US009432445B1

a2 United States Patent (10) Patent No.: US 9.432.445 B1

Leonard 45) Date of Patent: Aug. 30, 2016
(54) SYSTEM AND METHOD OF MAINTAINING 2005/0089053 Al 4/2005 Zhu
AN ENQUEUE RATE OF DATA MESSAGES 2006/0106960 A1 5/2006 Hickson et al
INTO A SET OF QUEUES 20060146711 Al 72006 Anbatani
1 drani
: _ : . e 2006/0212367 Al 9/2006 Gross
(71) Applicant: Sprint Communications Company 2008/0013452 Al* 1/2008 Goetzinger HOA4L. 12/5693
L.P.,, Overland Pal'k,, KS (IJS) 370/235
2013/0195108 Al1* 8/2013 Hucoooevvveiiinnnn., GOG6F 9/546
(72) Inventor: Mark D. Leonard, Olathe, KS (US) 370/392
2013/0290513 Al1* 10/2013 Shikart GO6F 9/546
(73) Assignee: Sprint Communications Company 709/224
(*) Notice: SUbjeCt_ to any disclaimer) the term of this Duchovni, Victor, “Postfix Bottleneck Analysis”, Dec. 25, 2006. 9
patent 1s extended or adjusted under 35 pages.
U.S.C. 154(b) by 584 days. Duchovni, Victor, “QSHAPE(1)”, Oct. 27, 2007. 2 pages.
Venema, Wietse, “QMGR(8)”, Oct. 17, 2007. 6 pages.
(21) Appl. No.: 13/897,220 Pre-Interview Communication dated Aug. 9, 2011, U.S. Appl. No.
) Filed Mav 17. 2013 12/132,416, filed Jun. 3, 2008.
(22) Tiled; R (Continued)
(51) Int. CL
HO4L 29/06 (2006.01) Primary Examiner — Kevin Bates
HO4L 29/08 (2006.01) Assistant Examiner — Nazia Naoreen
(52) U.S. CL
CPC e HO4L 67/10 (2013.01) (57) ABSTRACT
(58) Field of Classification Search A system comprises a component which receives an nitial
CPC e, HO4L 67/10 - . .
USPC 709/215 status message, from a primary queue manager, comprising,
S T PP TS . a rate of data messages moving into a primary queue. The
See application file for complete search history. . .
component detects that a primary queue rate 1s below a
(56) References Cited predetermined range based on the received initial status
message. The component increases the weight of the pri-
U.S. PATENT DOCUMENTS mary queue 1n response to detecting that the primary queue
. rate provided by the imitial status message 1s below the
7,782,885 Bl 8/2010 Sabato HOAL %,%5/223 predetermined range. The component receives a subsequent
8,196,151 Bl 6/2012 T.eonard status message, from the primary queue manager, compris-
8,397,244 B2* 3/2013 Surlaker GO6F 9/546 ing the rate of data messages moving into the primary queue.
C 630065 B1* 19014 An HO47ng/7 3/5’521 The component detects that the primary queue has a rate
B PET e 714/4 1 below the predetermined range based on the recerved sub-
2003/0231593 Al* 12/2003 Bauman H04L 29/06 sequent status message. The component activates a second-
) 370/235 ary queue in response to detecting that the primary queue
2004/0117794 AL* 6/2004 Kundu ..o GOﬁ,;F 12?? 8; rate provided by the subsequent status message is below the
2004/0215998 Al 10/2004 Buxton et al. predetermined range.
2004/0244007 Al* 12/2004 Garza GO6F 9/5083
718/105 20 Claims, 4 Drawing Sheets

300

,

Recelving, by a cluster server repository, an initial status

302 — | message, from a primary queuc manager, comprising the
engueue rate of data messages moving mto & primary queue of
the primary quene manager,

|

104 Detecting, by the cluster server repositary, that the primary
] queue has an enqueve rate below a predetermined rangs based
on the received initial status message.

'

Increasing, by the cluster server repository. a weight of the
306 | primary queue m response to detecting that the enqueue rate of
the primary quene provided by the initial status message is
below the predetermined range.

v

Eecaiving, by the cluster server repository, a subseguent status
8) 2,

"] message, from the primary quene manager, comprising the
enquews rate of data messages moving into the primary queue,

y

310 Dctecting, by the cluster scrver repository, that the primary
T queus has an enqueue rate below the predetermined range based
on the received subsequent stains message.

!

Activating, by the cluster server repositary, a secondary queus
312 | of a secondary queue manager in response to detecting that the
enqueus rate of the primary queus provided by the subsequent
status message 15 below the predetermined range.

US 9,432,445 B1
Page 2

(56) References Cited Leonard, Mark D., “System and Method of Calculating and Report-

ing of Messages Expiring From a Queue,” filed Mar. 13, 2013, U.S.
Appl. No. 13/802,325.

OTHER PUBLICATTONS First Action Interview Office Action dated Nov. 10, 2015, U.S. Appl.
No. 13/802,325, filed Mar. 13, 2013.

First Action Interview Office Action dated Oct. 11, 2011, U.S. Appl. Final Office Action dated Feb. 11,2016, U.S. Appl. No. 13/802,325,

No. 12/132,416, filed Jun. 3, 2008. filed Mar. 13, 2013.
Notice of Allowance dated Feb. 9, 2012, U.S. Appl. No. 12/132.,416, Advisory Action dated Apr. 26, 2016, U.S. Appl. No. 13/802,325,
filed Jun. 3, 2008. filed on Mar. 13, 2013.

Pre-Interview Communication dated Jun. 15, 2015, U.S. Appl. No.
13/802,325, filed Mar. 13, 2013. * cited by examiner

U.S. Patent

| User Interface 102 |

Aug. 30, 2016 Sheet 1 of 4

100

1st Front End
Application 108

v

Front End Server 104

2nd Front End
Application 110

Front End 1*' Front End
Application Queue Application
Manager 142 Queue 144

200

Cluster Server Repository
Component 116

/

US 9,432,445 B1

2" Front End
Application Queue
146

1st Primary Server 202

1st Queue
Manager 212

18t Queue 213

2nd Queue 214

1st Secondary Server 252

6th Queue Manager
262

2nd Primary Server 204 11th Queue 265

2nd Queue Manager
216

12th Queue 264

3rd Primary Server 206

3rd Queue
Manager 220

5th Queue 221

6th Queue 222

3rd Queue 217 3rd Secondary Server 256

8th Queue Manager

4th Queue 218 270)

15th Queue 271

4th Primary Server 208

4th Queue Manager
224

16th Queue 272

5th Primary Server 210

5th Queue
Manager 228

Uth Queue 229

10th Queue 230

7th Queue 225

10th Queue Manager

8th Queue 226 278

5th Secondary Server 260

19th Queue 279

Z2nd Secondary Server 254

7/th Queue Manager
266

13th Queue 267

14th Queue 268

4th Secondary Server 258

9th Queue Manager
274

17th Queue 275

18th Queue 276

20th Queue 280

1% Back End Application 112

Back End Server 106

 J

2"4 Back End Application 114

FIG. 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 4 US 9.432.,445 B1

300

(o > (

Recelving, by a cluster server repository, an initial status
302 message, from a primary queue manager, comprising the

cnqueue rate of data messages moving into a primary queue of
the primary queuc manager.

304 Detecting, by the cluster server repository, that the primary
queue has an enqueue rate below a predetermined range based

on the received 1nitial status message.

!

Increasing, by the cluster server repository, a weight of the

306 primary queue in response to detecting that the enqueue rate of
the primary queue provided by the 1itial status message 1S
below the predetermined range.

'

308 Recerving, by the cluster server repository, a subsequent status
message, from the primary queue manager, comprising the
enqueue rate of data messages moving into the primary queue.

310 Detecting, by the cluster server repository, that the primary
queue has an enqueue rate below the predetermined range based
on the recerved subsequent status message.

Activating, by the cluster server repository, a secondary queue

312 of a seccondary queue manager in response to detecting that the
enqueue rate of the primary queue provided by the subsequent
status message 1S below the predetermined range.

FIG. 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 4 US 9.432.,445 B1

Recelving, by a cluster server repository, an initial status

402 message, from a primary queue manager, comprising the
enqueue rate of data messages moving into a primary queue of
the primary queuc manager.

404 Detecting, by the cluster server repository, that the primary
queue has an enqueuce rate above a predetermined range based
on the received initial status message.

Decreasing, by the cluster server repository, the enqueue rate of

406 the primary queue 1n response to detecting that the enqueue rate
of the primary queue provided by the initial status message 1s
above the predetermined range.

408 Receiving, by the cluster server repository, a subsequent status
message, from the primary queue manager, comprising the
enqueue rate of data messages moving into the primary queue.

Detecting, by the cluster server repository, that the primary
queue has an enqueue rate within the predetermined range while
the weight of the primary queue 1s below a threshold, wherein
detecting 1s based on the received subsequent status message.

410

Activating, by the cluster server repository, a secondary queuc
412 of a secondary queue manager 1n response to detecting that the

enqueue rate of the primary queue 1s within the predetermined

range while the capacity of the primary quecue 1s below the

threshold.

FIG. 3

U.S. Patent Aug. 30, 2016 Sheet 4 of 4 US 9.432.,445 B1

33

0\
384 Secondary CPU
Storage

382
390

338

392

FIG. 4

US 9,432,445 Bl

1

SYSTEM AND METHOD OF MAINTAINING
AN ENQUEUE RATE OF DATA MESSAGES
INTO A SET OF QUEUES

CROSS-REFERENCE TO RELATED
APPLICATIONS

None.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENC.

(L]

10 A MICROFICHE APPENDIX

Not applicable.

BACKGROUND

Large business enterprises typically include computer
systems that may be monitored to analyze performance
elliciencies, such as for system optimization or error detec-
tion purposes. Examples of such systems are mainframe and
personal computer networks, which may include queues for
handling message requests. Message queues typically
receive, process, and forward requests for information and
services. Message queuing 1s a method of application-to-
application communication, such as communication
between an application that services a user and an applica-
tion that retrieves data from a database. Applications may
communicate by writing and reading application-specific
data, or messages, to and from queues, without having a
dedicated synchronous link between the applications. Mes-
saging means that applications communicate with each other
by sending discrete amounts of data in messages to some
intermediary, and not necessarily by calling each other
directly. Queuing implies that applications communicate
through queues, which may remove the requirement for both
the sending application and the receiving application to
execute concurrently and/or synchronously. In other words,
the sending and recei1ving of messages 1s asynchronous, and
there 1s typically no time dependency between sending and

receiving, except that which may be imposed by the appli-
cations themselves.

