US00944918383B2

a2 United States Patent (10) Patent No.: US 9.449,188 B2

Schneider et al. 45) Date of Patent: Sep. 20, 2016
(54) INTEGRATION USER FOR ANALYTICAL 7,228,352 Bl1* 6/2007 Yaguchi GOG6F 11/1662
ACCESS TO READ ONLY DATA STORES 709/229
GENERATED FROM TRANSACTIONAL. 7,350,840 B1* 4/2008 Bedell GOOF 17/3702562/?
SYSTEMS 7380213 B2 5/2008 Pokorny et al.
7,571,191 B2 82009 Dill et al.
(71) Applicant: salesforce.com, inc., San Francisco, CA 7,836,178 B1 11/2010 Bedell et al.
(US) 8,041,670 B2 10/2011 Bakalash et al.
8,086,585 Bl * 12/2011 Brashers GOG6F 17/30097
(72) Inventors: Donovan Schneider, San Francisco, 8285709 B2 102012 Candea et al. 7077703

CA (US); Fred Im, San Carlos, CA 8,549,602 B2* 10/2013 Vaeth HO4L 9/3234
(US); Vijayasarathy Chakravarthy, 713/156
Mountain View, CA (US) 8,793,759 B2* 7/2014 Nishizawa HO41. 29/06768
" 726/1
(73) Assignee: salesforce.com, inc., San Francisco, CA 3,826,390 BI® 972014 Vardacoooooooo. GOOK 21/762%1/2
(US) 2005/0182684 Al* 82005 Dawson G06Q 30/06
705/80
(*) Notice: Subject to any disclaimer, the term of this 2010/0169268 Al* 7/2010 John GO6F 17/30592
patent 1s extended or adjusted under 35 OLUOIET956 AL* 79011 T HO47LOE/3 ?%
i e
U.S.C. 154(b) by 0 days. 7137156
(21) Appl. No.: 14/512,249 (Continued)
(22) Filed: Oct. 10, 2014 FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data WO WO 2013/045898 A2 * 4/2013 ... G06Q 30/06
US 2016/0104003 A1 Apr. 14, 2016 O1HER PUBLICAIIONS
U.S. Appl. No. 14/512,230—"Row-Level Security Integration of
51) Int. Cl
(1) Int. Cl. H Analytical Data Store with Cloud Architecture”, inventors Donovan
gg:g; ;?igg 88?28; Schneider et al., filed Oct. 10, 2014, 39 pages.
T Continued
GO6F 17/30 (2006.01) (Continued)

(52) U.S. CL
CPC ... GO6F 21/6218 (2013.01); GO6F 17/30377
(2013.01); GO6F 17/30563 (2013.01); HO4L
63/08 (2013.01); HO4L 63/102 (2013.01)

(58) 1li‘Iield of Classification Search (57) ABSTRACT
one

See application file for complete search history.

Primary Examiner — Christopher Revak

(74) Attorney, Agent, or Firm — Haynes Bellel & Wolifeld
LLP; Ernest J. Beflel, Jr.

The technology disclosed preserves the tenant specificity
and user specificity of the tenant data by associating user 1Ds

(56) References Cited to complementary special IDs retferred to as the integration
user(s). In particular, 1t combines the traceability of user
U.S. PATENT DOCUMENTS actions, the itegration of security models and the tlexibility

of a service ID into one integration user(s).
6,757,689 B2 6/2004 Battas et al.

))
6,995,768 B2 2/2006 Jou et al. 12 Claims, 8 Drawing Sheets
Ulser Deviee(s)
e
235 680
)2 Tokon A G
/ 61 (a-n
Securily Service 608u-n \\\1 \I
0U6 i 614
s Seourity Prodicale | Row /
L. [",ILIEETTIEWI -
612 IS B Token O, Token A 1
- Token (), Token G 2
S, Token O, Token A | 3
Application Server e /I
612 l
Tosipehis ! : IRE 0
&24 246 L 626
623 i / \k:;:; Fdgemarl //
litegration User o
I Token (O
= T »
= . /ﬁ.’aﬁ
Transaction Qecurity Predicale Row # 1.ist 63%
Gt b3 Token (1. Token A SSRYERYERD 2
] - oken (). Token CM2OM3
e e Token 0. Token A, U | D2, A1, M4, M5

M

Isttegration User Application

US 9,449,188 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2014/0258970 Al* 9/2014 Brown ... GOO6F 8/47
717/103

2014/0372319 Al* 12/2014 Wolovitz G06Q 30/06
705/71

2015/0032620 Al* 1/2015 Castinado G06Q 20/40
705/44

2015/0058931 AlL* 2/2015 Miu ...oooovvvvvivvnnnnnn, HO4L 63/126
726/3

2015/0120567 Al* 4/2015 Van Rooyen G06Q 20/3829
705/59

2015/0317748 Al* 11/2015 Roberts G06Q 40/12
705/30

OTHER PUBLICATIONS

U.S. Appl. No. 14/512,240— Low Latency Architecture with
Directory Service for Integration of Transactional Data System with

Analytical Data Structures”, inventors: Donovan Schneider et al.,

filed Oct. 10, 2014, 35 pages.

Davis, Chris, Graphite Documentation Release 0.10.0, Sep. 16,
2014, 135 pgs.

GitHub exbz Description of Graphite UI, 2014, 13 pgs. [Retrieved
Sep. 16, 2014 3:06:56 PM], Retrieved from Internet: <https://
github.com/ezbz/graphitus>.

ExactTarget, ““The Future of Marketing Starts Here”, Mar. 1, 2013,
[retreived Mar. 1, 2013], Retreived from Internet <http://www.
exacttarget.com>, http://web.archive.org/web/20130301133331/
http://www.exacttarget.com/.

Agrawala, Maneesh, “Animated Transitions in Statistical Data
Graphics™, 3 pgs, Sep. 22, 2009, [Retrieved Sep. 12, 2014 9:00:30
AM] Retrieved from Internet <https:// www.youtube.com/
watch?v=vLk7mlAtEXI&{feature=youtu.be>.

Segel, Edward et al. “Narrative Visualization: Telling Stories with
Data”, Mar. 31, 2010, http://vis.stanford.edu/papers/narrative, 10

pgs.
Heer, Jeflrey, et al., “*Animated Transitions in Statisical Data Graph-

ics”, Mar. 31, 2007, 10 pgs.

Demiralp, C., et al., “Visual Embedding, A Model for Visualiza-
tion”, Visualization Viewpoints, IEEE Computer Graphics and

Applications, Jan./Feb. 2014, p. 6-11.

Stanford Vis group / Papers, “Visualization Papers, 2014-2001",
retrieved from http://vis.stanford.edu/papers on Sep. 12, 2014, 8
pages.

U.S. Appl. No. 14/512,258—U.S. Non-provisional Application
titled “Visual Data Analysis with Animated Informaiton al Morph-
ing Replay”, inventors: Didier Prophete and Vijay Chakravarthy,
filed Oct. 10, 2014, 56 pages.

“Salesforce Analytics Cloud Implementation and Data Integration
Guide”, Summer * 14 Pilot—API version 31.0, last updated: Sep. 8,
2014, 87 pages.

U.S. Appl. No. 14/512,263—"Declarative Specification of Visual-
1zation Queries, Display Formats and Bindings”, inventors Didier
Prophete et al., filed Oct. 10, 2014, 58 pages.

U.S. Appl. No. 14/512,267—"Dashboard Builder with Live Data
Updating Without Exiting an Edit Mode”, Inventors: Didier
Prophete et al., filed Oct. 10, 2014, 55 pages.

“Occasionally Connected Applications (Local Database Caching)”,
downloaded on Sep. 11, 2014, from http://msdn.microsoft.com/en-
us/library/vstudio/bb384436(v=vs.100).aspx, 3 pages.

U.S. Appl. No. 14/512,274—Offloading Search Processing Against
Analytic Data Stores”, Inventors Fred Im et al., filed Oct. 10, 2014,
40 pages.

EgdeSpring Legacy Content, (approx. 2012), 97 pages.

“Stufl I've Seen: A System for Personal Information Retrieval and
Re-Use,” by Dumais et al. IN: SIGIR 03 (2003). Available at:
ACM.

Pedersen et al, “Query Optimization for OLAP-XML Federations™
ACM, Nov. 8, 2002, pp. 57-64.

Rao et al, “Spatial Hierarchy and OLAP-Favored Search 1n Spatial
Data Warehouse”, ACM, New Orleans, LA., Nov. 7, 2003, pp.
48-55.

U.S. Appl. No. 14/512,240—Ofhice Action dated Oct. 15, 2015, 17
pages.

