

US009444725B2

(12) United States Patent

Sella et al.

(45) Date of Patent:

(10) Patent No.:

US 9,444,725 B2

*Sep. 13, 2016

ADAPTIVE NETWORK FUNCTION **CHAINING**

Applicant: Level 3 Communications, LLC, Broomfield, CO (US)

Inventors: William Thomas Sella, Parker, CO

(US); Harold Wayne Teets, Highlands Ranch, CO (US); James Michael Sella, Parker, CO (US); Pete Joseph Caputo, II, Highlands Ranch, CO (US); Travis **Duane Ewert**, Highlands Ranch, CO

(US)

Assignee: Level 3 Communications, LLC, (73)

Broomfield, CO (US)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/800,897 (21)

Jul. 16, 2015 (22)Filed:

(65)**Prior Publication Data**

US 2016/0087878 A1 Mar. 24, 2016

Related U.S. Application Data

Continuation of application No. 14/492,773, filed on (63)Sep. 22, 2014, now Pat. No. 9,088,509.

Int. Cl. (51)

> H04L 12/707 (2013.01)H04L 12/24 (2006.01)H04L 12/725 (2013.01)

> > (Continued)

U.S. Cl. (52)

(2013.01); **H04L** 41/5019 (2013.01); **H04L** 43/08 (2013.01); H04L 45/306 (2013.01); **H04L 69/22** (2013.01); H04L 43/16 (2013.01)

Field of Classification Search (58)

CPC H04L 43/12; H04L 45/00; H04L 12/26; H04L 41/0816; H04L 63/1416; H04L 63/20; H04L 43/16; H04L 63/1408

See application file for complete search history.

References Cited (56)

U.S. PATENT DOCUMENTS

9/2007 Maher et al. 7,272,115 B2 7/2008 Blouin et al. 7,403,988 B1 7,706,291 B2 4/2010 Luft et al. (Continued)

OTHER PUBLICATIONS

International Search Report dated Dec. 11, 2015, Int'l Appl. No. PCT/US15/051521; Int'l Filing Date Sep. 22, 2015; 3 pgs. (Continued)

Primary Examiner — Jung Park

ABSTRACT (57)

Disclosed herein are system, method, and computer program product embodiments for dynamically applying network functions to traffic flows based on heuristics, policy conditions and client-specified conditions. A network monitors a network traffic flow to determine whether the network traffic flow meets a first criterion of a first rule. The criterion specifies that when the first criterion is met a network function be used to analyze or process the network traffic flow. When the network traffic flow is determined to meet the first criterion, the network determines a first route through the network to a network function provider that provides the network function and configures one or more routers along the first route to forward the network traffic flow to the network function provider for analysis or processing.

20 Claims, 5 Drawing Sheets

Determine network rules Monitor network conditions trigger a rule? Determine a network function to be applied Determine appropriate resources and route to apply the function Configure network to apply network function

US 9,444,725 B2

Page 2

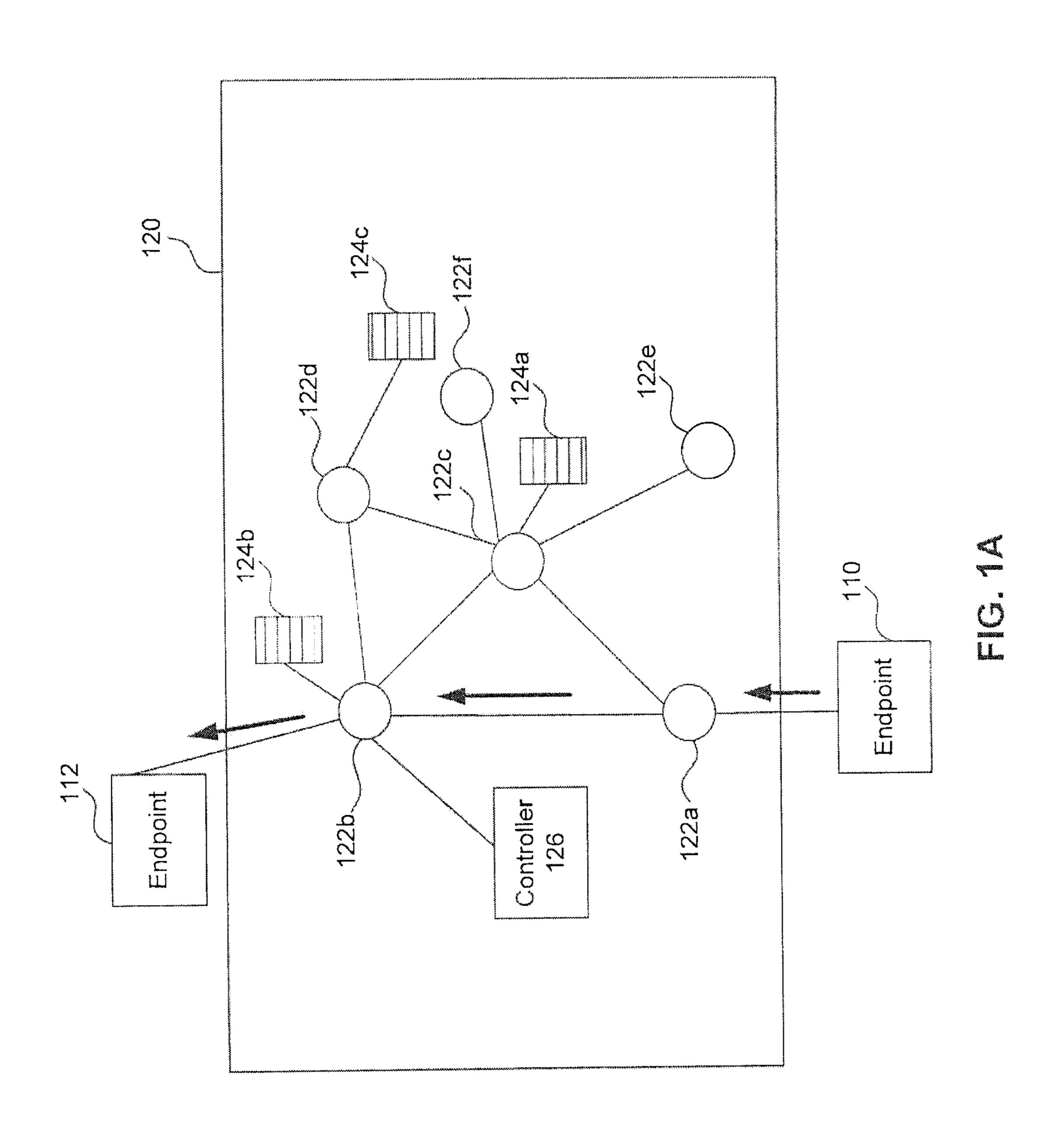
(51)	Int. Cl.	
	H04L 29/06	(2006.01)
	H04L 12/26	(2006.01)

