UsS009424365B2

a2y United States Patent (10) Patent No.: US 9,424,365 B2

Hammerschmidt et al. 45) Date of Patent: Aug. 23, 2016
(54) XPATH-BASED CREATION OF RELATIONAL 2002/0078068 Al* 6/2002 Krishnaprasad et al. . 707/104.1
INDEXES AND CONSTRAINTS OVER XMI. 2002/0087531 Al1* 7/2002 Haraetal. 707/3
2003/0014397 Al1* 1/2003 Chauetal.ccoocevnnnnnl. 707/3
DATA STORED IN RELATIONAL TABLES 2004/0064466 Al* 4/2004 Manikutty et al. 707/100
_ _ 2004/0088117 Al1* 5/2004 Dorsett Jr. ..oooviiiiniinil. 702/22
(75) Inventors: Beda Christoph Hammerschmidt, San 2004/0163041 Al* 82004 Engelocoooovvvvvveeenn.. 715/509
Carlos, CA (US); Zhen Hua Liu, San 2004/0167917 Al* 82004 Haraetal.c........ 707/100

Mateo, CA (US); Thomas Baby, Maple (Continued)

Valley, WA (US)
OTHER PUBLICATIONS

(73) Assignee: Oracle International Corporation, |
Redwood Shores, CA (US) Yoshikawa et al., M., “XREL: A Path-Based Approach to Storage

and Retrieval of XML Documents Using Relational

(*) Notice: Subject to any disclaimer, the term of this Databases,” ACM Transactions on Internet Technology (TOIT), vol.
patent 1s extended or adjusted under 35 1 Issue 1, Aug. 2001, pp. 110-141, ACM New York, NY, USAISSN:

U.S.C. 154(b) by 234 days. 1533-5399 *
Continued
(21) Appl. No.: 12/610,164 ()
(22) Filed: Oct. 30, 2009 Primary Examiner — Mark E Hershley
(74) Attorney, Agent, or Firm — Hickman Palermo Becker

(65) Prior Publication Data Bingham LLP

US 2011/0106812 Al May 5, 2011 (57) ABRSTRACT
(51) Int. CL. Techniques and approaches are provided for creating

GOGF 7/00 (2006.01) indexes and column constraints on structured XMIL. data that

GO6F 17/30 (2006.01) 1s stored 1n a relational database. Data Definition Language
(52) U.S. Cl. (DDL) Create Index and Create Constraint commands have

CPC ... GO6F 17/30917 (2013.01); GO6F 17/30241 extended syntax that allows the specification of a path-based

(2013.01); GO6F 17/30327 (2013.01) expre§si0n insteac:p of requiring a column and t:_;ble name. A

(58) Field of Classification Search mapping created by the system when an XML Schema 1s
cpC GOGE 17/30241: GOGE 17/30327 registered stores the correspondence of XML data elements
USPC oo 707/741, 792, 795, 743 ~ t© automatically-created database tables and columns that

are given names only useful for the internal system. When
a user provides a path-based expression i a DDL when

See application file for complete search history.

(56) References Cited creating an index or constraint, the path-based expression 1s
translated to the underlying database constructs using the
U.S. PATENT DOCUMENTS mapping. Issues are addressed for handling path-based
expressions that evaluate to more than one element. Addi-
5,091,852 A : 2;{ 1992 Tsuchida et al. / tional index optimization 1s described using data type infor-
g’ggg’égg gl 5 1? /éggg g;jaryri{lﬂﬂelt R 112723 mation available 1 the XML schema to select the optimal
7,096,224 B2* /2006 Murthy et al. 707/763 index type.
7,620,641 B2* 11/2009 Nguyen et al.
9,092,417 B2 7/2015 Lobo 17 Claims, 5 Drawing Sheets
il il !
| MAIN ROM STORAGE |
DISPLAY ' MEMORY DEVICE ' 240 528
512 ' 506 508 st0 | !
AN |
| !
! |
| |
] | |
INPUT DEVICE <: BUS
214 | 202 :
| | 526
| |
| |
CURSOR : N/ :
CONTROL
PROCESSOR COMMUNICATION LOCAL
516 : | 50_4| INTERFACE : TIE,I{NORK NETWORK
| 518