SUMMARY

In some embodiments, a computer readable storage
medium 1s provided. The computer readable storage
medium comprising a cluster server repository component
stored as a set of computer instructions executable by a
processor. The cluster server repository component 15 con-
figured to receive an 1nitial status message, from a primary
queue manager, comprising the enqueue rate of data mes-
sages moving into a primary queue ol the primary queue
manager. The cluster server repository component 1s con-
figured to detect that the primary queue has an enqueue rate
below a predetermined range based on the received initial
status message. Additionally, the cluster server repository
component 1s configured to increase the weight of the
primary queue in response to detecting that the enqueue rate
of the primary queue provided by the 1nitial status message
1s below the predetermined range. Furthermore, the cluster
server repository component 1s configured to receive a
subsequent status message, from the primary queue man-
ager, comprising the enqueue rate of data messages moving

10

15

20

25

30

35

40

45

50

55

60

65

2

into the primary queue. The cluster server repository com-
ponent 1s also configured to detect that the primary queue
has an enqueue rate below the predetermined range based on
the received subsequent status message. Additionally, the
cluster server repository component 1s configured to activate
a secondary queue of a secondary queue manager 1n
response to detecting that the enqueue rate of the primary
queue provided by the subsequent status message 1s below
the predetermined range.

In some embodiments, a method 1s provided for main-
taining an enqueue rate of data messages 1nto a set of queues.
The method comprises receiving, by a cluster server reposi-
tory, an 1nitial status message, from a primary queue man-
ager, comprising the enqueue rate of data messages moving
into a primary queue of the primary queue manager. The
method additionally comprises detecting, by the cluster
server repository, that the primary queue has an enqueue rate
below a predetermined range based on the received initial
status message. The method further comprises increasing, by
the cluster server repository, a weight of the primary queue
in response to detecting that the enqueue rate of the primary
queue provided by the iitial status message 1s below the
predetermined range. The method also comprises receiving,
by the cluster server repository, a subsequent status message,
from the primary queue manager, comprising the enqueue
rate of data messages moving nto the primary queue. The
method further comprises detecting, by the cluster server
repository, that the primary queue has an enqueue rate below
the predetermined range based on the received subsequent
status message. The method additionally comprises activat-
ing, by the cluster server repository, a secondary queue of a
secondary queue manager in response to detecting that the
enqueue rate of the primary queue provided by the subse-
quent status message 1s below the predetermined range.

In some embodiments, a method 1s provided for main-
taining an enqueue rate of data messages 1nto a set of queues.
The method comprises receiving, by a cluster server reposi-
tory, an initial status message, from a primary queue man-
ager, comprising the enqueue rate of data messages moving
into a primary queue of the primary queue manager. The
method additionally comprises detecting, by the cluster
server repository, that the primary queue has an enqueue rate
above a predetermined range based on the recerved initial
status message. The method further comprises decreasing,
by the cluster server repository, the enqueue rate of the
primary queue in response to detecting that the enqueue rate
of the primary queue provided by the mnitial status message
1s above the predetermined range. The method also com-
prises receiving, by the cluster server repository, a subse-
quent status message, from the primary queue manager,
comprising the enqueue rate of data messages moving nto
the primary queue. The method further comprises detecting,
by the cluster server repository, that the primary queue has
an enqueue rate within the predetermined range while the
weight of the primary queue 1s below a threshold, wherein
detecting 1s based on the received subsequent status mes-
sage. The method additionally comprises activating, by the
cluster server repository, a secondary queue of a secondary
queue manager in response to detecting that the enqueue rate
of the primary queue 1s within the predetermined range

while the weight of the primary queue 1s below the thresh-
old.

These and other features will be more clearly understood
from the following detailed description taken 1n conjunction
with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, reference 1s now made to the following brief descrip-

US 9,432,445 Bl

3

tion, taken 1n connection with the accompanying drawings
and detailed description, wherein like reference numerals

represent like parts.

FIG. 1 1s a block diagram of a system according to an
embodiment of the disclosure.

FIG. 2 1s a flow chart of a method according to an
embodiment of the disclosure.

FIG. 3 1s a flow chart of a method according to an
embodiment of the disclosure.

FIG. 4 1s a block diagram of a computer system according,
to an embodiment of the disclosure.

DETAILED DESCRIPTION

It should be understood at the outset that although 1llus-
trative implementations of one or more embodiments are
illustrated below, the disclosed systems and methods may be
implemented using any number of techmiques, whether
currently known or not yet i existence. The disclosure
should 1n no way be limited to the illustrative implementa-
tions, drawings, and techniques illustrated below, but may be
modified within the scope of the appended claims along with
their full scope of equivalents.

In an embodiment, a system 1s disclosed for maintaining,
a rate ol data messages communicating from one or more
front end applications from a front end queue 1n a front end
server, through a cluster of queues, and to one or more back
end applications from a back end server. Generally, as
messages move through the cluster of primary queues, they
may move according to a distribution system. The distribu-
tion system may distribute messages through particular
primary queues of the cluster, for example depending on the
message destinations as well as to maintain a predetermined
rate among each primary queue of the queue cluster. Gen-
crally, when a rate of messages tflowing into a primary queue
(1.e. enqueue rate) increases or decreases, the distribution
system may adjust the weights of one or more primary
queues and/or the enqueue rate of messages going nto one
or more primary queues. Occasionally, one or more primary
queues may not respond to adjustments to the weights and/or
the enqueue rate or do not respond as mtended. In this case,
it may have been determined that those primary queues
which do not respond to adjustments have failed or are at
least not able to run as intended. Previously, the distribution
system may have adjusted the remaining primary queues of
the cluster to compensate for the lost capacity of the non-
responsive primary queue. Thus, after each primary queue
became nonresponsive, reliance and stress may have
increased on the remaining primary queues creating a poten-
t1al domino-eflect so that eventually (and maybe quickly) all
of the primary queues became nonresponsive. Only when
the last primary queue would become nonresponsive, would
a cluster of secondary queues activate to accommodate the
loss 1n message flow from the front end servers to the back
end servers. Conversely, the present system may activate
individual secondary queues of the secondary cluster after
one or more primary queues fail to respond to adjustments
rather than wait until the last primary queue becomes
nonresponsive. This may allow the remaining functioming
primary queues to maintain their enqueue rate(s) when one
or more primary queues fails to function properly and/or
becomes nonresponsive. Additionally, the burden on main-
tenance personnel may be reduced to fewer primary
queue(s) by reducing the likelihood of the domino-eil

ect.
The cluster of queues generally may comprise a primary

set of queues and a secondary set of queues. The system may

comprise a cluster server repository component which moni-

10

15

20

25

30

35

40

45

50

55

60

65

4

tors data message flow, for example, the enqueue rate (1.c.
the rate that data messages move 1nto a queue), directs which
queues recerve the data messages, and controls the weights
(e.g. vary the capacity of a queue so that a queue operating
at full capacity may be able to handle receiving a quantity of
messages per unit of time, while the same queue at half
capacity may be able to handle receiving only half the
quantity of messages per the same unit of time) of the
primary and secondary queues. During operation, the pri-
mary queues may receive data messages from a front end
server. Primary queue managers associated with the primary
queues may distribute the data message through the primary
queues using the cluster server repository component as a
guide. The secondary queues may remain inactive while the
primary queues are active. However, 1n the event that a
primary queue fails, one or more secondary queues may be
activated by the cluster server repository component. The
cluster server repository component may then direct the
queue manager associated with a front end queue as well as
the other primary queue managers which have functionming
queues to direct data messages to the activated secondary
queue. In an embodiment, the cluster server repository
component may also direct the queue manager to deactivate
the failed queue.

The cluster server repository component may also deter-
mine when a primary queue has failed so that 1t knows when
to activate a secondary queue. The primary queue managers
may send status messages to the cluster server repository
component providing information to the cluster server
repository component such as the enqueue rate and/or the
weight of one or more primary queues. In an embodiment,
the cluster server repository component may have stored the
proper enqueue rates and weights for each primary queue
and may determine based on a received status message that
a primary queue 1s receiving data messages at an enqueue
rate below a predetermined range. The cluster server reposi-
tory may increase the weight of the primary queue in order
to 1ncrease the enqueue rate of messages moving to the
primary queue. Subsequently, the cluster server repository
component may receive another message from the queue
manager providing information that the primary queue 1s
still receiving data messages at an enqueue rate below the
predetermined range. At this point, the cluster server reposi-
tory component may determine that the primary queue has
falled. The cluster server repository component may then
activate a secondary queue and instruct the front end appli-
cation queue manager and/or the other queue managers of
the functioning primary queue to redirect data messages
from the failed primary queue to the activated secondary
queue.

In an embodiment, the cluster server repository compo-
nent may have stored the proper enqueue rates and weights
for each primary queue and may determine based on a
received status message that a primary queue 1s receiving,
data messages at an enqueue rate above a predetermined
range while the primary operates within a proper range of
predetermined weights. The cluster server repository may
decrease the enqueue rate of messages moving into the
primary queue. Subsequently, the cluster server repository
component may receive another message from the queue
manager providing information that the primary queue 1s
receiving data messages at an enqueue rate within the
predetermined range, but the primary queue 1s also operating
at a weight below the proper range of predetermined
weilghts. At this point, the cluster server repository compo-
nent may determine that the primary queue has failed. The
cluster server repository component may then activate a

US 9,432,445 Bl

S

secondary queue and 1nstruct the front end application queue
manager and/or the other queue managers of the functioning
primary queue to redirect data messages from the failed
primary queue to the activated secondary queue.

A message queue system may be implemented using a
message queue software, also known as a message-oriented
middleware, and may be located 1n a network or data center
component, such as at a server or other computer hardware
component (e.g., a network mterface card (NIC)). The
message queue system may comprise one or more message
queues that store a plurality of messages, and may be
managed by a queue manager application. A message queue
may be an object, e.g., a software based data structure 1n a
memory component, that stores the messages. The message
queue may store messages sent from, for example, applica-
tion(s) prior to delivering or transmitting the messages to a
receiving component or after receiving the messages from a
transmitting component 1n a network or data center. Mes-
sages sent to the receiving component and/or a receiving
application may be called received messages. Messages may
be requested and/or removed from the queue by a receiving,
application. Messages may comprise collections of binary or
character data, e.g., American Standard Code for Informa-
tion Interchange (ASCII) or Extended Binary Coded Deci-
mal Interchange Code (EBCDIC) characters. The data may
be interpreted by an application or program and/or used by
hardware to implement a function. The messages may also
comprise communications protocols, storage, routing, and/
or delivery information, which may be added to the mes-
sages before transmission and removed from the messages
alter receiving the messages or prior to delivering the
messages to a receiving application.