(56)

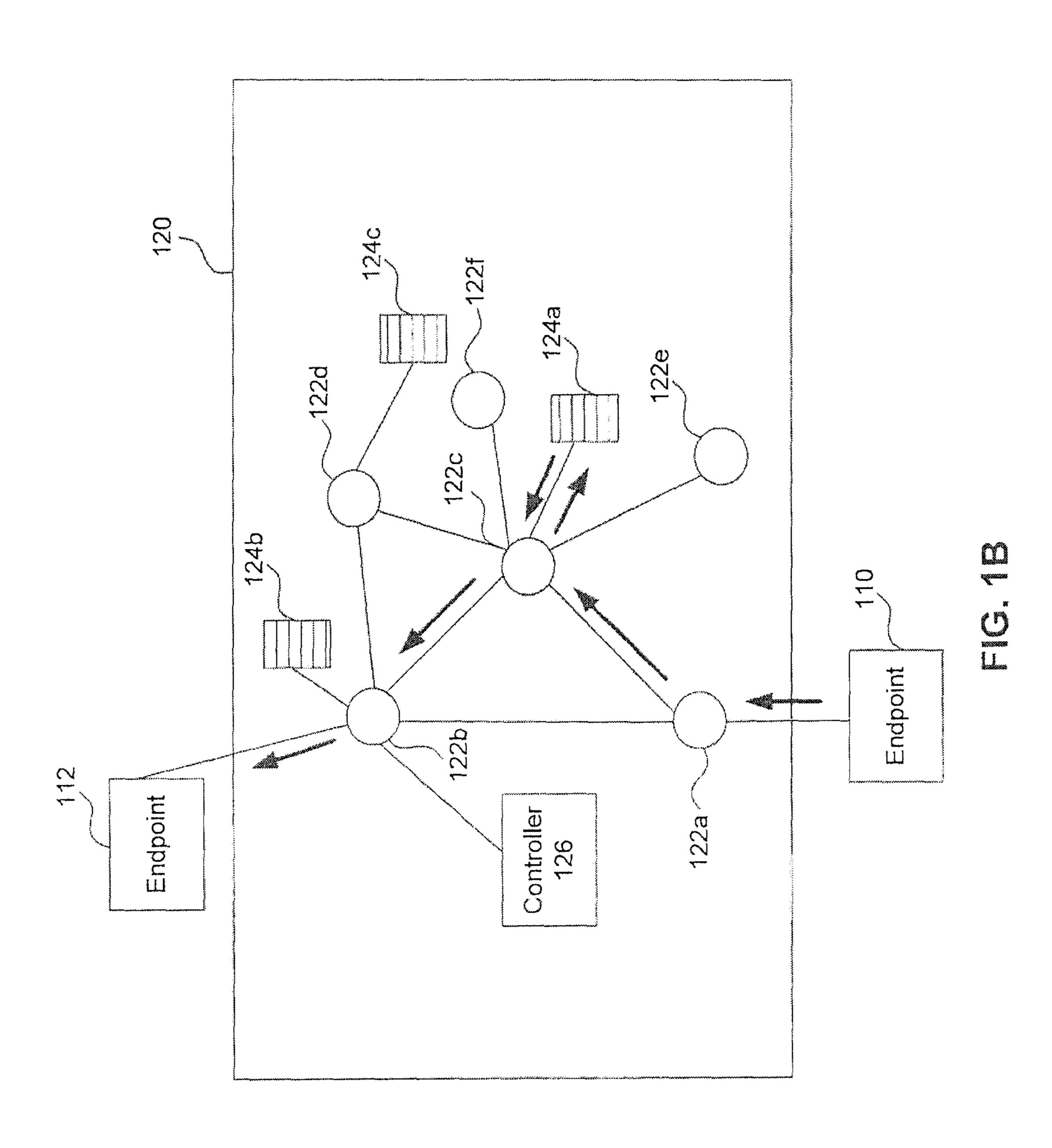
References Cited

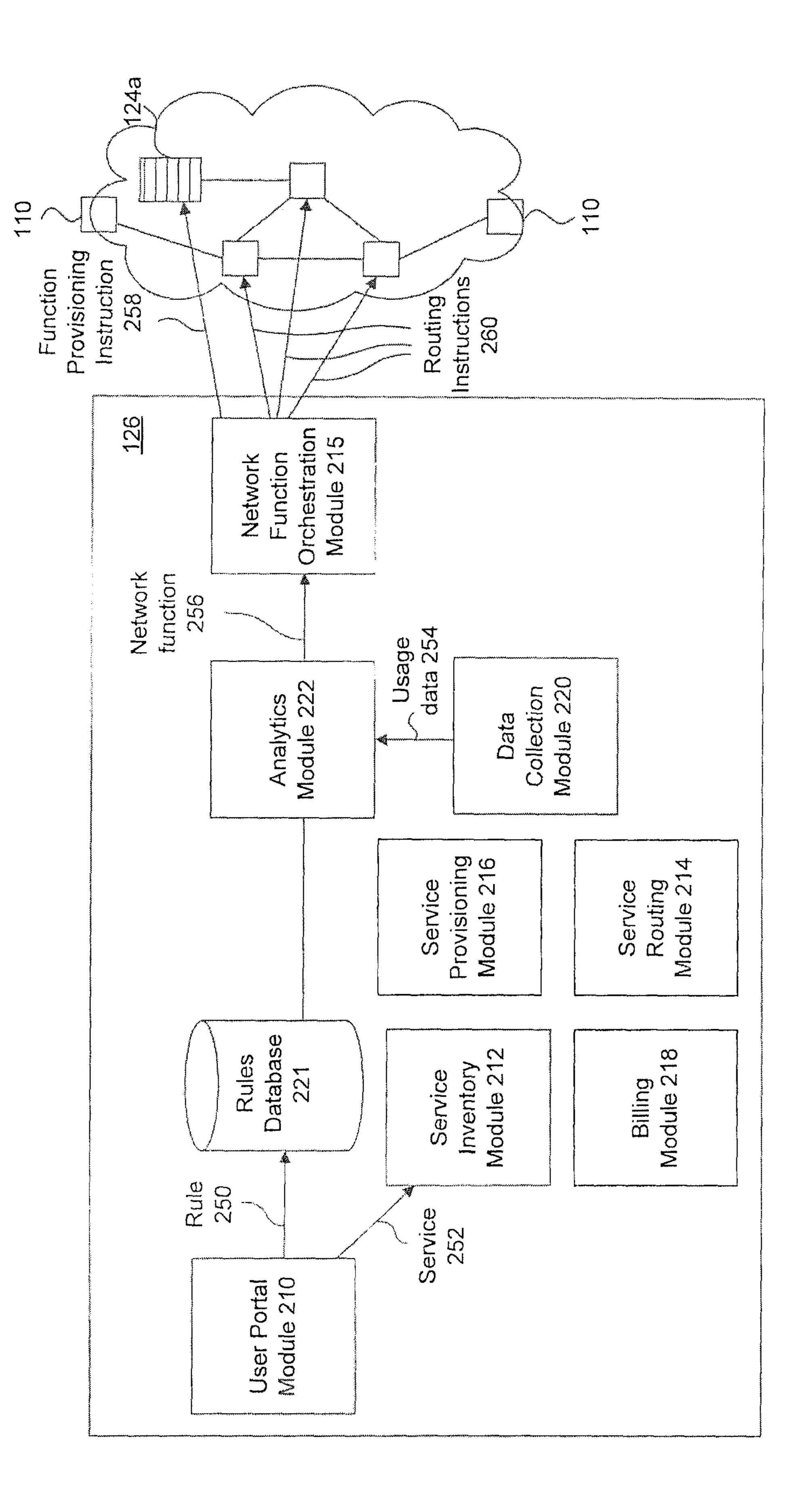
U.S. PATENT DOCUMENTS

7,757,283 B2	7/2010	Robert et al.
7,970,930 B2	6/2011	Dobbins et al.
7,986,632 B2	7/2011	Monaco et al.
8.180.884 B1	5/2012	Hall


2009/0073977 A1 3/2009 Hussain et al. 2013/0308644 A1 11/2013 Ferguson et al.

OTHER PUBLICATIONS


Written Opinion of the International Searching Authority dated Dec. 11, 2015, Int'l Appl. No. PCT/US15/051521; Int'l Filing Date Sep. 22, 2015; 6 pgs.


