12 United States Patent

Wu et al.

US009436362B2

US 9,436,362 B2
*Sep. 6, 2016

(10) Patent No.:
45) Date of Patent:

(54) ODATA SERVICE PROVISIONING ON TOP
OF GENIL LAYER

(71) Applicants:Zhiqiang Wu, Shanghai (CN);
Christian Weiss, Speyer (DE); Joerg

Singler, Zeutern (DE)

(72) Zhigiang Wu, Shanghai (CN);
Christian Weiss, Speyer (DE); Joerg

Singler, Zeutern (DE)

Inventors:

(73)

(%)

Assignee: SAP SE, Walldort (DE)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

(21) 14/596,933

(22)

Appl. No.:

Filed: Jan. 14, 2015

Prior Publication Data

US 2015/0134683 Al May 14, 2015

(65)

Related U.S. Application Data

(63) Continuation of application No. 13/463,406, filed on

May 3, 2012, now Pat. No. 9,043,809.
(30) Foreign Application Priority Data

Apr. 26, 2012 2012 1 0126439

(1)

(0) NI
Int. Cl.
GOGF 17/30
GOGF 3/0484

HO4L 29/08

U.S. CL
CPC

(2006.01
(2013.01
(2006.01

LS N

(52)
....... GO6F 3/0484 (2013.01); GO6L 17/30569
(2013.01); GO6F 17/30876 (2013.01); HO4L
67/10 (2013.01); HO4L 67/32 (2013.01)

700
140

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,664,860 B2 2/2010 Singler et al.
7,685,603 B2 3/2010 Singler et al.
2006/0075382 Al* 4/2006 Shaburov GO6F 8/34
717/106
2009/0089654 Al* 4/2009 Wittig G06Q 10/107
715/223
2011/0225143 Al 9/2011 Khosravy et al.
2012/0197963 Al* 82012 Bouw ... GO6F 17/30569
709/202
2012/0246202 Al 9/2012 Surtani et al.

OTHER PUBLICATTONS

“SAP Product Road Map SAP User Interfaces”, Jan. 2012, pp.
1-79 %

European Communication and Extended European Search Report
for Appl. No. 13001859.1-1952/2657858 mailed Feb. 20, 2014 (9

pages).
“CRM WebClient UI”; Wikipedia, Retrieved from Internet Feb. 5,

2014; 3 pages; [http://de.wikipedia.org/w/index.php?title=CRM__
WebClient. Ul&oldid=100240302].

(Continued)

Primary Examiner — Tuan Dao
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

The disclosure generally describes computer-implemented
methods, software, and systems for allowing provisioning of
open data protocol (OData) services on top ol a generic
interaction layer (GenlL). One computer-implemented
method includes receiving an OData-compliant request for
data, determining a Genll. data provider to receive the
OData-compliant request for data, determining the memory
location of the data, requesting the data from the determined
memory location, receiving the requested data from the
determined memory location, converting, using at least one
computer, the received data into an OData-compliant for-
mat, rendering an OData-compliant response, and transmit-
ting the OData-compliant response.

21 Claims, 12 Drawing Sheets

102

CLIENT 5‘3\4 GATEWAY SERVER }02 _i B e ST
I " RUNTIME " GENERICGenl |
REQUEST) COMPONENT | DATA PROVIDER |
RUNTIME DATA | l I I GeniL
’ " DETERMINE PROPER | | | 113
702 RUNTIME DATA | | —
PROVIDER FOR GenlL |—] 706 |
AND DELEGATEOData | | £ |
REQUEST TOIT | DETERMINE GenlL |
y | OPERATION AND |]
704 || BACKEND DESTINATION | |
| —) PERFORM GenlL
I I OPERATION
| CONVERT DATA | N
| | STRUCTURETOOQData | | 708
RENDER OData | N |
RESPONSE : 710 :
PROCESS N | |
RESPONSE 712 | |
g éj I I
714 ! !

US 9,436,362 B2
Page 2

(56) References Cited European Communication with EP Office Action, for Appl. No.

OTHER PURI ICATIONS 13001859.1-1952 mailed Au.g. 17, 2015; 11 pages.
Black et al. “SAP Web Client, Das umfassende Handbuch fur
“Open Data Protocol”; Wikipedia, Retrieved from Internet Feb. 7, Entwickler”, SAP press; ISBN: 978-3-8362-1530-5, pp. 65-83.
2014; 1 page; [http://en.wikipedia.org/w/index.php?title=Open__
Data_ Protocol&oldid=472912513]. * cited by examiner

U.S. Patent Sep. 6, 2016 Sheet 1 of 12 US 9,436,362 B2

100 GRAPHICAL
\ USER 140
FIG. 1 INTERFACE

144
>‘ PROCESSOR |

MEMORY CLIENT 146
APPLICATION

 J
INTERFACE

102

130

SUITE SERVER
PROCESSOR |<7
106"

BUSINESS SUITE
APPLICATION

MEMORY

BUSINESS
OBJECT

PRESENTATION
LAYER

114
BUSINESS
OBJECT MODEL 115
BUSINESS
BUSINESS
110" OBJECT LAYER OBJECT

MODEL DATA

4>‘ SERVICE LAYER |
112
113~ GENERIC INTERACTION LAYER |

APPLICATION
PROGRAMMING
111-"| INTERFACE

U.S. Patent Sep. 6, 2016 Sheet 2 of 12 US 9,436,362 B2

200
R FIG. 2
GRAPHICAL ~140
USER
INTERFACE CLIENT -
142)_L
202

.
| |
| |
: PRESENTATION LAYER :
| 108 |
| |
| |
| |
| |
| WebClient USER |
| LAYERS LAYER LAYER (BOL) |
| 110 |
| GENERIC |
| INTERACTION |
| |
| LAYER (GenlL) 13 |
| |
| |
: APPLICATION :
| | BUSINESS SUITE IN';'E&E:@E"SMTS |
| | APPLICATION (APlS) |
| LAYERS ENGINE |
| == |
| |
| |
| |
L o e e e e e e e e e e e J

U.S. Patent Sep. 6, 2016 Sheet 3 of 12 US 9,436,362 B2

FIG. 3A 302

T D~

— P —————

1= Model]

> Key sliuclure CRMT_GENIL_OBJECT _GUID
> Attabate Strocture CRMT_GENIL_ORDER_ATTR

I > Methoss]
4: > (: createFollowUp Ketur [ype 13, Order Weﬂwod type |; :_ B e
| D> (& renumberltems [Xetun Typs 13, Orderltem (Me-nad type 1) |
L _ __ > C repeatinput Refirn ype (G, TDLINE (Mellod ype 2 _ |
[v =& Relatons]
| D> o> Acgregat on OrderltemRel Chid cardinality 0..n |‘/ 308a
> > Acgreqoron OrderltemRelPaged Child Cordinality 0..n —
| > > Acgreqat on OrderPartnerRel Cild Cadinal ty Q..n |

v =7 Access Objects

> O Access Uhiect Orderltem
v |—7 Dependent Objects

crendant Jbjzct AccountAddresDE
cpenderil objecl AccountAddressUS o
cendont Uoject OrderltemShipmentData
cpendznl Jbjzcl QrderPartner
v |— Abstract Objects
> (O Abstroct Jzject AccountAddress

cery Juject AccountQuery |
: D> (O J.ery Jzject OrderltemQuery :_ _@

v =7 Query Result Objects
> () Yeery Result Objzct OrderltemSearchResult

U.S. Patent Sep. 6, 2016 Sheet 4 of 12 US 9,436,362 B2

Odata-COMPLIANT MODEL ’/

<7xml version="1.0" encoding="utf-8" 7>
- <edmx:Edmx Version="1.0" xmins:edmx="http://schemas.microsoft.com
xmins:m="http://schemas.microsoft.com/ado/2007/08/dataservic

- <edmx:DataServices m.DataServiceVersion="2.0">
- <Schema Namespace="ZTEST_GENIL_SAMPLE_REMOTE" xmins="http

+ <EntityType Name="Account" xyz:content-version="1">

+ <Entity Type Name="AccountAddress" xyz:content-version="1">

+ <EntityType Name="AccountAddressDE" xyz.content-version="1"> 306b
+ <EntityType Name="AccountAddressUS" xyz.content-version="1">

+ <EntityType Name="Order" xyz.content-version="1">

+ <EntityType Name="Orderltem" xyz:content-version="1">

+ <EntityType Name="0rderltemSearchResult" xyz:content-version=
+ <EntityType Name="OrderltemShipmentData" xyz:.content-version
+ <EntityType Name="QrderPartner" xyz.content-version="1">

