12 United States Patent

Kamarianakis et al.

US009454902B2

US 9,454,902 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54) PERFORMING-TIME-SERIES BASED
PREDICTIONS WITH PROJECTION
THRESHOLDS USING SECONDARY
TIME-SERIES-BASED INFORMATION
STREAM

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: loannis Kamarianakis, Yorktown
Heights, NY (US); Laura Wynter,
Westport, CT (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 445 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 14/029,258
(22) Filed: Sep. 17, 2013

(65) Prior Publication Data
US 2014/0309977 Al Oct. 16, 2014

Related U.S. Application Data
(63) Continuation of application No. 13/863,855, filed on

Apr. 16, 2013.
(51) Int. CL

GO6G 7/48 (2006.01)

GO8G 1/042 (2006.01)

G08G 1/01 (2006.01)
(52) U.S. CL

CPC oo G08G 1/042 (2013.01); GO8G 1/0116

(2013.01); GOSG 1/0129 (2013.01); GOSG
170133 (2013.01); GOSG 1/0141 (2013.01)

(38) Field of Classification Search

CPC ............. GO8G 1/0116; GO8G 1/0129; GO8G
1/0133; GO8G 1/0141; GO8G 1/042
USPC e 703/6
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,813,870 B2* 10/2010 Downs .......ccc....... GO08G 1/0104
340/995.13

8,241,213 B2 8/2012 Lynn et al.

(Continued)

FOREIGN PATENT DOCUMENTS

GB GB 2460175 A 11/2009
OTHER PUBLICATTIONS

Dunne, Mr Stephen, and Bidisha Ghosh. “Trathic flow predictions
employing neural networks 1n a novel traflic flow regime separation
technique.” Proceedings of the ITRN2011 31 (2011).*

(Continued)

Primary Examiner — Aniss Chad

(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Daniel P. Morris, Esq.

(57) ABSTRACT

A prediction modeling system and computer program prod-
uct for implementing forecasting models that mvolve
numerous measurement locations, e.g., urban occupancy
tratlic data. The system a data volatility reduction technique
based on computing a congestion threshold for each predic-
tion location, and using that threshold 1n a filtering scheme.
Through the use of calibration, and by obtaining an extremal
or other specified solution (e.g., maximization) of empirical
volume-occupancy curves as a function of the occupancy
level, significant accuracy gains are achieved and at virtually
no loss of important information to the end user. The
calibration use quantile regression to deal with the asym-
metry and scatter of the empirical data. The argmax of each
empirical function 1s used 1n a unidimensional projection to
essentially filter all fully congested occupancy level and
treat them as a single state.

16 Claims, 10 Drawing Sheets

FOR VECTOR VARIABLE OF INTEREST, (), | 702
DETERMINE AUXILIARY VARIABLE, ml)

DETERMIME FORM OF FUNCTIONAL RELATIONSHIP
HETWEEN AUXILIARY TIME-SERIES VARIABLE AND
TIME-SERIES VARIABLE TO BE PREDICTED, e.g. n{m)

o

CALIBRATE, FOR EACH OF THE TIME-SERIES VARIABLES

OF INTEREST, THE CURVE THAT FITS MOST CLOSELY | _~710

THE EXPERIMENTAL DATA FROM THE VARIABLE QF
INTEREST AND THE AUXILIARY VARIABLE

COMPUTE MAXIMUM Y&LUE OF THE AUXILIARY VARIABLE

BEYOND WHICH YALUE OF THE VARIABLE OF INTEREST NEED 715
NOT BE PREDICTED WITH PRECISICN, 6.9. MAXIMAL VALUE

OF n{m), CALL THIS THE MAXIMAL THRESHOLD YECTOR, T

REFEAT FOR A MINIMAL VALUE IF T20
APPROPRIATE, CALL THAT THRESHOLD )

REPEAT FOR ALL ELEMENTS OF THE VARIABLE OF 725
INTEREST {s.9. ALL TRAFFIC LINKS, ALL SERVERS, ETC)

APPLY PROJECTION(S), SUCH THAT m'{ti=min{mft), 71, 730
AND SIMILARLY |F A MINIMAL VALLUE EXISTS, APPLY
SECOND PROJECTION m"[fi=max{m'(), 1}

PERFORM FREDICTION ON NEW 750
TIME SERIES VARIABLE, x"ft)



US 9,454,902 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0165816 Al  11/2002 Barz
2012/0302845 Al 11/2012 Lynn et al.

2012/0330118 A1 12/2012 Lynn et al.
OTHER PUBLICATIONS

Queen, Catriona M., and Casper J. Albers. “Forecasting traflic flows
in road networks: A graphical dynamic model approach.” Proceed-

ings of the 28th International Symposium of Forecasting, Interna-

tional Institute of Forecasters. 2008.*

Dunne ¢ al., “Traflic Flow Predictions Employing Neural Networks
in a Novel Traflic Flow Regime Sepearation Technique”, Proceed-
ings of teh ITRN2011 31 (2011), Aug. 31-Sep. 1, 2011.

Queen et al., “Forecasting traflic flows in road networks: A graphical
dynamic model approach”, Proceedings of the 28th International

Symposium of Forecasting, International Institute of Forecasters,
2008, Jul. 29, 2008, pp. 1-24.

Office Action dated Dec. 16, 2015, recerved 1n a related U.S. Appl.
No. 13/863,855.

Sims, “Interpreting the macroeconomic time series facts the eflects
of monetary policy”, Cowles Foundation Paper 823 FEuropean
Economic Review 36 (1992) pp. 975-1011, North Holland.

Baxter et al., “Measuring Business Cycles: Approximate Band-Pass

Filters for Economic Time Series”, The Review of Economics and
Statistics, Nov. 1999, 81(4): 575-593.

Campbell et al., “Consumption, Income and Interest Rates:
Reiterpreting the Time Series Evidence”, NBER Macroeconomics

Annual 1989, vol. 4, Mar. 10-11, 1989.

O’Connor et al., “From Tweets to Polls: Linking Text Sentiment to

Public Opinion Time Series”, Tepper School of Business, Paper
559, Jan. 1, 2010.

Koopman et al., “Forecasting economic time series using unob-
served componets time series models”, Oxford Handbook of Eco-
nomic Forecasting, (2011) pp. 129-162.

* cited by examiner



US 9,454,902 B2

Sheet 1 of 10

Sep. 27, 2016

U.S. Patent

00}

08

09

L Old

7

0¢

0001
000¢
000¢
000¥
000§
0009
0004
0008
0006
00001



Pay |8Y 8iF Gi¥ Lib GSv 5% 9y Cvy Obr LiP

ber

dl 40104130

leb 6l Sly Zly 60V ¥OV

W0 86E GBE Z6E BBE 9BE €8E 6/C G

1LE

US 9,454,902 B2

Sheet 2 of 10

Sep. 27, 2016

U.S. Patent

%_m"_h.___m___m_m_m_wmw_mw_"W"anunmumw__W_WW_WE_WWWW_HW_W__WW__“_M_m_m_umm____“.m__m_m_w___mm__w__“w_ H”
T T T L T T T e AT TR 17T £
T TR 2 a2 o
| | “ RN NN | “ a | | | - &

EEERRRREN SRR NRE RN RN RN EEE | | | ] EERER | | | i
MN\
dl 40134130
008 G 0SE GYE 66E GEE LB GZE 226 6lE YIS O0E LOE 962 262 287 €BZ 6/Z GIZ VIZ 19T €9Z 8SZ ST MGT
T e T ey 2
T T T T Fe8 9z 914
@N\,\\
dl 4012413d

L Ve Sk ke ke joo oo She e D Poe e ok Yo b G L cak B o o p Oak g o
e e e S e 1=
AR T INTT AT 3¢ gz ol

_ Ll I | .ﬁ_x\ HINNES
_ 1 ] !l ___ +:__ __ m“:_:_m_ m__ m_m ! ! m __ HE._
| |
wm\\ Ge 0€
dl 40194140
| __‘m_‘_ | “ﬁ“‘_-_ | _m“._._ | _mm:‘_ | __mﬁ_u__._ | __..m_—\_ __‘_m_ _m_m_ _.N_h_ _N__h_ _m_m_ _m_m_ _N_@_ _@__m_ _m_m_ _m_m_ _D__m_ _.N__?_ _m_.w__ _.ﬁ_m_ _.w____m”_ __.._m_ _m_N_ _m_N_ _N_N_ _@__\_ _m___._ _m”_—._ _m_m_m_m_ﬁ_H
T R e
T R it 1 F8 vz o1
Hiinhiaine TS e
\N\.\.:_. SERAREEE |11 _ 1] L] | “ L] | _ -
oo H0O 104140 ddd AINVYdNOO0 40 NOILNGIH1SIA 10 1dX0d d3d1LVONNHL




