US009430257B2

a2y United States Patent (10) Patent No.: US 9.430,257 B2
Z.aslavsky et al. 45) Date of Patent: Aug. 30, 2016

(54) SCHEDULING VIRTUAL MACHINES USING (56) References Cited

USER-DEFINED RULES |
U.S. PATENT DOCUMENTS

(71) Applicant: Red Hat Israel, Ltd., Raanana (IL)

8,533,711 B2* 9/2013 Hemmcoovvivvinvinninninnnn, 718/1
8,739,157 B2* 5/2014 Hoetalc..cooeviiinnl. 718/1
(72) Inventors: Yair Zaslavsky, Netanya (IL); Doron 8,850,442 B2* 9/2014 Davisetal. 718/104
Fediuck, Raanana (IL); Laszlo ggogig(l)g‘l‘gig i?: %8% g;ma etal. ... gggggg
1 1 3114 [6) 1| SRR
Hornyak, Raanana (IL) 2010/0269109 Al* 10/2010 Cartales ..o 718/1
_ 2011/0131571 Al1* 6/2011 Hemmoovev.n.n. GO6F 9/45558
(73) Assignee: Red Hat Israel, Inc., Raanana (IL) 718/1
2012/0204176 A1* &/2012 Tiianetal.ovvviivniin., 718/1
(e) Notice: Subjec‘[to any disclaimer, the term of this 2013/0055239 Al1* 2/2013 Andersonetal. 718/1
patent 1s extended or adjusted under 35 OTHER PUBRLICATIONS

U.S.C. 154(b) by 525 days.

Galan et al. (*“Service Specification in Cloud Environments Based
(21) Appl. No.: 13/733,689 on Extensions to Open Standards™, published in: COMSWARE ’09
’ Proceedings of the Fourth International ICST Conference on Com-

munication System software and middleware, Article No. 19, Con-

(22) Filed: Jan. 3, 2013 ference held Jun. 16-19, 2009).*

(65) Prior Publication Data * cited by examiner

US 2014/0189684 Al Jul. 3, 2014 Primary Examiner — Wissam Rashid

(51) Int. Cl (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
nt. CI.

GO6F 9/46 (2006.01) (57) ABSTRACT
GO6F 9/455 (2006.01)
H A processing device receives a rule for execution by a rules
GO6F 9/445 (2006.01) : . .
H engine and provides the rule to the rules engine. The
GO6IF 9/50 (2006.01)
processing device receives a request to provision a virtual
(52) US. Cl. machine (VM) having VM attributes. The processing device
g P g
CPC GO6IF 9/45533 (2013.01); GO6F 8/61

provides metrics of a plurality of physical hosts to the rules
engine and the VM attributes to the rules engine. The
processing device then receives. from the rules engine, an

(2013.01); GO6F 9/5027 (2013.01); GO6F
2009/4557 (2013.01); GO6F 2209/506

_ _ _ (2013.01) identification of one or more prioritized physical hosts of the
(38) Field of Classification Search plurality of physical hosts. The processing device provisions
CPC .o, GO6F 2009/4557;, GO6F 9/4856; the VM on one of the one or more prioritized physical hosts.
GO6F 11/3409; GO6F 9/5044; GO6F 9/505
See application file for complete search history. 20 Claims, 5 Drawing Sheets
300
AW (START)
v
Monitor cumrent status of physical hosts 306
Collect status information and add to data
structure 308

'

Receive request for a virtual machine 310

Y

Initiate instance of rules engine 312

'

Pravide set of virtual machine properties
and status information of physical hosts to
rule engine 314

'

Receive identification of prioritized physical
host(s) from rules engine based on rule(s) in
rules file, status information and parameters

318

y

Launch virtual machine aon identified host
320

l
(END)

US 9,430,257 B2

Sheet 1 of 5

Aug. 30, 2016

U.S. Patent

0% Jausn ereq 0cZ 1 121U3)) eleq

el
aJeMpJIBH

44!

aiempleH

el
10SIAJBdAH

|

|

|

|

|
 El=x
_ ANA ANA ANA

|

L

losianladAH

) acl acl
ATAN A ANA

|
|
|
_ |
144 _
|
|
|

Syl
100] BUIUOISIAOIH INA

091
labeuey uonezienuia

gaT ol
auIbu3g so|ny 931A3(JuUal|D

.
_,..
M
.r-
-......r.:.

US 9,430,257 B2

Sheet 2 of §

Aug. 30, 2016

U.S. Patent

¥0¢c
AJOWBIN

BUJOAA

80¢
Jayolep usened

c0¢
9seqo|ny

GGl
auibug sa|ny

¢ Ol

AJOWBN

UOoI12NPOIY

oLl
9JNJONJISBIJU| UONBZI[BNUIA

)
|00 BUIUOISIACIH INA

091
labeugy uonezijenuiA

U.S. Patent Aug. 30, 2016 Sheet 3 of 5 US 9,430,257 B2

300

AW START
Monitor current status of physical hosts 306

Collect status information and add to data
structure 308

Receive request for a virtual machine 310
Initiate instance of rules engine 312

Provide set of virtual machine properties
and status information of physical hosts to
rule engine 314

Receive identification of prioritized physical

host(s) from rules engine based on rule(s) in

rules file, status information and parameters
318

Launch virtual machine on identified host
320

END

F1G. 3A

U.S. Patent Aug. 30, 2016 Sheet 4 of 5 US 9,430,257 B2

350

\ START
Recelve user-defined rule 355

Generate rules file from user-defined rule
360
Provide rules file to rules engine 365

END

F1G. 3B

U.S. Patent

PROCESSING
DEVICE

INSTRUCTIONS

VIRTUALIZATION
MANAGER

160 —

ya 404
MAIN MEMORY
INSTRUCTIONS . 420
VIRTUALIZATION |
160 ~————1 mANAGER
406
STATIC MEMORY
422
NETWORK
INTERFACE !