^{*} cited by examiner

100

100

べ、ウエ

<u>300</u>

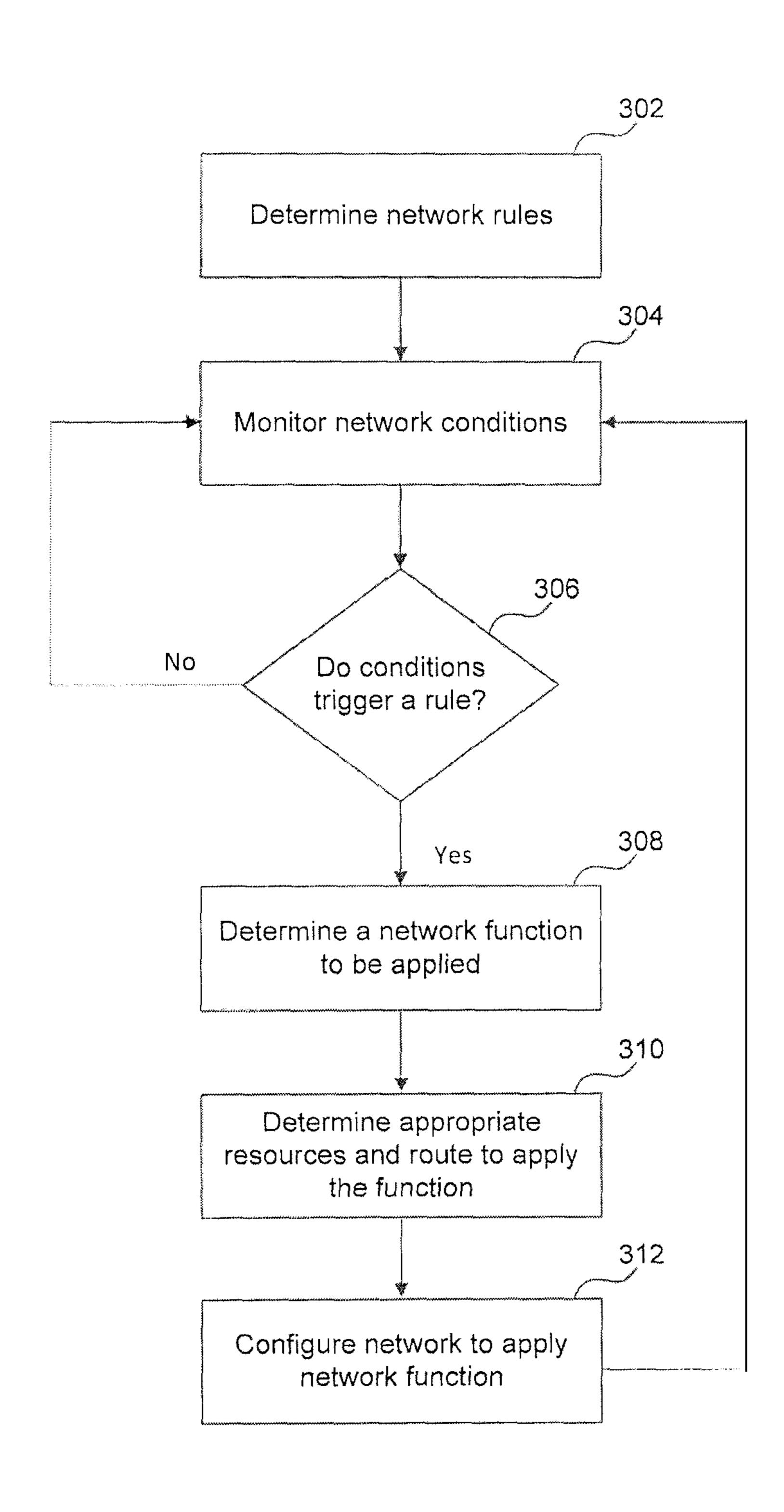


FIG. 3

<u>400</u>

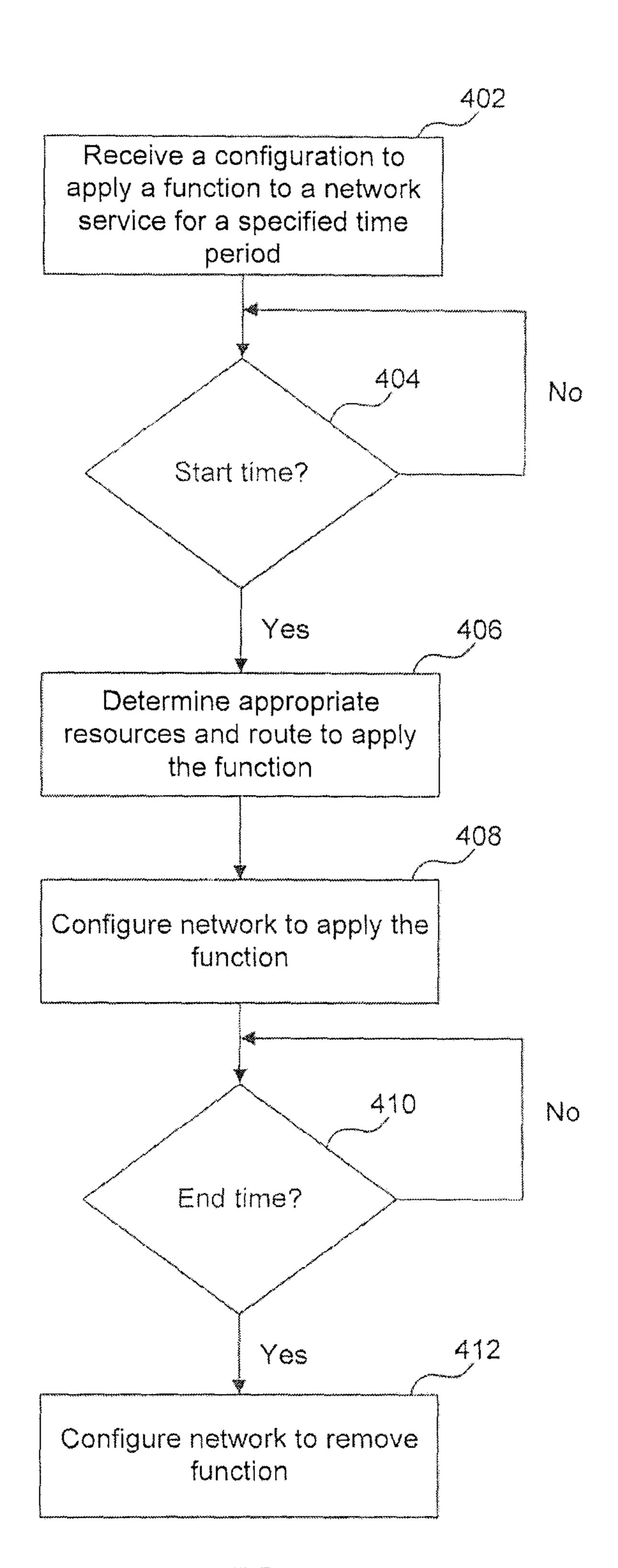


FIG. 4

ADAPTIVE NETWORK FUNCTION CHAINING

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the benefit of priority from U.S. Pat. No. 9,088,506, entitled "ADAP-TIVE NETWORK FUNCTION CHAINING," issued on Jul. 21, 2015, the entire contents of which are fully incorporated herein for all purposes.

BACKGROUND

1. Technical Field

Embodiments generally relate to network services.

2. Background

Some modern data networks provide personalized services. Networks may provide connections between clients subject to service level agreements (SLAs) specifying characteristics and performance guarantees. For example, clients may establish a virtual Ethernet connection with a specified dedicated bandwidth.

To these connections, some networks may apply network functions, such as, for example, intrusion detection, fire- 25 walls, packet inspection, etc. Providing these functions may require changes to routing of traffic flow to route data to a server that provides the function. For example, an intrusion detection system may inspect sequences of packets to detect and prevent network attacks. Therefore, traffic may be 30 routed through a particular device that provides the intrusion detection function.

Traditional routing algorithms rely on local information at each router regarding its neighboring links and devices to route data. A router maintains such information in a routing 35 table. Based on the destination address of an incoming packet, a router uses its routing table to forward the packet to a specific neighboring device.

A technique, referred to as Software Defined Networks (SDNs), separates the control and forwarding functions into 40 separate devices. A control device may use a global knowledge of the network topology to determine a path through the network of forwarding devices for individual data flows. In this way, the control device may, for example, establish paths that minimize delay or maximize bandwidth through 45 the network, or route a data flow through a particular device that provides a particular network function.

Traditional approaches to providing network functions rely on setting up the function when initiating a network service. For example, a client may establish a virtual Ethernet connection that includes a firewall function at a medium level of security inspection. However, this approach may fail to adequately respond to changing network conditions and may waste resources by processing the network function for the duration of the network service.

SUMMARY

In view of the above, it would be advantageous to provide a mechanism for dynamically providing network functions 60 based on specified conditions.

In an embodiment, a system determines a network and monitors a network traffic flow to determine whether the network traffic flow meets a first criterion of a first rule. The criterion specifies that when the first criterion is met a 65 network function be used to analyze or process the network traffic flow. When the network traffic flow is determined to