U.S. Appl. No. 14/512,240—Notice of Allowance dated Mar. 16,
2016, 10 pages.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 8 US 9,449,188 B2

100
/1 ()2 /1 (08
Explorer Engine Live Dashboard Engine
/1 18
Display Engine

122

Z

Query Engine -

Runtime
Framework

125

1238

Tweening Engine

138

Tweening Stepper

EdgeMart
Databases

A \ 148

User Computing Device (58
132

E Mart Engt L.
dgeMart Engine Application

FI1G. 1 — Analytics Environment

U.S. Patent Sep. 20, 2016 Sheet 2 of 8 US 9,449,188 B2
200
|
F—
204
Superpod Engines
I .4 208
]
| 202 {37 Queuing /
Load EdgeMart Engine
Balancers Engines
2. e 216
\ /
EdgeMarts Shards
— A

Pod
Engines

Transaction
Pata

2
bJ
[~

) ﬁ
59 -
L.ocal
EdgeMarts
ey

Securily
Engines

User Device(s)

258

Integration User(s)

F1G. 2 — Integration Environment

US 9,449,188 B2

Sheet 3 of 8

Sep. 20, 2016

U.S. Patent

L1€
WIOJSURI],

LOE
(LIOJSURI]

O1¢

90¢

LIRINOBPH

MOLPHIOAM LT — ¢ "Ol1A
¢Ie
peO PUB J0BIIXT
SO¢
DeO] JeULIO]

NOSI 10

Areuig 10 ASD
1413

cel

€0¢
10B1)X5]

cte

eI
[euOTOBSURI]

BIB(]
[BUOIORSURL],

SOUISUH WRIARSPH

csl

sjmuoduwro) uonvasdauy — p *“O1A

US 9,449,188 B2

Sheet 4 of 8

sauiduy podiadng

Sep. 20, 2016

U.S. Patent
=

CCC

12U BIR(]

cOv

US 9,449,188 B2

Sheet 5 of 8

Sep. 20, 2016

U.S. Patent

sjmouodwo) podarodng pue pod — S 'O

SAUIFUH JBAP3PH

SIDAIOG IIOM

Rl

3CS
43!
UISUT sumnang)
SIPYY
O
316 \
80¢ soursur] podiodng

EN\

cOC

dIA

SIDAIDGS 2SRAR)B(]

Q
1488

SIdAIAG uoneoddy

; | _ F

SAUISU PO

NJN“

.

US 9,449,188 B2

Sheet 6 of 8

Sep. 20, 2016

U.S. Patent

uonedddy Jasn) woneIdxu] — 9 "N

G

¢IN

PIN TINTA | D VoL *

O UO L

EN TN 1A V UYOL () UYO |
8¢ IS17] # MO0y AIeDIPAL G AHINDIG

9CY

SO vepITEeL] [
g UDOL () U0
Y USOL 0 UdjO]
STeopaId A0S e |
v19
_ B
U-e(31 9

009

—

¢ O EIED U0

TE9 BIRp
ﬂOﬁummﬂﬁHrﬁ

v,\.\‘ll'l
Y

h

0 U930],

9CY

JOS[] UONLIZU]

o |

£79

SIUSISU]

779
I0AIDG uoneorddy

cl9
909
IDNATOG AITINDAS
F09 v U0 209
\ S—
94

(S)201A(] 128

U.S. Patent Sep. 20, 2016 Sheet 7 of 8 US 9,449,188 B2

a transactional data management system recerves a logon request with an
associated user ID for use of the transactional data management system,
authenticates the logon request, and tdentifies that authorizations associated
with the user ID include usage of the analytical data analysis system

712
\ responsive to a request to use the analvtical data analysis system with the user
ID, a complementary special ID linked to the user ID 1s invoked

122 _ e _ .
\the special [D 1s associated with security attrtbutes particular to retrieval of data
objects from the specific analytic data analysis system

739 [irst security translation rules are applied, which accept one or more security
‘ \attrib'utes from the transactional data management system as predicates and
generate one or more security tokens to assocate with the special 1D when
interacting with the specitic analytic data analysis system

742 \ the spectal 1D is associated with security attributes particular to the specific
analytic data analysis system by accessing a plurality of heterogeneous
transactional data management systems that have divergent security models

FIG. 7 — Controlling and Tracking Usage of Analytic Data Analysis System

US 9,449,188 B2

Sheet 8 of 8

Sep. 20, 2016

U.S. Patent

wI)SAS nduwio) — § "Ny

S201AR(]

I9AI3S uoneonddy

JOBJIN] NFOMION (S)10S$3001]

nding sovIdUl I8

18 918 18
CIY
$21A3(]
mduj 90B1IdIUT 198} WIASASGNS NV WO
28rI01S A1
s / Py / ey

WAISASgNg AJOWAN

Py

WIQISASONS 98810

wosAQ 1oIndwon)

US 9,449,188 B2

1

INTEGRATION USER FOR ANALYTICAL
ACCESS TO READ ONLY DATA STORES

GENERATED FROM TRANSACTIONAL
SYSTEMS

RELATED APPLICATIONS

This application 1s one of several U.S. Nonprovisional
Patent Applications filed contemporaneously. The related
applications are U.S. application Ser. No. 14/512,230
entitled, ROW-LEVEL SECURITY INTEGRATION OF
ANALYTICAL DATA STORE WITH CLOUD ARCHI-
TECTURE, filed on 10 Oct. 2014; U.S. application Ser. No.
14/512,240 entitled, LOW LAT. JNCY ARCHITECTURE
WITH DIRECTORY SERVICE FOR INTEGRATION OF
TRANSACTIONAL DATA SYSTEM WITH ANALYTI-
CAL DATA STRUCTURES, filed on 10 Oct. 2014; U.S.
application Ser. No. 14/512,238 entitled VISUAL DATA
ANALYSIS WITH ANIMATED INFORMATION MOR-
PHING REPLAY, filed on 10 Oct. 2014; U.S. application
Ser. No. 14/512,263 entitled DECLARATIVE SPECIFICA-
TION OF VISUALIZATION QUERIES DISPLAY FOR-
MATS AND BINDINGS; U.S. application Ser. No. 14/512,
267 entitled DASHBOARD BUILDER WITH LIVE DATA
UPDATING WITHOUT EXITING AN EDIT MODE, filed
on 10 Oct. 2014 and U.S. application Ser. No. 14/512,2774
entitled OFFLOADING SEARCH PROCESSING
AGAINST ANALYTIC DATA STORES, filed on 10 Oct.
2014. The related applications are hereby incorporated by
reference for all purposes.

BACKGROUND

The subject matter discussed in the background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned 1n the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter 1n the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to implementations of the claimed technol-
0gy.

The advent of powertul servers, large-scale data storage
and other information infrastructure has spurred the devel-
opment of advance data warehousing and data analytics
applications. Structured query language (SQL) engines, on-
line analytical processing (OLAP) databases and 1nexpen-
sive large disk arrays have for instance been harnessed to
capture and analyze vast streams of data. The analysis of that
data can reveal valuable trends and patterns not evident from
more limited or smaller-scale analysis.

In the case of transactional data management, the task of
inspecting, cleaning, transtforming and modeling data with
the goal of discovering useful information 1s particularly
challenging due to the complex relationships between dii-
terent fields of the transaction data. Consequently, pertor-
mance of conventional analytical tools with large transaction
data sets has been ineflicient. That 1s also 1n part because the
time between requesting a particular permutation of data and
that permutation’s availability for review 1s directly
impacted by the extensive compute resources required to
process standard data structures. This heavy back-end pro-
cessing 1s time-consuming and particularly burdensome to
the server and network infrastructure.

The problem 1s worsened when an event occurs that
renders the processing interrupted or stopped. In such an

10

15

20

25

30

35

40

45

50

55

60

65

2

event, latency 1s incurred while waiting for the processing to
re-initiate so that the appropriate action takes place. This
latency 1s unacceptable for analytics applications that deliver
real-time or near real-time reports. Accordingly, systems and
methods that can alleviate the strain on the overall infra-
structure are desired.

An opportunity arises to provide business users full ad
hoc access for querying large-scale database management
systems and rapidly building analytic applications by using
cllicient queueing protocols for faster creation and process-
ing of massively compressed datasets. Improved customer
experience and engagement, higher customer satisfaction
and retention, and greater sales may result.

BRIEF DESCRIPTION OF THE

DRAWINGS

In the drawings, like reference characters generally refer
to like parts throughout the different views. Also, the draw-
ings are not necessarily to scale, with an emphasis instead
generally being placed upon 1llustrating the principles of the
technology disclosed. In the following description, various
implementations of the technology disclosed are described
with reference to the following drawings, 1n which:

FIG. 1 1llustrates an example analytics environment in
which the technology disclosed can be used.

FIG. 2 1s a high-level system diagram of an integration
environment that can be used to implement the technology
disclosed.

FIG. 3 depicts a high-level process of an extract-load-
transform EL'T workflow.

FIG. 4 illustrates one implementation of integration com-
ponents of a data center used to implement aspects of the
technology disclosed.

FIG. 5 shows one implementation of so-called pod and
superpod components that can be used to implement the
technology disclosed.

FIG. 6 demonstrates one implementation ol using an
integration user in the integration environment illustrated 1n
FIG. 2.

FIG. 7 1s a representative method of implementation of
controlling and tracking usage of an analytic data analysis
system associated with a transactional data management
system.

FIG. 8 shows a high-level block diagram of a computer
system that can be used to implement some features of the
technology disclosed.

DETAILED DESCRIPTION

Introduction

The technology disclosed relates to integration between
large-scale transactional systems and temporary analytic
data stores suitable for use by one or more analysts. In other
implementations, the technology disclosed relates to inte-
gration between large-scale transactional systems, non-
structured data stores (e.g., log files), analytical systems
(corporate data warchouse, department data marts), and
personal data sources (spreadsheets, csv files).

