US009430492B1

12 United States Patent 10) Patent No.: US 9.430.492 B1

Bono et al. 45) Date of Patent: Aug. 30, 2016
(54) EFFICIENT SCAVENGING OF DATA AND gajggagg; E jggg ;aibish et al‘al
,, ,, 1 1 atanzon ¢t al.
MEIADALA FILE SYSTEM BLOCKS 8,566,371 Bl 10/2013 Bono et al.
8,645,654 Bl 2/2014 Bail t al.
(71) Applicant: EMC Corporation, Hopkinton, MA 3.782.324 Bl 717014 Ci;yete ai
(US) 2004/0030668 Al 2/2004 Pawlowski et al.
2004/0205289 Al 10/2004 Srinivasan
(72) Inventors: Jean_Pierre Bono Westborough MA 2009/0271564 A ¥ 10/2009 SuglmOtO et al 711/103
. j j 2010/0332846 A1* 12/2010 Bowden etal. 713/189
(US); Morgan Clark, South Orange, 2014/0201491 Al* 7/2014 Luan et al. ..ooovvv........ 711/173
NJ (US); Michael Scheer, Summait, NJ
(US); William C. Davenport, OTHER PUBLICAITTONS

Burlington, MA (US . . o .
- (US) Bono, et al., “Unified Datapath Processing with Virtualized Storage

(73) Assignee: EMC Corporation, Hopkinton, MA Processors,” U.S. App.l. No. 13/.828,294, ﬁleq Mar. 14, 2013.
(US) Bono, et al., “Providing Multi-Tenancy Within a Data Storage
Apparatus,” U.S. Appl. No. 13/837,869, filed Mar. 15, 2013.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 204 days. Primary Examiner — James Trujillo

Assistant Examiner — Jessica N Le

(21) Appl. No.: 13/929,887 (74) Attorney, Agent, or Firm — BainwoodHuang

(22) Filed: Jun. 28, 2013 (57) ABSTRACT

(51) Int. CL An 1mproved technique mvolves 1dentitying the location of
GO6F 17/30 (2006.01) backed free blocks, 1.e., blocks within an upper deck file

(52) U.S. Cl system that have been provisioned from storage devices of
CPC oot GOG6F 17/30221 (2013.01) @ data storage system to a lower deck file system, allocated

(58) Field of Classification Search from the lower deck file system to the upper deck file
CPC .. GO6F 17/30117; GO6F 17/30138 system, and later freed from the upper deck file system. A
USPC oo . 707/651 Storage processor accesses a set ol data structures that

identifies backed free blocks as opposed to free blocks that

See application file for complete search history. _ _
PP P Y have not been written into and thus do not correspond to any

(56) References Cited allocated blocks in storage. Once the storage processor
identifies the backed free blocks, the storage processor frees
U.S. PATENT DOCUMENTS cach block in the lower deck file system from which the

respective backed free block was allocated. The storage

6,487,563 Bl 1172002 Houldsworth processor then updates the set of data structures to indicate

7,254,685 Bl 8/2007 Cardente

7.631,155 Bl 12/2009 Bono et al. that the respective backed free block 1s now simply a free
7,849,263 B1 12/2010 French block.
8,140,814 B2 3/2012 Agombar et al.
8,285,758 Bl 10/2012 Bono et al. 21 Claims, 4 Drawing Sheets
90

N

Accessing, by a storage processor of the data storage
apparatus, a set of data structures to identify the
location of each of a set of backed free blocks within the
upper deck file system, wherein hacked free blocks are
blocks that have been provisioned from storage devices
of the data storage apparatus to the lower deck file
system, allocated from the lower deck file system to the
upper deck file system, and later freed from the upper

deck file system
92

Y

For each of the set of backed free blocks, (i) freeing the block
in the lower deck file system from which the respective
backed free block was allocated and {ii} updating the set of
data structures to indicate that the respective back free
block is no longer a hacked free block

94

US 9,430,492 Bl
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bono et al., “Performing a Non-Disruptive Software Upgrade on
Physical Storage Processors Having Access to Virtual Storage

Processors,” U.S. Appl. No. 13/838,498, filed Mar. 15, 2013,
Bono, et al., “Unified Data Protection for Block and File Objects,”
U.S. Appl. No. 13/853,508, filed Mar. 29, 2013.

Bono, et al., “File System Inline Fine Grained Tiering,” U.S. Appl.
No. 13/928,591, filed Jun. 27, 2013.

Bono, et al., “Data Storage System With Unified System Cache,”
U.S. Appl. No. 13/930,164, filed Jun. 28, 2013.

Bono, et al., “Unified Data Services for Block and File Objects,”
U.S. Appl. No. 13/853,284, filed Mar. 29, 2013.

Bono, et al., “File System Over Fully Provisioned Volume File 1n
Direct Mode,” U.S. Appl. No. 13/931,757, filed Jun. 28, 2013.
Bono, et al.,, “File System Snapshots Over Fully Provisioned
Volume File in Direct Mode,” U.S. Appl. No. 13/931,764, filed Jun.
28, 2013.