US 9,424,365 B2

Page 2
(56) References Cited 2009/0182762 Al1* 7/2009 Chang et al. 707/102
2009/0327253 AL* 12/2009 JOSEPh ...ocvovvevecereeierean, 707/4
U S PATENT DOCUMENTS 2010/0023478 Al* 1/2010 Chandrasekar et al. 707/2
2010/0185693 Al* 7/2010 Murty et al.ccoco........ 707/803
2005/0044113 Al* 2/2005 Manikutty et al. 707/104.1 2011/0067084 Al™ 3/2011 Byun ... GO6F 17/30306
2005/0050059 Al* 3/2005 Van Der Linden et al. . 707/100 726/1
2005/0050074 Al* 3/2005 Jain et al. wooovvvioiiviiiiii., 707/100
2005/0091188 AL* 4/2005 Pal et al. oo 707/1 OTHER PUBLICATIONS
2005/0228791 Al1* 10/2005 Thusoo et al. 707/6 _ _ |
2006/0218194 Al* 9/2006 Yalamanchi 707/104.1 Pal et al, S., “Indexing XML Data Stored in a Relation Database,”
2007/0083542 Al* 4/2007 Agrawal et al. 707/102 VLDB ’04 Proceedings of the Thirtieth international conference on
%88;;8322233 i: 12;388; Iﬁ/[urﬂ;y let al. o ;8%83 Very large data bases, vol. 30, pp. 1146-1157, VLDB Endowment
1 metal ... 1 ‘ "
2008/0120321 Al* 5/2008 Liu et al. wooeooeooor 707/102 ©2004, ISBN: 0-12-083469-0.
2009/0055424 Al* 2/2009 Zhuang et al. 707/102 | |
2009/0150367 Al* 6/2009 Melnik et al. ..o, 707/4 * cited by examiner

U.S. Patent Aug. 23, 2016 Sheet 1 of 5 US 9.424,365 B2

Lauction> 100
<site>

<regions>
<africa> 120

<item> sales=%$4M </item>

<item> sales=3$15M </item>
</africa>
</regions>

<regions>
<europe> 130

</europe >
</regions>
<regions>
<southamerica > 140
</southamerica>
</regions>
<regions>
<northamerica> 150
</northamerica>
</regions>
</site>
<auction>

FIG. 1

U.S. Patent Aug. 23, 2016 Sheet 2 of 5 US 9.424,365 B2

<PurchaseOrder poDate= *“July 20, 2009’
<shipAddr>
<city>San Mateo</city>
<zipcode>94402</zipcode>
</shipAddr>
<lineltem>
<name> PC </name>
<price> $1300 </price>
<quantity> 1 </quantity>
<category> computer </category>
</ lineltem >
< lineltem >
<name> printer </name>
<price> $350 </price>
<quantity> 2 </quantity>
<category> peripherals </category>
</ lineltem >

</PurchaseOrder>

FIG. 2

US 9,424,365 B2

Sheet 3 of 5

Aug. 23, 2016

U.S. Patent

C ¢| 0Sg$| Jdund I
I | 00€T$ Jd I
AI03dde) | Anuend) | LI dQUWIBN | AJY USIJIO]
\ HTdV.L WHALIHNI']
0Ct
WOPb6| 0NN URS | 600T ‘0T AIf I
drz AN ANecod A
HTdV.L dHTAOHASVHOU
s