Exploration of data without updating the underlying data
presents a diflerent use case than processing transactions. A
data analyst may select, organize, aggregate and visualize
millions or even hundreds of millions of transactional or log
records without updating any of the records. So-called
EdgeMart™ analytic data store technology, developed by
EdgeSpring®, has been demonstrated to manipulate 123
million Federal Aviation Administration (FAA) records, on
a laptop running a browser, with sub-one second response

US 9,449,188 B2

3

time for processing a query, including grouping, aggregation
and result visualization. Storing the underlying records 1n a
read only purpose designed analytic data structure makes
these results possible using modest hardware. Producing,
managing and operating analytic data stores at scale remains
challenging.

Analytic data structures, also referred to as “edgemarts,”
are compressed data forms produced from transactional
databases, which represent specific form functions of trans-
actional database objects. Sometimes analytic data struc-
tures are produced by merging data from multiple database
systems or platiorms. For instance, prospect and opportunity

closing data may come from a Salesforce.com® system and
order tulfillment data from a SAP® system. An analytic data
structure may combine sales and tulfillment data for par-
ticular opportunities, merging data from systems that run on
different database platforms, 1n separate applications from
different vendors, applying divergent security models. Doz-
ens of analysts may work on subsets of an overall analytic
data structure, both for periodic and ad hoc investigations.
Their work 1s likely to be directed to a specific time period,
such as last month, last quarter or the last 30 days. Different
requirements of analysts can be accommodated using tech-
nology disclosed herein.

There are many aspects to addressing the challenge of
scaling an analytic system architecture that draws from large
scale transactional systems. First, the resources needed can
be reduced by using a purposed designed low-latency mes-
saging protocol between transactional system components
and analytic data store components. Second, divergent secu-
rity models of multiple transactional systems can be
addressed by a predicate-based row-level security scheme
capable of translating various security settings for use 1n an
analytic data store. Security can be arranged 1n a manner that
tacilitates building individual shards of an analytical data
store for users who eirther want or have access limited to a
particular segment of the overall data.

Third, operation of an analytic data store can be facilitated
by a separate accounting of analytic resource usage. The
technology disclosed keeps the analytic resource usage
accounting separate by associating a so-called integration
user for analytic services with a standard transactional user.
Transactional user credentials and processing of authentica-
tion and authorization can be leveraged to invoke the
associated mtegration user. This associated user has different
rights and different accounting rules that the transactional
user.

Fourth, migration of query processing from servers to
clients can mitigate high peak loads followed by 1dle periods
observed when delivering extremely fast data exploration
and visualization. The technology disclosed further includes
a strategy for migration, during a particular investigation
session, of query processing from server based to client
based.

Low latency communication between a transactional sys-
tem and analytic data store resources can be accomplished
through a low latency key-value store with purpose-de-
signed queues and status reporting channels. Posting by the
transactional system to imput queues and complementary
posting by analytic system workers to output queues 1s
described. On-demand production and splitting of analytic
data stores requires significant elapsed processing time, so a
separate process status reporting channel 1s described to
which workers can periodically post their progress, thereby
avoiding progress inquiries and interruptions of processing
to generate report status. This arrangement produces low

10

15

20

25

30

35

40

45

50

55

60

65

4

latency and reduced overhead for interactions between the
transactional system and the analytic data store system.

A directory service associated queuing and transactional
system to worker inter-process communications enables
restarting of worker processes running on analytic system
servers that fail. Workers running on separate servers and
even 1n separate server racks are redundantly assigned
allinities to certain queues and clients. When one of the
redundant workers fails and restarts, the directory service
provides information so that status and task information can
be obtained by the restarted worker from the redundant sister
workers. This keeps the workers from recreating edgemarts
that were created while the worker was ofl-line, according to
one 1mplementation.

A predicate-based row level security system 1s used when
workers build or split an analytical data store. According to
one 1mplementation, predicate-based means that security
requirements of source transactional systems can be used as
predicates to a rule base that generates one or more security
tokens, which are associated with each row as attributes of
a dimension. Similarly, when an analytic data store 1s to be
split, build job, user and session attributes can be used to
generate complementary security tokens that are compared
to security tokens of selected rows. Eflicient indexing of a
security tokens dimension makes 1t eflicient to qualify row
retrieval based on security critenia.

Building analytical data stores from transactional data
systems that have divergent security models 1s facilitated by
predicate-based rules that translate transactional security
models and attributes into security tokens, according to one
implementation. For instance, Saleforce.com® allows a ten-
ant to select among about seven different security models.
Selecting any one of these models could make 1t diflicult or
impossible to express security requirements expressed
according to a different model. Selecting one of the Sales-
force.com® models could complicate expressing security
requirements implemented under an SAP® security model.
Predicate-based rules facilitate extracting data objects con-
sistent with needs of analytical data structure users. A single
analytical data store can be built for sharing among multiple
users and for providing security consistent with underlying
security models and analytical data access rights of users.
Security tokens can be assigned to rows based on criteria
such as “CEOs can access all transactional records for the
last five years,” which might not be implemented or
expressed in the underlying transactional systems. It 1s
expected that analysts will have access to records for ana-
lytical purposes that they might not be allowed to or might
find cumbersome to access through the underlying transac-
tional systems.

Splitting an analytical data store refers to creating a
so-called shard, which 1s a second analytical data store
created by selecting a proper subset of data objects or rows
in a first analytical data store. This can be regularly sched-
uled, alongside refreshing of an analytical data store with
updated data from the transactional data system. Or, 1t can
happen on demand or on an ad hoc basis. The technology
disclosed can be applied to create shards from larger ana-
lytical data stores. In one implementation, creating a subset
of an edgemart for simultaneous storage and subsequent
deployment along with the original edgemart 1s referred to
as “physical splitting.” In some 1implementations, physically
splitting of edgemarts 1s performed over-night or through
batch processing. In such implementations, the resulting
shards are stored in a cache and are made available on-
demand in response to user queries. In another implemen-
tation, providing a subset of data stored in an edgemart in

US 9,449,188 B2

S

response to a query without maintaining a separate subset
edgemart 1s referred to as “logical splitting.” In the logical
splitting 1mplementation, deployment of the subset of the
edgemart’s data 1s qualified based on authentication and
authorization of a user who nitiated the query.

Creating shards can be beneficial for regularly scheduled
creation of analytical data stores, especially when produc-
tion 1mvolves creation of multiple data stores with overlap-
ping data. It has been observed that creation ol user-
requested, specific data stores can be brittle 1n the sense of
casily breaking People leave and join analytical groups. Jobs
are created and then forgotten. Underlying data changes.
When dozens or hundreds of analytical data stores derive
from a single shared set of data, process brittleness can be
reduced by hierarchical creation of analytical data stores. A
predicate-based row level security rule set facilitates hier-
archical data store assembly.

An automated, hierarchical process of creating even two
hierarchical levels of analytical data stores can benefit from
predicate-based row level security rules. At a first hierar-
chical level, security tokens can be created and associated at
a row level with data objects. The security tokens can encode
security attributes that facilitate creation of the second or
subsequent hierarchical levels of analytical data stores,
given the tlexibility afforded by predicate-based rules. A
three level creation system can have additional benefits,
related to structuring of patterns of analytical data store
creation. The relationship among analytical data store chil-
dren created from a single mother analytical data store can
be more clearly revealed by multiple generations of rela-
tionships that correspond to three or more hierarchical
levels.

After creation of analytical stores, use of a so-called
integration user can control access rights and be used for
accounting. By its nature, a temporary analytical data store
involves much more limited rights to modily or update data
than typical 1n a transactional data system. A typical user
may have read/search rights to at least one analytical data
store. Even 11 the user has write/update writes to the trans-
actional data system(s) from which the analytical data stores
are created, the user may only have read/search rights. The
user may lurther have recreate-on-demand rights, but the
read only nature of the analytical data store makes it
unnecessary for the user to enjoy the write/update rights that
the user has with the corresponding transactional data sys-
tem. Or, the user’s analytical data store rights may be
restricted to a first company subdivision, even 1 the user
occasionally contributes to results in a second company
subdivision. In some implementations, the integration user
can be given rights under a predicate-based set of security
rules, but this 1s not necessary.

The transactional user also can facilitate accounting for
analytical data store usage. Use of analytical data stores for
high performance data exploration typically imnvolves a frac-
tion of the user base size that generates transactions. As
mentioned above, their data exploration generates much
higher peak loads than individual transactions. These con-
ditions are likely to lead to different licensing conditions for
analytical data store system users than for transactional
system users.

Again, the so-called integration user keeps the analytic
resource usage accounting separate by associating an inte-
gration user for analytic services with a standard transac-
tional user. Transactional user credentials and processing of
authentication and authorization can be leveraged to invoke
the associated integration user. Then, the associated user’s
rights and accounting rules can be applied to meet analytic

10

15

20

25

30

35

40

45

50

55

60

65

6

security and accounting needs with minimal burdens on the
pre-existing transactional system.