DEVICE

Aug. 30, 2016

426

O C W

Sheet 5 of 5

US 9,430,257 B2

o 410

VIDEO DISPLAY

- 412

ALPHA-NUMERIC

INPUT DEVICE

160

414

CURSOR
CONTROL
DEVICE

418

SECONDARY

MEMORY
COMPUTER-READABLE

MEDIUM

INSTRUCTIONS 424

VIRTUALIZATION
MANAGER

420

426

SIGNAL
GENERATION
DEVICE

FIG. 4

US 9,430,257 B2

1

SCHEDULING VIRTUAL MACHINES USING
USER-DEFINED RULES

TECHNICAL FIELD

Embodiments of the disclosure relate generally to soft-
ware provisioning and, more specifically, relate to a mecha-
nism for provisioning a virtual machine using a rules-based
engine.

BACKGROUND

Distributed computing includes the use of computing
resources (hardware and software) that are delivered as a
service over a network (typically the Internet), often referred
to as “cloud computing.” In a distributed computing envi-

ronment, a customer pays a “cloud provider” to obtain
control of a virtual machine, which may be implemented as
a program executing on computer hardware owned and/or
controlled by the cloud provider. It 1s common for cloud
providers to make virtual machines hosted on 1ts computer
hardware available to customers for this purpose. The cloud
provider typically provides an interface that a customer can
use to requisition virtual machines and associated resources
such as processors, memory, storage, and network services,
etc., as well as an interface a customer can use to i1nstall and
execute the customer’s program on the virtual machines that
the customer requisitions, together with additional software
on which the customer’s program depends.

The interface provided by the cloud provider communi-
cates with a virtualization manager that manages the com-
puter hardware that provides the virtual environments used
by end users of the virtual machines. The virtualization
manager, via built-in and hard-coded algorithms, determines
where to launch a virtual machine requested by the cus-
tomer. However, cloud providers (who may be customers of
virtualization management solutions) typically have little
input regarding the algorithms that determine where a virtual
machine 1s provisioned. IT a cloud provider administrator
wants to modily the algorithms that determine where to
provision a virtual machine, code changes of the virtualiza-
tion manager 1s typically performed.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure will be understood more
tully from the detailed description given below and from the
accompanying drawings of various embodiments of the
disclosure. The drawings, however, should not be taken to
limit the disclosure to the specific embodiments, but are for
explanation and understanding only.

FIG. 1 1s a block diagram of a network environment for
implementing a virtualization manager according to one
embodiment of the present disclosure.

FIG. 2 1s a block diagram 1llustrating a virtual machine
provisioning tool and a rules engine 1n more detail according
to an embodiment of the disclosure

FIG. 3A 1s a flow diagram illustrating a method for
deploying a virtual machine using a rules-based engine.

FIG. 3B 1s a flow diagram illustrating a method for
providing a user-defined rule to a rules-based engine.

FIG. 4 1s a diagram of one embodiment of a computer
system for facilitating the provisioning of virtual machines.

DETAILED DESCRIPTION

Embodiments of the disclosure provide a mechanism for
deploying a virtual machine on a physical host by utilizing

10

15

20

25

30

35

40

45

50

55

60

65

2

the decision making efliciency of a business rule engine to
process rules such as user-defined rules that are defined by
an administrator of a virtualization system. In embodiments
of the disclosure, a cloud provider administrator writes his
own business rules for VM scheduling into a rules language
file. Alternatively, the administrator may install a sample
rules file provided by a virtualization manager manufacturer.
When the rules engine starts, it may read the rules file and
add 1t to 1ts internal execution policy. Alternatively, the rules
engine may receive rules from virtualization management.
The virtualization manager, as a part of its functionality,
monitors the current status of all physical hosts i the
virtualization system, and collects the status information
into a data structure (e.g., a database). The virtualization
manager 1s asked by an end user to run a virtual-machine. In
order to determine which physical host will be used, the
virtualization manager provides the rules engine a set of
virtual machine (VM) attributes (e.g., specified resources
such as CPU, memory, etc), as well as current known status
for all relevant physical hosts. The rules engine processes
the mternal policy based on the given information and the
rules (e.g., the user-defined rules), and returns to the virtu-
alization manager one or more prioritized physical hosts
capable of running the given VM. As a result, the computer
system provisions a virtual machine on the selected physical
host.

One advantage of using such a system 1s the ability to
implement user-defined rules to provision virtual machines,
which are otherwise provisioned according to hard-coded
algorithms 1n a virtual machine manager. Another advantage
1s that the cloud provider can fine-tune applied rules without
making any code changes to the virtualization manager to
optimize the system whenever a new software version or
new hardware 1s ntroduced.

FIG. 1 1s a block diagram of a network architecture 100,
in which embodiments of the disclosure may operate. The
network architecture 100 includes a virtualization infrastruc-
ture 110 of an organization that spans multiple data centers.
For simplicity, only two data centers are shown. Data center
120 may be located in one geographic area (for example
Europe) and data center 130 may be located in another
geographic area (for example East Coast USA).