Bono, et al., “File System Over Thinly Provisioned Volume File in
Mapped Mode,” U.S. Appl. No. 13/931,769, filed Jun. 28, 2013.

Bono, et al., “File System Snapshots Over Thinly Provisioned
Volume File in Mapped Mode,” U.S. Appl. No. 13/931,775, filed
Jun. 28, 2013.

Bono, et al., “File System Shrink for Directly and Thinly Provi-
sioned File Systems,” U.S. Appl. No. 13/929,879, filed Jun. 28,
2013.

Bono, et al., “Deduplicating Container Files,” U.S. Appl. No.
13/930,010, filed Jun. 28, 2013,
Bono, et al., “Reclaiming Space From File System Hosting Many

Primary Storage Objects and Their Snapshots,” U.S. Appl. No.
14/319,455, filed Jun. 30, 2014.
Bono, et al., “Proactive Scavenging of the File System Snaps,” U.S.

Appl. No. 14/319,660, filed Jun. 30, 2014.
Bono, “Unified Datapath Architecture,” U.S. Appl. No. 13/828,322,
filed Mar. 14, 2013.

Bono, et al., “Managing Host Data Placed in a Container File
System on a Data Storage Array Having Multiple Storage Tiers,”
U.S. Appl. No. 13/929,019, filed Jun. 28, 2013.

Bono, et al., “Persistent Metadata Cache,” U.S. Appl. No.
14/576,931, filed Dec. 19, 2014.

Bono, et al., “Preserving Quality of Service When Replicating Data
Objects,” U.S. Appl. No. 14/576,939, filed Dec. 19, 2014.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 4 US 9,430,492 B1

Host 1

12(1)
NFS

Communications
Medium
38

To/From other SP(s)

Storage Processor (SP) 16

Communication Interface(s) 1

Processor(s) 20 ’/-/

Memory 22

Upper Deck File System
24

Mapping Layer 26

HDD/EFD 32

Lower Deck File System
28

Storage Pool 30

Figure 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 4 US 9,430,492 B1

Slice 50a

Upper Deck

File System

24 E%% ‘ HEI Slice 50b

Block 44(1) Block 44(2)

Mapping
Layer
20

File System

Lower Deck ‘
28

Block 42(1) Block 42(3)

Block 42(2)

Storage Pool 30

I 1 T

: Slice 40a | Slice 40b Slice 40c

Slice 40d Slice 40e Slice 40f

Memory 22 Figure 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 4 US 9,430,492 B1

Upper Deck File System 24

\ 62 70
_ ~ Slice ID Backed Free Blocks Free Blocks
-7 20207 5
r 20208 6
‘ Siice Map 60 B I N
- 6
~—_ 20211 6
Tt~ 20212 0 6
: 66a
y
‘ Mapping 68a \ Slice 20207
" 66b |
AL = |
..e-“"f I\/Iapping @ Slice 20208
[s]5]e
‘ ‘ EE%E] @ ‘ Mapping b8c \ Slice 20211

od

T
g ; ﬁ Mapping 68d Slice 20212

Figure 3

U.S. Patent Aug. 30,2016 Sheet 4 of 4 US 9,430,492 Bl

Accessing, by a storage processor of the data storage
apparatus, a set of data structures to identify the
location of each of a set of backed free blocks within the
upper deck file system, wherein backed free blocks are
blocks that have been provisioned from storage devices
of the data storage apparatus to the lower deck file
system, allocated from the lower deck file system to the
upper deck file system, and later freed from the upper

deck file system
92

For each of the set of backed free blocks, (i) freeing the block
In the lower deck file system from which the respective
backed free block was allocated and (ii) updating the set of
data structures to indicate that the respective back free
block is no longer a backed free block

94

Figure 4

US 9,430,492 Bl

1

EFFICIENT SCAVENGING OF DATA AND
METADATA FILE SYSTEM BLOCKS

BACKGROUND

Data storage systems typically arrange the data and meta-
data of file systems 1n blocks of storage. For example, the
file data constituting files 1n a file system are stored 1n blocks
ol storage, as are 1nodes, indirect blocks, and other metadata.
Data storage systems may provision storage to file systems
in units of fixed size, here called “slices.” Data storage
systems may generate slices, for example, from one or more
physical storage devices, such as RAID groups of physical
storage devices.

Some data storage systems provide thinly provisioned file
systems. Thinly provisioned file systems typically have very
large address spaces but allocate specific storage slices to
populate file systems only as storage 1s needed to satisiy
write requests. A thinly provisioned file system may thus
have an address space that 1s measured 1n petabytes but may
allocate slices to occupy only a small fraction of the address
space.

Data storage systems that provide thinly provisioned file
systems may deallocate blocks of storage from the file
systems when the blocks are no longer used, as part of file
system shrink operations. In one kind of shrink operation, a
data storage system 1dentifies iree blocks of storage in the
slices supporting the file system. Any completely freed
slices may be returned to a storage pool for later reuse.