¢ Dld

US 9,424,365 B2

Sheet 4 of 5

Aug. 23, 2016

U.S. Patent

NLS

SITVS
H 14V L WALIVOIddINVHL(10S

HITdV.L INALIVOIJHINVHLAEC

H1dV.L WALIHdOHANH oﬂ“ H1dV.L WALIVOIIAY

F 7 OId

AoHj

m T19V.L SNOIDTYALISNOLLONY
02

US 9,424,365 B2

Sheet 5 of 5

2016

b/

Aug. 23

U.S. Patent

NHOMLAN
VOO

8CS

0¢S

MNI 1
AHOMLAN

0¢s
ddAddS

3OV443LNI v09
NOILYDINNWINOD d40SS300Yd

SMNd

01§ 80% 905

30IA3Q ANOWIN
JOVHOLS NOY NIVIA

916
104LNOD
d0SdNO

21
30IA30 LNdNI

Cls
AV 1dSIC

g 9Ol

US 9,424,365 B2

1

XPATH-BASED CREATION OF RELATIONAL
INDEXES AND CONSTRAINTS OVER XML
DATA STORED IN RELATIONAL TABLES

FIELD OF THE INVENTION

The present mvention relates to generating indices or
constraints on XML data stored 1n a relational database.

BACKGROUND

XML

Extensible Markup Language (XML) 1s a World Wide
Web Consortium (W3C) standard for representing data.
Many applications are designed to output data in the form of
XML documents. Various techniques may be used to store
data from such XML documents into a relational database.

XML data comprises structured data items that form a
hierarchy. In XML, data items known as elements are
delimited by an openming tag and a closing tag. An element
may also comprise attributes, which are specified in the
opening tag of the element. Text between the tags of an
clement may represent any sort of data value, such as a
string, date, or integer. An element may have one or more
children. The resulting hierarchical structure of XML-for-
matted data 1s discussed 1n terms akin to those used to
discuss a family tree. For example, a sub-element 1s said to
descend from its parent element or any element from which
its parent descended. A parent element 1s said to be an
ancestor element of any sub-element of itself or of one of 1ts
descendant elements. Collectively, an element along with 1ts
attributes and descendants, are often referred to as a tree or
a sub-tree.

XMIL, Schema

XML Schema 1s a definition language that provides
tacilities for describing structure and constraiming the con-
tents of an XML document. A drait specification, referred to
heremnatfter as “XML Schema Specification”, for the XML
Schema definition language 1s described 1n a set of three
documents published by the W3C Consorttum. The {first
document in the set 1s “XML Schema Part 0: Primer Second

Edition”, W3C Recommendation 28 Oct. 2004, located at

“http://www.w3.org/ TR/xmlschema-0/", the entire contents
of which are hereby incorporated by reference for all pur-
poses as 1f Tully set forth herein. The second document in the
set 1s “XML Schema Part 1: Structures Second Edition”,
W3C Recommendation 28 Oct. 2004, located at “http://
www.w3.org/ TR/xmlschema-1/7, the entire contents of
which are hereby incorporated by reference for all purposes
as 1f tully set forth herein. The third document 1n the set 1s
“XML Schema Part 2: Datatypes Second Edition”, W3C
Recommendation 28 Oct. 2004, located at ‘“http://
www.w3.org/ TR/xmlschema-2/, the entire contents of
which are hereby incorporated by reference for all purposes
as 1f fully set forth herein.

As referred to herein, an XML schema i1s a defined
structure for XML documents. An XML schema represen-
tation 1s data that describes the XML structure. An XML
schema representation may include an XML document with
declarations and/or a tokenized XML representation which
1s one for which tokens have been generated. An example of
an XML schema representation includes, but 1s not limited

10

20

25

30

35

40

45

50

55

60

65

2

to, an XML document with type definitions, element decla-
rations, or attribute declarations.

Storing XML Data

Storing XML data i a relational database i1s desirable
because database operations have been optimized and highly
tuned for performance. In order to realize the performance
gains of storing XML data in a database, queries on the
XML data must be translated into native SQL commands
that can then be optimized according to the relational
techniques.

XML may be stored in a database in one of several
different ways. One way 1s to treat an XML document as a
single data 1tem, and stored as such 1n a single column of a
relational table. This technique 1s convenient when the
documents 1n the set of XML documents to be stored does
not share the same structure (1.¢., does not conform to the
same schema) or does not have a schema that describes its
structure. Storing entire documents in a single column 1s
advantageous 1n that the XML does not have to be processed
betore the XML 1s submitted to the database server. How-
ever, because the database server considers the XML docu-
ment a single data 1tem, the database server 1s unable to take
advantage of the fact that XML documents are structured,
where a single XML document may include numerous
attributes and elements with specific values. Each time a
document 1s retrieved, the document will need to be further
processed to find the elements internal to the document.