Data center 120 includes various hardware resources 122,
such as physical servers and various processing and com-
munications resources. The virtualization infrastructure 110
can 1nclude various servers and controllers not shown for
simplicity (such as a distributed resource (e.g., cloud) con-
troller, a provisioning server, etc) that enable the virtualiza-
tion infrastructure 110 to deploy a hypervisor 124 on one or
more of the hardware resources 122 and to deploy virtual
machines 125-127 using the hypervisor 124 (also known as
a virtual machine monitor (VMM)).

In one embodiment, hypervisor 124 1s a set of configu-
rations and software components of a host operating system
(OS). The hypervisor 124, though typically implemented 1n
soltware, may emulate and export a bare machine interface
to higher level software. Such higher level software may
comprise a standard or real-time operating system (OS), may
be a highly stripped down operating environment with
limited operating system functionality, may not include
traditional OS facilities, etc. The hypervisor 124 presents to
other software (1.e., “‘guest” software) the abstraction of one
or more virtual machines (VMs).

Data center 130 can be implemented in a manner similar
to data center 120. For example, data center 130 may include
one or more hypervisors 134 running on hardware resources
132. Such hardware resources 132 may represent hardware

US 9,430,257 B2

3

resources of multiple host machines arranged in a cluster.
Each hypervisor may manage zero or more virtual machines.
For example, hypervisor 134 may deploy and manage vir-
tual machines 135, 136, 137.

The virtualization infrastructure 110 can be used to pro-
vide various composite services (also known as composite
applications). A composite application 1s an application that
1s 1nstalled on multiple machines (e.g., on multiple virtual
machines). In the case of virtual machines, the wvirtual
machines may all run on the same data center 120, 130, or
may run on different data centers at diflerent geographic
locations. Each component of the application may be
installed on a virtual machine optimized for the component.

In one embodiment, a single component of the composite
application 1s part of a virtual appliance. A virtual appliance
may be a virtual machine 1mage file that includes a precon-
figured operating system environment and a single applica-
tion (e.g., a component ol the composite application). The
virtual appliance may simplify the delivery, setup and opera-
tion of that single application. The virtual appliance may be
a subset of a virtual machine. Virtual appliances may be used
tor deploying network applications, such as firewalls, virtual
private networks, wide area network (WAN) optimizers,
web servers, application servers, database management sys-
tems, and so forth.

The composite application and its components may be
made up of several software “applications,” so the compos-
ite application will sometimes be referred to as a composite
service. For example, a composite application or service can
be a Web application, such as a news site, a social network-
ing site, or a blog site. Such a composite application can
have various components. For example, a 3-tier application
will have an mterface tier (Web server), a business logic tier
(application server) and a data tier (database management
system). Various other tiers are possible, including an
orchestration tier to distribute and manage jobs between
multiple servers.

For example, a composite service may consist of a data-
base server hosted—in data center 120—on virtual machine
125, an application server hosted on virtual machine 126,
and a web server hosted on virtual machine 127. In data
center 130, another application server for the composite
service can be hosted on virtual machine 135 and another
web server for the composite service can be hosted on virtual
machine 136. In another example, data center 120 may host
a virtual appliance associated with a composite application
(c.g., an application server of the composite application),
and data center 130 may host a second virtual appliance
associated with the composite application (e.g., a web server
of the composite application).

In one embodiment, a client 140 i1s connected to the
virtualization inirastructure—and ultimately to the virtual
machines—via a network 150, which may be may be a
private network (e.g., a local area network (LAN), a wide
arca network (WAN), intranet, or other similar private
networks) or a public network (e.g., the Internet). The client
140 may be a mobile device, a PDA, a laptop, a desktop
computer, or any other computing device.

In one embodiment, the virtualization infrastructure 110
also includes, or in the alternative communicates with, a
virtualization manager 160. The virtualization manager 160
monitors operating parameters of the data centers 120, 130,
including performance metrics of each individual physical
host executing as part of the data centers 120, 130. Examples
ol operating parameters for the data center can include, but
are not limited to, number of host machines, total number of
processing cores, network bandwidth capability, power

10

15

20

25

30

35

40

45

50

55

60

65

4

usage, reliability (e.g., uptime), storage capacity, etc. The
operating parameters may also include current status infor-
mation about the hosts, such as current available bandwidth,
latency, available resources (e.g., disk space, memory, pro-
cessing resources, etc.), and so forth. As part of maintaining
the operating parameters of the data centers, the virtualiza-
tion manager 160 1s also configured to maintain the perfor-
mance metrics of each host, which may include, but 1s not
limited to, number of physical processors, RAM capacity,
physical storage capacity, number ol virtual processors,
virtual RAM capacity, virtual storage capacity, quantity and
type of physical and virtual network interfaces, number of
virtual machines currently executing on the host, and pro-
cessor and memory usage by the virtual machines.

The virtualization manager 160, 1n one embodiment,
includes a virtual machine provisionming tool 145. The virtual
machine provisioning tool 145 1s configured to manage the
provisioning, migration, and/or termination of wvirtual
machines across the virtualization infrastructure 110. The
virtual machine provisioning tool 145 tracks virtual machine
usage statistics across the virtualization infrastructure 110 to
identily maintenance 1ssues to perform. For example, the
virtual machine provisioning tool 145 may utilize the sta-
tistics to determine that a virtual machine (e.g., VM 126)
may beneficially be migrated from one data center 120 to

another data center 130. This decision may be based on
access statistics associated with client access. Access statis-
tics can include historic, recent, and trending location of
accesses. Some example access statistics can be: total
accesses per region per timelrame, tratlic change per region
per timelrame, and other such statistics.