2

meet the first criterion, the network determines a first route through the network to a network function provider that provides the network function and configures one or more routers along the first route to forward the network traffic flow to the network function provider for analysis or processing.

In an embodiment, a network determines an initiation time for initiating the use of a network function to analyze or process a network traffic flow. The network determines a first route through the network to a network function provider that provides the network function and configures the one or more routers along the first route to forward, at the initiation time, the network traffic flow to the network function provider for analysis or processing.

Method and computer-readable medium embodiments are also disclosed.

Further embodiments and features, as well as the structure and operation of the various embodiments, are described in detail below with reference to accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated herein and form a part of the specification.

FIGS. 1A-B show diagrams illustrating an network environment for dynamically provisioning network functions, according to an example embodiment.

FIG. 2 shows a diagram illustrating functional modules of a controller for dynamically provisioning network functions, according to an example embodiment.

FIG. 3 is a flowchart illustrating a method of dynamically provisioning network functions, according to example embodiment.

FIG. 4 is a flowchart illustrating a method of dynamically provisioning network functions for a specified time period, according to example embodiment.

In the drawings, like reference numbers generally indicate identical or similar elements. Additionally, generally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.

DETAILED DESCRIPTION

In embodiments, network functions are dynamically applied to traffic flows based on heuristics, policy conditions and client-specified conditions. In an example, a network provides data communications between clients. The network establishes a service that provides communications between clients according to parameters associated with, for example, bandwidth, latency, jitter, etc. The network monitors its traffic, and when a specified condition is met, the network routes the service's traffic, or a portion of the service's traffic, through a processing element that applies a network function. The conditions may be related to any 55 network characteristic, such as those associated with performance, capacity, security, etc. The conditions may be user-defined or set by the network administrators. The network function may also be applied according to a schedule. The network function may be removed after another condition is met or after a specified period of time. Providing network functions in response to conditions and schedules gives clients and administrators improved flexibility in managing the connections and performance and may help reduce overall network resource consumption.