SUMMARY

There are deficiencies with the above-described conven-
tional shrink operation. For example, it can be wastetul and
time-consuming to perform certain kinds of processing on
free blocks that have no backing store.

Some data storage systems employ architectures in which
an “upper deck file system,” which may be accessible to
hosts, for example, 1s represented internally in the form of a
file of a “lower deck file system.” A data storage system
according to this design may respond to write operations 1n
the upper deck file system by allocating blocks 1n the lower
deck file system and then wrting to those blocks. In an
example, the upper deck file system may organize blocks
according to whether they are free or allocated. However,
the organization in the upper deck file system does not
conventionally distinguish between free blocks that have
been allocated from the lower deck, 1.e., supported by actual
storage, and free blocks that are merely there as place
holders, 1.e., address spaces where blocks from the lower
deck might be allocated at some other time.

Consequently, during a file system shrink operation, the
upper deck file system may 1dentity many free blocks, but
some of those free blocks are merely placeholders that have
never been allocated from the lower deck. Since the upper
deck file system cannot distinguish free blocks that have
been allocated from blocks that are merely placeholders, the
data storage system can waste much time and resources
attempting to free blocks in the lower deck that are not
associated with any underlying storage.

In contrast with the conventional file system shrink opera-
tion, an 1improved technique ivolves 1dentifying the loca-
tions of backed free blocks within the upper deck file
system, where “backed free blocks™ are blocks that have
been provisioned from storage devices of the data storage
system to the lower deck file system, allocated from the
lower deck file system to the upper deck file system, and

10

15

20

25

30

35

40

45

50

55

60

65

2

later freed from the upper deck file system. To perform the
improved shrink operation, a storage processor accesses a

set of data structures that identily such backed free blocks
and frees the blocks in the lower deck file system from
which each of the respective backed free blocks were
allocated. The storage processor then updates the set of data
structures to indicate that the respective backed free blocks
are simply free blocks.

Advantageously, the improved technique provides for
more eflicient reclaiming of storage space 1n a data storage
system. Because the storage processor 1s operating only on
backed free blocks and 1s 1gnoring free blocks that have no
underlying storage, processor resources are not wasted in
“freeing” storage that does not exist.

Certain embodiments of the improved technique are
directed to a method of scavenging free storage space 1n a
thinly provisioned upper deck file system stored in the form
of a file 1n an underlying lower deck file system of a data
storage apparatus. The method includes accessing, by a
storage processor of the data storage apparatus, a set of data
structures to 1dentify the location of each of a set of backed
free blocks within the upper deck file system, wherein
backed free blocks are blocks that have been provisioned
from storage devices of the data storage apparatus to the
lower deck file system, allocated tfrom the lower deck file
system to the upper deck file system, and later freed from the
upper deck file system. The method also includes, for each
of the set of backed free blocks, (1) freeing the block 1n the
lower deck file system from which the respective backed
free block was allocated and (11) updating the set of data
structures to indicate that the respective back free block 1s no
longer a backed free block.

Additionally, some embodiments of the improved tech-
nique are directed to a data storage apparatus constructed
and arranged to scavenge Iree storage space 1 a thinly
provisioned upper deck file system stored in the form of a
file 1n an underlying lower deck file system. The data storage
apparatus includes a set of storage devices and a storage
processor. The storage processor includes memory and a set
ol processors coupled to the memory to form controlling
circuitry. The controlling circuitry 1s constructed and
arranged to carry out the method of scavenging iree storage
space 1n a thinly provisioned upper deck file system stored
in the form of a file 1n an underlying lower deck file system.

Furthermore, some embodiments of the improved tech-
nique are directed to a computer program product having a
non-transitory computer readable storage medium which
stores code including a set of instructions which, when
executed by a computer, cause the computer to carry out the
method of scavenging free storage space 1n a thinly provi-
sioned upper deck file system stored in the form of a file 1n
an underlying lower deck file system of a data storage
apparatus.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and other objects, features and advantages
will be apparent from the following description of particular
embodiments of the invention, as illustrated in the accom-
panying figures 1n which like reference characters refer to
the same parts throughout the different views.

FIG. 1 1s a block diagram illustrating an example elec-
tronic environment in which the improved technique may be
carried out.

FIG. 2 1s a block diagram 1llustrating an example upper
deck file system and lower deck file system of the electronic
environment shown i FIG. 1.

US 9,430,492 Bl

3

FIG. 3 1s a block diagram 1illustrating an example upper
deck file system of the electronic environment shown in

FIG. 1.

FIG. 4 1s a flow chart illustrating an example method of
carrying out the improved technique within the electronic
environment shown i FIG. 1.

DETAILED DESCRIPTION

An mmproved technique for shrinking a file system
involves identitying backed free blocks within an upper
deck file system and freeing blocks 1 a lower deck file
system corresponding to the backed free blocks. Doing this,
the UD FS notifies the LD FS of unused blocks, which may
eventually form entire free slices, may then be deallocated
from the LD FS via a conventional shrink operation.