FIG. 1 1s a block diagram that illustrates a system 100 for
maintaining an enqueue rate of data message into a set of
queues according to some embodiments of the present
disclosure. The system 100 may include a user interface 102,
a front end server 104, a back end server 106, a cluster server
repository component 116, and a cluster server system 200.
The user mterface 102 enables a user of the system 100 to
view information requested from the back end server 106 via
the front end server 104 and/or to control execution of the
front end server 104. The front end server 104 may execute
front end applications, such as the first front end application
108 and the second front end application 110, which can
request data from back end applications 112 and 114
executed by the back end server 106.

Messages, such as data requests made by the first front
end application 108 and/or the second front end application
110, can travel through a plurality of cluster servers systems,
such as cluster server system 200 before reaching the first
back end application 112 and/or the second back end appli-
cation 114. The cluster server system 200 may comprise a
plurality of primary servers 202, 204, 206, 208, and 210 and
a plurality of secondary servers 252, 254, 256, 258, and 260.
Generally, as will be discussed further herein, queues of
secondary server(s) may back-up queues of primary
server(s) so that 11 one or more queue(s) of one or more
primary server(s) do not function as intended and/or fail, one
or more queue(s) ol one or more secondary server(s) may be
activated to make up for the deficiencies and/or failures of
the queue(s) of the primary server(s). The primary servers
202,204, 206, 208, and 210 implement queue managers 212,
216, 220, 224, and 228 and queues 213, 214, 217, 218, 221,
222, 225, 226, 229, and 230 that enable the front end
applications 108 and 110 to communicate with the back end
applications 112 and 114 by message queuing, such that a
dedicated synchronous link between the front end applica-

10

15

20

25

30

35

40

45

50

55

60

65

6

tions 108 and 110 and the back end applications 112 and 114
1s not required. The secondary servers 252, 254, 256, 258,
and 260 implement queue managers 262, 266, 270, 274, and
278 and queues 263, 264, 267, 268, 271, 272, 275, 276, 279,
and 280 that enable the front end applications 108 and 110
to communicate with the back end applications 112 and 114
by message queuing, such that a dedicated synchronous link
between the front end applications 108 and 110 and the back
end applications 112 and 114 is not required. The queues

213, 214, 217, 218, 221, 222, 225, 226, 229, 230, 263, 264,
267, 268, 271, 272, 275, 276, 279, and 280 may be for
example, International Business Machines (IBM) Message
Queuing (MQ) Series message queues, Java® Message
Service (JIMS) queues, or other message services queues
known to one of ordinary skill in the art that may be
employed.

The primary servers 202, 204, 206, 208, and 210 and/or
the secondary servers 252, 254, 256, 258, and 260 may be
associated with a plurality of networks or data center com-
ponents, such as network nodes, routers, or data center
computer systems. The primary servers and/or secondary
servers may comprise memory components that host the
applications and associated objects or data structures, and
processing components that process the applications and
objects. Some primary servers and/or secondary servers may
also be located on the same component, such as at least some
of the primary servers 202, 204, 206, 208, and 210 and/or the
secondary servers 252, 254, 256, 258, and 260. For example,
the cluster of primary servers 202, 204, 206, 208, and 210
and/or the cluster of secondary servers 252, 254, 256, 258,
and 260 may be a plurality of NICs 1n a server rack at a data
center. Queue managers 212, 216, 220, 224, and 228 may be
applications hosted in the primary servers that manage the
corresponding queues. Queue managers 262, 266, 270, 274,
and 278 may be applications hosted in the secondary servers
that manage the corresponding queues. While the compo-
nents are represented as communicating via arrows, it 1s
understood that all the components may communicate via a
communication network provided by one or more private
networks, one or more public networks, or a combination
thereof.

Each primary server 202, 204, 206, 208, and 210 may
include one or more queue managers 212, 216, 220, 224, and
228 to determine whether messages received are intended
for one of the primary server’s queues or intended to be
temporarily stored and subsequently forwarded to another
server’s queues. For example, a first primary server 202 may
comprise a first queue manager 212, a second primary server
204 may comprise a second queue manager 216, a third
primary server 206 may comprise a third queue manager
220, a fourth primary server 208 may comprise a fourth
queue manager 224, and a fifth primary server 210 may
comprise a fifth queue manager 228. Fach of the queue
managers 212, 216, 220, 224, and 228 may be configured to
manage a transmission queue and a local queue, an 1nbound
queue and an outbound queue, or any other types of queues.
For example, the first queue manager 212 may manage a first
queue 213 and a second queue 214, the second queue
manager 216 may manage a third queue 217 and a fourth
queue 218, the third queue manager 220 may manage a fifth
queue 221 and a sixth queue 222, the fourth queue manager
224 may manage a seventh queue 2235 and an eighth queue
226, and the fifth queue manager 228 may manage a ninth
queue 229 and a tenth queue 230. The queue managers 212,
216, 220, 224, and 228 may be located separately on the
servers 202, 204, 206, 208, and 210, or any combination of
the queue managers 212, 216, 220, 226, and 228 may be

US 9,432,445 Bl

7

located on any of the servers 202, 204, 206, 208, and 210.
Furthermore, the queues 213, 214, 217, 218, 221, 222, 225,

226, 229, and 230 may be located 1n separate pairs on the
servers 202, 204, 206, 208, and 210, 1n any combination on
any of the servers 202, 204, 206, 208, and 210, or on other

servers which are not pictured.

Each of the queue managers 212, 216, 220, 224, and 228
may be configured to detect and record the enqueue rate of
messages moving 1nto the queues as well as detect and
record the weight of the queues (e.g. weight may be pro-
vided as a percentage of maximum weight, as percentage of
the maximum enqueue rate that the primary queue 1s capable
of handling, and/or the like). In an embodiment, a separate
application server may comprise a one or more application
which the enqueue rate of message moving 1nto the queues
and/or count the quantity of messages moving into the
queues. The separate application server may transmit the
enqueue rates and/or the quantity of message moving into

the queues to the queue managers. The queue managers 212,
216, 220, 224, and 228 may be configured to send status

messages comprising the enqueue rate and/or the weight of
the queue(s) to, for example the cluster server repository
component 116, and receive commands from, for example
the cluster server repository component 116, directing the
queue managers 212, 216, 220, 224, and 228 to increase the

weight and/or decrease the weight of the queues 213, 214,
217, 218, 221, 222, 225, 226, 229, and 230, activate the

queues 213, 214, 217, 218, 221, 222, 225, 226, 229, and 230,
and/or deactivate the queues 213, 214, 217, 218, 221, 222,
225, 226, 229, and 230. The queues managers 212, 216, 220,
224, and 228 may also be configured to communicate with
cach other, the cluster server repository component 116, the
queue managers 262, 266, 270, 274, and 278, and/or the one
or more additional queue managers.

Similar to the primary cluster servers, each secondary
server 252, 254, 256, 258, and 260 may include one or more
queue managers 262, 266, 270, 274, and 278 to determine
whether messages received are intended for one of the
secondary server’s queues or intended to be temporarily
stored and subsequently forwarded to another server’s
queues. For example, a first secondary server 252 may
comprise a sixth queue manager 262, a second secondary
server 254 may comprise a seventh queue manager 266, a
third secondary server 256 may comprise a eighth queue
manager 270, a fourth secondary server 258 may comprise
a minth queue manager 274, and a fifth secondary server 260
may comprise a tenth queue manager 278. Each of the queue
managers 262, 266, 270, 274, and 278 may manage a
transmission queue and a local queue, an 1nbound queue and
an outbound queue, or any other types of queues. For
example, the sixth queue manager 262 may manage an
cleventh queue 263 and a twelith queue 264, the seventh
queue manager 266 may manage a thirteenth queue 267 and
a fourteenth queue 268, the eighth queue manager 270 may
manage a {ifteenth queue 271 and a sixteenth queue 272, the
ninth queue manager 274 may manage a seventeenth queue
275 and an eighteenth queue 276, and the tenth queue
manager 278 may manage a nineteenth queue 279 and a
twentieth queue 280. The queue managers 262, 266, 270,
274, and 278 may be located separately on the servers 252,
254, 256, 258, and 260, or any combination of the queue
managers 262, 266, 270, 274, and 278 may be located on any
of the servers 252, 254, 256, 258, and 260. Furthermore, the
queues 263, 264, 267, 268, 271, 272, 275, 276, 279, and 280
may be located 1n separate pairs on the secondary servers
252, 254, 256, 258, and 260, 1n any combination on any of

5

10

15

20

25

30

35

40

45

50

55

60

65

8

the secondary servers 252, 254, 256, 2358, and 260, or on
other servers which are not pictured.

Each of the queue managers 262, 266, 270, 274, and 278
may be configured to detect and record the enqueue rate of
messages moving 1nto the queues as well as detect and
record the weight of the queues. The queue managers 262,
266, 270, 274, and 278 may be configured to send status
messages comprising the enqueue rate and/or the weight of
the queue(s) to, for example, the cluster server repository
component 116, and receive commands from, for example,
the cluster server repository component 116, directing the
queue managers 262, 266, 270, 274, and 278 to increase the

weight and/or decrease the weight of the queues 263, 264,
267, 268, 271, 272, 275, 276, 279, and 280, activate the

queues 263, 264, 267,268, 271,272, 275,276, 279, and 280,
and/or deactivate the queues 263, 264, 267, 268, 271, 272,
275,276,279, and 280. The queues managers 262, 266, 270,
274, and 278 may also be configured to commumnicate with
cach other, cluster server repository component 116, the
queue managers 212, 216, 220, 224, and 228, and/or the one
or more additional queue managers. Additionally, the sec-
ondary servers 252, 254, 256, 258, and 260 with queues 263,
264, 267, 268, 271, 272, 275, 276, 279, and 280 may be
configured as back-up servers with back-up queues so that 1f
one or more (primary) queue(s) 213, 214, 217, 218, 221,
222, 225, 226, 229, and 230 do not function as intended
and/or fail, one or more (secondary) queue(s) 263, 264, 267,
268, 271, 272, 275, 276 279, and 280 may be activated to
make up for the deficiencies and/or failures of the (primary)
queue(s) 213, 214, 217, 218, 221, 222, 225, 226 229, and
230.

