit values
in X. Following that, for each internal node in TC verification
checks that the corresponding equalities hold depending on
whether the node corresponds to a union, mtersection or set
difference. If at any point an accumulation value a* 1s related
to a node (internal, leatf, or output wire) such that a*=a , and
a*=a, output reject and halt. Finally let the accumulation
values related to output wires of C be o,, . . . ,0,. For
=1, ... ,wifo,=a, then set f(x),=1, otherwise f(x),=0 where
F(x), 1s the 1-th bit of the output. Check answer o.=f(x) and
accept 11 the equality holds, otherwise reject.

Conclusion

As previously indicated, the above-described embodi-
ments of the invention are presented by way of illustrative
example only. Numerous variations and other alternative
embodiments may be used, as noted above. Additional
details regarding certain conventional cryptographic tech-
niques referred to herein may be found in, e.g., A. I
Menezes et al., Handbook of Applied Cryptography, CRC
Press, 1997, which 1s incorporated by reference herein.

Advantageously, the illustrative embodiments do not
require changes to existing communication protocols. It 1s
therefore transparent to both existing applications and com-
munication protocols.

While exemplary embodiments of the present invention
have been described with respect to processing steps 1n a
soltware program, as would be apparent to one skilled 1n the
art, various functions may be implemented i1n the digital
domain as processing steps in a software program, 1n hard-
ware by a programmed general-purpose computer, circuit
elements or state machines, or in combination of both
software and hardware. Such software may be employed 1n,
for example, a hardware device, such as a digital signal
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processor, application specific integrated circuit, micro-con-
troller, or general-purpose computer. Such hardware and

soltware may be embodied within circuits implemented
within an itegrated circuat.

Thus, the functions of the present invention can be
embodied 1n the form of methods and apparatuses for
practicing those methods. One or more aspects of the present
invention can be embodied 1n the form of program code, for
example, whether stored 1n a storage medium, loaded into
and/or executed by a machine, or transmitted over some
transmission medium, wherein, when the program code 1s
loaded 1nto and executed by a machine, such as a computer,
the machine becomes an apparatus for practicing the mven-
tion. When implemented on a general-purpose processor, the
program code segments combine with the processor to
provide a device that operates analogously to specific logic
circuits. The invention can also be implemented 1n one or
more of an integrated circuit, a digital signal processor, a
microprocessor, and a micro-controller.

System and Article of Manufacture Details

As 1s known 1in the art, the methods and apparatus
discussed herein may be distributed as an article of manu-
facture that itself comprises a computer readable medium
having computer readable code means embodied thereon.
The computer readable program code means 1s operable, 1n
conjunction with a computer system, to carry out all or some
of the steps to perform the methods or create the apparatuses
discussed herein. The computer readable medium may be a
recordable medium (e.g., floppy disks, hard drives, compact
disks, memory cards, semiconductor devices, chips, appli-
cation specific integrated circuits (ASICs)) or may be a
transmission medium (e.g., a network comprising {liber-
optics, the world-wide web, cables, or a wireless channel
using time-division multiple access, code-division multiple
access, or other radio-frequency channel). Any medium
known or developed that can store information suitable for
use with a computer system may be used. The computer-
readable code means 1s any mechanism for allowing a
computer to read instructions and data, such as magnetic
variations on a magnetic media or height vanations on the
surface of a compact disk.

The computer systems and servers described herein each
contain a memory that will configure associated processors
to implement the methods, steps, and functions disclosed
herein. The memories could be distributed or local and the
processors could be distributed or singular. The memories
could be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of
storage devices. Moreover, the term “memory” should be
construed broadly enough to encompass any information
able to be read from or written to an address in the
addressable space accessed by an associated processor. With
this definition, information on a network 1s still within a
memory because the associated processor can retrieve the
information from the network.

It should again be emphasized that the particular authen-
tication and communication techniques described above are
provided by way of illustration, and should not be construed
as limiting the present invention to any specific embodiment
or group of embodiments. Also, the particular configuration
of system elements, and their interactions, may be varied 1n
other embodiments. Moreover, the various simplifying
assumptions made above 1n the course of describing the
illustrative embodiments should also be viewed as exem-
plary rather than as requirements or limitations of the
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invention. Numerous alternative embodiments within the
scope of the appended claims will be readily apparent to
those skilled 1n the art.