US 9,454,902 B2

Sheet 3 of 10

Sep. 27, 2016

U.S. Patent

200

g¢ ‘914 <

o

MO

MO 14 XVIA



U.S. Patent

80

Sep. 27, 2016 Sheet 4 of 10

o0
Q0 o O
O o0 o OO0
O QO o000 O O O
O o0
Q0 00 O O v
O Q O 0
coo O O
O 0 O O
QO 0O QO
00O O O
Q0 O Q 0O O -
o O o - O
O
o0 O O
O 00
o O Q Q Q
O 0 O O O
00 O O O O O O
o 0O O () O O O
O O O
O QO O 0O O O
O OO0 L 0O O O O
o O o O
O o O Q0000 O C O O O
S 0
* Q0 O O O 0
O O o000 0
O 000 O Q
QO O 0 O O
00 00 O O 0
o] o © o0
O Q00 O
O 00 000 O <
O O 0 O O
O O
Q O O Q O 00
Q0 o CO O O
O O o O 00
O O 00 O O
O O 000 OO Qo o O
O oo O O O
O o0 O O O 0o
O 00 o O O O
O Q OO0 O O
000D O O Q0O
O O 0O 00 OO
00 C QOOOOOOOCOG O 00 Q0 o O
O o S O 0 O Q00 O O
QOO0 O 00 O OO O O
O O00Q COO0 OO0 O C© OO0
OQOOON 000 O OO O O O
COOOCO0ORN000OODOODOOCO 00 OO0 O O
O 0000 COOAQOO000 OCO O OCO o oo O OO0
DO000OOOODO00000O00D OO0 Q000D Q0
Q0 O O QOOOOISOOOODOOODC O OO0 ©
O 0 OOODODOIROODDODOODDOOG OO0 QO 00O 0 O
0O OOOOOOOOOODOOCOOODODO0D OOODD OOD
DOOO0000CISOCOOCOOODODODOOO0 © 00
OO0 O0OOON0 O GO0 QO O
DOOOO000O0ON™COD0000D 0D O 00 Q00 O OQ O
SOCOOOOOCQNOODODOD OO0 ) O O OO
SOOOO0ODOE0DOOOOOOG O 00 ©
O O OO0O0DOI™EODO0000 Q0 Q000 Q O

O DOOOCOMSOO0000 OO0 OO0 CO0000

A AN A A el KX ARXKX R AR AL AL AL
SRS B0 " S00000000000

A AAAL AT LA LI N
AAI AR AT R N

009 00y 00¢ 0

MO

US 9,454,902 B2

-

*®
3
- B
(o ®
O

© E
4V
O
o
N
-
YY)

s 0
¢ 00
25 o
S O
"8
O O LL
O
|_
P
!
a
al
<

S B
Y
L
H
<<
A

-



U.S. Patent Sep. 27, 2016 Sheet 5 of 10 US 9,454,902 B2

o
o
O
N
: O
O
LD
&
O
o0
O
|_
&
O
do
= T
o &
o
3 =g =
LL
- §
@) Y
LLI
|_
e
<
=
Lo
O
O
Te'
O

I
0L 09 0 7
AINVdNOO0



US 9,454,902 B2

Sheet 6 of 10

Sep. 27, 2016

U.S. Patent

]

_ J9 9Ol
A AINVdNOI0 N_‘NJ vic
. | | | | ._.
//../ o r ° ° n.o I "m.m :
¢ oo N .VON 8 o 8 R & w ‘oA A
~ . ) ] .f " 8 o : wu.‘_, o
°o,° o Y o o 0 mmmoom 2R3 Bg BABHC
? ™~ o aoomocuo@ o o wmwmw“wmm.. -
NON ...._....,f....... GH @MM@&G@MMGM@Mum.DW\"LLE
SNOISSTHOTY QTOHSIYHL 6 ANY NYIAIWN ONISN ¥12 ¥012313a0 HO4 (AJD SFAUND TvIIdIdW3
l _
vee céc
05l —

1 A0I¥3d FNVS FHL H3IA0 #12 012313 YO (LD JWNTOA

0 MO

A 'AONVdNJ00

0 MO



US 9,454,902 B2

Sheet 7 of 10

Sep. 27, 2016

U.S. Patent

a1 y0.1231dd
6/ 09t 8GEt 9SE 9vE 6 0td 92 8le Slé 802 02 LOZ L6l €61 061 B8l 98l GBL ¥8l €8l LAL 691 89l 9] 86l LEL O0ElL 82l ¥, &L v ¥ 9 € OF ¥¢ EC IC
L e
A A 4 F
r /]
R B:} H - B - . o 7 W
H__ M \ 4 B8 .\:__ o =
i ~ ] fi 7 ml
J ,..B / M ' — ¥ m
/ \ c
. / _ \\ﬂ_ _._. n c W
v _., ! m
- / g =
J¥IN 40 AQIS —— M =
WA —B- , &
3
(QOHLIW FHL LHIAN HOLD3130 Ag NOILOIaTHd ADNYANDD0 40 IvIN 0G¢
adl ¥4010313d
6/E 09¢ 8GE 9GE 9FF ot¢ 0E¢ 9¢¢ 812 SL¢ B0G 202 L0€ 26l €61 Q6L 821 98| S8l ¥81 E8L Ll 691 89l 291 991 LEL 0EL 82l ¥. &L v P OF ¥#& 0OF ¥ €2 |I¢
L1 1 ] ' S Sy S I I A I N A e
- x..’..... /7 .,.....,. - NG " | Ak = ~ K =
- = _ x>
{ ‘ \ 4 g G .H,
.y 0 3
)
Gl &
AV 40 A8(QIS —l— W
YN -0 — =
14
Q2
GE W
0€
(QOHLIW JHL LNOLHIAY) H0O12313a A9 NOILDIAT™d ADNYANDD0 40 IV %