The front end server 104 may have a front end application
queue manager 142 that manages a first front end application
queue 144 and a second front end application queue 146 and
determines where a message will be 1nitially sent to com-
municate with the back end applications 112 and 114. For
example, the front end application queue manager 142 may
send a first message from the first front end application
queue 144 for the first front end application 108 to the first
queue 213, which may be referred to as the first transmission
queue 213. The first queue manager 212 may evaluate
messages recetved on the first transmission queue 213, and
determine whether each message can be serviced locally by
the second queue 214, which may be referred to as the first
local queue 214, or needs to be forwarded to another queue.
In this example, the first queue manager 212 may take the
first message from the first transmission queue 213 and put
the first message on the first local queue 214, which makes
the message directly available to the first back end applica-
tion 112. Subsequently, the first back end application 112
may check the first local queue 214 for messages that can be
serviced locally, and provide the data requested by the
message. After the first back end application 112 provides
the data requested by the message, the first queue manager
212 may transfer the message from the first local queue 214
back to the first transmission queue 213. The first transmis-
sion queue 213 may return the message with the requested
data back to the first front end application queue 144 for the
first front end application 108.

In another example, the front end application queue
manager 142 may send a second message from the front end
application queue 144 for the second front end application
110 to the first transmission queue 213. If the first queue
manager 212 determines that the message cannot be serviced
locally by the first local queue 214, the first queue manager
212 may forward the message in the first transmission queue
213 to another queue. The first queue manager 212 may

US 9,432,445 Bl

9

forward the message to a transmission queue associated with
a local queue that directly services the message or to a
transmission queue that forwards the message on to yet
another transmission queue. The local queue that directly
services the message may be referred to as the destination
queue for the message. Continuing this example, the first
queue manager 212 may forward the message to the third
queue 217, which may be referred to as the second trans-
mission queue 217.

The second queue manager 216 evaluates messages
received on the second transmission queue 217, and deter-
mines whether each message can be serviced locally by the
fourth queue 218, which may be referred to as the second
local queue 218, or needs to be forwarded to another
transmission queue. If the second queue manager 216 deter-
mines that the message can be serviced locally by the second
local queue 218, the second queue manager 216 transiers the
message from the second transmission queue 217 to the
second local queue 218. If the second local queue 218 15 a
queue that 1s serviced by the second back end application
114, the second local queue 218 may be the destination
queue for the message. Subsequently, the second back end
application 114 may check the second local queue 218 for
messages that can be serviced locally, and provides the data
requested by the message. After the second back end appli-
cation 114 provides the data requested by the message, the
second queue manager 216 may transier the message with
the data from the second local queue 218 back to the second
transmission queue 217. The second transmission queue 217
then returns the message with the requested data back to the
first front end application queue 144 for the second front end
application 110.

The front end application queue manager 142 may moni-
tor the sequence in which the front end application queue
manager 142 sends messages to the primary servers 202,
204, 206, 208, and 210, and use this sequence to load
balance and distribute the messages appropriately between
the servers 202, 204, 206, 208, and 210 over time. For
example, load balancing may comprise distributing message
to queues according to one or more algorithms. For example,
il a first queue 1s recerving messages at a specified enqueue
rate, a queue manager may look to see 1f there 1s one or more
additional queues (e.g. by inquiring partial repositories)
which are under the same identification (e.g. name) as the
first queue and distribute messages to the additional
queue(s).

Furthermore, queue managers may examine the weight-
ings of queues and distribute messages to the one or more of
the queues based on their weights. The front end application
queue manager 142 may perform other functions known to
one skilled in the art. The system 100 may also comprises a
cluster server repository component 116, which may be an
application that monitors message queue data 1n the system
100, e.g., to monitor the enqueue rate of messages moving
into and/or out of a queue. Although depicted as separate
from the servers 202, 204, 206, 208, 210, 252, 254, 256, 258,
and 260, the cluster server repository component 116 can be
executed anywhere 1n the system 100. The numbers of user
interfaces, management components, front end servers, clus-
tered servers, back end servers, queue managers, and queues
in the system 100 are depicted in FIG. 1 for the purpose of
an 1llustrative example, as the system 100 can include any
number of user interfaces, management components, front
end servers, clustered servers, back end servers, queue
managers, and queues. In some embodiments, a front end
server or a back end server may also comprise a queue
manager and one or more corresponding queues.

10

15

20

25

30

35

40

45

50

55

60

65

10

The cluster server repository component 116 may be
configured to transmit one or more command messages to
primary queue managers, secondary queue managers, and/or
front end application queue managers to adjust the enqueue
rate(s) of messages moving into one or more particular
queues. For example, the cluster server repository compo-
nent 116 may transmit a command message to the front end
application queue manager 142 and/or the first queue man-
ager 212 directing that the enqueue rate of messages moving
into the first queue 213 and/or the second queue 213 be
decreased. The cluster server repository component 116 may
transmit a command message to the front end application
queue manager 142 and/or one or more other queue man-
agers directing that the enqueue rate of messages moving
into one or more other queues (e.g. queues on other primary
servers and/or queues on secondary servers) be increased,
for example, to offset the reduction in the enqueue rate of
messages moving nto the first queue 213 and/or the second
queue 214.

The cluster server repository component 116 may be
configured to transmit one or more command messages to
primary queue managers, secondary queue managers, and/or
front end application queue managers to adjust the weight of
one or more particular queues. For example, the cluster
server repository component 116 may transmit a command
message to the first queue manager 212 directing that the
weight of the first queue 213 and/or the second queue 213 be
decreased. The cluster server repository component 116 may
transmit a command message to one or more other queue
managers directing that the weight of one or more other
queues (e.g. queues on other primary servers and/or queues
on secondary servers) be increased, for example, to oflset the
reduction 1n weight of the first queue 213 and/or the second
queue 214.

The cluster server repository component 116 may be
configured to activate and/or deactivate one or more queues
on a primary server and/or a secondary server. For example,
the cluster server repository component 116 may transmit a
deactivation message to the first queue manager 212 of the
first primary server 202 directing that the first queue 213
and/or the second queue 214 be deactivated. The cluster
server repository component 116 may also transmit an
activation message to the sixth queue manager 262 of the
first secondary server 252 directing that the eleventh queue
263 and/or the twelfth queue 264 be activated to make up for
the lost enqueue rate of message moving into the deactivated
first queue 213 and/or the deactivated second queue 214.
The cluster server repository component 116 may receive

and monitor the enqueue rate of messages moving into
and/or out of queues and/or servers, such as any of the
queues 1n the servers 202, 204, 206, 208, 210, 252, 254, 256,
2358, and 260. For example, applications, such as the first
front end application 108 and the second front end applica-
tion 110, may transmit a plurality of messages to a server,
such as the first primary server 202. The first queue manager
212 of the first primary server 202 may distribute the
messages to first queue 213 and/or the second queue 214, to
generate a response to the message by a processor, for
example a processor of a backend server. While the mes-
sages move mnto the server 202, the first queue 213, and/or
the second queue 214, the first queue manager 212 may
detect and/or record the enqueue rate of messages moving
into the first queue 213 and/or second queue 214. The first
queue manager 212 may also detect and/or record the weight
of the first queue 213 and/or the weight of the second queue

US 9,432,445 Bl

11

214 at the same and/or similar time when the enqueue rate
of the first queue 213 and/or the second queue 214 was
recorded.

The first queue manager 212 may detect and/or record the
enqueue rates of messages moving 1nto the first queue 213
and/or second queue 214 and/or the weights of the first
queue 213 and/or the second queue 214 continuously and/or
at time 1ntervals, such as about once every 10 seconds, about
once every 20 seconds, about once every 30 seconds, about
once every 40 seconds, about once every 50 seconds, about
once every minute, about once every two minutes, about
once every three minutes, about once every four minutes,
about once every five minutes, about once every six minutes,
about once every seven minutes, about once every eight
minutes, about once every nine minutes, about once every
ten minutes, about once every 12 minutes, about once every
15 minutes, about once every 18 minutes, about once every
20 minutes, about once every 25 minutes, about once every
30 minutes, and/or the like.

After the first queue manage 212 detects and records the
enqueue rates of messages moving 1nto the first queue 213
and/or the second queue 214 and/or the weight of the first
queue 213 and/or the second queue 214, the first queue
manager 212 may transmit one or more status messages to
the cluster server repository component 116 comprising the
enqueue rate(s) of messages moving into the first queue 213
and/or the second queue 214 and/or the weight(s) of the first
queue 213 and/or the second queue 214. Status messages
may be transmitted from the first queue manager 212 and
received by the cluster server repository component 116
continuously as the first queue manager detects and/or
records the enqueue rates of messages moving into the first
queue 213 and/or second queue 214 and/or the weight(s) of
the first queue 213 and/or the second queue 214. In an
embodiment, status messages may be transmitted from the
first queue manager 212 and received by the cluster server
repository component 116 at time intervals similar to the
time intervals that the first queue manager 212 detects and/or
records the enqueue rates of messages moving into the first
queue 213 and/or second queue 214 and/or the weights of
the first queue 213 and/or the second queue 214. In an
embodiment, status messages may be transmitted and/or
received by the cluster server repository component 116 at
and/or near the same time the first queue manager 212
detects and/or records the enqueue rates of messages moving
into the first queue 213 and/or second queue 214 and/or the
weights of the first queue 213 and/or the second queue 214.
Additionally, in an embodiment, first queue manager 212
may also transmit one or more messages, for example 1n the
same message with enqueue rate(s) and/or the weight(s),
comprising the maximum and/or minimum operating
weights of the first queue 213 and/or the second queue 214,
as well as, the maximum and/or minimum operating
enqueue rates of messages moving into the first queue 213
and/or the second queue 214. Alternatively and/or addition-
ally, the cluster server repository component 116 may have
stored the maximum and/or minimum operating weights of
the first queue 214 and/or the second queue 214, as well as,
the maximum and/or minimum operating enqueue rates of
messages moving into the first queue 213 and/or the second
queue 214 so that the first queue manager 212 may not have
to provide that information in a status message to cluster
server repository component 116.