Aggressive exploration can ivolve multiple, successive
queries and visualizations. This creates difliculty scaling the
resources needed to deliver fast responses. It 1s particularly
complicated by regular rebuilding of analytic data stores,
whether daily or on demand. Migrating queries using the
technology described involves migrating indexed fields,
known as dimensions, and quantity fields, known as mea-
sures, 1n the background during a query session. A session
that starts 1n server query processing mode may switch to
client query processing as enough data fields have been
copied from the server to the client. When the client deter-
mines that 1t has enough data fields to process an incoming
query, 1t can locally process the new query without passing
it to the server. Since both the server and client are working
from copies of the same read only analytic data structure, a
user receives the same results from either client or the server.

These features individually and collectively contribute to
integration of an analytic data store system with one or more
legacy transactional systems.

The described subject matter 1s implemented by a com-
puter-implemented system, such as a software-based system,
a database system, a multi-tenant environment, or the like.
Moreover, the described subject matter can be implemented
in connection with two or more separate and distinct com-
puter-implemented systems that cooperate and communicate
with one another. One or more implementations can be
implemented 1n numerous ways, including as a process, an
apparatus, a system, a device, a method, a computer readable
medium such as a computer readable storage medium con-
taining computer readable instructions or computer program
code, or as a computer program product comprising a
computer usable medium having a computer readable pro-
gram code embodied.

Examples of systems, apparatus, and methods according
to the disclosed implementations are described 1n a *“trans-
action data” context. The examples of transaction data are
being provided solely to add context and aid in the under-
standing of the disclosed 1mplementations. In other
instances, other data forms and types related to other imndus-
tries like entertainment, animation, docketing, education,
agriculture, sports and mining, medical services, etc. may be
used. Other applications are possible, such that the following
examples should not be taken as definitive or limiting either
in scope, context, or setting. It will thus be apparent to one
skilled 1n the art that implementations may be practiced 1n or
outside the “transaction data” context.

Analytics Environment

FIG. 1 1llustrates an example analytics environment 100
in which the technology disclosed can be used. FIG. 1
includes an explorer engine 102, live dashboard engine 108,
query engine 122, display engine 118, tweening engine 128
and tweening stepper 138. FIG. 1 also shows edgemart
engine 152, runtime framework 125, user computing device
148 and application 158. In other implementations, envi-
ronment 100 may not have the same elements or compo-
nents as those listed above and/or may have other/different
clements or components 1nstead of, or i addition to, those
listed above, such as a web engine, user store and notifica-
tion engine. The different elements or components can be
combined into single software modules and multiple sofit-
ware modules can run on the same hardware.

In analytics environment 100 a runtime framework with
event bus 125 manages the flow of requests and responses
between an explorer engine 102, a query engine 122 and a
live dashboard engine 108. Data acquired (extracted) from

US 9,449,188 B2

7

large data repositories 1s used to create “raw” edgemarts
142—read-only data structures for analytics, which can be
augmented, transformed, flattened, etc. before being pub-
lished as customer-visible edgemarts for business entities. A
query engine 122 uses optimized data structures and algo-
rithms to operate on these highly-compressed edgemarts
142, delivering exploration views of this data. Accordingly,
an opportunity arises to analyze large data sets quickly and
cllectively.

Visualization queries are implemented using a declarative
language to encode query steps, widgets and bindings to
capture and display query results 1n the formats selected by
a user. An explorer engine 102 displays real-time query
results. When activated by an analyst developer, explorer
engine 102 runs EQL queries against the data and includes
the data 1n lenses. A lens describes a single data visualiza-
tion: a query plus chart options to render the query. The EQL
language 1s a real-time query language that uses data flow as
a means of aligning results. It enables ad hoc analysis of data
stored in Edgemarts. A user can select filters to change query
parameters and can choose diflerent display options, such as
a bar chart, pie chart or scatter plot—triggering a real-time
change to the display panel—based on a live data query
using the updated filter options. An EQL script consists of a
sequence ol statements that are made up of keywords (such
as filter, group, and order), identifiers, literals, or special
characters. EQL 1s declarative: you describe what you want
to get from your query. Then, the query engine will decide
how to efliciently serve 1it.

A runtime framework with an event bus 125 handles
communication between a user application 158, a query
engine 122 and an explorer engine 102, which generates
lenses that can be viewed via a display engine 118. A
disclosed live dashboard engine 108 designs dashboards,
displaying multiple lenses from the explorer engine 102 as
real-time data query results. That 1s, an analyst can arrange
display panels for multiple sets of query results from the
explorer engine 102 on a single dashboard. When a change
to a global filter affects any display panel on the dashboard,
the remaining display panels on the dashboard get updated
to reflect the change. Accurate live query results are pro-
duced and displayed across all display panels on the dash-
board.

Explorer engine 102 provides an interface for users to
choose filtering, grouping and visual orgamization options;
and displays results of a live query requested by a user of the
application 158 running on a user computing device 148.
The query engine 122 executes queries on read only pre-
packaged data sets—the edgemart data structures 142. The
explorer engine 102 produces the visualization lens using
the filter controls specified by the user and the query results
served by the query engine 122.

Explorer engine 102, query engine 122 and live dash-
board engine 108 can be of varving types including a
workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. In some implementations, explorer engine 102 can
be communicably coupled to a user computing device 148
via different network connections, such as the Internet. In
some 1mplementations, query engine 122 can be communi-
cably coupled to a user computing device 148 via different
network connections, such as a direct network link. In some
implementations, live dashboard engine 108 can be com-
municably coupled to user computing device 148 via dii-
ferent network connections, such as the Internet or a direct
network link.

10

15

20

25

30

35

40

45

50

55

60

65

8

Runtime framework with event bus 125 provides real time
panel display updates to the live dashboard engine 108, in
response to query results served by the query engine 122 in
response to requests entered by users of application 158. The
runtime framework with event bus 125 sets up the connec-
tions between the different steps of the workilow.

Display engine 118 recerves a request from the event bus
125, and responds with a first chart or graph to be displayed
on the live dashboard engine 108. Segments of a first chart
or graph are filter controls that trigger generation of a second
query upon selection by a user. Subsequent query requests
trigger controls that allow filtering, regrouping, and selec-
tion of a second chart or graph of a diflerent visual organi-
zation than the first chart or graph.

Display engine 118 includes tweening engine 128 and
tweening stepper 138 that work together to generate pixel-
level instructions—intermediate frames between two 1mages
that give the appearance that the first image evolves
smoothly 1nto the second image. The drawings between the
start and destination frames help to create the illusion of
motion that gets displayed on the live dashboard engine 108
when a user updates data choices.

Runtime framework with event bus 123 can be of varying
types including a workstation, server, computing cluster,
blade server, server farm, or any other data processing
system or computing device; and can be any network or
combination of networks of devices that communicate with
one another. For example, runtime framework with event
bus 125 can be implemented using one or any combination
of a LAN (local area network), WAN (wide area network),
telephone network (Public Switched Telephone Network
(PSTN), Session Initiation Protocol (SIP), 3G, 4G LTE),
wireless network, point-to-point network, star network,
token ring network, hub network, WiMAX, WiF1, peer-to-
peer connections like Bluetooth, Near Field Communication
(NFC), Z-Wave, ZigBee, or other appropriate configuration
of data networks, including the Internet. In other implemen-
tations, other networks can be used such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

Edgemart engine 152 uses an extract, load, transform
(ELT) process to manipulate data served by backend system
servers to populate the edgemart data structures 142.
Edgemart data structures 142 can be implemented using a
general-purpose distributed memory caching system. In
some 1mplementations, data structures can store information
from one or more tenants into tables of a common database
image to form an on-demand database service (ODDS),
which can be implemented 1n many ways, such as a multi-
tenant database system (MTDS). A database image can
include one or more database objects. In other implemen-
tations, the databases can be relational database manage-
ment systems (RDBMSs), object oriented database manage-
ment systems (OODBMSs), distributed file systems (DFS),
no-schema database, or any other data storing systems or
computing devices.

In some 1implementations, user computing device 148 can
be a personal computer, a laptop computer, tablet computer,
smartphone or other mobile computing device, personal
digital assistant (PDA), digital image capture devices, and
the like. Application 158 can take one of a number of forms,
including user interfaces, dashboard interfaces, engagement
consoles, and other interfaces, such as mobile interfaces,
tablet interfaces, summary interfaces, or wearable interfaces.
In some implementations, it can be hosted on a web-based
or cloud-based privacy management application running on
a computing device such as a personal computer, laptop

US 9,449,188 B2

9

computer, mobile device, and/or any other hand-held com-
puting device. It can also be hosted on a non-social local
application running 1n an on premise environment. In one
implementation, application 158 can be accessed from a
browser running on a computing device. The browser can be
Chrome, Internet Explorer, Firefox, Safari, and the like. In
other implementations, application 158 can run as an
engagement console on a computer desktop application.