US 9,454,902 B2

d31S ONILSYO3HOS d31S ONILSVYO3HOS
NINOE NINB| NIINS NINOE NING | NINS
AVARVARVAAVA i BVA.VAYAY i "TEAYEVEAVE N \ZVEAVAVAYAR RLYVAVIAVILY - O RYAAVAY. B YAVAAVE R AVALVAY. B VAV B AVAL.Y ALY
AVAVAVAY \VAVAVAY, Bl AVAVAVAY B VAVAVAVA VAVAVARAVAVAV R VAVAVA | AVAVAY I 7AVAVA
VAVAVAV/ I VAVAVAVA |l VAVAVAV, B AVAVAVAY VAVAY | VAVAVA I AVAVAV | VAVAVA BAVAVAY.
AVAVAVA\N \VAVAVAY, B 'AVAVAVAY B VAVAVAVA NS SAN NS AN (AN
1040404_._ “ 040401. VAVAVAV) 4040404 \VAVAV "0404 \VAVAY «040& AN
XK KRR RS ERK) KRR (KX PRXN X XK KKK
NN T | N MAAN] DA\ AVAVAY RVAVAVA | AVAVAY [l FAVAVA JAVAVA
AVAVAVAY \VAVAVAY, B AVAVAVA\RVAVAVAVA VAVAVARAVAVAV | VAVAVA | AVAVAY RVAVAY,
S VaY; 404._ ]-041. ,404 404_ 40404 I N\ "0404 AVAVAY &4& VAVA
2 (KKK XXX IXXRA EXRRY KRXK | 2 KKK ERH KX R KX
= NNNINT | VAVAVAVA Bl VAVAVAV B AVAVAVAY > AVAVAV RVAVAVA RAVAVAY | FAVAVA JAVAVAY,
AVAVAVA\ [ VAVAVAVA Il \VAVAVAY, Bl AVAVAVAY [l VAVAVAVA m VAVAVARAVAVAV JVAVAVA | AVAVAY J7AVAVA
o0 VAVAVAY B AVAVAVAY Bl TAVAVAVA' [ VAVAVAY I AVAVAVAY = AVAVAY RVAVAVA I AVAVAY I VAVAVA B AVAVAY,
= AVAVAVA\ VAVAVAVA Il \VAVAVAY, Bl AVAVAVAY I VAVAVAVA L VAVAVARAVAVAV RVAVAVA | AVAVAY J7AVAVA
5 VAVAVAV, JAVAVAVA' [l VAVAVAV, Bl AVAVAVAY - \VAVAV EVAVAVA NAVAVAV [ VAVAVA H\VAVAY.
= AVAVAVAN \VAVAVAY, Il AVAVAVAY R VAVAVAVA BN SN s VAVAVA §AVAVAV RVAVAVA § A\VAVAY RVAVAV
72 .,4040404__ “ 640401_ woddd 40404? 20 \VAVAY "0404 AVAVAY &40& VAVA
XA XKL R BRI KKK | © KKK PEXN XA XA KXK
NN/ | INAOY MAN] DA \VAVAY §VAVAVA | AVAVAY | AVAVA JAVAVA
AVAVAVA'R \VAVAVAY, 'AVAVAVAY Il VAVAVAVA O VAVAVA BAVAVAY RVAVAVA I \VAVAY RVAVAV,
VAVAVAYV NN MAN NS, > AVAVAV RVAVAVA §AVAVAY RVAVAVA §AVAVAY.
O AVAVAVAY \VAVAVAY, Bl AVAVAVAY B VAVAVAVA > VAVAVARAVAVAV R VAVAVA | AVAVAY I 7AVAVA
A / / A / A\ / /
— NAVAVAY, B AVAVAVAN B VAVAVAVA [l VAVAVAV, M AVAVAVAY = AVAVAV RVAVAVA B AVAVAY | FAVAVA JAVAVAY.
\ .’ /| ; B " / d
~ AVAVAVA i VAVAVAVA Il \VAVAVAY, Il 'AVAVAVAY Il VAVAVAVA I =2 VAVAVA RAVAVAV RVAVAVA §\VAVAY RVAVAVA
. VAVAVAV, I AVAVAVAY ll TAVAVAVA' il VAVAVAV I AVAVAVAY VAVAY | VAVAVA § AVAVAY I VAVAVA BAVAVAY.
- AVAVAVAN \VAVAVAY, B 'AVAVAVAN Bl VAVAVAVA VAVAVA BAVAVAY RVAVAVA I \VAVAY RVAVAV,
~ VAVAYAY. “ 64041_ .1040404; 404044. \VAVAY "0404 AVAVAY 640&. \VAVA
s XXX KRRK] R EXX0 KRR KR XN XK PEXA XX
P \ L i A / . d 4
AYAVAV/ N JAVAVAVA [l VAVAVAV) M AVAVAVAY AVAY I VAVAVA § AVAVAY R VAVAVA BAVAVA
75 AVAVAVA'R \VAVAVAY, I AVAVAVAY B VAVAVA RAVAVAY RVAVAVA §AVAVAY R
N\ “ A A /
/
VAVAVAV/§ aVAVAVAVETAVAVAVA  VAVAVAV oo AVAVAVYVAVAVALAVAVAY JFAVAYA
AWAWAN =
S3INvdIV0 a0 2V SdIONVANOO0 04 IvIN
009 009

U.S. Patent

Ol

Gl

(V1va mo¥) Ivin



U.S. Patent Sep. 27, 2016 Sheet 9 of 10 US 9,454,902 B2

700

FOR VECTOR VARIABLE OF INTEREST, m(t), 702
DETERMINE AUXILIARY VARIABLE, n(t)

DETERMINE FORM OF FUNCTIONAL RELATIONSHIP
BETWEEN AUXILIARY TIME-SERIES VARIABLE AND 701
TIME-SERIES VARIABLE TO BE PREDICTED, e.g. n(m)

CALIBRATE, FOR EACH OF THE TIME-SERIES VARIABLES
OF INTEREST, THE CURVE THAT FITS MOST CLOSELY 710
THE EXPERIMENTAL DATA FROM THE VARIABLE OF
INTEREST AND THE AUXILIARY VARIABLE

COMPUTE MAXIMUM VALUE OF THE AUXILIARY VARIABLE
BEYOND WHICH VALUE OF THE VARIABLE OF INTEREST NEED 715

NOT BE PREDICTED WITH PRECISION, e.g. MAXIMAL VALUE
OF n(m), CALL THIS THE MAXIMAL THRESHOLD VECTOR, T

REPEAT FOR A MINIMAL VALUE IF
APPROPRIATE, CALL THAT THRESHOLD p

720

REPEAT FOR ALL ELEMENTS OF THE VARIABLE OF 725
INTEREST (e.g. ALL TRAFFIC LINKS, ALL SERVERS, ETC)

APPLY PROJECTION(S), SUCH THAT m(ty=minfm(t), T/, | .,
AND SIMILARLY IF A MINIMAL VALUE EXISTS, APPLY

SECOND PROJECTION m”'(t)=max{m’(t), w}

PERFORM PREDICTION ONNEW | 750
TIME SERIES VARIABLE, x"(t)

FIG. 9
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PERFORMING-TIME-SERIES BASED
PREDICTIONS WITH PROJECTION
THRESHOLDS USING SECONDARY
TIME-SERIES-BASED INFORMATION
STREAM

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 13/863,855, filed Apr. 16, 2013 the entire

content and disclosure of which 1s incorporated herein by
reference.

FIELD

The present disclosure relates generally to prediction
methods using volatile historical time series data possessing,
sharp and sudden peaks and valleys, and particularly real-
time trathic prediction systems and methods for volatile road
occupancy data.

BACKGROUND

Time-series-based prediction 1s an important area of focus
in numerous applications. Time-series based prediction
means predicting a type of information in the future, using
historical values of the same type of mformation. Time-
series-based prediction goes by many names and covers an
enormous range of applications. Some common application
areas include: financial prediction (e.g. predicting the value
of a stock 1n the future based on the history and current value
of the stock), tratlic prediction e.g. (predicting the traflic
speed 1n the future on a road segment based on the current
and historical speeds on that road segment), retail sales
prediction (e.g. predicting the amount of retail sales for a
chain of stores given their current and historical sales
levels), and many more.

For example, accurate short-term forecasting of tratlic
variables 1s essential for intelligent transportation systems
applications, such as real-time route guidance and advanced
traveler information systems. Hence, numerous modeling
approaches have been proposed, including both nonpara-
metric and parametric models.

Traflic forecasting models are usually evaluated on data
from arterials and freeways, which are admittedly less
variable than data from urban networks and not subject to
the eflects of trathic lights. In urban networks, neighborhood
relationships and the definitions of spatial weight matrices
for space-time parametric frameworks, are not straightior-
ward; some locations may not be clearly upstream or down-
stream a given location. Furthermore, detectors can be dense
in an urban network, so that locations with useful predictive
information may be hard to i1dentity; this again affects the
construction of spatial weight matrices used in space-time
modeling schemes. Erroneous and missing data are expected
to be more frequent 1n urban networks, which makes essen-
tial the implementation of robust estimation procedures.

In order to achieve an acceptably good level of prediction
accuracy on urban occupancy data, a new method needs to
be developed.

BRIEF SUMMARY

A prediction modeling system and method for implement-
ing forecasting models that involve numerous measurement
locations, e.g., urban occupancy (road traflic) data.
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2

The method involves a data volatility reduction technique
based on computing a congestion threshold for each predic-
tion location, and use that threshold 1n a filtering scheme.
Through the use of this technique, significant accuracy gains
are achieved and at virtually no loss of important informa-
tion to the end user.

In one aspect, there 1s provided a method of predicting
comprising: receiving a first time-series data set having one
or more values for each time point to be predicted, receiving
a second time-series data set of one or more values per time
point with correlation to the first time-series data, estimating,
a Tunctional relationship between the first time-series data
and the second time-series data, for each wvalue, over a
multiplicity of time points, determining an extremal or other
speciflied value of the functional relationship 1s determined
of the second time-series data as a function of the first
time-series data; modifying the first time-series data based
on the extremal or other specified value so that first time-
series data values beyond it are set to the value of the
extremal or other specified solution, and predicting a future
state of the first time-series data based on the modified first
time-series data, wherein as programmed processing unit
performs the receiving first and second time-series data, the
estimating, the determining, the moditying and the predict-
ng.