While the previous example discloses the first queue
manager 212 detecting and/or recording the enqueue rate(s)
of messages moving into the first queue 213 and/or the
second queue 214 and/or the weight(s) of the first queue 213

10

15

20

25

30

35

40

45

50

55

60

65

12

and/or the second queue 214, 1t should be understood that
messages may also be moving into the third queue 217
and/or the fourth queue 218 of the second primary server
204, the fifth queue 221 and/or the sixth queue 222 of the
third primary server 206, the seventh queue 225 and/or the
cighth queue 226 of the fourth primary server 208, and/or

the ninth queue 229 and/or the tenth queue 230 of the fifth
primary server 210 at the substantially the same time. Thus,
cach of the queue managers of the primary servers may be
detecting and/or recording the enqueue rates of messages
moving into the queues of the primary servers and/or the
weights of the queues of the primary servers. Similarly, each
of the queue managers of the primary servers may be
transmitting one or more status messages to the cluster
server repository component 116 comprising the enqueue
rates ol messages moving into the queues of the primary
servers and/or the weight(s) of the queues of the primary
servers. In an embodiment, the queue managers of the
primary servers may also transmit one or more messages
comprising the maximum and/or minimum operating
weilghts of the queues of the primary servers, as well as, the
maximum and/or minimum operating enqueue rates of mes-
sages moving into the queues of the primary servers. Alter-
natively and/or additionally, the cluster server repository
component 116 may have stored the maximum and/or mini-
mum operating weights of the queues of the primary servers,
as well as, the maximum and/or mimmum operating
enqueue rates of messages moving into the queues of the
primary servers so that the queue managers of the primary
servers may not have to provide that information 1n a status
message to cluster server repository component 116.

Furthermore, 1t should be understood that messages may
move 1nto the eleventh queue 263 and/or the twelfth queue
264 of the first Secondary server 252, the thirteenth queue
267 and/or the fourteenth queue 268 of the second secondary
server 254, the fifteenth queue 271 and/or the sixteenth
queue 272 of the third secondary server 256, the seventeenth
queue 2735 and/or the eighteenth queue 276 of the fourth
secondary server 258, and/or the nineteenth queue 279
and/or the twentieth queue 280 of the fifth secondary server
260. Thus, when messages are moving into the queues of the
secondary servers, each of the queue managers of the
secondary servers may be detecting and/or recording the
enqueue rates of messages moving into the queues of the
secondary servers and/or the weights of the queues of the
secondary servers. The secondary queue managers may
detect and/or record the enqueue rates of messages moving
into the queues of the secondary servers and/or the weights
of the queues of the secondary servers at similar frequencies
to the primary queue managers.

During operation, all queues of the primary servers may
be operating within a predetermined range of enqueue rates
of messages moving into the queues. Furthermore, the
queues of the primary servers may also be operating above
a minimum weight and below a maximum weight while
staying within the predetermined range of enqueue rates of
messages moving into the queues. Thus, because the queues
of the primary servers are within the predetermined range of
enqueue rates ol messages moving 1nto the queues while
operating above a minimum weight and below a maximum
weight, the cluster server repository component 116 may
detect these parameters, via the status message(s) received
from the queue managers of the primary servers, and main-
tain the queues of the primary queues 1n an active state and
maintain the queues of the secondary servers in an mactive
state.

US 9,432,445 Bl

13

However, a queue on the primary server (1.e. a primary
queue) may have an enqueue rate of messages moving 1nto
the queue below the predetermined range of enqueue rate
message moving into the queue of the primary server. FIG.
2 15 a flowchart that 1llustrates a method 300 for maintaining
an enqueue rate of data messages mto a set of queues
according to embodiments of the present disclosure. Execut-
ing the method 300 enables messages to be transmitted
between front end servers and back end servers while
maintaining an enqueue rate when one or more queues do
not function as intended and/or fail. For example, the
method 300 may be implemented by the cluster server
repository 116 or any other soiftware and/or hardware com-
ponent 1n the system 100.

In box 302, the cluster server repository component 116
may receive an initial status message from a primary queue
manager. The nitial status message may comprise the
enqueue rate of data messages moving nto a primary queue
of the primary queue manager. For example, the first queue
manager 212 of the first primary server 202 may detect
and/or record the enqueue rate of message moving into the
first queue 213 and/or the second queue 214, as well as, the
weight of the first queue 213 and/or the Second queue 214.
Upon detecting and/or recording, the first queue manager
212 may transmit one or more initial status messages
comprising the enqueue rate of message moving into the first
queue 213 and/or the second queue 214. In an embodiment,
the one more 1nitial status messages may also comprise the
weight of the first queue 213 and/or the second queue 214.
The cluster server repository component 116 may receive
the mitial status message sent from the first queue manager
212.

In box 304, the cluster server repository component 116
may detect that the enqueue rate of messages moving 1nto
the primary queue 1s below a predetermined range of
enqueue rates of messages moving into the primary queue
based on the received initial status message. For example,
the cluster server repository component 116 may have stored
the predetermined range of enqueue rates of messages
moving into the first queue 213 and/or the second queue 214.
The cluster server repository component 116 may have
received the initial status message from the first queue
manager 212 that the first queue 213 and/or the second
queue 214 1s operating with enqueue rates which are below
the predetermined rates assigned to the first queue 213
and/or the second queue 214.

In an embodiment, each queue on the primary servers
and/or the secondary servers may have diflerent predeter-
mined ranges of enqueue rates moving into the queues. For
example, the predetermined range of enqueue rates moving
into the first queue 213 and/or the second queue 214 may be
different from the predetermined range of enqueue rates
moving into the third queue 217 and/or the fourth queue 218.
Additionally, the predetermined range of enqueue rates
moving into the first queue 213 and/or the second queue 214
may be different from the predetermined range of enqueue
rates moving into the eleventh queue 263 and/or the twelith
queue 264. Conversely, the predetermined range of enqueue
rates moving 1nto one or more of the queues on the primary
servers and/or the secondary servers may be the same.

In an embodiment, the cluster server repository compo-
nent 116 may detect that the enqueue rate of messages
moving into the primary queue i1s below a predetermined
range of enqueue rates ol messages moving 1nto the primary
queue for a predetermined amount of time based on the
received 1nitial status message. For example, the first queue
manager 212 may be continuously detecting and/or record-

10

15

20

25

30

35

40

45

50

55

60

65

14

ing the enqueue rate(s) of messages moving into the first
queue 213 and/or the second queue 214 and/or the weight(s)
of the first queue 213 and/or the second queue 214. The first
queue manager 212 may transmit one or more messages
comprising the enqueue rate(s) of messages moving 1nto the
first queue 213 and/or the second queue 214 and/or the
weight(s) of the first queue 213 and/or the second queue 214
every five minutes. The one or more messages may indicate
that the enqueue rate of message moving 1nto the first queue
213 and/or the second queue 214 was below the predeter-
mined range of enqueue rates for an amount of time less than
a predetermine amount of time. Thus, the cluster server
repository component 116 may not adjust the queue rates of
message moving into any of the queues, adjust the weight of
one or more queues, deactivate one or more different queues,
and/or activated one or more different queues. Conversely,
the one or more messages may indicate that the enqueue rate
of message moving into the first queue 213 and/or the
second queue 214 was below the predetermined range of
enqueue rates for an amount of time at least as long as the
predetermine amount of time. Thus, the cluster server
repository component 116 may adjust the queue rates of
message moving into any of the queues, adjust the weight of
one or more queues, deactivate one or more diflerent queues,
and/or activated one or more different queues.

In box 306, the cluster server repository component 116
may increase the weight of the primary queue 1n response to
detecting that the enqueue rate of messages moving into the
primary queue provided by the mitial status message 1s
below the predetermined range. For example, the cluster
server repository component 116 may send a command
message to the first queue manager 212 directing the first
queue manager 212 to increase the weight of the first queue
213 and/or the second queue 214. By increasing the weight
of the first queue 213 and/or the second queue 214, the first
queue 213 and/or the second queue 214 may be capable of
handling a higher enqueue rate ol messages moving in the
queue(s) 213 and/or 214, and thus attract more data mes-
sages to the first queue 213. In an embodiment, the front end
application queue manager 142, the first queue manager 212,
and/or one or more additional primary queue managers may
receive a command message directing the increase of mes-
sages sent to the first queue 213 and/or the second queue
214. Thus, increasing the weight of the primary queue may
comprise setting the enqueue rate of message moving into
the first queue 213 and/or the second queue 214 above the
predetermined range so that the actual enqueue rate of
message moving into the first queue 213 and/or the second
queue 214 reaches the predetermined range.

In box 308, the cluster server repository component 116
may receive a subsequent status message, from the primary
queue manager. The subsequent status message may com-
prise the enqueue rate of data messages moving into the
primary queue. For example, the first queue manager 212 of
the first primary server 202 may agam detect and/or record
the enqueue rate of message moving into the first queue 213
and/or the second queue 214, as well as, the weight(s) of the
first queue 213 and/or the second queue 214. Upon detecting
and/or recording, the first queue manager 212 may transmit
one or more subsequent status messages comprising the
enqueue rate ol message moving into the first queue 213
and/or the second queue 214. In an embodiment, the one
more subsequent status messages may also comprise the
weight(s) of the first queue 213 and/or the second queue 214.
The cluster server repository component 116 may receive
the subsequent status message sent ifrom the first queue
manager 212.

US 9,432,445 Bl

15

Furthermore, the subsequent status message may or may
not be the status message received by the cluster server
repository component 116 immediately following the mnitial
status message received by the cluster server repository
component 116. For example, the subsequent status message
may be received by the cluster server repository component
116 after a predetermined period of time, such as ten
minutes, beginmng at the time the initial status message was
received by the cluster server repository component 116.
Thus, the cluster server repository component 116 may
receive an intermediate status message seven minutes after
the 1mtial status message. The cluster server repository
component 116 may detect from the intermediate status
message that the primary queue remains below the prede-
termined range. The subsequent status message may be
received by the cluster server repository component 116
twelve minutes after the nitial status message. The subse-
quent status message may comprise an enqueue rate of
message moving into the first queue 213 and/or the second
queue 214 below a predetermined range. It should be
understood that if the cluster server repository component
116 detects that the intermediate message comprises an
enqueue rate ol messages moving nto the first queue 213
and/or the second queue 214 that 1s within the predetermined
range, the next status message comprising an enqueue rate
of message moving into the first queue 213 and/or the
second queue 214 below the predetermined range may be
another 1nitial status message.