FIG. 1A shows a diagram illustrating an network environment 100 for dynamically provisioning network functions, according to an example embodiment.

Network environment 100 includes network 120 that provides network communications between multiple endpoints. In an embodiment, network 120 provides configurable data communications services to multiple endpoints for a service fee.

Example endpoints 110 and 112 can be one or more client computing devices that utilize services of network 120. Endpoints 110 and 112 can be, by way of example, local area networks (LANs), computers, mobile devices, servers, clusters, etc. In an example, endpoints 110 and 112 may themselves be networks and may use network 120 as a transit network to communicate with each other.

Network 120 includes a plurality of routers 122*a-f*, one or more data centers 124a-b, and one or more controllers 126.

Network 120 can be a network configured to transmit data 15 between client computing devices, such as, for example, personal computers, servers, mobile devices, local area networks (LANs), etc. In an embodiment, network 120 is a wide area network (WAN) or a metropolitan area network (MAN). In an embodiment, network 120 provides virtual 20 networking services, such as, for example, virtual Ethernet connections, virtual local area networks (VLANs), virtual private networks (VPNs), etc. For example, network 120 can provide a virtual circuit with dedicated bandwidth for data communications between clients in remote locations. Net- 25 work 120 may utilize any point-to-point, point-to-multipoint, or multipoint-to-multipoint networking protocols. Network access protocols used may include, for example, Ethernet, Asynchronous Transfer Mode (ATM), High-Level Data Link Control (HDLC), Frame Relay, Synchronous 30 Optical Networking (SONET)/Synchronous Digital Hierarchy (SDH), Internet Protocol (IP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Multiprotocol Label Switching (MPLS), etc.

between endpoints. Routers 122a-f may be configured to provide connectivity services, such as, for example, virtual Ethernet connections, MPLS tunneling, VLAN routing, service level agreements (SLAs), etc. The term "router" as applied herein includes both network layer routers and data 40 link layer switches. The connectivity service may provide a connection from at least two geographically disparate computers at a particular level of service, such as a particular level of bandwidth, latency, or jitter.

To provide the level of service, routers 122a-f may reserve 45 bandwidth for the connection. Reserving may involve associating a particular bandwidth with a user. While still reserving bandwidth, a network may be oversubscribed, meaning that if all users were using all their associated bandwidth, the network would have insufficient capacity. A 50 dedicated network connection can be seen as a private connection to one user. Such a dedicated network connection may be point-to-point, in which the connection connects two points on the network. The dedicated network connection may be public or private. On the other hand, the 55 connection may also be multipoint-to-multipoint, in which a set of one or more points on the network is connected to a second set of one or more network points. A switching device may receive traffic for a particular network connection on a particular port.

FIG. 1A illustrates a network connectivity service connecting endpoint 110 and 112. The connectivity service may route data along a path including router 122a, which is connected to endpoint 110 and router 122b, and router 122b, which is connected to router 122a and endpoint 112. In this 65 way, data addressed from endpoint 110 to endpoint 112 may first be sent to router 122a. Router 122a may forward the

data to router 122b. And router 122b may forward the data to endpoint 112. In one embodiment, this path may be set up by controller 126, which has global knowledge of the topology of network 120. In another embodiment, this path may be established by each of routers 122a-e exchanging routing information with its neighbors to communicate their connectivity.

Example data centers **124***a-b* may provide network functions for application to network traffic or services. Data centers may be configured to provide network functions such as, for example, intrusion detection, firewall, packet inspection, data compression, WAN acceleration, TCP proxies, network management functions, etc. The network functions may be provided by the network service provider or by a third party.

In embodiments, data is dynamically re-routed from to a data center for application of a network function, as illustrated in FIG. 1B. In one embodiment, a user can specify that a network function be applied at some time period in the future. More particularly, the user can specify that the network function be applied to some or all of the data on the network connectivity service at a time period in the future. When the time period begins, network 120 is configured to route data on the network connectivity service to a data center to that applies the network function. When the time period ends, network 120 is configured to route data on the network connectivity service to the destination without reaching a data center that applies the network function.

In another embodiment, the user can specify that a network function be applied when particular usage conditions are met. More particularly, the user can specify that the network function be applied to some or all of the data on the network connectivity service when the data meets certain conditions. The conditions may be based on aggregated data Example routers 122a-f are configured to route data 35 for the network connectivity service. For example, the condition may specify that data is routed to the data center for execution of the network function based on the bandwidth utilized, latency, packet loss, or network routes on the network connectivity services, or utilization level of the network function. In other examples, the condition may specify that a particular flow is routed to the data center for execution of the network function when the packets meet certain conditions (e.g., particular source/destination addresses or ports or payload data matching a particular pattern). When the condition is met, network 120 is configured to route data on the network connectivity service to a data center that applies the network function. When the condition is no longer met, network 120 is configured to route data on the network connectivity service to the destination without reaching a data center that applies the network function.

> In the example illustrated in FIG. 1B, an Ethernet connection network service may be configured between endpoints 110 and 112. The service may be enhanced by applying a firewall function to traffic moving from endpoint 110 to endpoint 112. To apply the firewall function, traffic from endpoint 110 can be directed to endpoint 112 may be routed from router 122a to router 122c. Router 122c can then transmit the traffic to data center 124a, which can inspect the traffic and apply the firewall function. The traffic can then be transmitted to router 122b and then endpoint **112**.

Controller **126** may configure and manage routers **122***a-f* and data centers 124a-b to create, maintain, and remove network services and network functions. Controller **126** may be implemented in one or more devices connected to the network.

Controller 126 may configure routing tables at routers **122***a-f* to create network services. For example, to create a virtual Ethernet connection between endpoints 110 and 112, controller 126 may create a network path by adding entries to the routing tables of routers 122a and 122b. Controller 5 **126** may also later add a network function, such as a firewall, to the virtual Ethernet connection between endpoints 110 and 112. To add the firewall, controller 126 may configure the routing tables of routers 122a, 122b and 122c to add an MPLS label to the service's traffic that forwards the traffic 10 through data center **124***a*. Controller **126** may also communicate with data center 124a to verify the data center's resource availability to process the firewall, and to configure data center 124a to perform the firewall function. The functionality of controller **126** is described in greater detail 15 with respect to FIG. 2 below.

FIG. 2 is a block diagram illustrating functional modules of a controller 126, according to an example embodiment. For simplicity of description, the modules are described as forming part of a single controller entity, however, the 20 various components may form part of one or more separate devices in any combination. Moreover, while certain modules are described as performing various functions, the module boundaries have been arbitrarily defined for simplicity of description.