In a further aspect, there 1s provided a system for pre-
dicting comprising: a memory storage device, a processor 1n
communications with the memory storage device, wherein
the computer system performs a method to: receive a first
time-series data set having one or more values for each time
point to be predicted, receive a second time-series data set
ol one or more values per time point with correlation to the
first time-series data, estimate a functional relationship
between the first time-series data and the second time-series
data, for each value, over a multiplicity of time points,
determine an extremal or other specified value of the func-
tional relationship 1s determined of the second time-series
data as a function of the first time-series data, modify the
first time-series data based on the extremal or other specified
value so that first time-series data values beyond it are set to
the value of the extremal or other specified solution, and
predict a future state of the first time-series data based on the
modified first time-series data.

In a further aspect, a computer program product 1s pro-
vided for performing operations. The computer program
product includes a storage medium readable by a processing
circuit and storing instructions run by the processing circuit

for running a method. The method 1s the same as listed
above.

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects, features and advantages of the present
invention will become apparent to one skilled 1n the art, 1n
view ol the following detailed description taken in combi-
nation with the attached drawings, 1n which:

FIG. 1 depicting an example empirical curve 10 defined
by real trathic volume on the y-axis and tratlic occupancy on
the x-axis for a given traflic detector 1n a city;

FIGS. 2A-2D illustrate respective boxplots having
example occupancy data for multiple detector locations 1n an
example city or urban network;

FIG. 3A shows an exemplary curve representing traflic
flow versus occupancy having a top middle section 1llus-
trating a transition phase; and FIG. 3B depicts an example
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trailic condition where a flow of vehicles 1n a queue 1s larger
that a crossroad flow capacity during a green trathic-light
cycle;

FI1G. 4 1llustrates an example result of a median regression
second-order curve fit on q(v.), and particularly shows an
empirical scatterplot of the flow data 1n a road segment as a
function of the occupancy;

FIG. 5 shows example occupancy data for a given traflic
detector over time with a computed tlow-based congestion
threshold associated with that trathc detector 1llustrated as a
horizontal line in one embodiment;

FIG. 6A depicts corresponding volume time series data
obtained from the detector s for an example time period as
a plot 100 1n an example implementation;

FIG. 6B shows a plot 150 of the estimated (occupancy)
congestion thresholds 222, 224 on occupancy data for a
period of time that correspond to the argmax T, projections

212, 214 respectively for the outer envelope curve 202 and
for the 0.5 median curve fit 204 of FIG. 6C:;

FIG. 6C shows a plot 200 of both a threshold constrained
median (0.5) regression curve fit 204, and a constrained
outer envelop (0.9) quantile regression second-order curve
202 fit on the example q. (v.) along with respective corre-
sponding projections of the argmax t_ of each regression on

the occupancy data from a given example detector;
FIG. 7A shows an example plot 300 of the Mean Absolute

Error (MAE) and the Standard Deviation of the error of the
occupancy predictions (e.g. 1-step forecasts) for a set of
example detectors (measurement locations) without using
the congestion threshold volatility reduction method over 10
time points during the morming peak 1n one example;

FIG. 7B shows an example plot 350 of the Mean Absolute
Error (MAE) and the Standard Deviation of the error of the
occupancy predictions for the same set of detectors as 1n
FIG. 7A, using the congestion threshold volatility reduction
method over 10 time points during the morning peak in the
example;

FIG. 8A shows an example sample overall (across the set
of measurement locations depicted in FIG. 7) Mean Abso-
lute Error (MAE) of occupancy predictions (occupancy 1s
expressed as a percentage) of time-series prediction of
occupancy data without using the congestion threshold
volatility reduction method;

FIG. 8B shows an example sample overall Mean Absolute
Error (MAE) of occupancy predictions of time-series pre-
diction of occupancy data using the congestion threshold
volatility reduction method;

FIG. 9 illustrates a method 700 for leveraging one alter-
nate time-series data to improve the prediction accuracy of
a first time-series data of interest according to one embodi-
ment; and

FIG. 10 illustrates an exemplary hardware configuration
of a computing system infrastructure 400 in which the
present methods are run.

"y

DETAILED DESCRIPTION

In a broad aspect, a system, method and computer pro-
gram product characterizes input data to capture the salient
aspects that are important to a prediction at hand, indepen-
dent of the prediction algorithm employed, and thereby
reduces the volatility of the data fed into whichever predic-
tion algorithm 1s employed. The result 1s a more accurate
prediction using the new reduced volatility data.

In fields or applications in which time-series-data 1s used
by prediction models, there exist alternate time-series data
that bears some correlation to the time-series data being
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predicted. As examples, the time-series data on the price of
a stock may be related to macro-economic indicators; the
traflic speed on a road segment 1s related to the tratlic flow
on that road segment; the amount of i1ce cream sales 1n a
location may be related to the weather at that location.

A system and method 1s now described that leverages at
least one alternate time-series data to improve the prediction
accuracy of a first time-series data of interest. Broadly, there
1s redefined the data of interest via a projection to one or
more values based on the relationship of that data to a
different time-series data. The new, projected time-series
data therefore has a lower volatility, while still capturing the
important aspects of the information of interest. As a result
of the lower volatility, prediction quality 1s improved by any
state of the art prediction algorithm.

Generally, FIG. 9 shows a method 700 implemented by a
computing system under control of a programmed process-
ing unit operating a set of instructions for forming, the
relationship between the data of interest and the other data
type. The method 700 particularly leverages one alternate
time-series data to improve the prediction accuracy of a first
time-series data of interest. In other embodiments, more than
one alternate (second) time-series data may be considered
without departing from the principles described herein.

The method uses a time-series data of one or more values
for each time point to be predicted, and uses a second set of
time-series data of one or more values per time point with
correlation to the first time-series data. In one embodiment,
the method includes estimating a functional relationship
between the first time-sernies data and the second time-series
data, for each value, over a multiplicity of time points.
Further, the method includes determining an extremal or
quantile value of the functional relationship of the second
time-series data as a function of the first time-series data.
The method then includes modifying the first time-series
data based on the value of the prior extremal or quantile
solution, 1n terms of the first time-series data, so that values
beyond 1t are set to the value of the extremal or the quantile
solution. The quantile value may be, for example, the first
point 1n the second time-series data at which a given percent
of the values fall below that quantile. Note that 1n a related
traflic flow prediction example described herein below with
respect to FIGS. 1, 4, the functional relationship would
possess two such points in terms of the first data source for
the quantiles of the second data source, e.g., for quantiles
less than 100%. In other words, there are, 1n the FIG. 4, two
occupancy values at which 75% of the flow data falls below
a given level, on the right side of the function and on the left
side. It may be desirable to use the first value of the first data
source at which the given percentile 1s reached, or the
second, 1n this example, depending upon the context. On the
other hand, 1n this example, there 1s a single value of the first
data source at which the second data source attains its
maximum. Then, a prediction of the time series data 1s
performed on the modified data using existing models.

For example, 1n FIG. 9 as shown at 702, the method first
includes receiving a vector variable of interest, m(t), and
determining an auxiliary variable, n(t). Then at 705, deter-
mining a form of functional relationship between auxiliary
time-series variable and time-series variable to be predicted,
¢.g., n(m). Then, at 710, there 1s performed calibrating, for
each of the time-series variables of interest, the curve that
fits most closely the experimental data from the variable of
interest and the auxiliary variable. Then, at 7135 the method
computes a maximum value of the auxiliary vanable beyond
which value of the variable of interest need not be predicted
with precision, e.g. maximal value of n(m); this 1s referred
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to as the maximal threshold vector, T. Next, at 720, these
steps are repeated for a minimal value 1f appropriate, with
that value referred to as threshold u. Then, the method
includes repeating the steps 702-720 at 725 for all elements
of the variable of interest (e.g. all trathic links, all servers,
ctc). Contimuing at 730, the method includes applying pro-
jection(s), such that m'(t)=min{m(t), ©}, and similarly if a
mimmal value exists, applying a second projection
m"(t)=max{m'(t), u}. Finally, at 750 there is performed a
prediction on the new time series variable, m"(t) using a
traflic prediction model.