The virtual machine provisioning tool 145 1s configured to
communicate with a rules engine 1355 to determine an
optimal location (e.g., identify a specific host 1n a specific
data center 120, 130) to which to deploy components of a
composite application or virtual machine using the collected
and/or computed statistics. In one embodiment, the virtual-
1zation manager 160 1s networked to the rules engine 155 (as
shown). Alternatively, the rules engine 155 and virtualiza-
tion manager 160 may both operate on the same host. In one
embodiment, the rules engine 155 1s a module of virtual-
1zation manager 160. The virtual machine provisioning tool
145 may communicate the statistics (e.g., both data center
and individual host machine statistics) with the rules engine
155. The virtual machine provisioming tool also provides to
the rules engine a VM to be scheduled. Additionally, the
virtual machine provisioning tool 145 may bundle the sta-
tistics together with a reference to a specific policy or set of
rules the rules-engine 155 1s to apply.

The rules-engine 155 may use a given reference to rules
or any internal preloaded rules or rules updated by the
system administrator to determine a physical host to provi-
sion the scheduled VM on. Business rules may be provided
to the rules engine 153 as a rules language file. Examples of
a rules language file include, but are not limited to, a Drools
Rules Language file, an Extensible Markup Language file, a
Business Rules Markup Language file, a C Language Inte-
grated Production System file, an ILOG file, a Jess file, a
Prolog file, a Lisp-based Intelligent Soiftware Agents {ile, a
Decision Table base Rules file, and an Openl Tablets file.
Rules files may include user-defined rules that are generated
based on 1nput from an admimstrator.

The rules engine 135 1s configured to evaluate rules and
executes one or more rules according to the evaluation. A
rule 1s a logical construct for describing operations, defini-
tions, conditions, and/or constraints that apply to some

US 9,430,257 B2

S

predetermined data to achieve a goal. For example, a busi-
ness rule might state that no credit check 1s to be performed
on returning customers.

The rules engine includes a suite of components (de-
scribed 1n greater detail below with reference to FIG. 2) that
manages and automates the rules to implement. Rules may
be written 1n rule languages. Examples of rule languages
suitable for use 1n the present disclosure include, but are not
limited to, C Library Integrated Production System (CLIPS)
language, Extensible Markup Language (XML), ILOG Rule
Language (IRL), and Drool’s Rule Language (DRL), etc.
Similarly, the rules engine 155 may be implemented using
many different rules engines including, but not limited to,
CLIPS, JRules, Drools, etc.

In one embodiment, a rule 1s 1n the form of a two-part
structure with a Left Hand Side (LHS) and a Right Hand
Side (RHS). The LHS of the rule refers to conditions that
must be met before any actions (e.g., the RHS) are executed.
A rule may also have additional attributes, such as salience
(a form of priority where rules with higher salience are
prioritized over rules with lower salience), agenda group (a
form of rule grouping to ensure only rules in the agenda are
allowed to execute), auto-focus (allowing a rule to execute
despite not being grouped 1n an agenda group), activation
group (a setting to define whether a secondary rule 1is
executed following the execution of a primary rule), no-loop
(a setting to prevent iterative execution of the rule), duration
(a setting to dictate a time duration belfore executing a rule),
etc. In some embodiments, the LHS of a rule includes
conditional elements and patterns. The term “pattern” 1ndi-
cates constraints on fact types, for example, a pattern may
limit 1mput to the LHS to integers and/or text.

As Tacts are asserted and modified in a working memory,
the rules engine 155 matches the facts (e.g., virtualization
inirastructure 110 statistics) against the LHS conditions of
the rules. The rules engine 1355 asserts the facts against the
rule and, 1n one embodiment, executes the RHS (e.g.,
consequences). The rules engine 155 returns the result of the
rule, which in one embodiment 1s an identified host upon
which the virtual machine provisioning tool 145 may pro-
vision a virtual machine.

In this manner, the virtual machine provisioning tool 145
may dynamically deploy (or move) entire components of a
composite service or virtual machine to locations where they
are needed and/or where the resources will most efliciently
be executed. The virtual machine provisioning tool 145 1s
also configured to mstruct a host to perform provisioning by
copying an application to the host, booting the application,
and so forth. This may also include performing a live
migration of a virtual machine that includes the application
(e.g., of a virtual appliance) or composite application.

As mentioned above, the virtualization manager 160
maintains iformation on characteristics of virtual environ-
ments and underlying hardware and software in those virtual
environments that 1t interacts with. This may include infor-
mation on underlying hardware (e.g., processor resources,
memory resources, etc.), information on a host operating
system, information on a hypervisor, information on virtual
machines, and so forth. Each virtual machine or component
ol a composite application (e.g., each virtual appliance) may
specily configuration parameters, such as minimum
resources, a type of hypervisor that it will function on, and
so forth by recording this information 1n a virtual machine
configuration file.