What 1s claimed 1s:

1. A method performed by a third party server for pro-
cessing a query on a plurality of data sets, wherein said data
sets are stored 1n a memory and outsourced from a source of
said data sets, wherein said query comprises a hierarchical
set operation between at least two of said data sets, said
method comprising:

obtaining, from said source, said data sets, corresponding,

encoded versions of said data sets, and a verification of
sald encoded versions;

generating an answer to said query using said data sets,

wherein at least one level of a hierarchy of said
hierarchical set operation of said query comprises at
least a first one of an intersection operation, a union
operation and a set difference operation, and wherein at
least a second level different from the first level of said
hierarchy comprises at least a second distinct one of
said intersection operation, said union operation and
said set diflerence operation;

parsing said query as a tree, wherein leal nodes 1n said tree

correspond to at least two of said data sets associated
with said query and non-leaf nodes 1n said tree corre-
spond to at least one of said intersection operation, said
unmon operation and said set difference operation;

for each leaf node 1n said tree corresponding to a given

data set, computing a verification for an encoded ver-
s1on of said given data set that 1s based on said obtained
encoded versions of said data sets and said obtained
verification of said encoded versions;

for each non-leaf node 1n said tree, computing at least one

argument for a corresponding at least one of said
intersection operation, said union operation and said set
difference operation; and

providing an encoded version of said answer and a

proof-of-correctness to said client, wherein said proot-
of-correctness comprises said computed verification for
cach leal node encoding, and said at least one argument
for each non-leal node set operation, wherein said
provided encoded version of said answer and said
provided proof-of-correctness are used by said client to
authenticate said hierarchical set operation.

2. The method of claim 1, wherein said encoded versions
of said data sets comprise accumulation values and wherein
said encoded version of said answer comprises one or more
of said answer and coetlicients of a characteristic polyno-
mial of said answer.

3. The method of claim 2, wherein said at least one
argument comprises one or more ol an intersection argument
comprising one or more of subset witnesses, completeness
witnesses, and accumulation values and a union argument
comprising one or more of subset witnesses, completeness
witnesses, and accumulation values.

4. The method of claim 3, wherein said accumulation
values of said intersection argument comprise one or more
ol an accumulation value created by a primary accumulator
and an accumulation value created by a secondary accumu-
lator, and wherein accumulation values of said union argu-
ment comprise an intersection accumulation value and a
union accumulation value created by a primary accumulator,
and an intersection accumulation value and a union accu-
mulation value created by a secondary accumulator.

5. The method of claim 3, wherein said union argument
for multiple sets comprises a concatenation of union argu-
ments for a plurality of pairs of sets.
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6. The method of claim 2, wherein said method employs
an extractable accumulator comprising a primary bilinear
accumulator and a secondary bilinear accumulator.

7. The method of claim 6, wherein a public key of said
secondary bilinear accumulator 1s created by raising each
clement 1n a public key of the primary bilinear accumulator
to a secret element and wherein said primary bilinear
accumulator generates an accumulation value of data set and
wherein said secondary bilinear accumulator generates an
accumulation value of said given data set.

8. The method of claim 2, wherein said coeflicients for the
characteristic polynomial of the answer are computed using

a polynomial interpolation.
9. The method of claim 1, wherein said method is

employed by one or more of an authenticated keyword
search, an authenticated SQL query answer, and a construc-
tion for veritying an evaluation of a function computable by
polynomial size circuits.

10. The method of claim 1, wherein said step of comput-
ing said at least one argument for at least one set operation
corresponding to a non-leaf node 1n said tree 1s based on at
least two of said computed verification for the encoded
versions of all leaf nodes that are descendants of said node
in said tree and said computed at least one argument for at
least one set operation corresponding to all children nodes of
said node 1n said tree.

11. The method of claim 1, wherein said source performs
the following steps prior to said third party server processing
said query:

generating a public key and a secret key;

computing encoded versions of said data sets;

obtaining a verification of said encodings;

providing said data sets said corresponding computed

encoded versions and said obtained verification of said
encodings to said third party server; and

publishing said public key and a digest of said verifica-

tion.

12. The method of claim 11, wherein said obtained
verification comprises one or more of a publication of said
encodings and a digital signature, an accumulation tree and
a Merkle tree computed over said encodings.