The system and method thus leverages an auxiliary or
secondary time-series data source as a projection pre-pro-
cessing step to any trailic prediction method employed. The
resulting projected data leads to increased prediction accu-
racy while maintaining the salient aspects of the original
data set as required, for example, by trathic management and
route guidance applications.

There 1s now described an example prediction method
that considers a time-series data of interest to be traflic
occupancy levels on a road network. Traflic occupancy
levels are typically detector-specific (a typical detector 1s an
induction loop: an electromagnetic detection system which
uses a moving magnet to mduce an electrical current in a
nearby wire) but may also be link-specific, and range from
0 to 100, for example, representing the percent of time that
the detector 1s occupied by a vehicle 1n a pre-defined period
of time (e.g. 5 min). When the source of the traflic occu-
pancy data 1s an inductive loop detector, the occupancy
measurement will be specific to that detector. I the source
of the traflic occupancy data covers a road segment, €.g.
through individual vehicle counts over a segment or some
other form of trathic data collection, the occupancy level may
represent an average occupancy over a link, or road seg-
ment. Tratlic occupancy levels on a road network are typi-
cally updated 1n real-time, e.g. every 5 minutes, and as such
constitute a time-series-based data stream.

The prediction system and method 1s useful to be able to
predict tratlic occupancy into the near-term future (e.g., 15
minutes, 30 minutes, etc. 1n advance for purposes of traflic
regulation and tratlic information and route guidance. Many
algornithms are used for trailic prediction (see, e.g. Min and
Wynter, 2011 and references therein). Traflic occupancy
levels are known to be highly volatile and therefore diflicult
to predict using any known prediction algorithm.

Thus, mm an exemplary embodiment, the system and
method described herein define a relationship between trathic
occupancy data (first time-series data) and another data
stream, 1n this case, traflic volumes (alternate time-series
data). Tratlic volume data 1s produced 1n real-time like traflic
occupancy data, e.g., usually on a same update frequency
(e.g., every 5 min.).

The importance of forecasted occupancy levels 1s signifi-
cant for numerous applications from trailic management and
signal timing adjustment to route guidance tools. Indeed,
occupancy data 1s often available at or near signalized
intersections where such applications are required.
Congestion Threshold Projection

The relationship linking real traflic volume to traflic
occupancy 1s roughly in the form of a quadratic function as
shown below in FIG. 1 depicting an example empirical
curve 10 defined by real traflic volume on the y-axis and
traflic occupancy on the x-axis for a given traflic detector in
a city.

However, 1n spite of the benefits accrued by using a
state-oi-the-art prediction methodology on many types of
traflic data, occupancy levels pose a particular challenge to
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traflic prediction models. This 1s due to a number of different
factors, but the high volatility of the occupancy data on
urban networks 1s a significant one. In particular, 1n view of
FIG. 1, the data distribution exhibits a heavy tail on the rnght
whose shape tends to vary daily and weekly. This means that
the range of values 1s not well defined, e.g. by a Normal
distribution or truncated Normal distribution, around a mean
value with values tapering ofl sharply at the extremes, or at
the rightmost or highest extreme. This means that the data
takes on a wide range of values including some extreme
values which in the occupancy prediction example are
typically related to traffic incidents (e.g. accidents, broken
down vehicles), causing problems for the accuracy of the
prediction.

Consider, for example, FIGS. 2A, 2B, 2C and 2D showing,

respective boxplots 22,24, 26 and 28 for the occupancy data
(plotted on y-axis) over 383 detector locations (plotted on

x-ax1s) 1 an example urban road network (City of Lyon,
France). While FIG. 2D 1llustrates distributions of up to 495
detector IDs, there are gaps. The occupancies data obtained
at the 383 measurement locations of a city network was
collected over a calibration period (e.g., 13 weeks 1 a
non-limiting embodiment); the y-axis 1s truncated to a
maximum occupancy of 25 to improve visibility. For each
detector 21 represented in a boxplot, a respective box 30
provides a range ol occupancy values, e.g., an example
range from the 25th to the 75th percentiles. The horizontal
lines 35 1n each box 30 provide a computed median value for
the occupancy for that detector. A very large spread of values
is observed after the 757 percentile of each distribution.
Furthermore, as shown 1n the boxplots of FIGS. 2A-2D, the
upper limit of the detected traflic occupancy 1s truncated at
30 so as to permit the box 1tsell to be visible at all, but values
continue up to nearly 100.

In practice, however, in an urban road network, the
occupancy levels on the far right of the distribution (e.g., see
FIGS. 3A, 4) are unreliable and of little use to applications.
Predictions of occupancy should identify the free flow
condition, the transition phase, and the occupancy level 1n
the transition phase, as well as the congested state. However,
the precise occupancy level once 1n the fully congested state
1s of little use.

Because the principal dithiculty in achieving acceptable
prediction accuracy on occupancy data stems from the
volatility of the data on the night side of the distribution, the
system and method herein 1s implemented to reduce the
volatility while still maintaining the important signal in the
original data. As described above, the signal needed from the
data 1s primarily the type of state as well as the transition
phase between uncongested and fully congested.

Thus, a valid volatility reduction procedure for the traflic
occupancy data 1s provided. With that in hand, a prediction
methodology may be applied (re-applied) to a new data feed,
y, with improved prediction performance.

The proposed approach involves a type of low-pass
filtering where the cutofl threshold should be defined pre-
cisely by the point at which the fully congested state is
achieved. In other words, 1t 1s suflicient for a transport
management center to know that (1) either a current or
predicted state 1s/will be fully congested, or (1) the actual or
predicted occupancy level, 1f 1t 1s/will be below the fully
congested state. Hence a purely categorical model 1s not
suflicient. Using a cutodl filter which 1s too low would negate
the benefit of the occupancy prediction and a value too high
would not reduce volatility sufliciently to achieve acceptable
prediction accuracy.
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Input to the method 1s the 1dentification of the threshold
level T at which the congested state 1s achieved, for every
detector, s, with enough accuracy to maintain the critical
occupancy level in the transition phase, yet reduce volatility
enough to permit accurate prediction.

FIG. 3A 1s an example curve 40 relating traflic flow to
occupancy. A top middle section 45 of the curve 40 1llus-
trates the transition phase. FIG. 3B shows an example urban
road crossroad or intersection 30 depicting when a minimum
traflic flow 47 1s reached for high values of occupancy as a
function of blockages at a traflic signal, e.g., indicated as a
result of a traflic-light red cycle 57. In FIG. 3A, traflic 1s
modeled as moving freely as indicated as a traflic flow 43.
This flow 43 corresponds 1n FIG. 3B as result of a traflic-
light green cycle 59 that allows all waiting cars to get
through the crossroad. Returning to FIG. 3A, as indicated by
traflic flow 435 1n the curve 40, traflic 1s getting heavy. In
view of FIG. 3B, this means that the number of vehicles in
the queue 1s larger than the crossroad flow capacity during
a traflic-light green cycle. Some cars have to wait a second
green cycle to get through the crossroad 50. An indication
that trailic 1s congested and 1s getting even more congested
in the time 1s 1ndicated as traflic flow 47 1n FIG. 3A. The
traflic flow values are decreasing. The crossroad 350 1n FIG.
3B 1s probably obstructed, as a result cars can’t easily cross.
This pattern 1llustrates that the crossroad 1s not functioning
correctly.

In general, a congestion threshold 1s a function of numer-
ous parameters including road geometry, the location of
trailic signals, etc. and can be complex to model precisely as
shown 1n FIG. 3B. Hence, a data-driven approach 1s used to
determine these values for each detector.

For the prediction method, there 1s defined the functions
q.(v., (t)) where q(t) 1s the volume (second or alternate or
auxiliary time series data) and the occupancy i1s y(t) (first
time series data) and s represents the detector(s), e.g.,
detector location(s) or network link for which a ftraflic
condition(s) 1s/are sought to be {forecasted. Here, {for

example purposes, use 1s made of the volume and occupancy
data from detectors 1n the example city (e.g. Lyon, France).
Due to the high variability of the data, two robust estimation
approaches for q (v (t)) were tested. Both methods make use
of parametric quantile regression, defined as solving an
expression as follows:

S
" o, (9,) = £:(gs(3s), @)
s=1

Quantile regression 1s beneficial 1n this setting, and offers
different results from a mean regression because of the
asymmetry of the conditional density and the influence of
the dispersion of the flow values as occupancy increases. In
this setting, & are second-order functions with zero intercept.
In one embodiment, p=0.5 which computes a median regres-
sion. In a second embodiment, a more conservative
approach 1s taken and estimates the outer envelope of the
data. In one embodiment, there 1s used p=0.9 to represent the
90th quantile as a proxy for the outer envelope.