FIG. 1 illustrates an example electronic environment 10
for which the improved technique 1s carried out. Electronic
environment 10 includes hosts 12(1) and 12(2), communi-
cations medium 38, and data storage system 14 which in turn
includes storage processor 16 and storage devices 32. Stor-
age devices 32 are provided, for example, 1n the form of hard
disk drives and/or electronic flash drives (EFDs). Although
not shown i FIG. 1, data storage system 14 may include
multiple storage processors like storage processor 16. For
instance, multiple storage processors may be provided as
circuit board assemblies, or “blades,” which plug into a
chassis that encloses and cools the storage processors. The
chassis has a backplane for interconnecting the storage
processors, and additional connections may be made among,
storage processors using cables. It should be understood,
however, that no particular hardware configuration 1s
required, as any number of storage processors (including a
single one) can be provided and storage processor 16 can be
any type of computing device.

Communications medium 38 can be any type of network
or combination of networks, such as a storage area network
(SAN), local area network (LAN), wide area network
(WAN), the Internet, and/or some other type of network, for
example. In an example, hosts 12(1) and 12(2) connect to
storage processor 16 using various technologies. For
example, host 12(1) can connect to the storage processor 16
using NFS (e.g., through a SAN), while host 12(2) can
connect to the storage processor 16 using CIFS. Any number
of hosts (not pictured) may be provided, using any of the
above protocols, some subset therecof, or other protocols
besides those shown. As 1s known, NFS, SMB 3.0, and CIFS
are file-based protocols. Storage processor 16 1s configured
to receive file system requests according to file-based pro-
tocols and to respond to such file system requests by reading,
or writing storage device 18.

Hosts 12(1) and 12(2) may be configured to send file
system requests to storage processor 16 via communications
medium 18. In some arrangements, hosts 12(1) and 12(2) are
desktop computers; 1n other arrangements, hosts 12(1) and
12(2) can each be a server, a laptop computer, a tablet
computer, or any other electronic device having a processor
capable of 1ssuing requests.

Storage processor 16 1s seen to include a communication
interface 18, a processor 20, and memory 22. Communica-
tion 1nterface 18 includes, for example, network interface
adapters, for converting electronic and/or optical signals
received from the communications medium 38 to electronic
form for use by storage processor 16. Processor 20 includes
one or more processing chips and/or assemblies. In a par-
ticular example, the processor 20 includes numerous multi-
core CPUs. Memory 22 includes both volatile memory (e.g.,

5

10

15

20

25

30

35

40

45

50

55

60

65

4

RAM), and non-volatile memory, such as one or more
ROMs, disk drives, solid state drives (SSDs), and the like.
Processor 20 and memory 22 together form control circuitry,
which 1s constructed and arranged to carry out various
methods and functions as described herein. Also, memory 22
includes a variety of software constructs realized 1n the form
of executable 1nstructions. When the executable instructions
are run by processor 20, processor 20 1s caused to carry out
the operations of the software constructs. Although certain
soltware constructs are specifically shown and described, it
1s understood that memory 22 typically includes many other
software constructs, which are not shown, such as an oper-
ating system, various applications, processes, and daemons.

As shown, memory 22 includes an upper deck file system
24, a mapping layer 26, a lower deck file system 28, and a
storage pool 30.

In an example, the upper deck file system 24 1s a host file
system, which may be accessed by the hosts 112(1-2) for
creating files and/or directories, deleting files and/or direc-
tories, reading files, writing files, and so forth. Within the
data storage system 14, the upper deck file system 24 1is
represented internally as a file of the lower-deck file system
28 (described below).

Mapping layer 26 maps the upper deck file system 24 to
the corresponding underlying file stored in the lower-deck
file system 28. For example, particular blocks of the upper
deck file system 24 are mapped to corresponding blocks of
the lower deck file system 28.

Storage pool 30 organizes elements of the storage 32 in
the form of slices. A “slice” 1s an increment of storage space,
such as 256 MB 1n size, which i1s drawn from the storage 32.
Pool 30 may allocate slices to the lower-deck file system 28
for use 1n storing 1ts content. Pool 30 may also deallocate
slices from lower deck file systems 28 if the storage pro-
vided by the slices 1s no longer required. Further details of
memory 22 are discussed below in connection with FIG. 2.

FIG. 2 illustrates further details of example upper deck
file system 24, example mapping layer 26, example lower
deck file system 28, and example storage pool 30.

Upper deck file system 24 according to FIG. 2 includes
slices 50a and 50b. Each of slices 50a and 35056 contains
logical blocks including block 44(1) and 44(2). Each of the
logical blocks 1n slices 50a and 505 has one of two states:
free (1.e., not storing active content) or allocated 1.e., (,
cross-hatched), and written to (1.e., possessing data, diagonal
hatch). That said, a free block may be backed (i.e., written
to then deleted, associated with a block of storage in the
lower deck), or unbacked (i.e., not associated with a block
of storage 1n the lower deck).