+ <Association Name="0rderAccountRel" xyz.content-version="1">
+ <Association Name="AccountAddressRel" xyz.content-version="1">
+ <Association Name="0rderltemShipmentDataRel" xyz:content-ver

@ AI + <Association Name="0rderPartnerRel" xyz:content-version="1"> |_‘/- 308b

+ <Association Name="0rderltemRelPaged" xyz:content-version="1"

- <EntityContainer Name="ZTEST_GENIL_SAMPLE_REMOTE" m:IsDefa
<EntitySet Name="AccountCollection" Entity Type="ZTEST_GENIL 304
<EntitySet Name="AccountAddressCollection” EntityType="ZTES
<EntitySet Name="AccountAddressDECollection” EntityType="ZT
<EntitySet Name="AccountAddressUSCollection” EntityType="ZT
<EntitySet Name="OrderCollection" EntityType="ZTEST_GENIL_S
<EntitySet Name="0OrderltemCollection" EntityType="ZTEST_GEN
<EntitySet Name="0OrderltemSearchResultCollection" EntityTyp
<EntitySet Name="QrderltemShipmentDataCollection” EntityTy
<EntitySet Name="QrderPartnerCollection” EntityType="ZTEST_
+ <AssociationSet Name="AssocSet_OrderAccountRel" Association
+ <AssociationSet Name="AssocSet AccountAddressRel" Associati
+ <AssociationSet Name="AssocSet_OrderltemShipmentDataRel"
+ <AssociationSet Name="AssocSet_OrderPartnerRelPaged” Assoc
+ <AssociationSet Name="AssocSet OrderPartnerRel" Association=
+ <AssociationSet Name="AssocSet_OrderitemRelPaged" Associat
+ <AssociationSet Name="AssocSet_OrderltemRel" Association="Z
My <Functionimport Name="0rderQuery" ReturnType="ZTEST_GENIL_:
+ <Functionimport Name="OrderltemQuery2" ReturnType="ZTEST_ |
+ <FunctionImport Name="0rderltemQuery" ReturnType="ZTEST_G
@— — + <Functionimport Name="AdvOrderQuery" ReturnType="Collection |
| + <Functionimport Name="Order.renumberitems” ReturnType="Col |
@_ — + <FunctionImport Name="0rder.createFollowUp" ReturnType="Col |

_+ <runctionimport Mame="AccountQuery” ReturnType= ZTEST. GEN

</EntityContainer>

U.S. Patent Sep. 6, 2016 Sheet 5 of 12 US 9,436,362 B2

FIG. 4
GATEWAY SERVER
Odata-GenlL 402 |~ 160
408‘ ADAPTOR (OGA)
GRAPHICAL
USER
INTERFACE CLIENT
142

r- - - - - - - -=-"=—-=-==-= 1
| |
| L/ |
: PRESENTATION LAYER :
| 109 |
| |
| |
| |
| |
| WebClient USER |
| LAYERS LAYER LAYER (BOL) |
| 110 |
| GENERIC |
| INTERACTION

| LAYER (GenlL |
| (GenlL) 113 |
| |
| ! |
: APPLICATION :
| | BUSINESS SUITE PROGRAMMING 411 |
| APPLICATION INTERFACES (APIs) |
I LAYERS ENGINE |
| |
| 108 MEMORY i\ 107 |
| |
| |
| |

U.S. Patent

160

500

Sep. 6, 2016 Sheet 6 of 12 US 9,436,362 B2
| | ~140
CLIENT
FIG. 5 E OData
GATEWAY SERVER

113

METADATA INFRASTRUCTURE

SENE
SERVICE
REGISTRY

METADATA

ODATA

RUNTIME

METADATA COMPONENT 504b RUNTIME 504¢
COMPONENT

R D

COMMON
SERVICES

GENERIC

BUSINESS SUITE SERVER

502a 502¢ RUNTIME
402 504
S S f“::_%::—“ﬂ
I /ll_ GENERIC GenlL 7‘ OData-GenlL :_ GENERIC GenlL _'}\ }
. 506-"| MODELPROVIDER | ADAPTER(OGA) | DATAPROVIDER 508
. - - - _ _-°- - - - 1
FaY
RC RO 102
hY4 Vv

GENERIC INTERACTION LAYER (GenlL)

BUSINESS LOGIC

(BUSINESS DATA)

US 9,436,362 B2

Sheet 7 of 12

Sep. 6, 2016

U.S. Patent

—_—

719

4SNOdS3d
E1EQJ0 J40Ndd

0L9 TI0OW B1eQ0

1ONY1ISNQOD

€1ed0 OL FHNLONYELS

¢l9

T4AON Ld3ANOD

|
|
|
|
|
|
|
|
|
|
|
|
|
au
|
|
|
|
|
|
|
|
|
|
|
|
|

1300
11ueD V0T | 09
4 aNIOVE ANV T3AON
71ue9 ININY3IL3A 1Ol 1S3ND3I
ejeqo 31v¥93730 ANV
TIueD ¥O4 HIAIAOHd
VL1va 1T300W
ehl H3dOHd ININYILIA
TIuss)
¥IAINONd TIAON LNINOdWO?2
mr 1129 9I¥INTD VIVAVIIN
MIAYIS \
31INS SSANISNG 20t d3AYIS AVMALYD 709G
0l 091 9 Old

JSNOdS Y
SS300dd

@ 919

J

009

¢09

1400N
1S3N03

.

1IN3|'1O

Orl

US 9,436,362 B2

Sheet 8 of 12

Sep. 6, 2016

o) YL/

U.S. Patent

|
|
_ 4y, 2SNOdSTH
_ $S300Yd
| 0L JSNOdST
_ | ejedo YIANIY
80/ | [erego oL 3unLONYLS | |
_ V.1vQ LYIANOD _
NOILY¥3dO _ _
T1usD WHO4YAd _ | v0)
[NolLYNILS3@ aNavovE |
| ONY NOILYY3dO |
| 71U9D ININYALIA | 1101 1S3noaY
| || ereqo 3Lvoa130 NV
| 90/ ——{ Iu9D ¥O4 ¥3AINOYd
| | VLVa INILNNY 70/
cll _ _ ¥3dO¥d ANINYILIA
Lt _ _ VLVQ JNILNNX
| 43AINOYd VLYQ | LNINOJWOD 153n03d
_I 5 T1U99 DIYINIO | JNILNNY H
NETNEL
| 3unsssansng | | 0% d3NGIS AVMALYO V0S| IN3IMD
201 091 L O " Obl

U.S. Patent Sep. 6, 2016 Sheet 9 of 12 US 9,436,362 B2

FIG. 8

800

\‘ GATEWAY SERVER 160

GRAPHICAL
USER
INTERFACE CLIENT
142
202
rr————— —— -1 l/_ — 11
| |
| |
| PRESENTATION LAYER |
l 109 I
| |
| |
| wescionusex BUSINESS ORECT ;
' | INTERFACE CUSINESS Odata-GenlL |
LAYERS ADAPTOR
| LAYER |
(OGA)
: it :
| GENERIC 402 |
: INTERACTION :
| LAYER (GenlL) 3 |
| |
| |
: APPLICATION :
| | BUSINESS SUITE IN?E‘;EE@E“SMT: 111 |
| | APPLICATION (AP's) |
: LAYERS ENGINE :
- =
| |
| |
| |
L - - - - - - - - J

U.S. Patent Sep. 6, 2016 Sheet 10 of 12 US 9,436,362 B2

900
FIG. 9 ¥
160 GATEWAY SERVER
102 RO
Vv
402 BUSINESS SUITE
\l SERVER
e =1
:_ | OData CHANNEL ADD-ON 910
| GATEWAY |
| GenlL ADD-ON : RO O
| vV
| e H ! e m
| |
| |
| |
| |
| GENERIC |
| GATEWAY GenlL MODEL GenlL DATA |
| MODEL ANALYZER PROVIDER PROVIDER |
| |
L e e e e e e e I I I i
RO R(R(
AV 4 V Vv

GENERIC INTERACTION LAYER (GenlL)

BUSINESS LOGIC

BUSINESS DATA

US 9,436,362 B2

Sheet 11 of 12

Sep. 6, 2016

U.S. Patent

0101

13d0ON
11uS) avo'l

¢lO}

€1edo O1 Jd4NLoNydlLS
140N 14JANOD

13d0N TIU=9)

7101

AVM3LVO O1 V1VQ
1400W N¥NL3d

|
|
|
|
| ININH414d
| \ + H4dIAOMd T3d0N
| 001 U9 01 183NDIY
| =INDRERE[e)
| K
_ 9001
|
. _ ¥3AINOYd T30 NO-aav
| U9 DI¥ANIS) TINNYHO EledO
HIAHES 31INS SSANISNY
201 0Ol OIA