As discussed above, virtualization manager 160 may
interact with a virtual environment that spans multiple
different data centers 120, 130, and may additionally interact

10

15

20

25

30

35

40

45

50

55

60

65

6

with multiple different virtualization environments, for
example, the virtualization manager 160 may interact with a
first virtualization environment that uses an underlying
hypervisor provided by VMWare®, and with a second
virtualization environment that uses an underlying hypervi-
sor provided by Red Hat®. The virtualization manager 160
maintains information on the underlying software and hard-
ware 1n each such virtualization environment.

While various embodiments are described in terms of the

environment described above, the facilities and systems may
be 1implemented 1n a varnety of other environments and
combinations. For example, the virtual machine provision-
ing tool 145 or the rules engine 155 1tself may be hosted by
a virtual machine of the virtualization infrastructure 110.

FIG. 2 1s a block diagram illustrating a virtual machine
provisioning tool 145 and a rules engine 155 1n more detail
according to an embodiment of the disclosure. The rules
engine 155 has an internal rule-base, which can be modified
by the virtual machine provisioning tool 145 or using its own
interfaces such as a web interface. The Virtualization Man-
ager 160 may provide facilities for cloud provider admin-
istrators to update existing rule files, or add new files, and
then update the rules engine with these rules. Examples of
a rule language include, but are not limited to, Drools, XML,
and IRL. One example of a sample business rule might state:
“After the hours of 6 PM ET, select a VM host from data
center 120, where the VM host has no more than two
currently executing virtual machines.”

The virtualization manager 160, 1n one embodiment, 1s
configured to provide a user interface to the client device
140 to receive a custom rule from an administrator of the
virtualization system. For example, an administrator may
upload a rule to the virtualization manager 160 via a file
transfer initiated on a website. In another embodiment, the
virtualization manager 160 provides a user interface for
moditying a plurality of sample rules.

In a further embodiment, the virtualization manager 160
interfaces with the virtualization infrastructure to collect
statistics as described above. The virtual machine provision-
ing tool 1435 1s configured to commumicate the statistics
and/or the custom rule or the sample rule to the rules engine
155. In some embodiments, the rules are maintained on a
machine-readable storage medium accessible by both the
virtualization manager 160 and the rules engine 155.

The rules engine 155 has two main parts, namely author-
ing and runtime. Authoring nvolves the pre-processing of
rule files to generate packages, which are loaded into a
runtime of the rule engine. A package 1s a collection of rules
and other components associated with the rules, such as
imports (e.g., classes to 1import), and globals (e.g., global
variables). The runtime of the rule engine 1s also referred to
as a rulebase 202. Stated differently, the rulebase 202 1s the
runtime representation of a rule set. The rule set may include
a custom rule received from an administrator via the virtu-
alization manager 160, or a set of sample rules provided with
the virtualization manager 160.

The rules engine 155, in one embodiment, includes a
working memory 204. The working memory 204 1s the main
class for using the rule engine at runtime. The working
memory 204 may hold references to data (e.g., statistics
about the virtualization infrastructure 110). The rules engine
155 also 1ncludes production memory 206 which maintains
the rules, 1n one embodiment. The statistics maintained in
the working memory 204 are accessible by the rules engine
155 and asserted against the rules of the production memory

206.

US 9,430,257 B2

7

The rules engine 155 may be scalable to a large number
of rules and statistics or facts. The rulebase 202, in one
embodiment, includes a pattern matcher 208 and an agenda
210. The pattern matcher 208 matches the statistics against
the rules to infer conclusions. In one embodiment, the
conclusion 1s an identified host upon which the wvirtual
machine provisioming tool 145 may provision a virtual
machine. In other words, when the LHS conditions of a rule
are satisfied by the facts or statistics, the RHS 1s activated
and placed onto the agenda 210 to be executed. For example,
if a LHS has a condition that states “on even days of the
month, new virtual machines are to be provisioned on a
physical host located in New York,” and the day of the
month condition 1s met, the rules engine will place the rule
onto the agenda 210 to be executed. If no other rules have
priority, the rules engine 155 executes the rule and returns
the response (e.g., a physical host in New York) to the
virtualization manager 160. In one embodiment, the rules
engine 155 applies the facts (e.g., statistics of the virtual-
ization 1nfrastructure) to the rule and returns an identified
physical host to the virtualization manager 160.

FIG. 3A 1s a flow diagram 1llustrating a method 300 for
deploying a virtual machine using a rules-based engine.
Method 300 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions
run on a processing device), firmware, or a combination
thereot. In one embodiment, method 300 1s performed by the
virtualization manager 160 of FIG. 1.

At block 306 of method 300, the processing logic moni-
tors a current status of multiple physical hosts. The current
status information may include number of virtual machines
hosted by those physical hosts, available resources on those
physical hosts, location of the hosts, bandwidth available to
the hosts, and so forth. In one embodiment, the processing,
logic receives the parameters by either collecting virtualiza-
tion inirastructure statistics, or collecting the statistics from
the data centers (e.g., data center 120, 130 of FIG. 1).
Examples of statistics include, but are not limited to memory
in use, free memory, memory sharing capabilities, CPU
usage, available CPU resources, CPU topology, guest CPU
and memory statistics, network usage, storage usage, storage
limitations, etc. At block 308, processing logic collects the
status information of the hosts and adds the status informa-
tion to a data structure such as a database or table.

At block 310, processing logic receives a request for a
virtual machine. The request may specily a particular type of
virtual machine (e.g., a virtual machine with a particular
operating system 1nstalled, particular applicants installed,
and so forth).