Lower deck file system 28 according to FIG. 2 includes
slices 40a and 405, each of which 1s provisioned by storage
pool 30 and contain blocks of storage including blocks
42(1), 42(2), and 42(3). In lower deck file system 28, blocks
in slices 40a and 405 have one of two states: free, or
allocated. That said, a third option, denoted by the cross-
hatch, represents a block in which a hole has been punched;
1., storage space 1n the block has been decoupled from a
logical block 1n upper deck file system 24.

Storage pool 30 according to FIG. 2 includes slices 40a,
4056, 40c, 40d, 40e, and 40f. Slices 40a and 405 are provi-
sioned to lower deck file system 28, while the other slices
may be provisioned to other resources or may be free.

During example operation, upper deck file system 24 1s
thinly provisioned. The logical blocks, when written into
and allocated from lower deck file system 28, correspond to
blocks 1n slices 40a and 405 that have been provisioned from
storage pool 30 by storage processor 16 (see FIG. 1). As

US 9,430,492 Bl

S

illustrated 1n FIG. 2, block 44(1) in upper deck file system
which has been written into corresponds to block 42(1) in
lower deck file system 28. Similarly, block 44(2) in upper
deck file system corresponds to block 42(2) 1n lower deck
file system 44(2). It should be understood, however, that free
blocks do not correspond to any blocks 1n lower deck file
system 28 until they have been written into, 1.e., only backed
free blocks 1n the upper deck file system 24 correspond to
blocks 1n the lower deck file system 28.

As host 12(1) sends file system requests to write data to
blocks 1n slices 50a and 3505, storage processor 16 writes the
data into blocks such as block 42(3). Upon writing data to
a block 1 lower deck file system 28, storage processor 16
allocates that block of storage to upper deck file system 24.
Until data 1s written to a block in lower deck file system 28,
however, a Iree block 1n upper deck file system 24 cannot be
said to correspond to any blocks in lower deck file system 28
because, 1 a thinly provisioned file system, storage sup-
porting such a block 1n the upper deck file system 24 does
not get allocated until the block has been written 1nto.

At some point, host 12(1) sends a {file system request that
causes storage processor to delete the data 1n block 44(2) 1n
upper deck file system 24. For example, a user of the host
12(1) may delete a file (or a portion thereot) or a directory.
Thus, block 44(2) changes state from “written to” to “backed
free”, represented by the cross hatch pattern 1n FIG. 2. It
should be understood that, while block 44(2) 1s now free, it
still maintains its allocated storage space i corresponding
block 42(2).

In response to the deletion command, or at some other
time, storage processor 16 may imitiate a scavenge operation.
In response to the imitiation of the scavenge operation,
storage processor accesses a set of data structures to locate
any backed free blocks 1n upper deck file system 24. Upon
locating a backed free block, say 44(2), in upper deck file
system 24, storage processor 16 performs a hole punching
operation on block 44(2). As part of a hole punching
operation, storage processor 16 locates the corresponding
block—in this case, block 42(2)—that was allocated to
upper deck file system 1n response to block 44(2) having

been written into. Once storage processor 16 locates block
42(2), 1t frees block 42(2) by deleting any data in block

42(2).

Once storage processor 16 frees block 42(2), 1t then
updates the set of data structures to indicate that block 44(2)
1s no longer a backed free block, but 1s rather a free block.
Storage processor has disassociated block 44(2) from any
storage 1n lower deck file system 28, although by being
written mto again, it may become associated with another
block of storage in lower deck file system 28.

At some later time, storage processor 16 may examine
slices 40a and 405 1n the lower deck file system 28. If any
slice 1s only partially filled with contents, the slice may be
evacuated, such that its content 1s moved to another slice and
it 1s made iree of all content. The evacuated slice may then
be returned to the pool 30, where it may be repurposed.

It should be understood that an advantage of the above-
described technique 1s that slices in the lower deck file
system are made available to storage pool 30 1n relatively
few operations. By tracking backed free blocks, storage
processor 1s able to 1gnore free blocks 1 upper deck file
system 24 and thus not waste any processor time performing
operations that will not result 1n any additional storage space
being made available to storage pool 30. Further details of
the above described scavenge operation are described below
in connection with FIG. 3. FIG. 3 illustrates an example
upper deck file system 24 including a slice map 60 and slices

10

15

20

25

30

35

40

45

50

55

60

65

6

66a, 660, 66c, and 66d (slices 66). Slice map 60 1s a data
structure, which, among other things, tracks the number of
free blocks and the number of backed free blocks 1n each
slice 66 of the upper deck file system 24. In the example
illustrated 1n FIG. 3, slice map 60 takes the form of a table
having a slice ID field 62, a backed free blocks field 64, and
free blocks field 70 which includes all free blocks 1n 1ts
count. Slice ID field 62 provides an identifier for each slice
in upper deck file system 24. Backed free blocks field 64
provides, for each slice identifier 62, a count indicating a
current number of backed free blocks within the respective
slice.