8101

ASNOdS3Y EIEQO 430N

400N E1edO 10NHLSNOD

N
9101

7001

NOILOINNOO ANIXOVE
ONV TINNVHO Eiedo
d1d0da INING4.L3d

+

w

® 0201

ISNOdS3
S§3004d

vy

1N3INOdWOD
ViVAVLIN

H3AEdS AVMILYO

- DEEE

091

%

0001

¢001

T300N
1S3N03Y

INJIMO

Ovl

US 9,436,362 B2

Sheet 12 of 12

Sep. 6, 2016

U.S. Patent

| | @ 8l
| |
| | oLl ISNOJSIY
| | SS300Yd
W _ L1 3SNOdS3Y
, _ €10 Y3ANTY |
7111 | AVMILYD 01
| v1va SSaNIsnd
| ——— | WHIEN
| | d

ObLL JHNLONYLS |
|| viva1¥3ANOD | |

NOI1VH3dO | 4 |

U89y WHO4Hdd | |
| NOILVY3dO |
B ERELENREIERE
| y /1 | ¥3aIn0Md vLVE vOLl
| U8 01 1S3NDIY
| 8011 | =INLERE NOILDANNOD
| a0l ANY TANNYHD
| | Elego ¥3dO¥d 7011
| | INWY3L30
" _ V1va JWILNNY

o8 | Y30A0MdVIVA NO-0QY ININONOD 153N03
| WeDONANID | TANNVHO eeao JNILNNY H
H3IAY3S LINS SSANISNG HIAYIS AVMILYD INTITD
201 thold 09h oL

00L1

US 9,436,362 B2

1

ODATA SERVICE PROVISIONING ON TOP
OF GENIL LAYER

CLAIM OF PRIORITY

This application claims priority under 35 U.S.C. §120 to
U.S. application Ser. No. 13/463,406, filed May 3, 2012 and
now 1ssued as U.S. Pat. No. 9,043,829 1ssued May 26, 2015;
and also claim priority under 35 U.S.C. §119 to Chinese
Patent Application No. 201210126439.X, filed Apr. 26,
2012, both disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

The present disclosure relates to computer-implemented
methods, software, and systems for allowing provisioning of
OData services on top of a GenlL layer.

BACKGROUND

Access to a business suite system 1s typically provided
through a custom graphical user interface which interfaces
with back-end business objects and data through a business
object layer using an associated generic interaction layer
(GenlL). With the rise 1n use of mobile computing and other
computing platforms, such as smart phones and tablet com-
puters, the use of open data protocol (OData) 1s becoming,
more prevalent. Allowing devices to access the business
suite system using OData has necessitated the development
of custom OData-GenlL interfaces. The development of the
custom OData-GenlL interfaces has resulted 1n a high cost
of development and maintenance for each OData-GenlL
interface and an overall higher total cost of ownership for the
business suite system.

SUMMARY

The present disclosure relates to computer-implemented
methods, software, and systems for allowing provisioning of
OData services on top of a GenlL layer. One computer-
implemented method includes receiving an OData-compli-
ant request for data, determining a GenlL data provider to
receive the OData-compliant request for data, determining
the memory location of the data, requesting the data from the
determined memory location, receiving the requested data
from the determined memory location, converting, using at
least one computer, the received data into an OData-com-
pliant format, rendering an OData-compliant response, and
transmitting the OData-compliant response.

Other implementations of this aspect include correspond-
ing computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to pertorm the actions of the methods. A system
of one or more computers can be configured to perform
particular operations or actions by virtue of having software,
firmware, hardware, or a combination of software, firmware,
or hardware 1nstalled on the system that 1n operation causes
or causes the system to perform the actions. One or more
computer programs can be configured to perform particular
operations or actions by virtue of including instructions that,
when executed by data processing apparatus, cause the
apparatus to perform the actions.

The {foregoing and other implementations can each
optionally include one or more of the following features,
alone or in combination. In particular, one implementation
can include all the following features:

10

15

20

25

30

35

40

45

50

55

60

65

2

In a first aspect, combinable with the general implemen-
tation, the OData-compliant request for data 1s for at least
one of an object model or object-model-associated runtime
data.

In a second aspect, combinable with any of the previous
aspects, the OData-compliant request for data 1s generated
pre-runtime.

In a third aspect, combinable with any of the previous
aspects, the object-model-associated runtime data 1s associ-
ated with an object model mapped from a GenlL-compliant
format to an OData-compliant format.

In a fourth aspect, combinable with any of the previous
aspects, the GenlL. data provider 1s for providing GenlL-
compliant data for at least one of an object model or runtime
data.

In a fifth aspect, combinable with any of the previous
aspects, the request for data from the determined memory
location 1s 1 a GenlL-compliant format.

A sixth aspect, combinable with any of the previous
aspects, includes constructing an OData object model from
the recerved data.

The subject matter described 1n this specification can be
implemented 1n particular implementations so as to realize
one or more of the following advantages. First, a generic
adaptor may be implemented to facilitate communication
between OData services and a GenlL interface communi-
cating with a back-end memory. Second, there 1s no need to
deploy any portion of the adaptor on the back-end memory.
Third, the generic adaptor 1s transparent to existing appli-
cations. Fourth, the generic adaptor supports object model
customization flexibility through the use of a vanety of
customizable OData-compliant tools. Other advantages will
be apparent to those skilled in the art.

The details of one or more implementations of the subject
matter of this specification are set forth 1n the accompanying,
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1llustrating an example system

for allowing provisioning of OData services on top of a
GenlL layer.

FIG. 2 1s a block diagram illustrating a client GUI
multi-tier architecture.

FIGS. 3A-3B illustrate an example of a mapping of an
object model from a GenlL-compliant format to an OData-
compliant format.

FIG. 4 1s a block diagram illustrating an updated client
GUI multi-tier architecture with a GenlL-OData adaptor
incorporated into a gateway server.

FIG. 5 1s a block diagram 1illustrating the architecture of
a gateway server including a GenlL-OData adaptor.

FIG. 6 1s a flow chart for mapping a requested object
model from a Genll. compliant format to an OData-com-
plhiant format with the GenlL-OData adaptor incorporated
into the gateway server.

FIG. 7 1s a flow chart for converting runtime data asso-
ciated with an object model mapped from a GenlL-compli-
ant format to an OData-compliant format with the GenlL-
OData adaptor incorporated into the gateway server.

FIG. 8 1s a block diagram illustrating an updated client
GUI multi-tier architecture with a GenlL-OData Adaptor
incorporated into the business suite server.

US 9,436,362 B2

3

FIG. 9 1s a block diagram illustrating the architecture of
the business suite server with an GenlL-OData Adaptor

incorporated within the business suite server.

FIG. 10 1s a flow chart for mapping a requested object
model from a GenlL-compliant format to an OData-com-
plhiant format with the GenlL-OData adaptor incorporated
into the business suite server.

FIG. 11 1s a flow chart for converting runtime data
associated with an object model mapped from a GenlL-
compliant format to an OData-compliant format with the
GenlL-OData adaptor incorporated into the business suite
SErver.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

The disclosure generally describes computer-imple-
mented methods, software, and systems for allowing provi-
sioning ol OData services on top of a GenlL layer. For the
purposes ol this disclosure, a business suite 1s a bundle of
business applications that provide integration of information
and processes, collaboration tools, industry-specific func-
tionality, and scalability. The business suite provides the
delivery of end-to-end business processes which span orga-
nizational boundaries such as business departments and
locations, integrates business partners such as customers,
suppliers, and service providers, and allows an organization
to align business plans, budgets, and operational reports.
With only a web browser, business suite users can begin
work once they have been authenticated, offering a single
point of access to information, functionality, and services.
The business suite may present information from diverse
sources 1n a unified and structured way, and provide addi-
tional services, such as dashboards, an internal search
engine, e-mail, news, navigation tools, and various other
teatures. The business suite 1s often used by enterprises to
providing their employees, customers, and possibly addi-
tional users with a consistent look and feel, and access
control and procedures for multiple applications, which
otherwise would have been separate enfities altogether.

Generally, through a graphical user interface (GUI), a
business suite user 1s provided with an eflicient and user-
friendly presentation of data provided by or communicated
within the system. The term “graphical user interface,” or
GUI, may be used in the singular or the plural to describe
one or more graphical user interfaces and each of the
displays of a particular graphical user interface. Therefore,
a GUI may represent any graphical user interface, including
but not limited to, a web browser, a touch screen, or a
command line iterface (CLI) that processes information
and efliciently presents the information results to the user. In
general, a GUI may include a plurality of user interface (UI)
elements, some or all associated with a web browser, such as
interactive fields, pull-down lists, and buttons operable by
the business suite user. These and other Ul elements may be
related to or represent the functions of the web browser.