FI1G. 4 1llustrates an example result of a median regression
second-order curve 80 that 1s fit on g (v.), and particularly
shows an empirical scatterplot 75 of the flow data (Y-axis)
in a road segment as a function of the trathic occupancy
(X-axis). In this example, a plot of traflic occupancies, data
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volatility tends only to be problematic for high levels of
occupancy; at low occupancies, data 1s smooth over time, 1n
general.

Hence, only one projection threshold 1s needed, above
which higher traflic occupancies are projected to the thresh-
old. The threshold 1n this case represents the level at which
the congested traflic state 1s reached. It 1s important to have
predictions of the traflic occupancy for various purposes, but
if the traflic state 1s considered “congested” then 1t 1s enough
to know that 1t 1s “congested” and the precise occupancy
level at or after that point 1s not of use. On the other hand,
it 1s very important to know the occupancy level before that
point of congestion so that control action can be taken 1n a
timely fashion.

Therefore, the use of the alternate time series data 1s to
cnable the establishment of the congestion threshold for
cach detector. The real-time and historical occupancy data
are then projected to that threshold for all values equal to or
above the threshold. Prediction 1s performed in the new,
projected data. Because the data exhibits less volatility,
prediction quality 1s 1 general considerably improved,
independently of the prediction technique employed.

FIG. 5 shows a plot 85 of an example traflic occupancy
(Y-axis) for a given traflic detector data over time (e.g., time
intervals on X-axis) with an example computed flow-based
congestion threshold associated with that trathic detector
illustrated as a horizontal line 90.

The next step i the method involves obtaining the
argmax, T.=argmax q.(v.), of each calibrated curve, for
every detector, s. Hence, T, represents the occupancy level at
which the fully congested state occurs at detector s. Then,
the congestion threshold method performs a unidimensional
projection of the occupancy level onto that threshold accord-
ing to the following expression:

Ve ={YsTe)

where {*}~ is the min operation, i.e., the minimum of the two
values within the { }

FIGS. 6A-6C depict location-specific congestion-thresh-
old estimation as being based on a variant of the constrained-
quadratic Occupancy-Flow relationship, e.g., a specific
curve-fitting performed on the 0.9 quantile of tlows.

For example, FIG. 6C shows an example occupancy
volume scatterplot 200 obtained based on data from a
detector s over a particular time period, hours, days or
months. FIG. 6C depicts a relation to construct and calibrate
q.(v.) for the single detector s by calculating the value of the

maximum of the relationship and defiming t as the value of
the first time-series data at which the maximum 1s obtained,

1.¢:

T=argmax gq(v)

FIG. 6C particularly shows a plot 200 of both a threshold
constrammed median (0.5) regression curve fit 204 (the inter-
cept equals zero), and a constrained (the intercept equals
zero) outer envelop (0.9) quantile regression second-order
curve fit 202 on the example g (v.) along with respective
corresponding projections of the argmax t_ of each regres-
sion on the occupancy data from the given detector. Par-
ticularly, the 0.9 quantile regression curve fit 202 shows a
corresponding argmax T, projection 212, and for the 0.5
median curve {it, a corresponding argmax T, projection 214.
The 0.9 regression thresholds are shown above the median
values. The outer envelope curve 202 quadratic quantile
regression fit for the 0.9 quantile of flows corresponds to the
level of occupancies for which the maximum predicted tlow
1s achueved, and 1s designated as a threshold in occupan-
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cies—it marks heavily congested traflic conditions, and 1s
used as a projection threshold to filter occupancies, both
observed and forecasted values.

FIG. 6B shows a plot of the estimated congestion thresh-
olds 222, 224 on occupancy data for a period of time, e.g.,
months, wherein estimated congestion threshold 222 corre-
sponds to the argmax T projection 212 for the outer enve-
lope curve 202, and estimated congestion threshold 224
corresponds to the argmax T, projection 214 for the 0.5
median curve {it. The plot 150 mn FIG. 6B reveals the
occupancy data y(t) comprising the variable to predict. That
1s, the trathic occupancy 1s the variable to predict by com-
puting:

P (D)=min{y(z),)

The corresponding volume time series data obtained from
the detector s for the same example time period 1s shown in
the plot 100 of FIG. 6A for comparison purposes. The
example plot 100 depicts the auxiliary data stream q(t) here,
the traflic volume for the detector s.

Thus, alternately stated, the computer-implemented sys-
tem and method herein transforms continuous variables and
the corresponding forecasts (1rrespective of the model used
to produce them) to hybrid continuous-ordinal variables, by
projecting values larger (or smaller) than location-specific
(congestion) thresholds to these thresholds. For example,
alter a threshold in occupancies 1s reached, forecasts are as
accurate as long as they are equal or larger than this
threshold.

The method thus computes y_ as the new filtered occu-
pancy data for every detector s. Prediction of occupancy
using the y. makes use of the prediction method described
herein above. Comparative results are now presented.

FIGS. 7TA-7B 1illustrate the benefit on a set of detectors,
e.g., 39 detectors, over a morning peak period, with 10 data
points per detector. Mean absolute error (MAE), 1.e.,
MAE=X__,  Jly. -y, with (FIG. 7B) and without (FIG.
7A) the method are presented, where v are the predicted data
and vy the actual occupancies. Note that the scales of the
y-axis 1n the two figures are diflerent owing to a large error
in the figure without use of the method (e.g., FIG. 7A). In
general, the large errors were eliminated via the method,
allowing the good performance of the prediction method on
the less volatile data to dominate.

More particularly, FIG. 7A shows an example Mean
Absolute Error (MAE) and the Standard Dewviation of the
prediction error plot 300 for occupancies observed at a set of
measurement locations (detectors) without using the con-
gestion threshold volatility reduction method over 10 time
points during the morning peak period.

FIG. 7B shows a Mean Absolute Error (MAE) and the
Standard Dewviation of the prediction error plot 350 for
occupancies observed at the same set of detectors as in FIG.
7A using the congestion threshold wvolatility reduction
method over 10 time points during the morning peak in the
example.

The pair of bar charts in FIGS. 8A and 8B show on a
larger dataset the impact of the congestion threshold method,
by prediction horizon from 6 minutes up to 30 minutes nto
the future. As before, note the different scales on the y-axis
of the two charts. Again, MAE were reduced dramatically.
In particular, FIG. 8A further shows an example plot 500
sample average absolute error of time-series prediction of
occupancy data without using the congestion threshold
volatility reduction method. Accuracy i1s indicated as
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“MAE” meaning “mean absolute error”, 1.e. an average of
ABS(true—predicted) over all tratlic detectors and all time
steps.

FIG. 8B shows an example sample average absolute error
plot 600 of time-series prediction of occupancy data imple-
menting the methods described. Accuracy 1s indicated as
“MAE” meaning “mean absolute error”, 1.e. an average of
ABS(true—predicted) over all traflic detectors and all time
steps. Note that the considerably lower error level (e.g., error
level of 7-8 for the plot of FIG. 8B with the methods, versus
an error level of 13-15 for the plot of FIG. 8 A without using
the methods described).

Thus, the system and method leverages at least one
alternate time-series data to improve the prediction accuracy
ol a first time-series data of interest. The method redefines
the data of interest via a projection to one or more values
based on the relationship of that data to a different time-
series data. The new, projected time-series data therefore has
a lower volatility, while still capturing the important aspects
of the information of interest. As a result of the lower
volatility, prediction quality 1s improved by any state of the
art prediction algorithm.

The method 1s applicable to perform accurate predictions
for all times of time series data, e.g., financial data. In
general, financial data, such as stock prices, are highly
volatile. However, 1n many cases 1t 1s not necessary to
predict accurately the full range of stock ticker prices, but
only the price in between one or two thresholds. For
example, 1 stops are put in place wherein a stock would be
bought 11 the price falls to some level or sold 1t 1t rises to
some level, then 1t would be useful to predict the stock price
in between those levels but not necessarily above or below
those levels. In order to use the present methods, a secondary
source of data would be needed to determine what those
levels should be, and then the financial data would be
projected from below to the lower level and/or from above
to the higher level. The prediction algorithm would then be
run on the projected data.