Responsive to the request, at block 312 processing logic
initiates an instance of a rules engine. For example, the
processing logic may provision the rules engine 155 as part
ol a virtual machine operating on a host 1n a data center (e.g.,
data center 120, 130 of FIG. 1). In an alternative embodi-
ment, the processing logic may determine 1f an instance of
the rules engine 155 1s already executing and accessible by
the virtual machine provisioming tool. For instance, the
processing logic may determine if the rules engine 1355 1s
accessible over a network as described above with reference
to FIG. 1.

At block 314, processing logic determines virtual
machine attributes associated with the requested wvirtual
machine, and provides these virtual machine attributes to the
rules engine. Additionally, processing logic provides the
status information stored in the data structure to the rules
engine.

10

15

20

25

30

35

40

45

50

55

60

65

8

At block 318, the rules engine executes one or more rules
(e.g., user-defined rules) using the VM attributes and status
information to determine one or more prioritized physical
hosts for provisioning the virtual machine on. The executed
rules may be those rules included 1n a rules file recerved
from the provisioning manager. In one embodiment, the
rules engine applies a rule having a rule identifier (ID)
provided to the rules engine at block 314. Alternatively,
processing logic may not specily any rules to use, and the
rules engine may make a determination of one or more
existing rules to apply. Once the rules engine determines one
or more prioritized physical hosts, processing logic receives
a response Ifrom the rules engine that indicates the prioritized
host or hosts. A prioritized host may be a suitable host for
provisioning, or scheduling, a virtual machine. The provi-
sioning logic, at block 320, then provisions the virtual
machine on the 1dentified physical host.

In the above described method, the custom rules may be
changed according to desired operating conditions of an
administrator of the virtualization system. For example, an
administrator may have at his or her disposal physical hosts
located with different hosting providers. These different
hosting providers might charge different rates (e.g., hourly,
daily, or based on quantity of data transferred, or a combi-
nation of both) for hosting depending on a range of factors
including, but not limited to, time of day, weekday vs.
weekend, amount of data transferred, processor utilization of
a VM host, etc. The administrator can customize the rules
based on these, and other, conditions. Other conditions may
include VM high-availability rules (also known as co-
location rules), power saving rules, etc.

Beneficially, the above described devices and methods
allow an administrator to change and customize rules
according to a specific operating scenario. Additionally, an
end user of the VM (e.g., a customer of the virtualization
system or provider) may ask for specific characteristics from
the provider, To accommodate such requests, a customer
interface may include policy options for the consumer to
choose from, such as selection of various pre-generated
rules.

FIG. 3B 1s a tlow diagram 1illustrating a method 350 for
providing a user-defined rule to a rules-based engine.
Method 350 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions
run on a processing device), firmware, or a combination
thereol. In one embodiment, method 350 1s performed by the
virtualization manager 160 of FIG. 1.

At block 355, processing logic may receive a custom rule
(or multiple custom rules) from an admainistrator. The pro-
cessing logic, mn one example, receives the rule via a
communication interface. Alternatively, the processing logic
accesses the custom rule from a computer-readable storage
medium. For example, the processing logic may retrieve the
custom rule from a shared network storage device.

In one embodiment, the processing logic provides sample
rules to an administrator via a user interface. The processing
logic may provide the sample rules by providing a user
interface to the administrator which presents, or displays, the
sample rules in a near human-readable format. For example,
the processing logic may present the rules 1n a pseudo-code
format, or alternatively, 1n the form of a conditional state-
ment. One simple example of a sample rule, as provided by
an administrator, 1s

rule “Host 1s not 1n the right group”

when

>> vm: VM()

US 9,430,257 B2

9
>> host: HOST(host_group_i1d !'=vm.gethost_group_1d(

)

then

>> log.anfo(*“host 1s not 1n the right group:”+vds.getld();

>> retract(host);

The administrator may then select one or more of the sample
rules for use. Alternatively, the administrator may modify
one or more of the sample rules for use. Note that in some
implementations, sample rules may also be provided to an
end user, and the end user may select from among the one
or more sample rules.

If any custom rules have been received, processing logic
may generate a rules file from the user-defined custom rules
at block 360. The rules file may include multiple custom
rules. Alternatively, a separate rules file may be generated
for each rule. At block 365, processing logic provide those
custom rules to the rules engine 1n the form of the rules file.

FIG. 4 1s a diagram of one embodiment of a computer
system (e.g., a physical machine) for facilitating the provi-
sioning ol virtual machines. Within the computer system
400 1s a set of mstructions for causing the computer system
to perform any one or more of the methodologies discussed
heremn. In alternative embodiments, the computer system
may be connected (e.g., networked) to other machines 1n a
LLAN, an intranet, an extranet, or the Internet. The computer
system can be a host 1n a cloud, a cloud provider system, a
cloud controller or any other computing device. The com-

puter system can operate in the capacity of a server or a
client machine 1n a client-server network environment, or as
a peer machine 1 a peer-to-peer (or distributed) network
environment. The computer system may be a personal
computer (PC), a tablet PC, a console device or set-top box
(STB), a Personal Digital Assistant (PDA), a cellular tele-
phone, a web appliance, a server, a network router, switch or
bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specily actions to
be taken by that computer system. Further, while only a
single physical machine 1s illustrated, the terms “computer
system” and “physical machine” shall also be taken to
include any collection of physical machines (e.g., comput-
ers) that individually or jomntly execute a set (or multiple
sets) ol instructions to perform any one or more of the
methodologies discussed herein.