The subsequent status message may be received by the
cluster server repository component 116 after receiving a
predetermined number of status messages aiter the initial
status message wherein all the status messages comprise an
enqueue rate below the predetermined range. For example,
the subsequent status message may be received by the
cluster server repository component 116 after a recerving a
predetermined number of status message, such as 3 status
messages, with the first status message being the initial
status message received by the cluster server repository
component 116. The cluster server repository component
116 may receive a second status message providing an
enqueue rate of the first queue 213 and/or the second queue
214 that 1s below the predetermined range. The cluster
server repository component 116 may detect from the inter-
mediate status message that the primary queue remains
below the predetermined range. The third status message
received by the cluster server repository component 116 may
be the subsequent status message. The subsequent status
message may comprise an enqueue rate of messages moving,
into the first queue 213 and/or the second queue 214 below
a predetermined range. It should be understood that if the
cluster server repository component 116 detects that the
intermediate message comprises an enqueue rate ol mes-
sages moving into the first queue 213 and/or the second
queue 214 that 1s within the predetermined range, the next
status message comprising an enqueue rate of message
moving into the first queue 213 and/or the second queue 214
below the predetermined range may be another 1nitial status
message.

In block 310, the cluster server repository component 116
may detect that the enqueue rate of messages moving nto
the primary queue 1s below a predetermined range of
enqueue rates of messages moving into the primary queue
based on the received subsequent status message. For
example, the cluster server repository component 116 may
have stored the predetermined range of enqueue rates of
messages moving nto the first queue 213 and/or the second
queue 214. The cluster server repository component 116

10

15

20

25

30

35

40

45

50

55

60

65

16

may have received the subsequent status message from the
first queue manager 212 that the first queue 213 and/or the
second queue 214 1s operating with enqueue rates which are
below the predetermined rates assigned to the first queue
213 and/or the second queue 214. Detecting that the enqueue
rate of messages moving into the primary queue 1s below a
predetermined range based on the received subsequent status
message may indicate that the primary queue has failed
and/or 1s no longer operable to receive data messages.

In block 312, the cluster server repository component 116
may activate a secondary queue of a secondary queue
manager in response to detecting that the enqueue rate of the
primary queue provided by the subsequent status message 1s
below the predetermined range. For example, the cluster
server repository component 116 may send a command
message to the sixth queue manager 262 of the first second-
ary server 252 directing the sixth queue manager 262 to
activate the eleventh queue 263 and/or the twelith queue
264. The cluster server repository component 116 may also
send a command message to the front end application queue
manager 142 directing the front end application queue
manager 142 to send messages to the eleventh queue 263
and/or the twelfth queue 264 1nstead of the first queue 213
and/or the second queue 214. In an embodiment, the cluster
server repository component 116 may also send a command
message to the first queue manager 212 directing the first
queue manager 212 to deactivate the first queue 213 and/or
the second queue 214. The activation of a secondary queue
may allow the cluster server system 200 to maintain a
suflicient transfer of data messages from a front end server
to a back end server when a primary queue can no longer
sustain an enqueue rate within a predetermined range. For
example, the cluster server repository component 116 may

assign an average weight of the primary queues to the
cleventh queue 263 and/or the twellth queue 264 so that the
cleventh queue 263 and/or the twelfth queue 264 may
adequately make up for the deficiencies of a failed primary
queue.

A queue on the primary server may have an enqueue rate
of messages moving nto the queue above the predetermined
range of enqueue rate message moving 1nto the queue of the
primary server. F1G. 3 1s a flowchart that illustrates a method
400 for maintaining an enqueue rate of data messages nto
a set of queues according to embodiments of the present
disclosure. Executing the method 400 enables messages to
be transmitted between front end servers and back end
servers while maintaining an enqueue rate when one or more
queues do not function as intended and/or have failed. For
example, the method 400 may be implemented by the cluster
server repository component 116 or any other software
and/or hardware component in the system 100.

In box 402, the cluster server repository component 116
may receive an initial status message from a primary queue
manager. The initial status message may comprise the
enqueue rate of data messages moving into a primary queue
of the primary queue manager. The embodiments discussed
with respect to box 302 1n FIG. 2 may be similarly applied
to box 402.

In box 404, the cluster server repository component 116
may detect that the enqueue rate of messages moving nto
the primary queue 1s above a predetermined range of
enqueue rates of messages moving into the primary queue
based on the received 1nitial status message. For example,
the cluster server repository component 116 may have stored
the predetermined range ol enqueue rates of messages
moving into the first queue 213 and/or the second queue 214.
The cluster server repository component 116 may have

US 9,432,445 Bl

17

received the initial status message from the first queue
manager 212 that the first queue 213 and/or the second
queue 214 1s operating with enqueue rates which are above
the predetermined range assigned to the first queue 213
and/or the second queue 214.

In an embodiment, the cluster server repository compo-
nent 116 may detect that the enqueue rate of messages
moving into the primary queue 1s above a predetermined
range of enqueue rates of messages moving 1nto the primary
queue for a predetermined amount of time based on the
received 1nitial status message. For example, the first queue
manager 212 may be continuously detecting and/or record-
ing the enqueue rate(s) of messages moving into the first
queue 213 and/or the second queue 214 and/or the weight(s)
of the first queue 213 and/or the second queue 214. The first
queue manager 212 may transmit one or more messages
comprising the enqueue rate(s) of messages moving 1nto the
first queue 213 and/or the second queue 214 and/or the
weight(s) of the first queue 213 and/or the second queue 21
every five minutes. The one or more messages may indicate
that the enqueue rate of messages moving into the first queue
213 and/or the second queue 214 was above the predeter-
mined range of enqueue rates for an amount of time less than
a predetermine amount of time. Thus, the cluster server
repository component 116 may not adjust the queue rates of
messages moving into any of the queues, adjust the weight
of one or more queues, deactivate one or more different
queues, and/or activated one or more different queues.
Conversely, the one or more messages may indicate that the
enqueue rate ol messages moving nto the first queue 213
and/or the second queue 214 was above the predetermined
range of enqueue rates for an amount of time at least as long
as the predetermine amount of time. Thus, the cluster server
repository component 116 may adjust the enqueue rates of
message moving nto any of the queues, adjust the weight of
one or more queues, deactivate one or more different queues,
and/or activated one or more diflerent queues.

In box 406, the cluster server repository component 116
may decrease the enqueue rate of messages moving into the
primary queue in response to detecting that the enqueue rate
of the primary queue provided by the 1nitial status message
1s above the predetermined range. For example, the cluster
server repository component 116 may send a command
message to the first queue manager 212 directing the first
queue manager 212 to decrease the weight of the first queue
213 and/or the second queue 214. By decreasing the weight
of the first queue 213 and/or the second queue 214, the first
queue 213 and/or the second queue 214 may handle less
messages moving in the queue(s) 213 and/or 214 and thus
attract less data messages to the first queue 213. In an
embodiment, the front end application queue manager 142,
the first queue manager 212, and/or one or more additional
primary queue managers may receive a command message
from the cluster server repository component 116 directing
the decrease ol messages sent to the first queue 213 and/or
the second queue 214. In an embodiment, decreasing the
weight of the primary queue balances the enqueue rates
between the primary queue and/or one or more additional
queues.

In box 408, the cluster server repository component 116
may receive a subsequent status message from the primary
queue manager. The subsequent status message may com-
prise the enqueue rate ol messages moving into the primary
queue. For example, the first queue manager 212 of the first
primary server 202 may again detect and/or record the
enqueue rate ol messages moving nto the first queue 213
and/or the second queue 214, as well as, the weight of the

10

15

20

25

30

35

40

45

50

55

60

65

18

first queue 213 and/or the second queue 214. Upon detecting
and/or recording, the first queue manager 212 may transmit
one or more subsequent status messages comprising the
enqueue rate of messages moving into the first queue 213
and/or the second queue 214. In an embodiment, the one
more subsequent status messages may also comprise the
weilght of the first queue 213 and/or the second queue 214.
The cluster server repository component 116 may receive
the subsequent status message sent from the first queue
manager 212.

Furthermore, the subsequent status message may or may
not be the status message received by the cluster server
repository component 116 immediately following the 1nitial
status message received by the cluster server repository
component 116. For example, the subsequent status message
may be receirved by the cluster server repository component
alter a predetermined period of time, such as ten minutes,
beginning at the time the nitial status message was recerved
by the cluster server repository component 116. Thus, the
cluster server repository component 116 may receirve an
intermediate status message seven minutes aiter the initial
status message. The cluster server repository component 116
may detect from the intermediate status message that the
primary queue remains below the predetermined range. The
subsequent status message may be received by the cluster
server repository component 116 twelve minutes after the
initial status message. The subsequent status message may
comprise an enqueue rate of messages moving into the first
queue 213 and/or the second queue 214 above a predeter-
mined range. It should be understood that 1f the cluster
server repository component 116 detects that the intermedi-
ate message comprises an enqueue rate ol messages moving
into the first queue 213 and/or the second queue 214 that 1s
within the predetermined range, the next status message
comprising an enqueue rate of messages moving into the
first queue 213 and/or the second queue 214 above the
predetermined range may be another 1nitial status message.

The subsequent status message may be recerved by the
cluster server repository component after receirving a pre-
determined number of status messages aiter the 1nitial status
message wherein all the status messages comprise an
enqueue rate above the predetermined range. For example,
the subsequent status message may be received by the
cluster server repository component 116 after a receiving a
predetermined number of status messages, such as 3 status
messages, with the first status message being the initial
status message received by the cluster server repository
component 116. The cluster server repository component
116 may receive a second status message providing an
enqueue rate of the first queue 213 and/or the second queue
214 that 1s above the predetermined range. The cluster server
repository component 116 may detect from the intermediate
status message that the primary queue remains above the
predetermined range. The third status message received by
the cluster server repository component 116 may be the
subsequent status message. The subsequent status message
may comprise an enqueue rate of messages moving into the
first queue 213 and/or the second queue 214 above a
predetermined range. It should be understood that if the
cluster server repository component 116 detects that the
intermediate message comprises an enqueue rate ol mes-
sages moving into the first queue 213 and/or the second
queue 214 that 1s within the predetermined range, the next
status message comprising an enqueue rate of message
moving into the first queue 213 and/or the second queue 214
above the predetermined range may be another 1nitial status
message.