Controller 126 includes user portal module 210, service inventory module 212, service routing module 214, service provisioning module 216, billing module 218, data collection module 220, rules database 221, and analytics module **222**.

User portal module 210 may provide an user interface for a client of network 120 to configure network services and functions. A user may interact with user portal module 210 to request a new network service or modify existing network Ethernet connection between endpoints 110 and 112 with a 10 Mb/s bandwidth. User portal module **210** may communicate to the client the availability and cost information for the requested services.

Using user portal module **210**, a user may also establish 40 conditions and rules for initiating network functions. For example, a user may specify that all TCP traffic be analyzed by an intrusion detection system if certain conditions are true. Conditions may involve multiple factors and analytics related to any network, connection or service characteristics. 45 For example, a user may specify that whenever TCP traffic on the virtual Ethernet connection increases by two standard deviations from its average TCP traffic, the network activate a firewall and initiate a TCP packet dump for the next 30 minutes. In another embodiment, the conditions may specify 50 a time period in the future to apply the network function. The time period may also repeat at regular intervals (e.g., weekly, monthly, etc.). Once created, user portal 210 creates a rule—illustrated in FIG. 2 as rule 250—and rules database **221**.

Service inventory module 212 maintains an inventory of the services that network 120 is provisioning. The inventory may contain entries for each service, including the type of service, parties of the service, the service's parameters, SLAs, etc. For example, an entry may specify a virtual 60 Ethernet connection between endpoints 110 and 112. The entry may further specify that the connection must provide a 10 Mb/s bandwidth and a maximum latency of 10 ms, and that all traffic must be inspected by an intrusion detection function.

Service routing module **214** determines network routes for services in service inventory module 210. Service rout-

ing module 214 analyzes the services and their associated requirements, SLAs or conditions. Service routing module 214 may perform an analysis based on knowledge of the network's topology and the totality of services to be provisioned and their requirements to determine an appropriate route for each service. For example, for a service that requires a higher bandwidth, service routing module 214 may select one high bandwidth route, and for a service that requires a lower latency, service routing module 214 may select a shorter route. In this manner, service routing module 214 implements SLAs associated with each service.

Service provisioning module 216 configures each network device (e.g., routers, switches, etc.) to implement routes determined by service routing module 214 and network function orchestration module **215**. Service provisioning module 216 may configure each router's routing tables, MPLS tunneling configurations, etc., to cause the forwarding of services according to the determined routes. The implemented routes may include adding headers to packets in the service to trigger the application of a network function. Users may create services in service inventory module 212 through user portal module 210, as explained above and illustrated in FIG. 2 as service 252. Network administrators may also create services through administrator interfaces, or 25 by setting rules, conditions, and analytics that initiate network services and functions, as explained below with reference to the data collection and analytics modules.

Rules database 221 maintains rules associated with criteria, conditions, or configurations that are evaluated to 30 initiate or terminate network functions. The rules may be provided by or derived from user-provided configurations associated with network services. Network administrators may also provide rules based on desired network management or performance goals. Network function orchestration services. For example, a user may establish a new virtual 35 module 215 may evaluate rules in rules database 221 to trigger one or more network functions to be applied when certain conditions occur, and determine time periods or conditions to terminate their application.

> Data collection module 220 monitors network links, elements, and services to gather usage data 254, including network performance statistics and other flow information. In an embodiment, data collection module 220 aggregates statistics collected by each network element. Data collection module 220 may also configure periodic or event-driven reporting at network elements. For example, when a router receives data of a particular type specified in a rule, the router may inform data collection module 220.

Analytics module 222 performs analysis of usage data 254 collected by data collection module 220. Analytics may be used to comply with SLAs by guaranteeing that network resources are available for present and future demand. Analytics module 222 may compare usage data 252 with conditions from rules database 221. When one of the conditions is satisfied, analytics module 222 determines what 55 network function is specified for that rule in rules database. Then, analytics module 222 may signal the network function—illustrated as network function 254 in FIG. 2—to network function orchestration module 215.

Network function orchestration module 215 determines and manages the provisioning of network functions to be applied to network services. Network function orchestration module 215 may store information about network topology, link capacity, router capacity, data center capacity, etc., to provision resources and routes for network functions. Net-65 work function orchestration module **215** may receive information or commands indicating that a network function is to be applied to a network service. Based on this information,

network function orchestration module determines which data center to use for the network function.

In one example, analytics module 222 may send a signal to network function orchestration module 215 indicating that a link's utilization is nearing capacity, and based on this 5 network function orchestration module 215 may determine that a compression function should be applied to a service that is traveling through the link. In another example, a user or network administrator triggers the initiation of a network function, and service inventory module 212 sends a signal to 10 network function orchestration module 215 to provision the network function.

To provision a network function, network function orchestration module 215 may determine an available data center 124, inside or outside network 120, that can process 15 the function. Once an available data center 124 is found, network function orchestration module 215 may reserve resources at the data center and determine how to appropriately route the service to the data center. Network function orchestration module 215 may, for example, instantiate a 20 process, thread, or virtual machine at the data center 124, or a reserve pooled resource. Network function orchestration module 215 may then determine a route that meets the SLAs for the process and for other processes that may share the route's links.

To provision the function data, network function orchestration module 215 may send function provisioning instruction 258 to the data center to provide the function. Function provisioning instruction 258 may specify the network service the function is to be applied to, the times the function 30 should be started and ended, and any parameters of the function. To provision the new route, network function orchestration module 215 may send routing instructions 260 to respective routers on the route to from the source to the data center, and, possibly, from the data center to the 35 destination. Routing instructions 260 may specify routing tables entries, MPLS routing entries, etc.

Billing module 218 communicates with service inventory module 212 and network function orchestration module 215 to determine how much to bill a client for network services 40 and network functions. In an embodiment, a user may be billed for the amount of time that a network function is applied to a network service.