Also illustrated in FIG. 3 are example slices 66 that house
logical blocks within upper deck file system 24. Within each
slice 66, there 1s a mapping construct 68 that 1dentifies the
locations of the backed free blocks within that slice. In some
arrangements, mapping construct 68 may be a bitmap 1n
which each bit indicates whether a logical block correspond-
ing to that bit 1s a backed free block.

During operation, storage processor 16 accesses slice map
60 as part of a background operation. Storage processor 16
then makes a decision whether to 1nitiate a scavenge opera-
tion based on contents of slice map 60. For example, storage
processor 16 may aggregate the number of backed free
blocks 1 backed free blocks field 64 across all slices to
produce an aggregated number of backed free blocks in the
UDEFS. In this case, 11 the aggregated number of backed free
blocks 1s greater than a predetermined threshold number of
backed free blocks, then storage processor 16 imtiates the
scavenge operation. It 1s understood, however, that the
scavenge operation may be conducted at any time and/or 1n
response to any event.

It should be understood, however, that there may be other
triggers for mitiating a scavenge operation, such as exceed-
ing a threshold number of backed free blocks in upper deck
file system 24 or in response to a manual command from
host 12(1).

Upon mitiating the scavenge operation, storage processor
16 performs a lookup on the slice map 60 to determine
which slices 66 have at least one backed free block. For each
such slice 66—in the example illustrated 1n FIG. 3, slices
666 and 66¢c—storage processor accesses the corresponding,
mapping constructs (685/68¢) in the respective slice. In the
example of mapping construct 685 being a bitmap, storage
processor 16 reads that bitmap to determine positions of bits
indicating which logical blocks within slice 6656 are backed
free blocks. Upon making this determination, storage pro-
cessor 16 then punches holes 1n those blocks as described
above.

In some arrangements, for each backed free block for
which storage processor 16 punches a hole, storage proces-
sor 16 decrements the backed-iree block counter 64 corre-
sponding to slice 660 by one. I storage processor 16
completes the scavenge operation for a slice 66, then the
counter for that slice will read zero. It should be understood
that the free counter 70 does not change; free counter only
changes when a block 1s written nto.

FIG. 4 illustrates a method 90 of scavenging free storage
space 1n a thinly provisioned upper deck file system stored
in the form of a file 1n an underlying lower deck file system
ol a data storage apparatus, including steps 92 and 94.

In step 92, a set of data structures are accessed to 1dentily
the location of each of a set of backed free blocks within the
upper deck file system, wherein backed free blocks are
blocks that have been provisioned from storage devices of
the data storage apparatus to the lower deck file system,
allocated from the lower deck file system to the upper deck

US 9,430,492 Bl

7

file system, and later freed from the upper deck file system.
As described above, such data structures may take the form
of a slice map 60 as well as individual mapping constructs
within each slice such as a bitmap.

In step 94, for each of the set of backed free blocks, (1) the
block 1n the lower deck file system from which the respec-
tive backed free block was allocated 1s freed and (11) the set
of data structures 1s updated to indicate that the respective
back free block 1s no longer a backed free block. As
described above, updating the data structures may involve
decrementing a counter within a slice in which a hole was
punched.

As used throughout this document, the words “compris-
ing,” “including,” and “having” are intended to set forth
certain 1tems, steps, elements, or aspects of something 1n an
open-ended fashion. Although certain embodiments are dis-
closed herein, 1t 1s understood that these are provided by way
of example only and the mvention 1s not limited to these
particular embodiments. In addition, the word “set” as used
herein indicates one or more of something, unless a state-
ment 1s made to the contrary.

Having described certain embodiments, numerous alter-
native embodiments or variations can be made. For example,
while the examples described above referred mainly to data
storage systems that use slice maps, one may use direct
block maps in the upper deck file system. Further, the upper
deck file system and the mapping layer may themselves
reside on the client, and a block protocol (SCSI, ifor
example) connects the client mapping layer to the lower
deck file system on the storage processor.

Also, the improvements or portions thereolf may be
embodied as a non-transient computer-readable storage
medium, such as a magnetic disk, magnetic tape, compact
disk, DVD, optical disk, flash memory, Application Specific
Integrated Circuit (ASIC), Field Programmable Gate Array
(FPGA), and the like. Multiple computer-readable media
may be used. The medium (or media) may be encoded with
instructions which, when executed on one or more comput-
ers or other processors, perform methods that implement the
various processes described herein. Such medium (or media)
may be considered an article of manufacture or a machine,
and may be transportable from one machine to another.

Further, although features are shown and described with
reference to particular embodiments hereof, such features
may be included 1n any of the disclosed embodiments and
their variants. Thus, 1t 1s understood that features disclosed
in connection with any embodiment can be included as
variants of any other embodiment, whether such 1nclusion 1s
made explicit herein or not.

Those skilled 1n the art will therefore understand that
various changes 1 form and detaill may be made to the
embodiments disclosed herein without departing from the
scope of the mvention.