In other implementations, environment 100 may not have
the same elements or components as those listed above
and/or may have other/different elements or components
instead of, or 1n addition to, those listed above, such as a web
server and a template database. The different elements or
components can be combined 1nto single software modules
and multiple software modules can run on the same hard-
ware.
Integration Environment

FIG. 2 1s a lhugh-level system diagram of an integration
environment 200 that can be used to implement the tech-
nology disclosed. FIG. 2 includes superpod engines 204,
pod engines 222, edgemart engines 152, queuing engine 208
and security engines 245. FIG. 2 also shows load balancers
202, edgemarts 142, shards 216, transaction data 232, net-
work(s) 225, security rules 242, local edgemarts 252 and
web based users 255. In other implementations, environment
200 may not have the same elements or components as those
listed above and/or may have other/diflerent elements or
components mstead of, or in addition to, those listed above,
such as a web engine, user store and notification engine. The
different elements or components can be combined into

single software modules and multiple software modules can
run on the same hardware.

Network(s) 225 1s any network or combination of net-
works of devices that communicate with one another. For
example, network(s) 225 can be any one or any combination
of a LAN (local area network), WAN (wide area network),
telephone network (Public Switched Telephone Network
(PSTN), Session Inmitiation Protocol (SIP), 3G, 4G LTE),
wireless network, point-to-point network, star network,
token ring network, hub network, WiMAX, WiF1, peer-to-
peer connections like Bluetooth, Near Field Communication
(NFC), Z-Wave, ZigBee, or other appropriate configuration
of data networks, including the Internet. In other implemen-
tations, other networks can be used such as an intranet, an
extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.

In some 1mplementations, the various engines illustrated
in FIG. 2 can be of varying types including workstations,
servers, computing clusters, blade servers, server farms, or
any other data processing systems or computing devices.
The engines can be communicably coupled to the databases
via different network connections. For example, superpod
engines 204 and queuing engine 208 can be coupled via the
network 115 (e.g., the Internet), edgemart engines 152 can
be coupled via a direct network link, and pod engines 222
can be coupled by yet a different network connection.

In some implementations, a transaction data management
system 232 can store structured, semi-structured, unstruc-
tured information from one or more tenants into tables of a
common database image to form an on-demand database
service (ODDS), which can be implemented in many ways,
such as a multi-tenant database system (MTDS). A database
image can include one or more database objects. In other
implementations, the transaction data management system
232 can be a relational database management system (RD-
BMSs), an object oriented database management systems

10

15

20

25

30

35

40

45

50

55

60

65

10

(OODBMSs), a distributed file systems (DFS), a no-schema
database, or any other data storing system or computing
device.

Web based users 255 can commumnicate with various
components of the integration environment 200 using TCP/
IP and, at a higher network level, use other common Internet
protocols to communicate, such as HI'TP, FTP, AFS, WAP,
ctc. As an example, where HITP 1s used, web based users
255 can employ an HTTP client commonly referred to as a
“browser” for sending and receiving H1TP messages from
an application server included in the pod engines 222. Such
application server can be implemented as the sole network
interface between pod engines 222 and superpod engines
204, but other techniques can be used as well or 1nstead. In
some 1mplementations, the interface between pod engines
222 and superpod engines 204 includes load sharing func-
tionality 202, such as round-robin HT'TP request distributors
to balance loads and distribute incoming HTTP requests
evenly over a plurality of servers in the integration envi-
ronment.

In one aspect, the environment shown 1n FIG. 2 imple-
ments a web-based analytics application system, referred to
as “insights.” For example, in one aspect, integration envi-
ronment 200 can include application servers configured to
implement and execute insights software applications as
well as provide related data, code, forms, web pages and
other information to and from web based users 255 and to
store to, and retrieve from, a transaction related data, objects
and web page content. With a multi-tenant implementation
of transactional database management system 232, tenant
data 1s preferably arranged so that data of one tenant 1s kept
logically separate from that of other tenants so that one
tenant does not have access to another’s data, unless such
data 1s expressly shared. In aspects, integration environment
200 implements applications other than, or 1n addition to, an
insights application and transactional database management
systems. For example, integration environment 200 can
provide tenant access to multiple hosted (standard and
custom) applications, including a customer relationship
management (CRM) application.

Queuing engine 208 defines a dispatching policy for the
integration environment 200 to facilitate interactions
between a transactional database system and an analytical
database system. The dispatching policy controls assign-
ment of requests to an appropriate resource 1n the integration
environment 200. In one implementation of the dispatching
policy, a multiplicity ol messaging queues 1s defined for the
integration environment, including a “named key-value task
start queue” and a “named key-value task complete queue.”
The “named key-value task start queue” dispatches user
requests for information. The “named key-value task com-
plete queue” dispatches information that reports completion
of the user requests. In other implementations, when either
the processing time exceeds the maximum response time or
the size of the data set exceeds the data threshold, a progress
report can be sent to the user. The progress reports refers to
information transmitted to advise an entity of an event,
status, or condition of one or more requests the entity
initiated.

Application of the multiplicity of messaging queues
solves the techmical problem of queue blockage in the
integration environment 200. Contention 1s created when
multiple worker threads use a single queue to perform their
tasks. Contention in multi-threaded applications of queues
can slow down processing in the integration environment
200 up to three orders, thus resulting 1n high latency. The
condition 1s worsened when there are multiple writers add-

US 9,449,188 B2

11

ing to a queue and readers consuming. As a result, every
time a request 1s written or added to a particular queue, there
1s contention between multiple worker threads since a reader
concurrently attempts to read or remove from the same
queue. In some 1mplementations, integration environment
200 uses a pool of worker threads for reading or writing
requests from or to clients 1n the network(s) 225. Worker
threads are hosted on resources referred to as “workers.”
Once request 1s read into the “named key-value task start
queue,” 1t 1s dispatched for execution in the workers. The
resulting data generated after the request 1s executed by the
workers 1s referred 1s stored as edgemarts 142. In some
implementations, the edgemarts 142 are portioned into mul-
tiple smaller edgemarts called shards 216, which can be
stored as local edgemarts 252. In one implementation,
edgemarts 142 are partitioned based on specified dimensions
such as a range or a hash.

ELT Workflow

Various types of on-demand transactional data manage-
ment systems can be integrated with analytic data stores to
provide data analysts ad hoc access to query the transaction
data management systems. This can facilitate rapid building
ol analytic applications that use numerical values, metrics
and measurements to drive business intelligence from trans-
actional data stored in the transaction data management
systems and support organizational decision making Trans-
action data refers data objects that support operations of an
organization and are included i application systems that
automate key business processes in diflerent areas such as
sales, service, banking, order management, manufacturing,
aviation, purchasing, billing, etc. Some examples of trans-
action data 232 include enterprise data (e.g. order-entry,
supply-chain, shipping, invoices), sales data (e.g. accounts,
leads, opportunities), aviation data (carriers, bookings, rev-
enue), and the like.

Most often, the integration process includes accumulating,
transaction data of a different format than what 1s ultimately
needed for analytic operations. The process ol acquiring
transaction data and converting 1t ito useful, compatible
and accurate data can include three, or more, phases such as
extract, load and transform. In some implementations, the
integration flow can include various integration flow styles.
One such style can be Extract-Transform-Load (ETL),
where, after extraction from a data source, data can be
transformed and then loaded mto a data warchouse. In
another implementation, an Extract-Load-Transtorm (ELT)
style can be employed, where, after the extraction, data can
be first loaded to the data warehouse and then transformation
operation can be applied. In yet another implementation, the
integration can use an Extract-Transform-Load-Transform
(ETLT) style, where, after the extraction, several data opti-
mization techniques (e.g. clustering, normalization, denor-
malization) can be applied, then the data can be loaded to the
data warehouse and then more heavy transformation opera-
tions can occur.

Extraction refers to the task of acquiring transaction data
from transactional data stores, according to one implemen-
tation. This can be as simple as downloading a flat file from
a database or a spreadsheet, or as sophisticated as setting up
relationships with external systems that then control the
transportation of data to the target system. Loading 1s the
phase 1n which the captured data 1s deposited into a new data
store such as a warchouse or a mart. In some 1mplementa-
tions, loading can be accomplished by custom programming,
commands such as IMPORT 1n structured query language
(SQL) and LOAD 1n Oracle Utilities. In some implementa-
tions, a plurality of application-programming interfaces

10

15

20

25

30

35

40

45

50

55

60

65

12

(APIs) can be used, to interface with a plurality of transac-
tional data sources, along with extraction connectors that
load the transaction data into dedicated data stores.

Transformation refers to the stage of applying a series of
rules or functions to the extracted or the loaded data,
generally so as to convert the extracted or the loaded data to
a format that 1s conducive for deriving analytics. Some
examples of transformation include selecting only certain
columns to load, translating coded values, encoding free-
form values, deriving new calculated values, sorting, joining
data from multiple sources, aggregation, de-normalization,
transposing or pivoting data, splitting a column into multiple
columns and data validation.