The exemplary computer system 400 1includes a process-
ing device 402, a main memory 404 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 406 (e.g., flash memory,
static random access memory (SRAM), etc.), and a second-
ary memory 418 (e.g., a data storage device in the form of
a drive unit, which may include fixed or removable com-
puter-readable storage medium), which communicate with
cach other via a bus 430.

Processing device 402 represents one or more general-
purpose processing devices such as a miCroprocessor, cen-
tral processing umt, or the like. More particularly, the
processing device 402 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set
computing (RISC) microprocessor, very long instruction
word (VLIW) microprocessor, processor implementing,
other mstruction sets, or processors implementing a combi-
nation of mstruction sets. Processing device 402 may also be
one or more special-purpose processing devices such as an
application specific itegrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. Processing device 402

10

15

20

25

30

35

40

45

50

55

60

65

10

1s configured to execute the mnstructions 426 for performing
the operations and steps discussed herein.

The computer system 400 may further include a network
interface device 422. The computer system 400 also may
include a video display unit 410 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)) connected to the
computer system through a graphics port and graphics
chuipset, an alphanumeric input device 412 (e.g., a key-
board), a cursor control device 414 (e.g., a mouse), and a
signal generation device 420 (e.g., a speaker).

The secondary memory 418 may include a machine-
readable storage medium (or more specifically a computer-
readable storage medium) 424 on which 1s stored one or
more sets of instructions 426 embodying any one or more of
the methodologies or functions described herein. In one
embodiment, the instructions 426 include instructions for
the virtualization manager 160. The instructions 426 may
also reside, completely or at least partially, within the main
memory 404 and/or within the processing device 402 during
execution thereof by the computer system 400, the main
memory 404 and the processing device 402 also constituting
machine-readable storage media.

The computer-readable storage medium 424 may also be
used to store the instructions 426 persistently. While the
computer-readable storage medium 424 1s shown in an
exemplary embodiment to be a single medium, the term
“computer-readable storage medium™ should be taken to
include a single medium or multiple media (e.g., a central-
1zed or distributed database, and/or associated caches and
servers) that store the one or more sets of 1mstructions. The
term “‘computer-readable storage medium” shall also be
taken to include any medium that 1s capable of storing or
encoding a set of mstructions for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the present disclosure. The term “com-
puter-readable storage medium™ shall accordingly be taken
to include, but not be limited to, solid-state memories, and
optical and magnetic media.

The instructions 426, components and other features
described herein can be implemented as discrete hardware
components or integrated 1n the functionality of hardware
components such as ASICS, FPGAs, DSPs or similar
devices. In addition, the instructions 426 can be i1mple-
mented as firmware or functional circuitry within hardware
devices. Further, the mstructions 426 can be implemented 1n
any combination hardware devices and software compo-
nents.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled 1n the art, that the
present disclosure may be practiced without these specific
details. In some i1instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present disclosure.

Some portions of the detailed description which follows
are presented 1n terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled 1n the data processing
arts to most eflectively convey the substance of their work
to others skilled in the art. An algorithm 1s here, and
generally, concerved to be a self-consistent sequence of steps
leading to a result. The steps are those requiring physical
mampulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common

US 9,430,257 B2

11

usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as ‘“‘providing,” “generating,” “identifying,” “‘receiving,”
“retrieving,” “provisioning,” “identifying,” or the like, refer
to the actions and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (e.g., electronic) quanti-
ties within the computer system’s registers and memories
into other data similarly represented as physical quantities
within the computer system memories or registers or other
such information storage, transmission or display devices.

In the preceding description, numerous details are set
forth. It will be apparent, however, to one skilled in the art,
that the present disclosure may be practiced without these
specific details. In some instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present disclosure.

Some portions of the detailed descriptions are presented
in terms ol algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled 1n the data processing arts to most
cllectively convey the substance of their work to others
skilled in the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com-
puter. Such a computer program may be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to
a computer system bus.

The present disclosure may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to the
present disclosure. A machine-readable medium includes
any mechanism for storing or transmitting information 1n a
form readable by a machine (e.g., a computer). For example,
a machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM™), random
access memory (“RAM”), magnetic disk storage media,
optical storage media, flash memory devices, eftc.

Reference 1n the description to “one embodiment™ or “an
embodiment” means that a particular feature, structure, or

10

15

20

25

30

35

40

45

50

55

60

65

12

characteristic described 1n connection with the embodiment
1s included 1n at least one embodiment of the disclosure. The
phrase “in one embodiment” located 1n various places 1n this
description does not necessarily refer to the same embodi-
ment. Like reference numbers signify like elements through-
out the description of the figures.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
embodiments will be apparent to those of skill in the art
upon reading and understanding the above description.
Although the present disclosure has been described with
reference to specific exemplary embodiments, 1t will be
recognized that the disclosure 1s not limited to the embodi-
ments described, but can be practiced with modification and
alteration within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded in an 1illustrative sense rather than a restrictive
sense. The scope of the disclosure should, therefore, be
determined with reference to the appended claims, along

with the full scope of equivalents to which such claims are
entitled.