FIG. 1 1illustrates an example distributed computing sys-
tem 100 operable to allow provisioning of OData services on
top of a GenlL layer. Specifically, the illustrated example
distributed computing system 100 includes or 1s communi-
cably coupled with an business suite server 102 and a client
140 that communicate across a network 130.

In general, the business suite server 102 1s a server that
stores one or more business applications 108, where at least
a portion of the business applications 108 are executed via
requests and responses sent to users or clients within and

10

15

20

25

30

35

40

45

50

55

60

65

4

communicably coupled to the 1llustrated example distributed
computing system 100. In some implementations, the busi-
ness suite server 102 may store a plurality of various
business applications 108. In other implementations, the
business suite server 102 may be a dedicated server meant
to store and execute only a single business application 108.
In some implementations, the business suite server 102 may
comprise a web server, where the business applications 108
represent one or more web-based applications accessed and
executed by the client 140 via the network 130 or directly at
the business suite server 102 to perform the programmed
tasks or operations of the business application 108.

At a high level, the business suite server 102 comprises an
clectronic computing device operable to recerve, transmit,
process, store, or manage data and information associated
with the example distributed computing system 100. Spe-
cifically, the business suite server 102 illustrated in FIG. 1 1s
responsible for receiving application requests, for example
business suite navigation requests, from one or more client
applications associated with the client 140 of the example
distributed computing system 100 and responding to the
received requests by processing said requests 1n the associ-
ated business application 108, and sending the approprate
response from the business application 108 back to the
requesting client application 146. In addition to requests
from the client 140, requests associated with the business
applications 108 may also be sent from internal users,
external or third-party customers, other automated applica-
tions, as well as any other appropriate entities, individuals,
systems, Oor computers.

As used in the present disclosure, the term “computer” 1s
intended to encompass any suitable processing device. For
example, although FIG. 1 illustrates a single business suite
server 102, environment 100 can be implemented using two
or more servers 102, as well as computers other than servers,
including a server pool. Indeed, business suite server 102
may be any computer or processing device such as, for
example, a blade server, general-purpose personal computer
(PC), Macintosh, workstation, UNIX-based workstation, or
any other suitable device. In other words, the present dis-
closure contemplates computers other than general purpose
computers, as well as computers without conventional oper-
ating systems. Further, 1llustrated business suite server 102
may be adapted to execute any operating system, including
Linux, UNIX, Windows, Mac OS, Java, Android, 10S or any
other suitable operating system. According to one 1mple-
mentation, business suite server 102 may also include or be
communicably coupled with an e-mail server, a web server,
a caching server, a streaming data server, and/or other
suitable server.

The business suite server 102 also includes an interface
104, a processor 106, and a memory 107. The intertace 104
1s used by the business suite server 102 for communicating
with other systems 1n a distributed environment—including
within the environment 100——connected to the network 130;
for example, the client 140, as well as other systems com-
municably coupled to the network 130 (not illustrated).
Generally, the interface 104 comprises logic encoded 1n
software and/or hardware 1n a suitable combination and
operable to communicate with the network 130. More spe-
cifically, the interface 104 may comprise software support-
Ing one or more communication protocols associated with
communications such that the network 130 or interface’s
hardware 1s operable to commumicate physical signals
within and outside of the illustrated example distributed
computing system 100.

US 9,436,362 B2

S

As illustrated 1n FIG. 1, the business suite server 102
includes a processor 106. Although illustrated as a single
processor 106 i FIG. 1, two or more processors may be
used according to particular needs, desires, or particular
implementations of the environment 100. Each processor
106 may be a central processing unit (CPU), a blade, an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), or another suitable compo-
nent. Generally, the processor 106 executes mstructions and
manipulates data to perform the operations of the business
suite server 102. Specifically, the processor 106 executes the
functionality required to receive and respond to requests
from the client 140 and/or allowing provisioning of OData
services on top of a GenlL layer.

Regardless of the particular implementation, “software”™
may 1include computer-readable instructions, firmware,
wired and/or programmed hardware, or any combination
thereol on a tangible medium (transitory or non-transitory,
as appropriate) operable when executed to perform at least
the processes and operations described herein. Indeed, each
software component may be fully or partially written or
described 1n any appropriate computer language including
C, C++, Objective C, Java, Visual Basic, assembler, Perl,
any suitable version of 4GL, as well as others. While
portions of the software illustrated in FIG. 1 are shown as
individual modules that implement the various features and
functionality through various objects, methods, or other
processes, the software may instead include a number of
sub-modules, third party services, components, libraries,
and such, as appropriate. Conversely, the features and func-
tionality of various components can be combined 1nto single
components as appropriate.

The business suite server 102 also includes a memory
107, or multiple memories 107. The memory 107 may
include any type of memory or database module and may
take the form of volatile and/or non-volatile memory includ-
ing, without limitation, magnetic media, optical media,
random access memory (RAM), read-only memory (ROM),
removable media, or any other suitable local or remote
memory component. The memory 107 may store various
objects or data, including caches, classes, frameworks,
applications, backup data, jobs, web pages, web page tem-
plates, database tables, repositories storing business and/or
dynamic imnformation, and any other appropriate information
including any parameters, variables, algorithms, instruc-
tions, rules, constraints, or references thereto associated with
the purposes of the business suite server 102. Additionally,
the memory 107 may include any other appropriate data,
such as VPN applications, firmware logs and policies, fire-
wall policies, a security or access log, print or other report-
ing files, as well as others. While memory 107 1s 1llustrated
as 1n mntegral component of the business suite server 102, 1n
alternative implementations memory 107 can be external to
the business suite server 102 and/or the example distributed
computing system 100.

The business suite server 102 further includes an appli-
cation programming intertace (API) 111. The API 111 may
include specifications for routines, data structures, and
object classes. The API 111 may be either computer lan-
guage independent or dependent and refer to a complete
interface, a single function, or even a set of APIs. In some
implementations, the API 111 can be used to interface
between the business application 108 and/or one or more
components of the business suite server or other components
of the example distributed computing system 100, both
hardware and software. For example, in one implementa-
tion, the business application 108 can utilize API 111 to

10

15

20

25

30

35

40

45

50

55

60

65

6

communicate with the client 140. Although the API 111 1s
shown as a stand-alone component within the business suite
server 102, there may be multiple other APIs 1n the example
distributed computing system 100 that are integrated into or
accessible by individual components, both hardware and
software.

The service layer 112 provides soltware services to the
example distributed computing system 100. The function-
ality of the business suite system may be accessible for all
service consumers via this service layer. Software services,
such as business suite navigation, provide reusable, defined
business functionalities through a defined interface. The
defined interface may be soltware written in extensible
markup language (XML) or other suitable language. While
illustrated as an integrated component of the business suite
server 102 1n the example distributed computing system
100, alternative implementations may illustrate the service
layer 112 as a stand-alone component 1n relation to other
components of the example distributed computing system
100. Moreover, any or all parts of the service layer 112 may
be implemented as child or sub-modules of another software
module or enterprise application (not illustrated) or of
another hardware module (not illustrated) without departing
from the scope of this disclosure.

The memory 107, 1.e., a back-end data system, holds data
for the business suite server 102. In some implementations,
the memory 107 includes a business object 114, business
object model 115, and business object model data 116.
Although 1llustrated as single instances, there may be more
than one 1nstance of the business object 114, business object
model 115, and business object model data 116.

The business object 114 can be considered a representa-
tion of an intelligible business/non-business entity, such as
an account, an order, employee, an mvoice, a financial
report, etc. The business object 114 may encompass both
functions, for example 1 the form of methods, and data,
such as one or more properties. For example, an account
business object 114 may have properties such as Name,
Priority, Value, etc. Business objects 114 may reduce system
complexity by reducing a system into smaller units. The
implementation details of business objects 114 are typically
hidden from a non-development user and may be accessed
through the defined functions and encapsulated data. Busi-
ness objects 114 also form a point of entry of the functions
and data of a system and enable the system to easily share,
communicate, display, or otherwise operate with other sys-
tems. A business object 114 may also be considered the
target of a request for data 1n a particular business suite, for
example through a web page, and may contain a view to be
displayed when the business object 114 1s accessed. In some
implementations, the business object 114 can control the
location of a selected view, personalized views for a specific
business suite user, and dynamic views. While illustrated as
integrated with memory 107 of the business suite server 102
in the example distributed computing system 100, in alter-
native implementations the business object 114 can be stored
external to the business suite server 102.