For example, assume network 120 is providing a virtual Ethernet service between endpoints 110 and 112, and routing 45 the service through routers 122a and 122b. In the example, analytics module 222 may initially detect that the latency between endpoints 110 and 112 is 5 ms, and that the SLA for the service requires a maximum latency of 10 ms. At a later time, analytics module 120 may detect that the latency has 50 increased to 7 ms. Analytics module **222** may, independently or in response to the latency increase, inspect the route between endpoints 110 and 112 and discover that the utilization for the link between routers 122a and 122b is at 80%. Analytics module 222 may determine, based on rules or 55 specified conditions in rules database module **221**, that 80% exceeds a threshold utilization for this link, and can send a signal to network function orchestration module 215 to take remedial action. Network function orchestration module 215 may determine that a compression function can be applied to 60 the virtual Ethernet service traffic flowing endpoint 110 to endpoint 112 to decrease link utilization. Network function orchestration module may use network topology and data center location information to determine a route and appropriate data centers that can apply the function. For example, 65 network function orchestration module 215 may provision a compression function at data center 124a and a decompres8

sion function at data center 124b by initiating a virtual machine at each of these data centers. Network function orchestration module 215 can then communicate to service provisioning module 216 the new route for the service traffic that comprises: receiving the service packets from endpoint 110 at router 110, forwarding them to router 122c, then to data center 124a for compression, sending the compressed service packets back to router 122c, then to router 122a, then to router 122b, then to data center 124b for decompression, back to router 122b and finally to endpoint 112. Service provisioning module 216 would configure each of routers 122a, 122b, and 122e to implement the route.

FIG. 3 is a flowchart that depicts a method 300 of dynamically provisioning network functions, according to example embodiment.

At step 302, the network receives or determines rules and other configuration information for monitoring network conditions and applying network services or functions. Network users or administrators may input the rules and configuration information. For example, the network may provide network users with a portal user interface to subscribe, manage and configure network services and functions. Users may configure rules, conditions, or schedules for applying network functions to network services. For example, a network user 25 may use a portal to subscribe to a virtual Ethernet service that provides connectivity between two endpoint LANs, and enter any SLA requirements for the service. The user may then configure options in the portal related to the virtual Ethernet service, for example, configuring a rule specifying that if traffic through the virtual Ethernet connection increases by more than two standard deviations from the average, the network should set up a firewall through the connection and initiate a packet dump for the duration of the traffic spike. The user may set up these rules at the time the virtual Ethernet service is set up, or after the Ethernet service is running. The user may also change this configuration, and add different rules or functions to the service at a later time.

Rules and configuration information may also be associated with network links, network elements, or other network characteristics in general. For example, a configuration may specify actions to be taken if a network link become over-utilized by traffic from multiple services.

At step 304, the network monitors conditions associated with the rules and configurations. For example, if a rule associated with a service specifies that a packet dump should be performed when traffic exceeds two standard deviations from an average, the network may keep track of the service's average traffic and its standard deviation.

At step 306, the network determines whether any monitored network conditions trigger a rule or event associated with the network or a service. If a network conditions meets a criterion established by any configuration or rule, the network proceeds to step 308 to determine a network function to be applied.

At step 308, the network determines a network function to apply. The network function may be specified by a rule or configuration, or be selected based on available network resources. For example, if the network has detected a traffic anomaly, the network may choose to perform a packet dump and initiate a medium security firewall. The network may then analyze traffic and select a different network function to apply, such as a higher security intrusion detection function.

At step 310, once the network has selected a network function, the network determines appropriate resources and routes for providing the network function. For example, the network may determine a data center with sufficient available resources to process the function and within a route that

satisfies any SLA requirement of the service or services to which the function is to be applied. The network may use topology and routing information available at a central location, and may query data centers to determine resource availability.

At step 312, the network configures network elements, for example, routers, switches, data centers, etc., to provide the network function. The network may configure, for example, MPLS tunnels to route service traffic through a data center. Routers may be configured to add an MPLS label to packets of the service, and data centers may be configured to apply the functions to packets containing the appropriate MPLS label.

application of a network function by continuing to monitor network conditions and evaluating appropriate rules. For example, if a rule specified that a service's traffic should be firewalled during a traffic spike, the network may monitor the traffic to determine when the spike has ended, and then 20 remove the firewall function at that time. In an embodiment, a user may specify an amount of time the function is to be applied as part of a rule. In this manner, the network reacts and adapts to events and provides functions dynamically when appropriate, thus saving resources while providing 25 enhanced functionalities.

FIG. 4 is a flowchart that depicts a method 400 of dynamically provisioning network functions for a specified time period, according to example embodiment.

At step 402, the network receives rules and other con- 30 figuration information for monitoring network conditions and applying network services or functions for a specified time period. Network users or administrators may input the rules and configuration information that schedule the application of network functions or indicate an amount of time 35 the functions should be applied. For example, a network user may use a portal to subscribe to a virtual Ethernet service that provides connectivity between two endpoint LANs, and enter any SLA requirements for the service. The user may observe that TCP traffic through the virtual Ethernet service 40 increases dramatically every day from 2 PM to 4 PM. The user may then configure a rule specifying that the network should perform a packet dump and activate an intrusion detection function every day from 2 PM to 4 PM.

As shown at steps 404 and 406, at or before the start time 45 for the scheduled function the network determines the start time the network determines appropriate resources and routes for providing the network function. For example, the network may determine a data center with sufficient available resources to process the function and within a route that 50 satisfies any SLA requirement of the service or services to which the function is to be applied. The network may use topology and routing information available at a central location, and may query data centers to determine resource availability.

At step 408, the network configures network elements, for example, routers, switches, data centers, etc., to provide the network function. The network may configure, for example, MPLS tunnels to route service traffic through a data center. Routers may be configured to add an MPLS label to packets 60 of the service, and data centers may be configured to apply the functions to packets containing the appropriate MPLS label.

Once the specified time period expires, the network removes application network function by, again, configuring 65 network elements and data centers, as shown in steps 410 and **412**.

10

CONCLUSION

Rules database module 221 may be any stored type of structured memory, including a persistent memory. In examples, a database may be implemented as a relational database or file system.

Each of the blocks and modules in FIGS. 1 and 2 may be implemented in hardware, software, firmware, or any combination thereof.

Each of the blocks and modules in FIGS. 1 and 2 may be implemented on the same or different computing devices. Such computing devices can include, but are not limited to, a personal computer, a mobile device such as a mobile phone, workstation, embedded system, game console, tele-In an embodiment, the network may change or remove the 15 vision, set-top box, or any other computing device. Further, a computing device can include, but is not limited to, a device having a processor and memory, including a nontransitory memory, for executing and storing instructions. The memory may tangibly embody the data and program instructions. Software may include one or more applications and an operating system. Hardware can include, but is not limited to, a processor, memory, and graphical user interface display. The computing device may also have multiple processors and multiple shared or separate memory components. For example, the computing device may be a part of or the entirety of a clustered computing environment or server farm.

> Identifiers, such as "(a)," "(b)," "(i)," "(ii)," etc., are sometimes used for different elements or steps. These identifiers are used for clarity and do not necessarily designate an order for the elements or steps.

> The present invention has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.

> The foregoing description of the specific embodiments will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.