What 1s claimed 1s:

1. A method of scavenging free storage space in a thinly
provisioned upper deck file system stored in the form of a
file 1n an underlying lower deck file system of a data storage
apparatus, the method comprising;:

accessing, by a storage processor of the data storage

apparatus, a set of data structures to 1dentity the loca-
tion of each of a set of backed free blocks within the
upper deck file system,

wherein the backed free blocks are blocks that have been

provisioned from storage devices of the data storage
apparatus to the lower deck file system, allocated from
the lower deck file system to the upper deck file system,
and later freed from the upper deck file system; and

22

10

15

20

25

30

35

40

45

50

55

60

65

8

for each of the set of backed free blocks, (1) freeing the
block 1n the lower deck file system from which the
respective backed free block was allocated and (11)
updating the set of data structures to indicate that the
respective back free block 1s no longer a backed iree

block,

wherein accessing the set of data structures to 1dentily the
location of each of a set of backed free blocks within

the upper deck file system includes identifying, from
the set of data structures, a set of slices in the upper
deck file system that each include at least one backed

free block,

wherein blocks 1n the lower deck file system are arranged
in lower deck slices, and

wherein the method further comprises (1) computing a
number of freed blocks 1n at least one lower deck slice,
and (1) comparing the number of freed blocks to a
threshold number of freed blocks to produce a com-
parison result indicative of a readiness to return the at
least one lower deck slice to a storage pool.

2. A method as 1n claim 1,

wherein the upper deck file system includes multiple
upper deck slices mto which blocks are allocated from
the lower deck file system.

3. A method as 1n claim 2,

wherein accessing the set of data structures to identify the
location of each of a set of backed free blocks within
the upper deck file system further includes:
accessing an upper deck slice map identifying the upper

deck slices 1n the upper deck file system which have
at least one backed free block.

4. A method as 1n claim 2,

wherein the set of data structures includes a mapping
construct in each upper deck data slice that contains at
least one backed free block,

wherein the mapping construct indicates which blocks
within the respective upper deck slice are backed free
blocks:

wherein accessing the set of data structures further
includes:

reading the mapping construct of each upper deck slice
that has at least one backed free block, and

wherein freeing the blocks 1n the lower deck file system
includes locating blocks 1n the lower deck file system
as indicated in the mapping construct, and marking
those blocks 1n the lower deck file system as free.

5. A method as 1n claim 2,

wherein the method further comprises:

alter freeing the blocks in the lower deck file system
indicated by the mapping construct, identifying a lower
deck slice that contains the freed blocks:

relocating allocated blocks within the lower deck slice;
and

after relocating the allocated blocks that have data, return-
ing the lower deck slice to the storage pool, lower deck
slices 1n the storage pool being available for use
clsewhere.

6. A method as 1n claim 1,

wherein the method of scavenging free storage space 1s
performed 1n response to the number of backed free
blocks exceeding a predetermined threshold.

7. A method as 1n claim 6,

wherein the set of data structures includes a counter for
cach slice indicative of a number of backed free blocks
in that slice; and

wherein the method further comprises:

US 9,430,492 Bl

9

computing an aggregate number of backed free blocks as
indicated by the counter for each slice.

8. A method as 1n claim 7,

wherein updating the set of data structures to indicate that
the respective back free block 1s no longer a backed tree
block includes:

decrementing the counter for the slice which has the
backed free block.

9. A method as 1n claim 1,

wherein the upper deck file system 1s a host file system
accessed by hosts external to the storage processor and
connected to the storage processor over a network.

10. A method as 1n claim 1,

wherein the method further comprises providing a map-
ping of particular blocks of the upper deck file system
to corresponding blocks of the lower deck file system:;
and

wherein freeing the block in the lower deck file system
from which the respective backed free block was
allocated 1ncludes locating the block 1n the lower deck

file system according to the mapping.
11. A data storage apparatus for scavenging ifree storage

space 1 a thinly provisioned upper deck file system stored
in the form of a file 1n an underlying lower deck file system
of the data storage apparatus, the data storage apparatus
comprising:

a set of storage devices; and

a storage processor, the storage processor including:

memory; and

a set of processors coupled to the memory to form
controlling circuitry, the controlling circuitry con-
structed and arranged to:

access a set of data structures to 1dentily the location of
cach of a set of backed free blocks within the upper
deck file system,

wherein the backed free blocks are blocks that have been
provisioned from storage devices of the data storage
apparatus to the lower deck file system, allocated from
the lower deck file system to the upper deck file system,
and later freed from the upper deck file system; and

for each of the set of backed free blocks, (1) free the block
in the lower deck file system from which the respective
backed free block was allocated and (11) update the set
of data structures to indicate that the respective back
free block 1s no longer a backed free block,

wherein the controlling circuitry, constructed and
arranged to access the set of data structures to 1dentily
the location of each of a set of backed free blocks
within the upper deck file system, 1s further constructed
and arranged to identify, from the set of data structures,
a set of slices 1n the upper deck file system that each
include at least one backed free block,

wherein blocks 1n the lower deck file system are arranged
in lower deck slices, and

wherein the controlling circuitry 1s further constructed
and arranged to (1) compute a number of freed blocks
in at least one lower deck slice, and (11) compare the
number of freed blocks to a threshold number of freed
blocks to produce a comparison result indicative of a
readiness to return the at least one lower deck slice to
a storage pool.