The business object model 115 1s a structured way of
representing relationships, associations, roles, etc. of busi-
ness objects 114 applicable to an organization. For example,
the business object model may be represented through the
use ol an entity-relationship diagram (ERD) or other suitable
diagram or descriptive method. An example a business
object model 115 for ProductSeller may include root busi-
ness objects 114 such as Account and Order, each of which
may contain theirr own methods, properties, and relation-
ships to other dependent objects in the business object model

US 9,436,362 B2

7

115. The root business objects 114 may also have associa-
tions with other dependent business objects 114. Examples
of a dependent object for the Account root business object
114 may include AccountAddressUS. Example dependent
objects for the Order rood business object 114 may include
OrderPartner and OrderltemShipmentData. While 1llus-
trated as integrated with memory 107 of the business suite
server 102 1n the example distributed computing system
100, in alternative implementations the business object
model 115 can be stored external to the business suite server
102.

The business object model data 116 1s data associated
with a specific instance of a business object 114. For
example, for the example AccountAddressUS dependent
object above, there may be properties Name, Title,
Address1, Address2, City, State, and PostalCode. Business
object data 116 would be the data associated with each
property, for example, Name="“XYZ, Inc.”,
Address1="12345 Any Street”, Address2="Suite ABC”,
City="Some City”, etc. In some implementations, the busi-
ness object model data 116 may include, among other things:
text, images, sounds, videos, and animations. While 1illus-
trated as integrated with memory 107 of the business suite
server 102 1n the example distributed computing system
100, in alternative implementations the business object
model data 116 can be stored external to the business suite
server 102.

Turning now to FIG. 2, FIG. 2 1s a block diagram 200
illustrating a clhient GUI multi-tier architecture 200. Access
to the business suite server 102, as indicated within dashed
line 202, 1s provided through a client 140 (described below),
for example a web browser or other suitable GUI application
interfacing with a user intertace (Ul) presentation layer 109
that further interfaces with an application programming,
interface (API) (not illustrated) provided by a business
objects layer (BOL) 110. From this point on, the presenta-
tion layer 109 and the business objects layer 110 will
collectively be reterred to as the BOL 110. The BOL 110
APIs provide a consistent interface for a GUI application to
access business objects 114 associated with the business
application 108.

Associated with the BOL 110 1s a generic interaction layer
(GenlL) 113 which provides a consistent interface for the

BOL 110 to access business application 108 business objects
114 through APIs 111 and for the business application 108

to return data to the client 140. At a high-level, GenlL 113
acts as a bridge between the client 140 and the business
application 108. Because of this architecture, the client 140
1s not affected by changes to the underlying business appli-

cation 108 business objects 114 as long as the BOL 110/
GenlL. 113/APIs 111 mterface(s) does not change. This
architecture also generally ensures that changes to a par-
ticular layer, API, etc. can also be 1solated from affecting
other layers, APIs, efc.

Open Data Protocol (OData) 1s a web protocol for que-
rying and updating data and allows for a user to request data
from a data source over the Hypertext Transter Protocol and
receive results back from the data source 1n formats such as
Atom Publishing Protocol (Atom), Javascript Object Nota-
tion (JSON), Extensible Markup Language (XML), etc. In
some 1mplementations, the request may be divided into
multiple segments. In some 1mplementations, the multiple
request segments may made and/or received concurrently
and/or 1 parallel. Mobile computing and other computing
platforms, such as smartphones and tablet computers, can
use OData and are an increasingly important method of
access to business suite mformation. To provide access to

10

15

20

25

30

35

40

45

50

55

60

65

8

the business suite server 102 using OData-compliant com-
puting platforms, an OData-GenlL Adaptor (OGA) 1s used
to at least provide pre-runtime object model mapping and
runtime conversion ol data associated with the mapped
object model.

In some implementations, the OGA can be implemented
as soltware and/or hardware and may include one or more
soltware and/or hardware modules to provide the pre-run-
time object model mapping and runtime conversion of data
SErvices.

Model Mapping,

Turning now to FIGS. 3A-3B, FIGS. 3A-3B illustrate an
example 300 of a pre-runtime mapping by the OGA of an
object model, for example the object model ProductSeller
described above, from a GenlL-compliant format 302, here
in an advanced business application programming (ABAP)
language, to an OData-compliant model 304, here in XML
as shown by the header “<?xml version="1.0”
encoding="utt-8” 7>, For example, 1 prior to runtime a
particular client 140 requests to view and/or edit the Prod-
uctSeller business object model 115, the OGA will convert
the GenlL-compliant model 302 retrieved from the memory
107 to an OData-compliant model 304 to transmit the
particular client 140. In the example conversion, the GenlL-
compliant model 302 “Root” objects are mapped to an
OData-compliant XML “EntityType” 3065b. Likewise, the
GenlL-compliant “Aggregation” relations 308a are mapped
to an OData-compliant XML “Association” 308b. As will be
apparent to one of ordinary skill, there are multiple possible
mappings apart from the examples shown. In some 1mple-
mentations, the mapping 1s done automatically, while in
other implementations, client 140 input through a GUI may
be required to complete the mapping. In some 1mplementa-
tions, the mapping can be bi-directional. In some 1mplemen-
tations, the GenlL-compliant model 302 and/or the OData-
compliant model 304 may be pre-processed and/or post-
processed as part of the mapping between the model
formats.

Conversion of Runtime Data

Once the object model has been mapped by the OGA, a
request by client 140 for runtime data associated with the
mapped object model will, at a high-level, be requested from
the memory 107, converted by the OGA from a GenlL
format, for example ABAP, to an OData-compliant format,
for example XML, and returned to the client 140. For
example, 1f a particular client 140 requests all orders from
accounts with Name="XYZ, Inc.” between January 1 to
March 31, a request 1s made by the OGA to memory 107 to
retrieve the applicable runtime data corresponding to the
mapped data model 304. The returned runtime data, if any,
1s converted from a GenlL-compliant format to an OData-
compliant format and returned to the client 140. In some
implementations, the conversion 1s done automatically,
while 1n other implementations, client 140 input through a
GUI may be required to complete the conversion. In some
implementations, the conversion 1s bi-directional. In some
implementations, the GenlL-compliant runtime data and/or
the OData-compliant runtime data may be pre-processed
and/or post-processed as part of the conversion. In some
implementations, runtime data can be requested and con-
verted prior to or in the absence of a mapping of a data
model. In some 1mplementations, requests for and/or pro-
cessing ol runtime data can be different depending upon
whether the runtime data 1s associated with a root object or
with a dependent object and/or single or multiple data sets
are requested. In some implementations, OData requests for
and/or processing of runtime data generated by client 140

US 9,436,362 B2

9

GUI actions, for example pressing a GUI button, selecting a
menu item, generating a navigation request, etc., can be
different depending upon the specific client 140 GUI action
and/or whether the client 140 GUI action calls a method
and/or generates a query/dynamic query.

The OGA may be implemented in various ways within the
example distributed computing system 100. In one imple-
mentation, the OGA can be incorporated into the gateway
server 160. In another implementation, the OGA can be
incorporated into the business suite server 102.

OData-Genll. Adaptor Incorporated mnto a Gateway
Server

Mobile computing platforms may access the business
suite server 102 through the gateway server 160. The
gateway server 160 provides a defined API and acts as an
interface/gateway between a client 140 and the business
suite server 102. In some implementations, the gateway
server 160 can communicate with clients 140 using OData
through hypertext transfer protocol (HTTP) or hypertext
transier protocol secure (HTTPS) requests. In some 1mple-
mentations, the gateway server can use a remote function
call (RFC) interface to communication with ABAP and/or
non-ABAP programs. In some implementations, the gate-
way server 160 can be stand-alone. In some 1mplementa-
tions, the gateway server 160 can be incorporated mto any
component of the example distributed computing system
100. In some implementations the gateway server may be a
hardware server, a software server, and/or a virtual server. In
some 1mplementations, the gateway server 160 can be part
of a web server, a streaming server, an RSS server, or other
suitable server.

Turning now to FIG. 4, FIG. 4 1s a block diagram 400
illustrating an updated client GUI multi-tier architecture
with the OGA 402 incorporated into the gateway server 160.
At a high-level, the gateway server 160 receives OData-
compliant requests from client 140 and using the OGA 402,
the gateway server 160 converts the OData-compliant
request mnto a GenlL-compliant request and communicates
the request to the BOL 110 using the GenlL 113. BOL 110
receives data responsive to the OData request from the
GenlL 113 and transmitted to the OGA 402. The OGA 402
converts the recerved data to OData-compliant data. The
gateway server 160 transmits the converted OData-compli-
ant data to the client 140. While FIG. 4 illustrates the OGA
402 as integrated with gateway server 160, 1n alternative
implementations, all or portions of the OGA 402 can be
implemented 1n other components of the example distributed
computing system 100 or the OGA 402 can interface with
the gateway server 106 as a stand-alone component.