In one embodiment, a predictive modeling strategy
employed divides tratlic dynamics into two basic compo-
nents: a location specific daily profile and a term that
captures the deviation of a measurement from that profile.
For traflic volumes, a daily profile 1s expected to be shaped
as an asymmetric “M” whereas for speeds as an asymmetric
“W”. Let d be the day-of-the-week index, s the location
index and t the time-of-day index. The overall model struc-
ture for a traflic variable y 1s governed by equation 1) as
follows:

Va7l ()+x 4 (2) (1)

where d=1, ..., D,s=1,....,S,and t=1 ..., ,T. S
represents the number of locations for which traflic condi-
tions are sought to be forecasted, and T 1s the total number
of time intervals per day. D may be less than seven 1f there
1s suthicient evidence of similarity of trathc dynamics for two
(or more) days of the week.

The profile p; ; captures the daily trend and can be viewed
as a baseline forecasting model that 1s based only on
historical data and neglects information from the recent past
of the process. ;. can be obtained by some form of
weilghted average that weighs more heavily recent historical
data, principal component analysis, wavelet based decom-
position or by an exponential smoothing filter. Decomposi-
tions are adopted very frequently in time-series analysis and
within the context of short-term trathic forecasting are
expected to lead to superior performance compared to
models applied directly to traflic variables.
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The second stage of the modeling procedure concentrates
on the dynamics of the (short-term) deviation from the
historical daily profile and adopts a regime-switching mod-
cling framework. Specifically, for each location s a space-
time threshold autoregressive model 1s adopted to account
for transient behavior according to equation 2) as follows:

- P . Ns p ( ) (2)
XD = g 4 + ) Ijj xds(r—a)+Zijfdssxdj(r—a)+ad5(r)
i=1 J=1 i=1
where t=T, _+1,..., 1T, forr,=1..., R, +1 and a

convention iss used SllCh that T,=0 and T r,+1— L. The index

r;. specifies the operating regime. "The thresholds
Iy, ,..., T, , separate and characterize difierent regimes
and in general may differ for different locations 1n the road
network and different days of the week. In one embodiment,
the number of thresholds and their magnitude are unknown
quantities that need to be estimated.

The above predictive equation contains an intercept term
that varies with location, traflic-regime within a day and day
of the week. N_ 1s the number of neighboring locations of s
that may provide useful information (at some previous time
instances) with regard to short-term forecasting performance
and p 1s the autoregressive order (maximum time-lag) of the
model. Hence the first sum 1n (2) contains information on the
recent past of the location of interest whereas the second
sum contains information from its neighbors. The o’s are
unknown coetflicients that need to be estimated; the statis-
tically significant ones in the second sum signity which
temporal lags of a neighboring location are expected to
provide useful information with regard to short-term fore-
casting. The 1 1n the expression (t-1) refers to the time lag,
1.e. a time stamp prior to time t 1n terms of a number of
periods. For instance, 11 1=2, then t-1 1s two time periods
prior to time t. Finally, € 1s assumed to be a martingale
difference sequence with respect to the history of the time
series up to time t-1; hence, it 1s assumed a serially
uncorrelated (but not necessarily independent) sequence and
its variance 1s not restricted to be equal across regimes.

The above model defines a threshold regression per
measurement location, with an unknown number of regimes.
Time-of-day 1s the threshold vanable that defines sub-
samples 1n which the regression relationship 1s stable.
Within regime r,; ., (2) 1s a linear regression model that can
be estimated using existing methods such as minimizing the
least squares deviation (OLS, also known as the L2 norm) or
the least absolute deviation (LAD, also known as the L1
norm). However, direct estimation 1s expected to be inetli-
cient as a fraction of the predictors will not contribute
significantly to the predictive power of the model. Further-
more, direct estimation may be problematic (the variances of
the estimated coellicients may be unacceptably high) or even
infeasible due to multi-collinearity, especially when p and
N, are large.

In one embodiment, estimation and model selection per
regime take place simultaneously for each location, using
lasso penalized regression which enforces sparse solutions
in problems with large numbers of predictors. Lasso 1s a
constrained version of ordinary estimation methods and at
the same time a widely used automatic model building
procedure. Given a loss function g(.), lasso penalized regres-
sion within regime r;, can be phrased as minimizing the
criterion according to equation 3) as follows:
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n (3)

Jc(8)=§(€)+9L

where, given that historical tratlic data from D, past weeks
are available, for lad-lasso

Ed,s(r)

The second component of the sum 1s the lasso penalty term
which shrinks coeflicients toward the origin and tends to
discourage models with large numbers of marginally rel-
evant predictors. In one embodiment, the intercept a, 1s
ignored 1n the lasso penalty, whose strength 1s determined by
the positive tuning constant A.

In one embodiment, the use ol penalized estimation
allows considerable flexibility with regard to the specifica-
tion of matrices that define neighboring relationships i1n a
road network. Using a modeling framework similar to those
known 1n the art, diflerent such matrices per regime and per
time-lag of the model are defined at a pre-processing stage
which would have been tedious for large S. By using a
“lasso” techmique there 1s defined a matrix that contains all
neighboring associations that are relevant to the chosen
autoregressive order. The automatic model selection feature
ol lasso shrinks towards zero the coetlicients that correspond
to non-significant time-lags ol measurements taken at neigh-
boring locations to the one modeled.

The gains resulting from implementing this prediction
method come at the cost of a substantially increased number
of predictors 1n the linear specification. The influential ones
are 1dentified by a two-step penalized estimation scheme,
namely adaptive least absolute shrinkage and selection
operator (LASSQO); for recent applications of penalized
estimation in transportation problems, the reader may con-
sult.

In the forecasting experiments models estimated can be
combined using: (1) the adaptive LASSO which performs
L1-penalized mimimization of squared residuals and (11) the
adaptive LAD-LASSO which produces L1-penalized least
absolute deviation estimators. The latter are essentially
median regression estimates which have been found to be
particularly effective 1n terms of forecasting performance
when response variables possess skewed response distribu-
tions that may contain outliers

It 1s understood that the congestion threshold calculations
may be used 1n conjunction with other prediction methods in
addition to the approach described herein above. For
example, simpler methods as well may be appropriate, e.g.,
simple extrapolations from historical data (such as averages
of values of the traflic parameter in the past), other statistical
methods, be they linear regression or nonlinear methods
such as neural networks, etc.
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FIG. 10 illustrates an exemplary hardware configuration
of a computing system infrastructure 400 in which the
present methods are run. In one aspect, computing system
400 receives both the first time-series and second or alter-
nate time-series data and 1s programmed to perform the
method processing steps of FIGS. 5, 6 and 9, for example.
The hardware configuration preferably has at least one
processor or central processing unit (CPU) 411. The CPUs
411 are interconnected via a system bus 412 to a random
access memory (RAM) 414, read-only memory (ROM) 416,
input/output (I/0) adapter 418 (for connecting peripheral
devices such as disk units 421 and tape drives 440 to the bus
412), user interface adapter 422 (for connecting a keyboard
424, mouse 426, speaker 428, disk drive device 432, and/or
other user 1nterface device to the bus 412), a communication
adapter 434 for connecting the system 400 to a data pro-
cessing network, the Internet, an Intranet, a local area
network (LAN), etc., and a display adapter 436 for connect-
ing the bus 412 to a display device 438 and/or printer 439
(c.g., a digital printer of the like).

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more tangible computer readable medium(s) having
computer readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The tangible computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
clectronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with a system, apparatus, or device
running an nstruction. The computer readable medium
excludes only a propagating signal.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that 1s not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with a system,
apparatus, or device running an instruction.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
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ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing. The
computer readable medium excludes only a propagating
signal.