FIG. 3 depicts a high-level process 300 of an extract-
load-transtform ELT workflow. In one implementation, the
edgemart engine 152 applies a reusable set of instructions
referred to an “ELT worktlow.” ELT workiflow comprises
ol—extracting data from a transactional data source 232 at
action 303, loading the extracted data into an edgemart 306
at action 305, transforming the loaded data into the edgemart
306 at actions 307 and 317 and making the resulting data
available 1n an analytic application (described in FIG. 7). In
some 1mplementations of the ELT workflow, transaction
data 232 1s first converted mto a comma-separated value
(CSV) or binary format or JSON format 304 and then loaded
into an edgemart 306, as show 1n FIG. 3. In other imple-
mentations, transaction data 232 1s extracted and loaded
directly into edgemart 316 at action 313. In one implemen-
tation, EL'T worktlow runs on a daily schedule to capture
incremental changes to transaction data and changes 1n the
ELT workflow logic. Each ELT workiflow run that executes
a task 1s considered an ELT workflow job. During the 1nitial
ELT worktlow job, the ELT worktlow extracts all data from
the specified transaction data objects and fields. After the
first run, the ELT workilow extracts incremental changes
that occurred since the previous job run, according to one
implementation.

In some implementations, ELT worktlow generates a
so-called precursor edgemart by performing lightweight
transformations on the transaction data. One example of a
light-weight transformation 1s denormalization transforma-
tion. A denormalization transformation reintroduces some
number of redundancies that existed prior to normalization
of the transaction data 232, according to one implementa-
tion. For instance, a denormalization transformation can
remove certain joins between two tables. The resulting
so-called precursor edgemart has lesser degrees of normal
norms relative to the transaction data, and thus i1s more
optimum for analytics operations such as faster retrieval
access, multidimensional imndexing and caching and auto-
mated computation of higher level aggregates of the trans-
action data.

In other implementations, the loaded data can undergo a
plurality of heavy-weight transformations, including joining,
data from two related edgemarts, flattening the transaction
role hierarchy to enable role-based security, increasing
query performance on specific data and registering an
edgemart to make 1t available for queries. Depending on the
type of transformation, the data 1n an existing edgemart 1s
updated or a new edgemart 1s generated.

In one implementation of the heavy-weight transforma-
tions, an augment transiformation joins data from two
edgemarts to enable queries across both of them. For
instance, augmenting a “User EdgeMart” with an “Account
EdgeMart” can enable a data analyst to generate query that
displays all account details, including the names of the
account owner and creator. Augmentation transformation

US 9,449,188 B2

13

creates a new edgemart based on data from two 1input
edgemarts. Each mput edgemart can be 1dentified as the lett
or right edgemart. The new edgemart includes all the col-
umns of the left edgemart and appends only the specified
columns from the right edgemart. Augmentation transior-
mation performs a left, outer join, where the new edgemart
includes all rows from the left edgemart and only matched
rows from the right edgemart. In another implementation,
queries can be enabled that span more than two edgemarts.
This can be achieved by augmenting two edgemarts at a
time. For example, to augment three edgemarts, a first two
edgemarts can be augmented before augmenting the result-
ing edgemart with a third edgemart.

In some 1implementations, a join condition in the augment
transformation can be specified to determine how to match
rows 1n the right edgemart to those in the left edgemart. The
following example illustrates a single-column join condi-
tion. To augment the following edgemarts based on single-
column key, an “Opportunity” 1s assigned as the leit
edgemart and an “Account” 1s assigned as the nght
edgemart. Also, “OpptyAcct” 1s specified as the relationship
between them.

Opportunity EdgeMart Account EdgeMart

) *1D
Opportunity_ Name Account_ Name
Amount Annual__Revenue
Stage Billing Address
Closed__Date

*Account ID

Upon running an EL'T workilow job, an “OpptyAcct”
prefix 1s added to all account columns and the edgemarts are
joined based on a key defined as
“Opportunity. Account_ID=Account.ID.” After running the
ELT workflow job to augment the two input edgemarts, the
resulting edgemart 1includes the following columns:
Opportunity-Account EdgeMart
ID
Opportunity_ Name
Amount
Stage
Closed Date
Account 1D
OpptyAcct. Account_Name
OpptyAcct.Annual_Revenue
OpptyAc ct.Billing Address

In other implementations, different heavy-weight trans-
formations can be applied, including flatten transformation
to create role-based access on accounts, index transforma-
tion to index one dimension column 1n an edgemart, Ngram
transformation to generate case-sensitive, full-text index
based on data in an edgemart, register transformation to
register an edgemart to make 1t available for queries and
extract transformation to extract data from fields of a data
object.

Integration Components

FI1G. 4 1llustrates one implementation of integration com-
ponents 400 of a data center 402 used to implement aspects
of the technology disclosed. In this implementation, the pod
engines 222 comprise ol application servers 314 and data-
base servers 524. The superpod engines 204 comprise of a
queuing engine 208 and edgemart engines 152 that are
hosted on one or more worker servers 528 within each
superpod engine. A cluster of VIP servers 202 1s used for

load balancing to delegate EL'T worktlow mitiated within the

10

15

20

25

30

35

40

45

50

55

60

65

14

pod engines 222 to the worker servers 528 within the
superpod engines 204. In the implementation depicted 1n
FIG. 4, the pod engines 222, VIP servers 202 and superpod
engines 204 are all within the same data center 402. Also, the
example shown 1n FIG. 4 has are twelve pod engines 222,
two VIP servers 202 and five superpod engines 204.

FIG. 5 shows one implementation of so-called pod and
superpod components 500 that can be used to implement the
technology disclosed. According to one implementation,
cach pod engine can support forty servers (thirty six appli-
cation servers 514 and four database servers 524). Each
superpod engine can support eighteen servers, according to
another implementation. The application servers 514, upon
receiving a request from a browser serving the web based
users 255, accesses the database servers 524 to obtain
information for responding to the user requests. In one
implementation, application servers 514 generate an HITML
document having media content and control tags for execu-
tion of the user requested operations based on the informa-
tion obtained from the database servers 524. In another
implementation, application servers 314 are configured to
provide web pages, forms, applications, data and media
content to web based users 255 to support the access by the
web based users 255 as tenants of the transactional database
management system 232. In aspects, each application server

514 1s configured to handle requests for any user/organiza-
tion.

In one implementation, an interface system 202 imple-
menting a load balancing function (e.g., an F5 Big-IP load
balancer) 1s communicably coupled between the servers 514
and the superpod engine 204 to distribute requests to the
worker servers 528. In one aspect, the load balancer uses at
least virtual IP (VIP) templates and connections algorithm to
route user requests to the worker servers 328. A VIP
template contains load balancer-related configuration set-
tings for a specific type of network tratlic. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, 1n
certain aspects, three consecutive requests from the same
user could hit three different worker servers, and three
requests from different users could hit the same worker
server. In this manner, transactional database management
system 232 1s multi-tenant, wherein integration environment
handles storage of, and access to, different objects, data and
applications across disparate users and organizations.

Superpod engines 204 also host the queuing engine 208,
which 1n turn implements a key-value server 518 that 1s in
communication with a key-value store. Key-value store 1s a
type ol storage that enables users to store and read data
(values) with a unique key. In some implementations, a
key-value store stores a schema-less data. This data can
consist of a string that represents the key and the actual data
1s the value 1 the “key-value” relationship. According to
one implementation, the data itself can be any type of
primitive ol the programming langue such as a string, an
integer, or an array. In another implementation, 1t can be an
object that binds to the key-value store. Using a key-value
store replaces the need of fixed data model and makes the
requirement for properly formatted data less strict. Some
popular examples of different key-value stores include
Redis, CouchDB, Tokyo Cabinet and Cassandra. The
example shown 1n FIG. 5 uses a Redis based key-value store.
Redis 1s a database implementing a dictionary where keys
are associated with wvalues. For instance, a key
“topname_2014” can be set to the string “John.” Redis
supports the storage of relatively large value types, including

US 9,449,188 B2

15

string (string), list (list), set (collection), zset (set-ordered
collection of sorted) and hashs (hash type) and so on.

In some implementations, queuing engine 208 sets server
allinity for a user and/or organization to a specific work
server 528 or to a cluster of worker servers 528. Server
allinity refers to the set up that a server or servers in a same
cluster are dedicated to service requests from the same
client, according to one implementation. In another 1imple-
mentation, server athinity within a cluster of servers refers to
the set up that when a server in the cluster fails to process
a request, then the request can only be picked by another
server 1n the cluster. Server aflinity can be achieved by
configuring the load balancers 202 such that they are forced
to send requests from a particular client only to correspond-
ing servers dedicated to the particular client. Aflinity rela-
tionships between clients and servers or server clusters are
mapped 1n a directory service. Directory service defines a
client name and sets 1t to an IP address of a server. When a
client name 1s atlinitized to multiple servers, client athinity 1s
established once a request’s destination IP address matches
the cluster’s global IP address.

Integration User

In one implementation, transaction data 232 1s a multi-
tenant database system. With a multi-tenant database sys-
tem, tenant data 1s preferably arranged so that data of one
tenant 1s kept separate from that of other tenants so that one
tenant does not have access to another’s data, unless such
data 1s expressly shared. In a multi-tenant implementation,
transaction data 232 can be divided into individual tenant
storage areas, which can be either a physical arrangement or
a logical arrangement. Within each tenant storage area, user
storage can be similarly be allocated for each user, according
to some i1mplementations. In addition, different users or
groups ol users belonging to a particular tenant can have
varying levels of data access. Thus, 1t becomes 1mperative
that the process of creating edgemarts and controlling access
to the created edgemarts takes into account the tenant
specificity and user specificity of the transaction data 232,
from which the edgemarts are extracted.