12. A data storage apparatus as 1n claim 11,

wherein the upper deck file system includes multiple
upper deck slices into which blocks are allocated from
the lower deck file system.

13. A data storage apparatus as 1n claim 12,

10

15

20

25

30

35

40

45

50

55

60

65

10

wherein the controlling circuitry constructed and arranged
to access the set of data structures to identify the
location of each of a set of backed free blocks within
the upper deck file system 1s still further constructed
and arranged to:

access an upper deck slice map 1dentifying the upper deck
slices 1n the upper deck file system which have at least
one backed free block.

14. A data storage apparatus as in claim 12,

wherein the set of data structures includes a mapping
construct in each upper deck data slice that contains at
least one backed free block,

wherein the mapping construct indicates which blocks
within the respective upper deck slice are backed free

blocks:;

wherein the controlling circuitry constructed and arranged
to access the set of data structures to identify the
location of each of a set of backed free blocks within
the upper deck file system 1s further constructed and
arranged to:

read the mapping construct of each upper deck slice that
has at least one backed free block, and

wherein the controlling circuitry constructed and arranged
to free the blocks 1n the lower deck file system 1s further
constructed and arranged to locate blocks in the lower
deck file system as indicated in the mapping construct,
and mark those blocks 1n the lower deck file system as
free.

15. A data storage apparatus as in claim 12,

wherein the controlling circuitry 1s further constructed
and arranged to:

alter freeing the blocks in the lower deck file system
indicated by the mapping construct, identily a lower
deck slice that contains the freed blocks;

relocate allocated blocks within the lower deck slice; and

alter relocating the blocks that have data, return the lower
deck slice to the storage pool, lower deck slices 1n the
storage pool being available for use elsewhere.

16. A computer program product having a non-transitory,

computer-readable storage medium which stores instruc-
tions which, when executed by a computer, cause the
computer to perform a method of scavenging free storage
space 1n a thinly provisioned upper deck file system stored
in the form of a file 1n an underlying lower deck file system

ol a data storage apparatus, the method comprising:

accessing, by a storage processor of the data storage
apparatus, a set of data structures to i1dentity the loca-
tion of each of a set of backed free blocks within the
upper deck file system, wherein the backed free blocks
are blocks that have been provisioned from storage
devices of the data storage apparatus to the lower deck
file system, allocated from the lower deck file system to
the upper deck file system, and later freed from the
upper deck file system; and

for each of the set of backed free blocks, (1) freeing the
block 1n the lower deck file system from which the
respective backed free block was allocated and (11)
updating the set of data structures to indicate that the
respective back free block 1s no longer a backed free
block,

wherein accessing the set of data structures to 1dentily the
location of each of a set of backed free blocks within
the upper deck file system includes identifying, from
the set of data structures, a set of slices in the upper
deck file system that each include at least one backed

free block,

US 9,430,492 Bl

11

wherein blocks 1n the lower deck file system are arranged
in lower deck slices, and

wherein the method further comprises (1) computing a
number of freed blocks 1n at least one lower deck slice,
and (1) comparing the number of freed blocks to a
threshold number of freed blocks to produce a com-
parison result indicative of a readiness to return the at
least one lower deck slice to a storage pool.

17. A computer program product as in claim 16,

wherein the upper deck file system includes multiple
upper deck slices into which blocks are allocated from
the lower deck file system.

18. A computer program product as 1n claim 17,

wherein accessing the set of data structures to 1dentify the
location of each of a set of backed free blocks within
the upper deck file system further includes:

accessing an upper deck slice map 1dentifying the upper
deck slices 1n the upper deck file system which have at
least one backed free block.

19. A computer program product as 1n claim 17,

wherein the set of data structures includes a mapping
construct 1n each upper deck data slice that contains at
least one backed free block,

wherein the mapping construct indicates which blocks

within the respective upper deck slice are backed free
blocks:

10

15

20

12

wherein accessing the set of data structures further
includes:

reading mapping construct of each upper deck slice that
has at least one backed free block, and

wherein freeing the blocks 1n the lower deck file system
includes locating blocks 1n the lower deck file system
as indicated in the mapping construct, and marking
those blocks 1n the lower deck file system as free.

20. A computer program product as in claim 17,
wherein the method further comprises:

alter freeing the blocks in the lower deck file system
indicated by the mapping construct, identifying a lower
deck slice that contains the freed blocks:

relocating allocated blocks within the lower deck slice;
and

alter relocating the blocks that have data, returning the

lower deck slice to the storage pool, lower deck slices
in the storage pool being available for use elsewhere.

21. A computer program product as in claim 16,

wherein the method of scavenging free storage space 1s
performed 1n response to the number of backed free
blocks exceeding a predetermined threshold.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