> The breadth and scope of the present embodiments should not be limited by any of the above-described examples, but should be defined only in accordance with the following claims and their equivalents.

What is claimed is:

- 1. A computer-implemented method of dynamically provisioning a network function in a network, the method comprising:
 - (a) determining whether a packet of a network flow meets a first criterion of a first rule;
 - when the packet of the network flow is determined to meet the first criterion:

- (b) determining, in accordance with the first rule, a network function to analyze or process the network flow,
- (c) selecting a network function provider capable of performing the network function,
- (d) determining a first route through the network to the network function provider,
- (e) determining one or more routers along the first route, and
- (f) configuring the one or more routers along the first route to forward the network traffic flow to the network function provider for analysis or processing.
- 2. The method of claim 1, wherein the selecting (c) comprises selecting the network function provider from a plurality of network function providers each capable of performing the network function.
- 3. The method of claim 2, wherein the selecting (c) further comprises:
 - sending a plurality of query messages to the plurality of 20 network function providers capable of performing the network function;
 - receiving response messages from at least a subset of the plurality of network function providers capable of performing the network function, wherein each 25 received response message indicates whether one of the responding network function providers has sufficient resources to perform the network function; and
 - selecting a network function provider from the subset of network function providers that indicate having suffi- 30 cient resources to perform the network function.
 - 4. The method of claim 1, further comprising:
 - (g) determining whether the network function provider has applied the network function for a duration exceeding a pre-determined time;
 - when the network function provider is determined to have applied the network function for the duration exceeding the pre-determined time:
 - (h) determining a second route through the network such that the second route directs traffic to a destination of 40 the network traffic flow without reaching the network function provider;
 - (i) determining one or more routers along the second route; and
 - (j) configuring the one or more routers along the second 45 route to forward the network traffic flow.
- 5. The method of claim 1, wherein the network function is at least one of intrusion detection, firewall, packet inspection, data compression, Wireless Access Network (WAN) acceleration, TCP proxy, and network management.
- 6. The method of claim 1, wherein determining (a) comprises determining whether a network flow is scheduled for analysis or processing during a time window between a pre-determined start and stop time.
- 7. The method of claim 1, further comprising configuring 55 the network function provider to perform the network function on the network flow.
- 8. The method of claim 1, further comprising billing a network client associated with the traffic flow based on an amount of time the network function is used.
- 9. A system for dynamically provisioning a network function in a network, comprising:
 - a computing device;
 - an analytics module, implemented on the computing device, configured to:
 - (a) determine whether a packet of a network flow meets a first criterion of a first rule;

12

- when the packet of the network flow is determined to meet the first criterion:
 - (b) determine, in accordance with the first rule, a network function to analyze or process the network flow, and
 - (c) select a network function provider capable of performing the network function;
- a network function orchestration module, implemented on the computing device, configured to:
- when the network traffic flow is determined to meet the first criterion:
 - (d) determine a first route through the network to the network function provider; and
 - (e) determine one or more routers along the first route; and
- a service provisioning module, implemented on the computing device, configured to:
 - (f) configure the one or more routers along the first route to forward the network traffic flow to the network function provider for analysis or processing.
- 10. The system of claim 9, wherein the selecting (c) comprises selecting the network function provider from a plurality of network function providers each capable of performing the network function.
- 11. The system of claim 10, wherein the selecting (c) comprises:
 - sending a plurality of query messages to the plurality of network function providers capable of performing the network function;
 - receiving response messages from at least a subset of the plurality of network function providers capable of performing the network function, wherein each received response message indicates whether one of the responding network function providers has sufficient resources to perform the network function; and
 - selecting a network function provider from the subset of network function providers that indicate having sufficient resources to perform the network function.
- 12. The system of claim 9, wherein the network function orchestration module is further configured to:
 - determine whether the network function provider has applied the network function for a duration exceeding a pre-determined time; and
 - when the network function provider is determined to have applied the network function for the duration exceeding the pre-determined time:
 - determine a second route through the network such that the second route directs traffic to a destination of the network traffic flow without reaching the network function provider;
 - determine one or more routers along the second route; and
 - configure the one or more routers along the second route to forward the network traffic flow.
- 13. The system of claim 9, wherein the network function is at least one of intrusion detection, firewall, packet inspection, data compression, Wireless Access Network (WAN) acceleration, TCP proxy, and network management.
- 14. The system of claim 9, wherein the selecting (a) comprises determining whether a network flow is scheduled for analysis or processing during a time window between a pre-determined start and stop time.
- 15. A non-transitory computer-readable medium having instructions stored thereon that, when executed by at least one computing device, causes the at least one computing device to perform operations for dynamically provisioning a network function in a network, the operations comprising:

- (a) determining whether a packet of a network flow meets a first criterion of a first rule;
- when the packet of the network flow is determined to meet the first criterion:
- (b) determining, in accordance with the first rule, a 5 network function to analyze or process the network flow,
- (c) selecting a network function provider capable of performing the network function,
- (d) determining a first route through the network to the network function provider,
- (e) determining one or more routers along the first route, and
- (f) configuring the one or more routers along the first route to forward the network traffic flow to the network 15 function provider for analysis or processing.
- 16. The computer-readable medium of claim 15, wherein the selecting (c) comprises selecting the network function provider from a plurality of network function providers each capable of performing the network function.
- 17. The computer-readable medium of claim 16, wherein the selecting (c) further comprises:
 - sending a plurality of query messages to the plurality of network function providers capable of performing the network function;
 - receiving response messages from at least a subset of the plurality of network function providers capable of performing the network function, wherein each received response message indicates whether one of the responding network function providers has sufficient 30 resources to perform the network function; and

14

- selecting a network function provider from the subset of network function providers that indicate having sufficient resources to perform the network function.
- 18. The computer-readable medium of claim 15, further comprising:
 - (g) determining whether the network function provider has applied the network function for a duration exceeding a pre-determined time;
 - when the network function provider is determined to have applied the network function for the duration exceeding the pre-determined time:
 - (h) determining a second route through the network such that the second route directs traffic to a destination of the network traffic flow without reaching the network function provider;
 - (i) determining one or more routers along the second route; and
 - (j) configuring the one or more routers along the second route to forward the network traffic flow.
- 19. The computer-readable medium of claim 15, wherein the selecting (a) comprises determining whether a network flow is scheduled for analysis or processing during a time window between a pre-determined start and stop time.
- 20. The computer-readable medium of claim 15, wherein the network function is at least one of intrusion detection, firewall, packet inspection, data compression, Wireless Access Network (WAN) acceleration, TCP proxy, and network management.

* * * *