In other implementations, updates to the security model
employed by the tenants due to personnel or hierarchical
changes may not be automatically accounted for by the
analytic data analysis system. For example, when a first
finance analyst 1s replaced by a second finance analyst, the
task of deleting the access of the first finance analyst from
all of the relevant systems and services and adding the
second finance analyst to all of the relevant systems and
services can be cumbersome. In yet other implementations,
il access to data related to accounting of analytic resource
usage 1s controlled by user IDs, then it would be impossible
to separate normal usage by the user ID from the access
required to create edgemarts.

One possible solution to this problem 1s that a standard
service 1D can be generated for each system and service
involved 1n creating, managing and analyzing edgemarts.
This would allow one or more service IDs associated to a
tenant the rights to create, manage and analyze edgemarts.
However, there wouldn’t be any traceability between the
work done by a service ID(s) and the corresponding
requestor, and further there wouldn’t be a link to the security
model employed by the tenant. Moreover, service IDs are
created and managed outside of normal transaction process-
ing systems. Each service ID would need to be configured to
access only the data assigned to 1ts tenant. A major problem
with this solution is that each user of the tenant would need
to know the service ID and password. Consequently, as users

5

10

15

20

25

30

35

40

45

50

55

60

65

16

would join and leave an organization, service I1Ds would
become increasingly difficult to manage and secure.

The technology disclosed preserves the tenant specificity
and user specificity of the tenant data 232 by associating user
IDs to complementary special IDs referred to as the “inte-
gration user(s) 258.” In particular, it combines the traceabil-
ity of user actions, the integration of security models and the
flexibility of a service ID into one integration user(s) 258. As
a result, the diferent tenants don’t have to create or repur-
pose their respective security policies from time to time.

Regarding the integration user(s) 258, the integration
user(s) 258 can be created automatically upon the installa-
tion of an Insights® tool on an application server 514,
according to one implementation. In some implementations,
it can be activated and deactivated in response to user
configuration. In other implementations, at least one inte-
gration user(s) 258 1s assigned on per tenant basis. In yet
other implementations, the integration user(s) 258 receives
a name based on the security model used by the tenant to
which the integration user(s) 258 1s assigned. In some
implementations, the integration user(s) 258 1s granted read-
only rights over part, or all, of the tenant’s data stored 1n the
transaction data 232. In other implementations, ntegration
user(s) 238 serves as a public ID (per tenant) that can be
linked by proxy to any ID making edgemart requests to the
application server 514, and to any system or service that
processes edgemarts. In vet other implementations, the
accounting for the data access mitiated by the integration
user 1D 1s separate from the requesting user ID, which
simplifies tenant licensing. In some other implementations,
integration user(s) 258 can enhance the security of the
transaction data management system 232 by locking down
extraction of the transaction data 232. In such an implemen-
tation, APIs used to interface with the transactional data
sources, along with extraction connectors that load the
transaction data into dedicated data stores, can be locked
down by asserting that the requestor 1s the trusted integration
user(s) 258.

FIG. 6 demonstrates one implementation 600 of using an
integration user in the integration environment 200 1llus-
trated 1n FIG. 2. In one implementation, a user attempts to
log 1nto 602 a user device 225 via a security service 606.
Once authorized, the user device 225 1s granted a security
token A 604. The user device then requests an edgemart
610a, known as an mitial edgemart, from the application
server 622. The Insights® module 623 within the application
server 622 accepts the request to create an edgemart 610a.
Following this, the Insights module 623 assigns the request
to an edgemart engine 152 using the integration user 1D 624
that has a security token 0. Further, the Insights module 623
associates all activities done by the integration user 624 for
this request to the user signed into the user device 255.

Advancing further, the edgemart engine 152, using the
integration user account 624, runs an extract of the trans-
action data 632 (or other data source), and loads the data into
the edgemart 610a. In addition, the query running under the
integration user 1D 624 extracts the security tokens from the
transaction data 632 and records them in the predicate table
608a. Security predicates are dertved from the security
model 1n the transaction data 632, and designate which rows
can be seen by which users. In the example shown 1n FIG.
6, the user at user device 255 that mitiated the query with
token A 604 can see rows 1 and 3 614. The integration user
with token 0 624 can see all rows 1n the edgemart 614. An
integration user from some other tenant would have a
different unique, token. The integration user 624 then
engages with the services to register the edgemarts with the

US 9,449,188 B2

17

Redis server 518, the transaction database 524, and complete
the workflow that informs the requesting user that the job 1s
complete. The integration user 1s also used for any trans-
formation, augmentation, or flattening (denormalization)
required on the edgemart and 1s also responsible for the
automated application of data filters when the explorer
engine 102 changes to a new context on server-side
cedgemarts.

Use of analytical data stores for high performance data
exploration typically involves a fraction of the user base size
that generates transactions. Data exploration generates much
higher peak loads than individual transactions. These con-
ditions are likely to lead to different licensing conditions for
analytical data store system users than for transactional
system users.

In another implementation, a user who has logged into a
user device 255 with token A 604 1s requesting a split of the
first edgemart 610a. The Insights module 623 associated the
user with token A 604 to the integration user 624, and
submits the request to split the first edgemart 610q into a
second edgemart 625 to the edgemart engine 152. The
edgemart engine 152 then executes the query to split the
edgemart 610a using the integration user with token 0 624
to schedule the job, but uses the user token A 604 for the
security predicate 626. This results in the second edgemart
625 created with the integration user token 0 624 with only
the data viewable by the user with token A 604. The results
are rows 1 and 3 614 of the edgemart 610a where token A
1s part of the security predicate. The data available for access
by the integration user 624 also comprises sources includ-
ing, but not limited to non-transactional data, Excel spread-

sheets, JSON files, and CSV files.
Controlling and Tracking Usage of Analytic Data Analysis
System

FIG. 7 1s a representative method 700 of implementation
of controlling and tracking usage of an analytic data analysis
system associated with a transactional data management
system. Flowchart 700 can be implemented at least partially
with a database system, e.g., by one or more processors
configured to receive or retrieve information, process the

information, store results, and transmit the results. For
convenience, this flowchart 1s described with reference to
the system that carries out a method. The system 1s not
necessarily part of the method. Other implementations may
perform the steps 1n diflerent orders and/or with different,
tewer or additional steps than the ones illustrated 1n FIG. 7.
The actions described below can be subdivided into more
steps or combined 1nto fewer steps to carry out the method
described using a diflerent number or arrangement of steps.

At action 702, a transactional data management system
receives a logon request with an associated user 1D for use
of the transactional data management system, authenticates
the logon request, and 1dentifies that authorizations associ-
ated with the user ID include usage of the analytical data
analysis system.

At action 712, responsive to a request to use the analytical
data analysis system with the user ID, a complementary
special 1D linked to the user ID 1s invoked. In one imple-
mentation, the special ID grants rights related to a specific
analytic data analysis system. In other implementations, the
special 1D rights provide read-only access to at least one
analytic data store accessed through the specific analytic
data analysis system. In yet another implementation, use of
the special 1D 1s separately licensed and accounted for from
the user 1D.

10

15

20

25

30

35

40

45

50

55

60

65

18

At action 722, the special ID 1s associated with security
attributes particular to retrieval of data objects from the
specific analytic data analysis system.

At action 732, first security translation rules are applied,
which accept one or more security attributes from the
transactional data management system as predicates and
generate one or more security tokens to associate with the
special ID when interacting with the specific analytic data
analysis system. In one implementation, the security tokens
govern access using the special ID to objects managed by the
specific analytic data analysis system.

At action 742, the special ID 1s associated with security
attributes particular to the specific analytic data analysis
system by accessing a plurality of heterogeneous transac-
tional data management systems that have divergent security
models. Also, data in the plurality of transactional data
management systems 1s accessed and objects that merge the
data from two or more of the transactional data management
systems are created. In addition, first security translation
rules (security rules 242) are processed that accept the data
set security attributes from the two or more transactional
data management systems as predicates and generate one or
more security tokens to associate with each secured object
that merges the data.

This method and other implementations of the technology
disclosed can include one or more of the following features
and/or features described in connection with additional
methods disclosed. In the interest ol conciseness, the com-
binations of features disclosed in this application are not
individually enumerated and are not repeated with each base
set of features. The reader will understand how {features
identified in this section can readily be combined with sets
of base features 1dentified as implementations 1n sections of
this application such as analytics environment, integration
environment, EL'T workflow, integration components, row-
level securnity, integration, etc.

Other implementations may 1nclude a non-transitory com-
puter readable storage medium storing instructions execut-
able by a processor to perform any of the methods described
above. Yet another implementation may include a system
including memory and one or more processors operable to
execute 1nstructions, stored in the memory, to perform any
ol the methods described above.

Computer System

FIG. 8 shows a high-level block diagram 800 of a
computer system that can used to implement some features
of the technology disclosed. Computer system 810 typically
includes at least one processor 814 that communicates with
a number ol peripheral devices via bus subsystem 812.
These peripheral devices can include a storage subsystem
824 including, for example, memory devices and a file
storage subsystem, user interface input devices 822, user
interface output devices 818, and a network interface sub-
system 816. The input and output devices allow user inter-
action with computer system 810. Network interface sub-
system 816 provides an interface to outside networks,
including an interface to corresponding intertace devices 1n
other computer systems.