Turning now to FIG. 5, FIG. 5 1s a block diagram 500
illustrating the architecture of the gateway server 160 and
the OGA 402 incorporated within the gateway server 160.
The gateway server 160 includes metadata component 502,
runtime component 304, and the OGA 402. The runtime
component 504 also determines which business add-in
(BADI) to use to load a requested object model from the
BOL 110. In some implementations, BADIs are supplied by
a client. In other implementations, BADIs are supplied by
the gateway server owner.

The metadata component 502 manages metadata 5024
within the gateway server 160. The metadata 502a describes
OData models that are exposed as OData service documents
and OData metadata documents. The metadata 502 may
contain references to object models. The metadata infra-
structure 5025 manages access to gateway server 160 con-
tent bases upon metadata 502qa, exposes the standardized
description of OData services by assembling OData service

10

15

20

25

30

35

40

45

50

55

60

65

10

documents and metadata documents from internal and exter-
nal sources. The service registry 5302¢ 1s a data store storing
a linkage between a particular OData service and an actual
implementation of the particular OData service.

The runtime component 504 analyzes and processes
requests from client 140. In some implementations, the
runtime component 504 embeds features such as automatic
logging and tracing, configuration-based routing, transaction
handling, etc. In some i1mplementations, some common
services 504¢ can be oflered using an API for reuse by an
OData runtime 504a. Examples of common services 504c¢
may include metering services for enabling usage-based
charging and push service notifications. The OData runtime
504a contains functionality required to exposes OData ser-
vices. The generic runtime 5045 processes protocol-agnostic
gateway server 160 content. The generic runtime 35045b
remains stateless between individual requests and access to
backend memories.

The OGA 402 includes a model provider for GenlL 506
and a business data provider for GenlL 508. The generic
GenlL model provider 506 transforms a GenlL-compliant
model to an OData-compliant model and vice versa. A
generic GenlL data provider 5308 connects with the GenlL
113 and reads/processes data associated with an object
model.

Turning now to FIG. 6, FIG. 6 1s a flow chart 600 for

mapping a requested object model from a GenlL-compliant
format to an OData-compliant format with the GenlL-OData
Adaptor incorporated into the gateway server. For clarnty of
presentation, the description that follows generally describes
method 600 1n the context of FIGS. 1, 4, and 5. However, 1t
will be understood that method 600 may be performed, for
example, by any other suitable system, environment, soit-
ware, and hardware, or a combination of systems, environ-
ments, soltware, and hardware as appropriate. For example,
one or more of the business suite server, the client, or other
computing device (not illustrated) can be used to execute
method 600 and obtain any data from the memory of the
client, the business suite server, or the other computing
device (not illustrated).

At 602, an OData-compliant request 1s made by a client
to a gateway server for an object model. From 602, method
600 proceeds to 604.

At 604, the metadata component of the gateway server
receives the client-initiated OData-compliant request. The
metadata component determines the proper model data
provider for GenlL and delegates the request to 1t. In some
implementations, the model data provider for GenlL can be
a BADI. The determined BADI requests the client-requested
object model from the OGA. From 604, method 600 pro-
ceeds to 606.

At 606, the OGA recerves the BADI-imtiated request for
the client-requested object model. The OGA determines the
client-requested object model and the location of the client-
requested object model at the business suite back-end
memory. The OGA requests the client-requested object
model from the GenllL with a GenlL-compliant request.
From 606, method 600 proceeds to 608.

At 608, the GenlL receives the OGA-1nitiated request for
the client-requested object model. The GenlL loads the
object model from the business suite server back-end
memory. The GenlL transmits the loaded object model to the
OGA. From 608, method 600 proceeds to 610.

At 610, the OGA recerves the GenlL-loaded object model
from the GenlL. The OGA converts the received object

US 9,436,362 B2

11

model to OData and transmits the OData to the metadata
component of the gateway server. From 610, method 600
proceeds to 612.

At 612, the metadata component of the gateway server
receives the OGA-converted OData from the OGA. The

metadata component of the gateway server constructs an
OData-compliant model from the received OData. From
612, method 600 proceeds to 614.

At 614, the metadata component of the gateway server
renders an OData-compliant response with the constructed
OData-compliant model. The metadata component transmits
the rendered OData-compliant response to the client. From
614, method 600 proceeds to 616.

At 616, the client receives the metadata-component-ren-
dered OData response containing the constructed OData
object model. The client processes the recerved OData
response. After 616, method 600 stops.

Turning now to FIG. 7, FIG. 7 1s a flow chart 700 for

converting runtime data associated with an object model
mapped from a GenlL-compliant format to an OData-
compliant format with the GenlL-OData Adaptor icorpo-
rated into the gateway server. For clarity of presentation, the
description that follows generally describes method 700 1n
the context of FIGS. 1, 4, and 5. However, 1t will be
understood that method 700 may be performed, for example,
by any other suitable system, environment, software, and
hardware, or a combination of systems, environments, soit-
ware, and hardware as appropriate. For example, one or
more of the business suite server, the client, or other
computing device (not illustrated) can be used to execute
method 700 and obtain any data from the memory of the
client, the business suite server, or the other computing
device (not illustrated).

At 702, an OData-compliant request 1s made by a client
to a gateway server for runtime data associated with an
object model. From 702, method 700 proceeds to 704.

At 704, the runtime component of the gateway server
receives the client-initiated OData-compliant request. The
runtime component determines the proper runtime data
provider for GenlL and delegates the request to it. In some
implementations, the runtime data provider for GenlL can be
a BADI. The determined runtime data provider for GenlL

requests the client-requested runtime data from the OGA.
From 704, method 700 proceeds to 706.

At 706, the OGA recerves the BADI-1imtiated request for
the client-requested runtime data. The OGA determines the
client-requested runtime data and the location of the client-
requested runtime data at the business suite back-end
memory. The OGA requests the client-requested runtime

data from the GenlL with a GenlL-compliant request. From
706, method 700 proceeds to 708.

At 708, the GenlL receives the OGA-1nitiated request for
the client-requested runtime data. The GenlL loads the
runtime data from the business suite server back-end
memory. The GenlL transmits the loaded runtime data to the

OGA. From 708, method 700 proceeds to 710.

At 710, the OGA receives the Genll.-loaded runtime data
from the GenlL. The OGA converts the received runtime
data to OData and transmits the OData to the runtime
component of the gateway server. From 710, method 700
proceeds to 712.

At 712, the runtime component ol the gateway server
renders an OData-compliant response with the constructed
OData-compliant runtime data. The runtime component
transmits the rendered OData-compliant response to the
client. From 712, method 700 proceeds to 714.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

At 714, the client receives the runtime-component-ren-
dered OData response containing the OData runtime data.
The client processes the received OData response. Alter 714,
method 700 stops.

OData-GenlL Adaptor Incorporated into a Business Suite
Server

Turning now to FIG. 8, FIG. 8 1s a block diagram 800
illustrating an updated client GUI multi-tier architecture
with the OGA 402 incorporated into the business suite server
102. At a high-level, the gateway server 160 receives
OData-compliant requests from client 140 and transmits the
OData-compliant request to the BOL 110. The OGA 402
converts the OData-compliant request into a GenlL-compli-
ant request and communicates the request to the BOL 110.
BOL 110 receives data responsive to the OData-compliant
request from the GenlL 113 and transmits the received data
to the OGA 402. The OGA 402 converts the recerved data to
OData-compliant data. The OData-compliant data 1s trans-
mitted to the gateway server 160 and from the gateway
server 160 the client 140. While FIG. 8 illustrates the OGA
402 as integrated with the business suite server 102, 1n
alternative implementations, all or portions of the OGA 402
can be implemented 1n other components of example dis-
tributed computing system 100 or the OGA 402 can inter-
face with the business suite server 102 as a stand-alone
component.

Turmning now to FIG. 9, FIG. 9 1s a block diagram 900
illustrating the architecture of the business suite server 102
with the OGA 402, as indicated within the dashed line, as
incorporated within the business suite server 102. The OGA
402 1ncludes a gateway service enablement tool 902, gate-
way GenlL model analyzer 904, GenlL. model provider 906,
and generic GenlL data provider 908.