Computer program code for carrying out operations for
aspects ol the present mmvention may be written 1n any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may run entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly
on the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which run via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified 1n the tlowchart and/or block dia-
gram block or blocks. These computer program instructions
may also be stored 1n a computer readable medium that can
direct a computer, other programmable data processing
apparatus, or other devices to function 1n a particular man-
ner, such that the instructions stored in the computer read-
able medium produce an article of manufacture including
instructions which implement the function/act specified 1n
the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer 1mple-
mented process such that the instructions which run on the
computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol code, which comprises one or more operable
instructions for 1mplementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted 1n the block may occur
out of the order noted 1n the figures. For example, two blocks
shown 1n succession may, i fact, be run substantially
concurrently, or the blocks may sometimes be run in the
reverse order, depending upon the functionality mvolved. It
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will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems

that perform the specified functions or acts, or combinations 5 ftraflic data measuring tra

of special purpose hardware and computer instructions.
The embodiments described above are 1illustrative
examples and 1t should not be construed that the present
invention 1s limited to these particular embodiments. Thus,
various changes and modifications may be eflected by one
skilled 1n the art without departing from the spirit or scope
of the mvention as defined 1n the appended claims.
What 1s claimed 1s:
1. A computer program product comprising:
a non-transitory storage media, said non-transitory stor-
age media tangibly embodying a program of instruc-
tions executable by the computer for performing a
method for managing traflic flow on a road network, the
method comprising:
receiving, at the computer, a first time-series data set
having one or more values for each time point to be
predicted, the first time-series data set comprising
traflic occupancy levels obtained from a sensor
device associated with a road of said road network;

receiving, at the computer, a second time-series data set
ol one or more values per time point with correlation
to the first time-series data, the second time-series
data set comprising traflic volume levels at the road;

estimating, by the computer, a functional relationship
between the first time-series data and the second
time-series data, for each value, over a multiplicity
of time points;

determining, at the computer, an extremal or other
specified value of the functional relationship of the
second time-series data as a function of the first
time-series data, said extremal or other specified
value representing an occupancy level at which a full
congested traflic state 1s reached at the associated
sensor device:

modifying, at the computer, said first time-series data
by projecting the occupancy level of the first time
series data obtamned from the associated sensor
device on the extremal or other specified value so
that first time-series data values that are beyond the
extremal or other specified value are set to the
extremal or other specified value, and

using said modified first time-series data in any pre-
diction model to increase accuracy of a future pre-
dicted trailic occupancy state; and

regulating a tratlic flow of said road network based on
said future predicted traflic occupancy state.

2. The computer program product of claim 1, wherein first
time-series data set includes a vector variable of interest,
m(t), where t 1s a unit of time, and said second time-series
data set includes an auxiliary vanable, n(t), wherein said
tfunctional relationship between the first time-series data and
the second time-series data, for each value, over the multi-
plicity of time points, 1s a function n(m).

3. The computer program product of claim 2, wherein said
step of determining an extremal or other specified value of
the Tunctional relationship comprises:

calibrating, for each of the time-series vector variable of
interest, a curve that fits most closely data from the
variable of iterest and the auxiliary variable; and

computing a maximum threshold value T, of the auxiliary
variable beyond which value of the variable of interest
1s not predicted.
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4. The computer program product of claim 3, wherein said
first time-series data set 1s road traflic data measuring traflic
speeds or traflic occupancies obtained from said associated
sensor device, and the second time-series data set 1s road
Tic volumes, wherein said modi-
tying said first time-series data based on the extremal or
other specified value comprises:

obtaining the maximum threshold value T of said cali-

brated curve, for every associated sensor device s,
wherein T_ represents an occupancy level at which a full
congested state occurs at said associated sensor device
s; and

unidimensionally projecting the occupancy level onto that

threshold according to:

?5:{}{5: T, } T

where {*}~ is a minimum operation, V. is said modified
first time-series data for the associated sensor device s,
y(t) 1s said first time series data for the associated
sensor device s.

5. The computer program product of claim 4, further
comprising;

computing a minimal threshold value u of the auxiliary

variable;:

applying a first projection according to: m' (t)=min{m(t),

T},

determiming 1f a minimal threshold value u exists, and 1f

said minimal threshold value p exists,

applying a second projection time series variable m"(t)

=max{m'(t), u}, wherein said predicting is performed
on said time series variable, m"(t).
6. The computer program product of claim 1, wherein said
moditying said first time-series data based on the extremal
or other specified value comprises:
obtaining the maximum threshold value T of said cali-
brated curve, wherein T represents an occupancy level
at which a full congested state occurs; and

unidimensionally projecting the occupancy level onto that
threshold.

7. The computer program product of claim 6, wherein said
modifying said first time-series data 1s based on the follow-
ng:

y=1y(t),t} .

where {*}~is a minimum operation, ¥ is said modified first
time-series data, y(t) 1s said first time series data.
8. The computer program product of claim 7, further
comprising;
repeating said recerving first and second time-series data,
said estimating, said determining, said modifying and
said predicting for all elements of a variable of interest.
9. A system for managing traflic flow on a road network
comprising;
a memory storage device,
a processor device 1n communications with the memory
storage device, wherein the computer system performs
a method to:
receive, at the processor device, a first time-series data
set having one or more values for each time point to
be predicted, the first time-series data set comprising
traflic occupancy levels obtamned from a sensor
device associated with a road of said road network;
receive, at the processor device, a second time-series
data set of one or more values per time point with
correlation to the first time-series data, the second
time-series data set comprising tratlic volume levels
at the road;




US 9,454,902 B2

17

estimate, using the processor device, a functional rela-
tionship between the first time-series data and the
second time-series data, for each value, over a mul-
tiplicity of time points;
determine, at the processor device, an extremal or other
specified value of the functional relationship of the
second time-series data as a function of the first
time-series data, said extremal or other specified
value representing an occupancy level at which a full
congested traflic state i1s reached at the associated
sensor device:
modily, using the processor device, said first time-
series data by projecting the occupancy level of the
first time series data obtained from the associated
sensor device on the extremal or other specified
value so that first time-series data values that are
beyond the extremal value or other specified are set
to the extremal or other specified value, and
using said modified first time-series data in any pre-
diction model to increase accuracy of a future pre-
dicted trailic occupancy state; and
regulate a traflic flow of said road network based on
said future predicted traflic occupancy state.
10. The system of claim 9, wherein first time-series data
set includes a vector variable of interest, m(t), where t 1s a
unit of time, and said second time-series data set includes an
auxiliary vanable, n(t), wherein said functional relationship
between the first time-series data and the second time-series
data, for each value, over the multiplicity of time points, 1s
a Tunction n(m).
11. The system of claim 10, wherein to determine an
extremal or other specified value of the functional relation-
ship, said computer system performs a method to:
calibrate, for each of the time-series vector variable of
interest, a curve that fits most closely data from the
variable of iterest and the auxiliary variable; and

compute a maximum threshold value T, of the auxiliary
variable beyond which value of the variable of interest
1s not predicted.

12. The system of claim 11, wherein to modily said first
time-series data based on the extremal or other specified
value, said computer system performs a method to:

obtain the maximum threshold value T of said calibrated

curve, wherein T represents an occupancy level at
which a full congested state occurs; and
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unidimensionally project the occupancy level onto that
threshold.
13. The system of claim 12, wherein to modily said first
time-series data 1s based on the following:

y=ly M)t}

where {*}~ is a minimum operation, ¥ is said modified first
time-series data, and y(t) 1s said first time series data.
14. The method of claim 13, wherein said processor
device 1s further configured to:
repeat said receiving first and second time-series data,
said estimating, said determining, said modifying and
said predicting for all elements of a variable of interest.
15. The system of claim 12, wherein said first time-series
data set 1s road traflic data measuring traflic speeds or traflic
occupancies obtained from said associated sensor device,
and the second time-series data set 1s road traflic data
measuring trathic volumes,
wherein to modify said first time-series data based on the
extremal or other specified value, said processor device
1s Turther configured to:
obtain the maximum threshold value T of said calibrated
curve, for every associated sensor device s, wherein T _
represents an occupancy level at which a full congested
state occurs at said associated sensor device s; and
unidimensionally project the occupancy level onto that
threshold according to:

5}5:{};5;55}_ "

where {*}7is a minimum operation, ¥ _ is said modified first
time-series data for an associated sensor device s, y(t) 1s said
first time series data for the associated sensor device s.
16. The system of claim 12, wherein said processor device
1s Turther configured to:
compute a mimmal threshold value u of the auxiliary
variable;
apply a first projection according to: m' (t)=min{m(t), T},
determine 11 a minimal threshold value, u exists, and
11 said minmimal threshold value, p exists, apply a second
projection time series variable m"(t)=max{m'(t), u},
wherein said predicting 1s performed on said time series
variable, m"(t).
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