US 9,432,445 Bl

19

In block 410, the cluster server repository component 116
may detect that the enqueue rate of messages moving into
the primary queue 1s above and/or within the predetermined
range ol enqueue rates of messages moving into the primary
queue while the weight of the primary queue 1s below a
threshold, where the detecting 1s based on the receirved
subsequent status message. For example, the cluster server
repository component 116 may have stored the predeter-
mined range of enqueue rates of messages moving into the
first queue 213 and/or the second queue 214. The cluster
server repository component 116 may have recerved the
subsequent status message from the first queue manager 212
that the first queue 213 and/or the second queue 214 1s
operating with enqueue rates which are above and/or within
the predetermined range assigned to the first queue 213
and/or the second queue 214. Additionally, because the
enqueue rates of the primary queue may have decreased, the
decreasing of the enqueue rates of the primary queue may
correlate with decreasing the weight of the primary queue.
Thus, while the enqueue rates of the primary queue may
have been lowered to be within the predetermined range of
enqueue rates, the weight of the primary queue may have
been decreased below a minimum threshold weight. Detect-
ing that the enqueue rate of messages moving ito the
primary queue 1s within a predetermined range while the
weight of the primary queue 1s below a threshold may
indicate that the primary queue has failed and/or 1s no longer
operable to adequately receive data messages. Furthermore,
detecting that the enqueue rate of messages moving into the
primary queue 1s still above the predetermined range of
enqueue rates of messages moving nto the queue regardless
of the weight of the primary queue may also indicate that the
primary queue has failed and/or 1s no longer operable to
adequately receive data messages. For example, after
decreasing the enqueue rate of messages moving 1nto the
primary queue the cluster server repository component 116
may detect that the decrease of the enqueue rate did not
decreased the enqueue rate at least as much as intended.
Detecting that the enqueue rate of messages moving into the
primary queue has not decrease as intended so that the
enqueue rate of messages moving into the primary queue
may not be within the predetermined range and thus may
indicate that the primary queue has failed and/or 1s no longer
operable to receive data messages.

In block 412, the cluster server repository component 116
may activate a secondary queue of a secondary queue
manager in response to detecting that the enqueue rate of the
primary queue 1s within the predetermined range while the
weight of the primary queue 1s below the threshold. For
example, the cluster server repository component 116 may
send a command message the sixth queue manager 262 of
the first secondary server 252 directing the sixth queue
manager 262 to activate the eleventh queue 263 and/or the
twelfth queue 264. The cluster server repository component
116 may also send a command message to the front end
application queue manager 142 directing the front end
application queue manager 142 send messages to the elev-
enth queue 263 and/or the twelfth queue 264 1nstead of the
first queue 213 and/or the second queue 214. In an embodi-
ment, the cluster server repository component 116 may also
send a command message to the first queue manager 212
directing the first queue manager 212 to deactivate the first
queue 213 and/or the second queue 214. The activation of a
secondary queue may allow the cluster server system 200 to
maintain a suilicient transier of data messages from a front
end server to a back end server when a primary queue can
no longer sustain an enqueue rate within a predetermined

10

15

20

25

30

35

40

45

50

55

60

65

20

range. For example, the cluster server repository component
116 may assign an average weight of the primary queues to
the eleventh queue 263 and/or the twelfth queue 264 so that
the eleventh queue 263 and/or the twelith queue 264 may
adequately make up for the deficiencies of a lost primary
queue.

FIG. 4 illustrates a computer system 380 suitable for
implementing one or more embodiments disclosed herein.
The computer system 380 includes a processor 382 (which
may be referred to as a central processor unit or CPU) that
1s 1n commumnication with memory devices including sec-
ondary storage 384, read only memory (ROM) 386, random
access memory (RAM) 388, input/output (I/O) devices 390,
and network connectivity devices 392. The processor 382
may be implemented as one or more CPU chips.

It 1s understood that by programming and/or loading
executable 1nstructions onto the computer system 380, at
least one of the CPU 382, the RAM 388, and the ROM 386
are changed, transforming the computer system 380 1n part
into a particular machine or apparatus having the novel
functionality taught by the present disclosure. It 1s funda-
mental to the electrical engineering and software engineer-
ing arts that functionality that can be implemented by
loading executable software into a computer can be con-
verted to a hardware implementation by well known design
rules. Decisions between implementing a concept 1 soft-
ware versus hardware typically hinge on considerations of
stability of the design and numbers of units to be produced
rather than any 1ssues involved in translating from the
solftware domain to the hardware domain. Generally, a
design that 1s still subject to frequent change may be
preferred to be implemented 1n software, because re-spin-
ning a hardware implementation 1s more expensive than
re-spinning a software design. Generally, a design that 1s
stable that will be produced 1n large volume may be pre-
ferred to be implemented 1n hardware, for example in an
application specific integrated circuit (ASIC), because for
large production runs the hardware implementation may be
less expensive than the software implementation. Often a
design may be developed and tested 1n a software form and
later transformed, by well known design rules, to an equiva-
lent hardware implementation 1 an application specific
integrated circuit that hardwires the instructions of the
soltware. In the same manner as a machine controlled by a
new ASIC 1s a particular machine or apparatus, likewise a
computer that has been programmed and/or loaded with
executable instructions may be viewed as a particular
machine or apparatus.

The secondary storage 384 1s typically comprised of one
or more disk drives or tape drives and 1s used for non-
volatile storage of data and as an over-flow data storage
device 11 RAM 388 1s not large enough to hold all working
data. Secondary storage 384 may be used to store programs
which are loaded into RAM 388 when such programs are
selected for execution. The ROM 386 1s used to store
instructions and perhaps data which are read during program
execution. ROM 386 1s a non-volatile memory device which
typically has a small memory weight relative to the larger
memory weight of secondary storage 384. The RAM 388 1s
used to store volatile data and perhaps to store instructions.
Access to both ROM 386 and RAM 388 is typically faster

than to secondary storage 384. The secondary storage 384,
the RAM 388, and/or the ROM 386 may be referred to in

some contexts as computer readable storage media and/or
non-transitory computer readable media.

I/0 devices 390 may include printers, video momnitors,
liquad crystal displays (LLCDs), touch screen displays, key-

US 9,432,445 Bl

21

boards, keypads, switches, dials, mice, track balls, voice
recognizers, card readers, paper tape readers, or other well-
known 1nput devices.

The network connectivity devices 392 may take the form
of modems, modem banks, Fthernet cards, universal serial
bus (USB) interface cards, serial interfaces, token ring cards,
fiber distributed data interface (FDDI) cards, wireless local
area network (WLAN) cards, radio transceiver cards such as
code division multiple access (CDMA), global system for
mobile communications (GSM), long-term evolution (LTE),
worldwide 1nteroperability for microwave access (Wi-
MAX), 4th generation, 5th generation, and/or other air
interface protocol radio transceiver cards, and other well-
known network devices. These network connectivity
devices 392 may enable the processor 382 to communicate
with the Internet or one or more intranets. With such a
network connection, 1t 1s contemplated that the processor
382 might receive information from the network, or might
output information to the network 1n the course of perform-
ing the above-described method steps. Such information,
which 1s often represented as a sequence of instructions to be
executed using processor 382, may be received from and
outputted to the network, for example, in the form of a
computer data signal embodied 1n a carrier wave.

Such information, which may include data or mstructions
to be executed using processor 382 for example, may be
received from and outputted to the network, for example, in
the form of a computer data baseband signal or signal
embodied 1n a carrier wave. The baseband signal or signal
embedded 1n the carrier wave, or other types of signals
currently used or hereafter developed, may be generated
according to several methods well known to one skilled 1n
the art. The baseband signal and/or signal embedded in the
carrier wave may be referred to in some contexts as a
transitory signal.

The processor 382 executes 1nstructions, codes, computer
programs, scripts which 1t accesses from hard disk, floppy
disk, optical disk (these various disk based systems may all
be considered secondary storage 384), ROM 386, RAM 388,
or the network connectivity devices 392. While only one
processor 382 1s shown, multiple processors may be present.
Thus, while instructions may be discussed as executed by a
processor, the instructions may be executed simultaneously,
serially, or otherwise executed by one or multiple proces-
sors. Instructions, codes, computer programs, scripts, and/or
data that may be accessed from the secondary storage 384,
for example, hard drives, floppy disks, optical disks, and/or
other device, the ROM 386, and/or the RAM 388 may be
referred to 1n some contexts as non-transitory instructions
and/or non-transitory information.

In an embodiment, the computer system 380 may com-
prise two or more computers in communication with each
other that collaborate to perform a task. For example, but not
by way of limitation, an application may be partitioned in
such a way as to permit concurrent and/or parallel process-
ing of the istructions of the application. Alternatively, the
data processed by the application may be partitioned 1n such
a way as to permit concurrent and/or parallel processing of
different portions of a data set by the two or more computers.
In an embodiment, virtualization soitware may be employed
by the computer system 380 to provide the functionality of
a number of servers that 1s not directly bound to the number
of computers 1 the computer system 380. For example,
virtualization soitware may provide twenty virtual servers
on four physical computers. In an embodiment, the func-
tionality disclosed above may be provided by executing the
application and/or applications 1n a cloud computing envi-

10

15

20

25

30

35

40

45

50

55

60

65

22

ronment. Cloud computing may comprise providing com-
puting services via a network connection using dynamically
scalable computing resources. Cloud computing may be
supported, at least in part, by virtualization software. A cloud
computing environment may be established by an enterprise
and/or may be hired on an as-needed basis from a third party
provider. Some cloud computing environments may com-
prise cloud computing resources owned and operated by the
enterprise as well as cloud computing resources hired and/or
leased from a third party provider.