The gateway service enablement tool 902 reads GenlL-
compliant/OData-Compliant model information, analyzes
the read information using the gateway Genll model ana-
lyzer 904, and generates a corresponding OData-compliant/
GenlL-compliant model, respectively. The generic GenlL
model provider 906 transforms a GenlL-compliant model to
an OData-compliant model and vice-versa. A generic GenlL
data provider 908 connects with the GenlL 113 and reads/
processes data associated with an object model. The OData
channel add-on 910 1s a gateway server 160 add-on for
backend memory enablement and provisioning allowing
OData channel development.

Turning now to FIG. 10, FIG. 10 1s a flow chart 1000 for
a mapping of a requested object model from a GenlL-
compliant format to an OData-compliant format with the
GenlL-OData Adaptor incorporated into the business suite
server. For clarity of presentation, the description that fol-
lows generally describes method 1000 in the context of
FIGS. 1, 8, and 9. However, 1t will be understood that
method 1000 may be performed, for example, by any other
suitable system, environment, software, and hardware, or a
combination of systems, environments, software, and hard-
ware as appropriate. For example, one or more of the
business suite server, the client, or other computing device
(not 1llustrated) can be used to execute method 1000 and
obtain any data from the memory of the client, the business
suite server, or the other computing device (not illustrated).

At 1002, an OData-compliant request 1s made by a client
to a gateway server for an object model. From 1002, method
1000 proceeds to 1004.

At 1004, the metadata component of the gateway server
receives the client-initiated OData-compliant request. The
metadata component determines the proper model data
provider for GenlL and delegates the request to 1t. In some

US 9,436,362 B2

13

implementations, the model data provider for GenlL can be
a BADI. The determined BADI requests the client-requested
object model from the OData channel add-on. From 1004,
method 1000 proceeds to 1006.

At 1006, the OData channel add-on receives the BADI-
initiated request for the client-requested object model and
torwards the request to the OGA. From 1006, method 1000
proceeds to 1008.

At 1008, the OGA determines the client-requested object
model and the location of the client-requested object model
at the business suite back-end memory. The OGA requests
the client-requested object model from the Genll with a
GenlL-compliant request. From 1008, method 1000 pro-
ceeds to 1010.

At 1010, the GenlL receives the OGA-1nitiated request for
the client-requested object model. The GenlL loads the
object model from the business suite server back-end

memory. The GenlL transmits the loaded object model to the
OGA. From 1010, method 1000 proceeds to 1012.

At 1012, the OGA receives the GenllL-loaded object
model from the GenlL. The OGA converts the receirved
object model to OData and transmits the OData to the OData
channel add-on. From 1012, method 1000 proceeds to 1014.

At 1014, the OData channel add-on transmits the OData
to the metadata component of the gateway server. From
1014, method 1000 proceeds to 1016.

At 1016, the metadata component of the gateway server
receives the OGA-converted OData from the OData channel
add-on. The metadata component of the gateway server
constructs an OData-compliant model from the received
OData. From 1016, method 1000 proceeds to 1018.

At 1018, the metadata component of the gateway server
renders an OData-compliant response with the constructed
OData-compliant model. The metadata component transmits
the rendered OData-compliant response to the client. From
1018, method 1000 proceeds to 1020.

At 1020, the client receives the metadata-component-
rendered OData response containing the constructed OData
object model. The client processes the recerved OData
response. After 1020, method 1000 stops.

Turning now to FIG. 11, FIG. 11 1s a tlow chart 1100 for
converting runtime data associated with an object model
mapped from a GenlL-compliant format to an OData-
compliant format with the GenlLL-OData Adaptor incorpo-
rated into the business suite server. For clarity of presenta-
tion, the description that follows generally describes method
1100 1n the context of FIGS. 1, 8, and 9. However, it will be
understood that method 1100 may be performed, for
example, by any other suitable system, environment, soit-
ware, and hardware, or a combination of systems, environ-
ments, soltware, and hardware as appropnate. For example,
one or more of the business suite server, the client, or other
computing device (not illustrated) can be used to execute
method 1100 and obtain any data from the memory of the
client, the business suite server, or the other computing
device (not illustrated).

At 1102, an OData-compliant request 1s made by a client
to a gateway server for runtime data associated with an
object model. From 1102, method 1100 proceeds to 1104.

At 1104, the runtime component of the gateway server
receives the client-initiated OData-compliant request. The
runtime component determines the proper runtime data
provider for GenlL and delegates the request to 1t. In some
implementations, the runtime data provider for GenlL can be
a BADI. The determined runtime data provider for GenlL
requests the client-requested runtime data from the OData

channel-add-on. From 1104, method 1100 proceeds to 1106.

10

15

20

25

30

35

40

45

50

55

60

65

14

At 1106, the OData channel add-on receives the BADI-
initiated request for the client-requested runtime data from
the gateway server runtime component. The OData channel
add-on delegates the request to the OGA. From 1106,
method 1100 proceeds to 1108.

At 1108, the OGA determines the client-requested run-
time data and the location of the client-requested runtime
data at the business suite back-end memory. The OGA
requests the client-requested runtime data from the GenlL
with a GenlL-compliant request. From 1108, method 1100
proceeds to 1110.

At 1110, the GenlL receives the OGA-1nitiated request for
the client-requested runtime data. The GenlL loads the
runtime data from the business suite server back-end

memory. The GenlL transmits the loaded runtime data to the
OGA. From 1110, method 1100 proceeds to 1112.

At 1112, the OGA receives the Genll.-loaded runtime data
from the GenlL. The OGA converts the received runtime
data to OData and transmits the OData to the OData channel
add-on. From 1112, method 1100 proceeds to 1114.

At 1114, the OData channel add-on returns the OData to
the runtime component of the gateway server. From 1114,
method 1100 proceeds to 1116.

At 1116, the runtime component of the gateway server
renders an OData-compliant response with the constructed
OData-compliant runtime data. The runtime component
transmits the rendered OData-compliant response to the
client. From 1116, method 1100 proceeds to 1118.

At 1118, the client receives the runtime-component-ren-
dered OData response containing the OData runtime data.
The client processes the received OData response. After
1118, method 1100 stops.

Returning to FIG. 1, the illustrated example distributed
computing system 100 also includes the client 140, or
multiple clients 140. The client 140 may be any computing
device operable to connect to or communicate with at least
the business suite server 102 via the network 130 using a
wireline or wireless connection. In general, the client 140
comprises an electronic computer device operable to
receive, transmit, process, and store any appropriate data
associated with the example distributed computing system
100.

The 1llustrated client 140 further includes a client appli-
cation 146. The client application 146 1s any type of appli-
cation that allows the client 140 to request and view content
on the client 140. In some implementations, the client
application 146 can be and/or include a web browser. In
some 1mplementations, the client-application 146 can use
parameters, metadata, and other information received at
launch to access a particular set of data from the server 102.
Once a particular client application 146 i1s launched, a user
may interactively process a task, event, or other information
associated with the business suite server 102. Further,
although 1illustrated as a single client application 146, the
client application 146 may be implemented as multiple
client applications in the client 140.

The illustrated client 140 further includes an interface
152, a processor 144, and a memory 148. The mterface 152
1s used by the client 140 for communicating with other
systems 1n a distributed environment—including within the
example distributed computing system 100—connected to
the network 130; for example, the business suite server 102,
as well as other systems communicably coupled to the
network 130 (not illustrated). Generally, the interface 1352
comprises logic encoded 1n software and/or hardware 1n a
suitable combination and operable to communicate with the
network 130. More specifically, the interface 152 may

US 9,436,362 B2

15

comprise solftware supporting one or more communication
protocols associated with communications such that the
network 130 or interface’s hardware 1s operable to commu-
nicate physical signals within and outside of the example
distributed computing system 100.

As 1llustrated in FIG. 1, the client 140 includes a proces-
sor 144. Although illustrated as a single processor 144 1n
FIG. 1, two or more processors may be used according to
particular needs, desires, or particular implementations of
the example distributed computing system 100. Each pro-
cessor 144 may be a central processing unit (CPU), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), or another suitable compo-
nent. Generally, the processor 144 executes nstructions and
manipulates data to perform the operations of the client 140.
Specifically, the processor 144 executes the functionality
required to send requests to the business suite server 102 and
to receive and process responses from the business suite
server 102.

Further, the 1llustrated client 140 includes a GUI 142. The
GUI 142 mterfaces with at least a portion of the example
distributed computing system 100 for any suitable purpose,
including generating a visual representation of a web
browser. In particular, the GUI 142 may be used to view and
navigate various web pages located both internally and
externally to the business suite server 102.