User interface mput devices 822 can include a keyboard;
pointing devices such as a mouse, trackball, touchpad, or
graphics tablet; a scanner; a touch screen incorporated into
the display; audio mput devices such as voice recognition
systems and microphones; and other types of input devices.
In general, use of the term “input device” 1s intended to
include all possible types of devices and ways to put
information into computer system 810.

US 9,449,188 B2

19

User interface output devices 818 can include a display
subsystem, a printer, a fax machine, or non-visual displays
such as audio output devices. The display subsystem can
include a cathode ray tube (CRT), a flat-panel device such as
a liquid crystal display (LCD), a projection device, or some
other mechamism for creating a visible image. The display
subsystem can also provide a non-visual display such as
audio output devices. In general, use of the term “output
device” 1s intended to include all possible types of devices
and ways to output information from computer system 810
to the user or to another machine or computer system.

Storage subsystem 824 stores programming and data
constructs that provide the functionality of some or all of the
modules and methods described herein. These software
modules are generally executed by processor 814 alone or in
combination with other processors.

Memory 826 used 1n the storage subsystem can include a
number of memories including a main random access
memory (RAM) 830 for storage of instructions and data
during program execution and a read only memory (ROM)
832 1 which fixed instructions are stored. A file storage
subsystem 828 can provide persistent storage for program
and data files, and can 1nclude a hard disk drive, a floppy
disk drive along with associated removable media, a CD-
ROM drive, an optical drive, or removable media cartridges.
The modules implementing the functionality of certain
implementations can be stored by file storage subsystem 828
in the storage subsystem 824, or in other machines acces-
sible by the processor.

Bus subsystem 812 provides a mechanism for letting the
vartous components and subsystems of computer system
810 communicate with each other as intended. Although bus
subsystem 812 1s shown schematically as a single bus,
alternative 1implementations of the bus subsystem can use
multiple busses. Application server 820 can be a framework
that allows the applications of computer system 810 to run,
such as the hardware and/or software, e.g., the operating
system.

Computer system 810 can be of varying types including
a workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computer system 810 depicted
in FIG. 8 1s intended only as one example. Many other
configurations ol computer system 810 are possible having
more or fewer components than the computer system
depicted 1n FIG. 8.

The terms and expressions employed herein are used as
terms and expressions of description and not of limitation,
and there 1s no intention, in the use of such terms and
expressions, of excluding any equivalents of the features
shown and described or portions thereof. In addition, having
described certain implementations of the technology dis-
closed, 1t will be apparent to those of ordinary skill in the art
that other implementations incorporating the concepts dis-
closed herein can be used without departing from the spirit
and scope of the technology disclosed. Accordingly, the
described implementations are to be considered i all
respects as only 1llustrative and not restrictive.

What 1s claimed 1s:

1. A computer-implemented method of controlling and
tracking usage of an analytic data analysis system associated
with a transactional data management system, the method
including;

a transactional data management system that manages

data stored 1n a transaction data store receiving a logon
request with an associated user ID for use of the

10

15

20

25

30

35

40

45

50

55

60

65

20

transactional data management system, authenticating

the logon request, and i1dentitying that authorizations

associated with the user ID include usage of the ana-
lytical data analysis system;

wherein the analytical data analysis system responds to
requests to visualize data stored in an analytic data
store that 1s a subset of, but not all of, the data stored
in the transactional data store; and

responsive to a request to use the analytical data analysis
system with the user ID, mvoking a complementary
special 1D linked to the user ID, wherein
the special ID grants rights related to a specific analytic

data analysis system:;

the special 1D rnights provide read-only access to at least
one analytic data store accessed through the specific
analytic data analysis system; and

use of the transactional data management system 1s
separately licensed and accounted for from the ana-
lytical data analysis system.

2. The computer-implemented method of claim 1, further
including:

associating with the special ID security attributes particu-
lar to retrieval of data objects from the specific analytic
data analysis system.

3. The computer-implemented method of claim 1, further

including:

applying first security translation rules that accept one or
more security attributes from the transactional data
management system as predicates; and

generating one or more security tokens to associate with
the special ID when interacting with the specific ana-
lytic data analysis system; and

wherein the security tokens govern access using the
special ID to objects managed by the specific analytic
data analysis system.

4. The computer-implemented method of claim 1, further

including:

associating with the special ID security attributes particu-
lar to the specific analytic data analysis system by
accessing a plurality of heterogeneous transactional
data management systems that have divergent security
models;

accessing data in the plurality of transactional data man-
agement systems and creating objects that merge the
data from two or more of the transactional data man-
agement systems; and

processing first security translation rules that accept the
data set security attributes from the two or more
transactional data management systems as predicates
and generating one or more security tokens to associate
with each secured object that merges the data.

5. An apparatus to control and track usage of an analytic
data analysis system associated with a transactional data
management system, the apparatus comprising;:

a computer including a processor;

a memory coupled to the processor, wherein the memory
includes computer program instructions causing the
computer to implement a process including:

a transactional data management system that manages
data stored in a transaction data store receiving a
logon request with an associated user ID for use of
the transactional data management system, authen-
ticating the logon request, and 1dentifying that autho-
rizations associated with the user ID include usage of
the analytical data analysis system;

wherein the analytical data analysis system responds to
requests to visualize data stored in an analytic data

US 9,449,188 B2

21

store that 1s a subset of, but not all of, the data stored
in the transactional data store; and
responsive to a request to use the analytical data

analysis system with the user ID, invoking a comple-

mentary special ID linked to the user ID, wherein

the special ID grants rights related to a specific
analytic data analysis system;

the special ID rights provide read-only access to at
least one analytic data store accessed through the
specific analytic data analysis system; and

use of the transactional data management system 1s
separately licensed and accounted for from the
analytical data analysis system.

6. The apparatus of claim 5, further including computer
program 1nstructions causing the computer to implement a
process including:

associating with the special ID security attributes particu-
lar to retrieval of data objects from the specific analytic
data analysis system.

7. The apparatus of claim 5, further including computer
program 1nstructions causing the computer to implement a
process including:

applying first security translation rules that accept one or
more security attributes from the transactional data
management system as predicates; and

generating one or more security tokens to associate with
the special ID when interacting with the specific ana-
lytic data analysis system; and

wherein the security tokens govern access using the
special ID to objects managed by the specific analytic
data analysis system.

8. The apparatus of claim 5, further including computer
program instructions causing the computer to implement a
process including:

associating with the special ID security attributes particu-
lar to the specific analytic data analysis system by
accessing a plurality of heterogeneous transactional
data management systems that have divergent security
models:

accessing data in the plurality of transactional data man-
agement systems and creating objects that merge the
data from two or more of the transactional data man-
agement systems; and

processing first security translation rules that accept the
data set security attributes from the two or more
transactional data management systems as predicates
and generating one or more security tokens to associate
with each secured object that merges the data.

9. A non-transitory computer-readable storage medium
storing computer program instructions that cause a computer
to implement a process including:

a transactional data management system that manages
data stored 1n a transaction data store receiving a logon
request with an associated user ID for use of the
transactional data management system, authenticating

10

15

20

25

30

35

40

45

50

22

the logon request, and i1dentitying that authorizations
associated with the user ID include usage of the ana-
lytical data analysis system;

wherein the analytical data analysis system responds to

requests to visualize data stored 1n an analytic data
store that 1s a subset of, but not all of, the data stored
in the transactional data store; and

responsive to a request to use the analytical data analysis

system with the user ID, mvoking a complementary

special 1D linked to the user ID, wherein

the special ID grants rights related to a specific analytic
data analysis system:;

the special ID rights provide read-only access to at least
one analytic data store accessed through the specific
analytic data analysis system; and

use of the transactional data management system 1is
separately licensed and accounted for from the ana-
lytical data analysis system.

10. A non-transitory computer-readable storage medium
of claim 9, further including computer program instructions
that cause the computer to implement a process including;:

associating with the special ID security attributes particu-

lar to retrieval of data objects from the specific analytic
data analysis system.

11. A non-transitory computer-readable storage medium
of claim 9, further including computer program instructions
that cause the computer to implement a process including:

applying first security translation rules that accept one or

more security attributes from the transactional data
management system as predicates;

generating one or more security tokens to associate with

the special ID when interacting with the specific ana-
lytic data analysis system; and

wherein the security tokens govern access using the

special ID to objects managed by the specific analytic
data analysis system.

12. A non-transitory computer-readable storage medium
of claim 9, further including computer program instructions
that cause the computer to implement a process including;:

associating with the special ID security attributes particu-

lar to the specific analytic data analysis system by
accessing a plurality of heterogeneous transactional
data management systems that have divergent security
models;

accessing data in the plurality of transactional data man-

agement systems and creating objects that merge the
data from two or more of the transactional data man-
agement systems; and

processing first security translation rules that accept the

data set security attributes from the two or more
transactional data management systems as predicates
and generating one or more security tokens to associate
with each secured object that merges the data.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