13. A non-transitory machine-readable recordable storage
medium for processing a query on a plurality of data sets
stored 1n a memory and outsourced from a source of said
data sets, wherein one or more software programs when
executed by one or more processing devices implement the
steps of the method of claim 1.

14. A thard party server apparatus for processing a query
on a plurality of data sets, wherein said data sets are stored
in a memory and outsourced from a source of said data sets,
wherein said query comprises a hierarchical set operation
between at least two of said data sets, the apparatus com-
prising;:

a memory; and

at least one hardware device, coupled to the memory,

operative to implement the following steps:

obtaining, from said source, said data sets, corresponding,

encoded versions of said data sets, and a verification of
sald encoded versions;

generating an answer to said query using said data sets,

wherein at least one level of a hierarchy of said
hierarchical set operation of said query comprises at
least a first one of an intersection operation, a union
operation and a set difference operation and wherein at
least a second level diflerent from the first level of said
hierarchy comprises at least a second distinct one of

.
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said intersection operation, said union operation and
said set difference operation;

parsing said query as a tree, wherein leal nodes 1n said tree

correspond to at least two of said data sets associated
with said query and non-leal nodes 1n said tree corre-
spond to at least one of said intersection operation, said
union operation and said set diflerence operation;

for each leal node 1n said tree corresponding to a given

data set, computing a verification for an encoded ver-
s1on of said given data set that 1s based on said obtained
encoded versions of said data sets and said obtained
verification of said encoded versions;

for each non-leat node 1n said tree, computing at least one

argcument for a corresponding at least one of said
intersection operation, said union operation and said set
difference operation; and

providing an encoded version of said answer and a

proof-of-correctness to said client, wherein said prooi-
of-correctness comprises said computed verification for
each leaf node encoded version, and said at least one
argument for each non-leaf node set operation, wherein
said provided encoded version of said answer and said
provided proof-oi-correctness are used by said client to
authenticate said hierarchical set operation.

15. A method performed by a client for verifying a query
on a plurality of data sets, wherein said data sets are stored
in a memory of a server and outsourced from a source of said
data sets, wherein said query 1s performed by said server,
wherein said query comprises a hierarchical set operation
between at least two of said data sets, said method com-
prising:

receiving from said server an encoded version of an

answer to said query and a proof-of-correctness,
wherein at least one level of a hierarchy of said
hierarchical set operation oonlprises at least a first one
ol an 1ntersection operation, a union operation and a set
difference operation and wherein at least a second level
different from the first level of said hierarchy comprises
at least a second distinct one of said intersection
operation, said union operation and said set difference
operation, wherein said proof-ol-correctness comprises
a verification for at least two encoded versions of one
or more of said data sets associated with said query and
at least one argument for at least one of said intersec-
tion operation, said union operation and said set dif-
ference operation, wherein said received encoded ver-
ston of said answer and said received proof-of-
correctness are used by said client to authenticate said
hierarchical set operation;

parsing said received proof-of-correctness as a tree,

wherein leal nodes 1n said tree correspond to at least
two of said data sets associated with said query and
non-leaf nodes 1n said tree correspond to at least one of
said intersection operation, said union operation and
said set difference operation;

for each leaf node 1n said tree corresponding to a given

data set, deniving and verilying a corresponding
encoded version of said given data set using said
corresponding recerved verification;

for each non-leaf node 1n said tree, verilying said recerved

at least one argument for a corresponding at least one
of said 1ntersection operation, said union operation and
said set difference operation using said verified at least
two encoded versions:

for the root node 1n said tree, verifying said recerved

encoded version of an answer to said query using said
verified at least two encoded versions; and
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accepting said answer 1f said veritying steps for all nodes

in said tree are correct.

16. The method of claim 15, wherein said encoded
versions of said data sets comprise accumulation values and
wherein said encoded version of said answer comprises one
or more of said answer and coetlicients of a characteristic
polynomial of said answer.

17. The method of claim 16, wherein said at least one
argument comprises one or more ol an itersection argument
comprising one or more of subset witnesses, completeness
witnesses, and accumulation values and a union argument
comprising one or more of subset witnesses, completeness
witnesses, and accumulation values.

18. The method of claim 17, wherein said accumulation
values of said intersection argument comprise one or more
ol an accumulation value created by a primary accumulator
and an accumulation value created by a secondary accumu-
lator, and wherein accumulation values of said union argu-
ment comprise an intersection accumulation value and a
union accumulation value created by a primary accumulator,
and an intersection accumulation value and a union accu-
mulation value created by a secondary accumulator.