The 1llustrated client 140 also includes a memory 148, or
multiple memories 148. The memory 148 may include any
memory or database module and may take the form of
volatile or non-volatile memory 1ncluding, without limita-
tion, magnetic media, optical media, random access memory
(RAM), read-only memory (ROM), removable media, or
any other suitable local or remote memory component. The
memory 148 may store various objects or data, including
caches, classes, frameworks, applications, backup data,
business objects, jobs, web pages, web page templates,
database tables, repositories storing business and/or
dynamic mformation, and any other appropriate information
including any parameters, variables, algorithms, instruc-
tions, rules, constraints, or references thereto associated with
the purposes of the client 140. Additionally, the memory 148
may include any other appropriate data, such as VPN
applications, firmware logs and policies, firewall policies, a
security or access log, print or other reporting files, as well
as others.

There may be any number of clients 140 associated with,
or external to, the example distributed computing system
100. For example, while the illustrated example distributed
computing system 100 includes one client 140, alternative
implementations of the example distributed computing sys-
tem 100 may include multiple clients 140 communicably
coupled to the business suite server 102 and/or the network
130, or any other number suitable to the purposes of the
example distributed computing system 100. Additionally,
there may also be one or more additional clients 140 external
to the 1llustrated portion of the example distributed comput-
ing system 100 that are capable of interacting with the
example distributed computing system 100 via the network
130. Further, the term “client” and ‘“‘user” may be used
interchangeably as appropriate without departing from the
scope of this disclosure. Moreover, while the client 140 1s
described 1 terms of being used by a single user, this
disclosure contemplates that many users may use one com-
puter, or that one user may use multiple computers.

The illustrated client 140 1s mtended to encompass any
computing device such as a desktop computer, laptop/
notebook computer, wireless data port, smart phone, per-

10

15

20

25

30

35

40

45

50

55

60

65

16

sonal data assistant (PDA), tablet computing device, one or
more processors within these devices, or any other suitable
processing device. For example, the client 140 may com-
prise a computer that includes an input device, such as a
keypad, touch screen, or other device that can accept user
information, and an output device that conveys information
associated with the operation of the business suite server 102
or the client 140 itself, including digital data, visual infor-
mation, or a GUI 142, as shown with respect to the client
140.
Although this disclosure discusses an adaptor providing
an interface between OData and GenlL, as will be appreci-
ated by one of ordinary skill 1n the art, the adaptor may be
adapted to provide an interface between any suitable com-
munication protocols and/or data formats without departing
from the spirit of the disclosure.
The preceding figures and accompanying description
illustrate example processes and computer implementable
techniques. But example distributed computing system 100
(or its soltware or other components) contemplates using,
implementing, or executing any suitable technique for per-
forming these and other tasks. It will be understood that
these processes are for illustration purposes only and that the
described or similar techniques may be performed at any
appropriate time, including concurrently, individually, 1n
parallel, and/or in combination. In addition, many of the
steps 1n these processes may take place simultaneously,
concurrently, 1n parallel, and/or i diflerent orders than as
shown. Moreover, example distributed computing system
100 may use processes with additional steps, fewer steps,
and/or different steps, so long as the methods remain appro-
priate. Process steps may also be executed and described
soltware/services may also execute on various components
of example distributed computing system 100 so long as the
methods remain appropriate.
In other words, although this disclosure has been
described in terms of certain implementations and generally
associated methods, alterations and permutations of these
implementations and methods will be apparent to those
skilled 1n the art. Accordingly, the above description of
example implementations does not define or constrain this
disclosure. Other changes, substitutions, and alterations are
also possible without departing from the spirit and scope of
this disclosure.
What 1s claimed 1s:
1. A computer-implemented method, comprising;:
recerving an open data protocol (OData)-compliant
request for data, wherein the OData-compliant request
for data 1s for at least one of an object model or
object-model-associated runtime data, wherein the
object-model-associated runtime data 1s associated
with an object model mapped from a generic interac-
tion layer (GenlL)-compliant format to an OData-
compliant format, and wherein the request 1s processed
by a generic runtime component that remains stateless
between individual OData-compliant requests for data
and access to determined memory locations of the data;

determiming, using at least one computer, a GenlL data
provider to recerve the OData-compliant request for
data;

recerving the data from a determined memory location;

and

transmitting a rendered OData-compliant response based

on the received data.

2. The computer-implemented method of claim 1, com-
prising converting, using at least one computer, the recerved
data into an OData-compliant format.

US 9,436,362 B2

17

3. The computer-implemented method of claim 1,
wherein the OData-compliant request for data 1s generated
pre-runtime.

4. The computer-implemented method of claim 1, com-
prising rendering the OData-compliant response.

5. The computer-implemented method of claim 1,
wherein the GenlL data provider 1s for providing GenlL-
compliant data for at least one of an object model or runtime
data.

6. The computer-implemented method of claim 1,
wherein the request for data from the determined memory
location 1s 1n a GenlL-compliant format.

7. The computer-implemented method of claim 1, further
comprising constructing an OData object model from the
received data.

8. A computer-program product, the computer program
product comprising computer-readable nstructions embod-
ied on tangible, non-transitory media, the mnstructions oper-
able when executed to perform operations to:

receive an open data protocol (OData)-compliant request

for data, wherein the OData-compliant request for data
1s for at least one of an object model or object-model-
associated runtime data, wherein the object-model-
associated runtime data 1s associated with an object
model mapped from a generic interaction layer (Ge-
nllL)-compliant format to an OData-compliant format,
and wherein the request 1s processed by a generic
runtime component that remains stateless between 1ndi-
vidual OData-compliant requests for data and access to
determined memory locations of the data;

determine a GenlL data provider to receive the OData-

compliant request for data;

receive the data from a determined memory location;

and

transmit a rendered OData-compliant response based on

the recerved data.

9. The computer-program product of claim 8, further
comprising one or more instructions to convert the received
data into an OData-compliant format.

10. The computer-program product of claim 8, wherein
the OData-compliant request for data 1s generated pre-
runtime.

11. The computer-program product of claim 8, further
comprising one or more instructions to render the OData-
compliant response.

12. The computer-program product of claim 8, wherein
the GenlL data provider provides GenlL-compliant data for
at least one of an object model or runtime data.

13. The computer-program product of claim 8, wherein
the request for data from the determined memory location 1s
in a GenlL-compliant format.

14. The computer-program product of claim 8, further
comprising one or more mstructions to construct an OData
object model from the received data.

15. A system, comprising;

a computer memory operable to store at least one of object

model or object-model-associated runtime data; and

10

15

20

25

30

35

40

45

50

55

18

at least one hardware processor interoperably coupled to
the computer memory and configured to:
receive an open data protocol (OData)-compliant
request for data, wherein the OData-compliant
request for data 1s for at least one of an object model
or object-model-associated runtime data, wherein
the object-model-associated runtime data 1s associ-
ated with an object model mapped from a generic
interaction layer (GenlL)-compliant format to an
OData-compliant format, and wherein the request 1s
processed by a generic runtime component that
remains stateless between individual OData-compli-
ant requests for data and access to determined
memory locations of the data;
determine a GenlL data provider to receive the OData-
compliant request for data;
receive the data from a determined memory location;
and
transmit a rendered OData-compliant response based
on the received data.
16. The system of claim 15, further configured to convert
the receitved data into an OData-compliant format.
17. The system of claim 13, wherein the OData-compliant
request for data 1s generated pre-runtime.
18. The system of claim 15, further configured to render
the OData-compliant response.
19. The system of claim 135, wherein the GenlL data
provider provides GenlL-compliant data for at least one of
an object model or runtime data.
20. The system of claim 15, further configured to con-
struct an OData object model from the received data.
21. A computer-implemented method, comprising:
recerving an open data protocol (OData)-compliant
request for data, wherein the request 1s processed by a
generic runtime component that remains stateless
between 1individual OData-compliant requests for data
and access to determined memory locations of the data,
wherein the OData-compliant request for data 1s gen-
crated pre-runtime and 1s for at least one of an object
model or object-model-associated runtime data, and
wherein the object-model-associated runtime data 1s
associated with an object model mapped from a generic
interaction layer (GenlL)-compliant format to an
OData-compliant format;

determiming a GenlL data provider to receive the OData-
compliant request for data wherein the GenlL data
provider provides GenlL-compliant data for at least one
of an object model or runtime data;

recerving the data from a determined memory location,

wherein a request for the data from the determined
memory location 1s 1 a GenlL-compliant format;
and

transmitting a rendered OData-compliant response based

on the received data converted 1into an OData-compli-
ant format.

	Front Page
	Drawings
	Specification
	Claims