In an embodiment, some or all of the functionality dis-
closed above may be provided as a computer program
product. The computer program product may comprise one
or more computer readable storage medium having com-
puter usable program code embodied therein to implement
the functionality disclosed above. The computer program
product may comprise data structures, executable nstruc-
tions, and other computer usable program code. The com-
puter program product may be embodied in removable
computer storage media and/or non-removable computer
storage media. The removable computer readable storage
medium may comprise, without limitation, a paper tape, a
magnetic tape, magnetic disk, an optical disk, a solid state
memory chip, for example analog magnetic tape, compact
disk read only memory (CD-ROM) disks, tloppy disks, jump
drives, digital cards, multimedia cards, and others. The
computer program product may be suitable for loading, by
the computer system 380, at least portions of the contents of
the computer program product to the secondary storage 384,
to the ROM 386, to the RAM 388, and/or to other non-
volatile memory and volatile memory of the computer
system 380. The processor 382 may process the executable
instructions and/or data structures 1n part by directly access-
ing the computer program product, for example by reading
from a CD-ROM disk mserted into a disk drive peripheral of
the computer system 380. Alternatively, the processor 382
may process the executable instructions and/or data struc-
tures by remotely accessing the computer program product,
for example by downloading the executable instructions
and/or data structures from a remote server through the
network connectivity devices 392. The computer program
product may comprise instructions that promote the loading
and/or copying of data, data structures, files, and/or execut-
able instructions to the secondary storage 384, to the ROM
386, to the RAM 388, and/or to other non-volatile memory
and volatile memory of the computer system 380.

In some contexts, the secondary storage 384, the ROM
386, and the RAM 388 may be referred to as a non-transitory
computer readable medium or a computer readable storage
media. A dynamic RAM embodiment of the RAM 388,
likewise, may be referred to as a non-transitory computer
readable medium 1n that while the dynamic RAM receives
clectrical power and 1s operated in accordance with 1ts
design, for example during a period of time during which the
computer 380 1s turned on and operational, the dynamic
RAM stores mformation that 1s written to it. Similarly, the
processor 382 may comprise an internal RAM, an internal
ROM, a cache memory, and/or other internal non-transitory
storage blocks, sections, or components that may be referred
to 1 some contexts as non-transitory computer readable
media or computer readable storage media.

While several embodiments have been provided in the
present disclosure, 1t should be understood that the disclosed
systems and methods may be embodied 1n many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as 1llustrative and not restrictive, and the inten-

US 9,432,445 Bl

23

tion 1s not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated 1n another system or certain features may
be omitted or not implemented.

Also, techniques, systems, subsystems, and methods
described and illustrated 1n the various embodiments as
discrete or separate may be combined or integrated with
other systems, modules, techniques, or methods without
departing from the scope of the present disclosure. Other
items shown or discussed as directly coupled or communi-
cating with each other may be indirectly coupled or com-
municating through some interface, device, or intermediate
component, whether electrically, mechanically, or other-
wise. Other examples of changes, substitutions, and altera-
tions are ascertainable by one skilled 1n the art and could be
made without departing from the spirit and scope disclosed
herein.

What 1s claimed 1s:
1. A system for maintaining an enqueue rate of data
messages 1mnto a set of queues, the system comprising:
a server coupled to a cluster of primary servers and a
cluster of secondary servers, the server comprising: a
processor coupled to a non-transitory memory storing a
cluster server repository component stored as a set of
computer instructions that upon execution by the pro-
cessor configures the server to:
receive an 1nitial status message, from a primary queue
manager executing from non-transitory memory 1in
the cluster of primary servers, comprising the
enqueue rate of data messages moving 1nto a primary
queue of the primary queue manager,

detect that the primary queue has an enqueue rate
below a predetermined range based on the received
imitial status message,

increase a weight of the primary queue 1n response to
detecting that the enqueue rate of the primary queue
provided by the 1mitial status message 1s below the
predetermined range,

receive a subsequent status message, from the primary
queue manager, comprising the enqueue rate of data
messages moving mto the primary queue after the
weight of the primary queue 1s 1ncreased,

detect that the primary queue has an enqueue rate
below the predetermined range based on the received
subsequent status message, and

activate, 1n the cluster of secondary servers, a second-
ary queue of a secondary queue manager 1n response
to detecting that the enqueue rate of the primary
queue provided by the subsequent status message 1s
below the predetermined range, wherein the second-
ary queue manager executes ifrom non-transitory
memory 1n the cluster of secondary servers.

2. The system of claim 1, wherein activating the second-
ary queue comprises directing data messages to the second
queue at an enqueue rate within the predetermined range.

3. The system of claim 2, wherein directing data messages
comprises sending a directing message to a front end queue
manager directing the front end queue manager to send at
least some data messages from a front end queue of the front
end queue manager to the secondary queue.

4. The system of claim 1, wherein increasing the weight
of the primary queue comprises setting the enqueue rate
above the predetermined range so that the actual enqueue
rate reaches the predetermined range.

5. The system of claim 1, wherein activating the second-
ary queue comprises sending a weight message to the

10

15

20

25

30

35

40

45

50

55

60

65

24

secondary queue manager of the secondary queue assigning,
an average weight of the primary queues to the secondary
queue.

6. The system of claim 1, wherein a remote application
server monitors the enqueue rate of data messages into each
primary queue of a plurality of primary queues and sends an
enqueue rate message to each primary queue manager of
cach primary queue.

7. The system of claim 1, wherein the enqueue rate
comprises the number of messages moving into a queue per
minute.

8. The system of claim 1, wherein the server i1s further
configured by the cluster server repository component to:

detect that the primary queue has an enqueue rate above

a predetermined range based on the receirved initial
status message,

decrease the enqueue rate of the primary queue 1n

response to detecting that the enqueue rate of the
primary queue provided by the initial status message 1s
above the predetermined range, wherein the enqueue
rate 1s decreased by decreasing the weight of the
prlmary queue,

recerve a different status message, from the primary queue

manager, comprising the enqueue rate of data messages
moving into the primary queue,
detect that the primary queue has an enqueue rate within
the predetermined range while the weight of the pri-
mary queue 1s below a threshold, wherein detecting 1s
based on the received different status message, and

activate the secondary queue of the secondary queue
manager 1n response to detecting that the enqueue rate
of the primary queue 1s within the predetermined range
while the weight of the primary queue i1s below the
threshold.

9. The system of claim 8, wherein decreasing the weight
of the primary queue balances the enqueue rate between the
primary queue and one or more additional primary queues.

10. The system of claam 1, wherein the cluster server
repository configures the server to activate the secondary
queue ol the secondary queue manager in response to
detecting that the enqueue rate of the primary queue pro-
vided by the subsequent status message 1s below the prede-
termined range for a period of time.

11. A method of maintaining an enqueue rate of data
messages 1nto a set of queues, the method comprising:

recerving, by a server executing a cluster server repository

component from non-transitory memory, an 1nitial sta-
tus message from a primary queue manager executing
from non-transitory memory in a cluster of primary
servers, the initial status message comprising the
enqueue rate of data messages moving nto a primary
queue of the primary queue manager;

detecting, by the server executing the cluster server

repository component, that the primary queue has an
enqueue rate below a predetermined range based on the
received 1nitial status message;

increasing, by the server executing the cluster server

repository component, a weight of the primary queue 1n
response to detecting that the enqueue rate of the
primary queue provided by the initial status message 1s
below the predetermined range;

recerving, by the server executing the cluster server

repository component, a subsequent status message,
from the primary queue manager, comprising the
enqueue rate of data messages moving into the primary
queue after the weight of the primary queue 1is
increased;

US 9,432,445 Bl

25

detecting, by the server executing the cluster server
repository component, that the primary queue has an
enqueue rate below the predetermined range based on
the received subsequent status message; and

activating, 1n a cluster of secondary servers by the server
executing the cluster server repository component, a
secondary queue of a secondary queue manager in
response to detecting that the enqueue rate of the
primary queue provided by the subsequent status mes-
sage 1s below the predetermined range, wherein the
secondary queue manager executes from non-transitory
memory 1n the cluster of secondary servers.

12. The method of claim 11, further comprising directing,
by the cluster server repository, data messages to the second
queue at an enqueue rate within the predetermined range,
wherein directing data messages comprises sending a direct-
ing message to a front end queue manager directing the front
end queue manager to send at least some data messages from
a front end queue of the front end queue manager to the
secondary queue.

13. The method of claim 11, wherein increasing the
weight of the primary queue comprises setting the enqueue
rate above the predetermine range so that the actual enqueue
rate reaches the predetermined range.

14. The method of claim 11, wherein detecting based on
the received 1itial status message comprises detecting, by
the cluster server repository, that the enqueue rate of the
primary queue 1s below a predetermined range for a prede-
termined amount of time.

15. The method of claim 11, wherein the subsequent status
message 1s received by the cluster server repository after a
predetermine period of time beginning at the time the mnitial
status message was received by the cluster server repository.

16. A method of maintaiming an enqueue rate ol data
messages 1nto a set of queues, the method comprising:

receiving, by a server executing a cluster server repository

component from non-transitory memory, an initial sta-
tus message from a primary queue manager executing,
from non-transitory memory in a cluster of primary
servers, the 1nitial status message comprising the
enqueue rate of data messages moving into a primary
queue of the primary queue manager;

detecting, by the server executing the cluster server

repository component, that the primary queue has an

10

15

20

25

30

35

40

26

enqueue rate above a predetermined range based on the
received 1nitial status message;
decreasing, by the server executing the cluster server
repository component, the enqueue rate of the primary
queue 1n response to detecting that the enqueue rate of
the primary queue provided by the initial status mes-
sage 1s above the predetermined range;
receiving, by the server executing the cluster server
repository component, a subsequent status message,
from the primary queue manager, comprising the
enqueue rate of data messages moving into the primary
queue;
detecting, by the server executing the cluster server
repository component based on the recerved subse-
quent status message, that the primary queue has an
enqueue rate within the predetermined range while a
weight of the primary queue 1s below a threshold; and

activating, 1n a cluster of secondary servers by the server
executing the cluster server repository component, a
secondary queue ol a secondary queue manager in
response to detecting that the enqueue rate of the
primary queue 1s within the predetermined range while
the weight of the primary queue 1s below the threshold,
wherein the secondary queue manager executes from
non-transitory memory in the cluster of secondary
Servers.

17. The method of claim 16, wherein decreasing the
enqueue rate of the primary queue balances the enqueue rate
between the primary queue and one or more additional
primary queues.

18. The method of claim 16, wherein detecting based on
the received 1nitial status message comprises detecting, by
the cluster server repository, that the enqueue rate of the
primary queue 1s above a predetermined range for a prede-
termined amount of time.

19. The method of claim 16, wherein the subsequent
status message 1s received by the cluster server repository
alter a predetermine period of time beginning at the time the
initial status message was recerved by the cluster server
repository.

20. The method of claim 16, wherein the subsequent
status message comprises the weight of the primary queue.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