19. The method of claim 17, wherein said union argument
for multiple sets comprises a concatenation of union argu-
ments for a plurality of pairs of sets.

20. The method of claim 16, wherein said method
employs an extractable accumulator comprising a primary
bilinear accumulator and a secondary bilinear accumulator.

21. The method of claim 15, wherein said method 1s
employed by one or more of an authenticated keyword
search, an authenticated SQL query answer, and a construc-
tion for verifying an evaluation of a function computable by
polynomial size circuits.

22. The method of claim 15, wherein said received
verification comprises one or more ol a publication of said
encoded versions and a digital signature, an accumulation
tree and a Merkle tree computed over said encoded versions.

23. The method of claim 15, wherein said step of veri-
tying said received at least one argument for at least one set
operation corresponding to a non-leal node 1n said tree 1s
based on at least two of said received verification for the
encoded versions of all leal nodes that are descendants of
said node 1n said tree and said received and verified at least
one argument for at least one set operation corresponding to
all children nodes of said node 1n said tree.

24. The method of claim 15, wherein said client verifies
said at least two leal node encoded versions of said data sets
associated with said query with respect to a digest of said
corresponding recerved verification.

25. A non-transitory machine-readable recordable storage
medium for veritying a query on a plurality of data sets
stored 1n a memory and outsourced from a source of said
data sets, wherein said query 1s performed by a server,
wherein one or more software programs when executed by
one or more processing devices implement the steps of the
method of claim 15.

26. A client apparatus for verifying a query on a plurality
of data sets, wherein said data sets are stored 1n a memory
of a server and outsourced from a source of said data sets,
wherein said query 1s performed by said server, wherein said
query comprises a hierarchical set operation between at least
two of said data sets, the apparatus comprising:

a memory; and

at least one hardware device, coupled to the memory,

operative to implement the following steps:

recerving from said server an encoded version of an

answer to said query and a proof-of-correctness,
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wherein at least one level of a hierarchy of said
hierarchical set operation comprises at least a first one
ol an 1ntersection operation, a union operation and a set
difference operation and wherein at least a second level
different from the first level of said hierarchy comprises
at least a second distinct one of said intersection
operation, said union operation and said set difference
operation, wherein said proof-of-correctness comprises
a verification for at least two encoded versions of one
or more of said data sets associated with said query and
at least one argument for at least one of said intersec-
tion operation, said union operation and said set dif-
ference operation, wherein said received encoded ver-
ston of said answer and said received proof-of-
correctness are used by said client to authenticate said
hierarchical set operation;

parsing said received prool-of-correctness as a ftree,
wherein leal nodes 1n said tree correspond to at least
two of said data sets associated with said query and
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non-leaf nodes 1n said tree correspond to at least one of
said intersection operation, said union operation and
said set diflerence operation;

for each leal node 1n said tree corresponding to a given
data set, deniving and verilying a corresponding
encoded version of said given data set using said
corresponding recerved verification;

for each non-leat node 1n said tree, verifying said received
at least one argument for a corresponding at least one
of said 1ntersection operation, said union operation and
said set difference operation using said verified at least
two encoded versions:

for the root node in said tree, verilying said received
encoded version of an answer to said query using said

verified at least two encoded versions; and
accepting said answer 11 said verifying steps for all nodes
in said tree are correct.
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It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In Column 4, Line 10, replace “parameters) of the” with --parameters of) the--.

In Column 5, Line 58, replace “f (1)<1/(poly(l)” with --f (1)<1/(poly(l))--.

In Column 7, Line 5, replace “{Dh+1, auth(Dy.1)dp+ }° with --{ Dy, auth(Dysq)dysq }--.
In Column 7, Line 48, replace “Finally the” with --Finally, the--.

In Column 10, Line 31, replace “In a n-level operation™ with --In an n-level operation--.
In Column 10, Line 49, replace “set itself) to P(q)” with --set itself) to P(q).--.

In Column 10, Line 57, replace “in table ACC” with --in table ACC.--.

In Column 15, Line 5, replace “(in addition access’ with --(in addition, access--.

In Column 17, Line 48, replace “L)” with --L)).--.

In Column 22, Line 14, replace “constant hence such’ with --constant, hence such--.
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