What 1s claimed 1s:

1. A method comprising:

receiving, through a first interface, by a processing

device, a rule for execution by a rules engine;
providing, by the processing device, the rule to a virtu-
alization manager;

recerving a request to provision a virtual machine (VM)

having VM attributes;

determining, by the processing device, whether an

instance of the rules engine 1s available;

in response to determining that an instance of the rules

engine 1s available, establishing communication
between the available 1nstance of the rules engine and
the virtualization manager;

in response to determining that no instance of the rules

engine 1s available, mnitiating a new instance of the rules
engine;

providing, by the processing device, the rule to the rules

engine from the virtualization manager;

providing, by the processing device, metrics of a plurality

of physical hosts to the rules engine and the VM
attributes to the rules engine;

recerving, from the rules engine, an identification of one

or more prioritized physical hosts of the plurality of
physical hosts; and

provisioning, by the processing device, the VM on one of

the one or more prioritized physical hosts.

2. The method of claim 1, wherein the received rule 1s a
user-defined rule.

3. The method of claim 1, further comprising:

generating a rules language file that incorporates the rule,

wherein the rules language file 1s provided to the rules
engine.

4. The method of claim 3, wherein the rules language file
1s at least one of a Drools Rules Language file, an Extensible
Markup Language file, a Business Rules Markup Language
file, a C Language Integrated Production System f{ile, an
ILOG file, a Jess file, a Prolog file, a Lisp-based Intelligent
Software Agents file, a Decision Table base Rules file, and
an Openl Tablets file.

5. The method of claim 1, turther comprising providing a
plurality of sample rules to the virtualization manager via a
user interface, each of the plurality of sample rules editable
by an administrator of the virtualization manager.

US 9,430,257 B2

13

6. The method of claim 1, wherein the rules engine 1s a
business rules engine to execute the rule using the metrics
and the VM attributes.

7. The method of claim 1, further comprising;:

receiving, through a second interface, the metrics from the

plurality of physical hosts.

8. A non-transitory computer-readable storage medium
having 1instructions that, when executed by a processing
device, cause the processing device to:

receive, through a first interface, by the processing device,

a rule for execution by a rules engine;

provide, by the processing device, the rule to a virtual-

1zation manager;

receive a request to provision a virtual machine (VM)

having VM attributes;

determine, by the processing device, whether an instance

of the rules engine 1s available;

in response to determining that an instance of the rules

engine 1s available, establishing communication
between the available mstance of the rules engine and
the virtualization manager;

in response to determining that no instance of the rules

engine 1n available, initiating a new 1instance of the
rules engine;

provide, by the processing device, the rule to the rules

engine from the virtualization manager;

provide, by the processing device, metrics of a plurality of

physical hosts to the rules engine and the VM attributes
to the rules engine;

receive, from the rules engine, an identification of one or

more prioritized physical hosts of the plurality of
physical hosts; and

provision, by the processing device, the VM on one of the

one or more prioritized physical hosts.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the received rule 1s a user-defined rule.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the processing device 1s further
to:

generate a rules language file that incorporates the rule,

wherein the rules language file 1s provided to the rules
engine.

11. The non-transitory computer-readable storage
medium of claim 10, wherein the rules language file 1s at
least one of a Drools Rules Language file, an Extensible
Markup Language file, a Business Rules Markup Language
file, a C Language Integrated Production System file, an
ILOG file, a Jess file, a Prolog file, a Lisp-based Intelligent
Software Agents file, a Decision Table base Rules file, and
an Openl Tablets file.

12. The non-transitory computer-readable storage
medium of claim 8, wherein the processing device 1s further
to:

provide a plurality of sample rules to the virtualization

manager via a user interface, each of the plurality of
sample rules editable by an administrator of the virtu-
alization manager.

10

15

20

25

30

35

40

45

50

55

14

13. The non-transitory computer-readable storage
medium of claim 8, wherein the rules engine 1s a business
rules engine to execute the rule using the metrics and the VM
attributes.

14. The non-transitory computer-readable storage
medium of claim 8, wherein the processing device 1s further
to:

receive, through a second interface, the metrics from the

plurality of physical hosts.

15. A computing device comprising:

a memory; and

a processing device operatively coupled to the memory,

the processing device to:

receive a rule for execution by a rules engine;

provide the rule to a virtualization manager;

receive a request to provision a virtual machine (VM)
having VM attributes;

determine whether an instance of the rules engine is
available:

in response to determining that an instance of the rules
engine 1s available, establishing communication
between the available instance of the rules engine
and the virtualization manager;

in response to determining that no instance of the rules
engine 1n available, mitiating a new instance of the
rules engine;

provide the rule to the rules engine from the virtual-
1zation manager;

provide metrics of a plurality of physical hosts to the
rules engine;

provide the VM attributes to the rules engine;

receive, from the rules engine, an i1dentification of one
or more prioritized physical hosts of the plurality of
physical hosts; and

provision the VM on one of the one or more prioritized
physical hosts.

16. The computing device of claim 15, wherein the
received rule 1s a user-defined rule.

17. The computing device of claim 15, wherein the
processing device 1s further to generate a rules language file
that incorporates the rule, wherein the rules language file 1s
provided to the rules engine.

18. The computing device of claim 15, wherein the
processing device 1s further to:

provide a plurality of sample rules to the virtualization

manager via a user interface, each of the plurality of
sample rules editable by an administrator of the virtu-
alization manager.

19. The computing device of claim 15, wherein the rules
engine 1s a business rules engine to execute the rule using the
metrics and the VM attributes.

20. The computing device of claim 15, wherein the
processing device 1s further to: receive, through a second
interface, the metrics from the plurality of physical hosts.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