According to an alternative technique, an XML document
may be split up to 1ts constituent attributes and element
data before the XML document 1s stored 1n a database. This
alternative technique 1s possible when the set of documents
conform to the same XML schema. The schema may be
registered with the database to create a mapping between
XML types and database types. The values for each attribute
and element are submitted to the database for insertion 1n
corresponding columns of a table. When this technique 1s
used, the database server may be used to select data based
on individual attribute values. However, when the data 1s
retrieved from the database, the attribute values are provided
as distinct data items, not as part of a single XML document.

XQuery/XPath

It 1s important for object-relational database systems that
store XML data to be able to execute queries using XML
query languages. XML Query Language (XQuery) and
XML Path Language (XPath) are important standards for a
query language, which can be used 1n conjunction with SQL
to express a large variety of useful queries. XPath 1s
described i XML Path Language (XPath), version 1.0
(W3C Recommendation 16 Nov. 1999), herein incorporated
by reference and available at the time of writing at http://
www.w3.org/ TR/xpath, as well as in XML Path Language
(XPath) 2.0 (W3C Recommendation 23 Jan. 2007), herein
incorporated by reference and available at the time of
writing at http:/www.w3.org/TR/xpath. XQuery 1s
described i XQuery 1.0: An XML Query Language (W3C
Recommendation 23 Jan. 2007), herein incorporated by
reference and available at the time of writing at http://
www.w3.org/ TR/xquery. The term XML query 1s used to
refer to quernies that conform to (1) XQuery, XPath, and/or
another XML language standard, (2) SQL queries that may
embed XQuery or XPath expressions, (3) queries of other
languages, and (4) proprietary dialects of XQuery, XPath,
SQL, or XML standard languages.

US 9,424,365 B2

3

Database servers that store XML documents may be
enhanced to efhciently perform XML operations using
XPath and XQuery. In order to support queries of XML data
using XQuery/XPath, database servers rely on the XML
structure mapping created when the schema was registered
and the database storage constructs were created to store the
structured XML data. The mapping 1s used to translate the
XQuery/XPath 1nto native database SQL commands on the
underlying database tables.

Paths

The structure of an XML document establishes parent-
chuld relationships between the nodes within the XML
document. The “path” for a node 1 an XML document
reflects the series of parent-child links, starting from a “root”™
node, to arrive at the particular node. For example, referring,
to the document shown 1n FIG. 1, the path to the “regions™
node 1s /auction/site/regions/, since the “regions™ node 1s a
child of the “site” node, the “site” node 1s a child of the
“auction” node.

An XPath starting with two slashes, *“//”, uses “descen-
dent” syntax. The elements following the *//” may appear
anywhere 1n the tree. Referring to FIG. 1 for an example
XML document 100, a single XPath of *““//item/(@ sales™

would evaluate to the following five values:

/auction/site/regions/africa/item/@sales=$4M
/auction/site/regions/africa/item/(@sales=$15M
/auction/site/regions/europe/item/(@sales=$3M
/auction/site/regions/southamerica/item/(@sales=$7M
/auction/site/regions/northamerica/item/(@sales=$20M

caan?

Similarly, an XPath with an asterisk, , signifies a
wildcard that can match any element at that position in the
tree. Thus, a single XPath of “/auction/site/regions/*” evalu-
ate to the following elements:

/auction/site/regions/africa
/auction/site/regions/europe
/auction/site/regions/southamerica
/auction/site/regions/northamerica

Creating an Index

Indexes are used to speed up the performance of querying
certain database tables. Users create indexes based on
knowledge of common usage patterns so as to speed up the
most commonly performed operations. Users use Data Defi-
nition Language (DDL) commands to request the creation of
an index on a named table and column. When XML 1s stored
in a database table, the DDL commands to create an index

on the XMI. data needs to reterence the name of the database
table and column 1n which the XML data 1s stored.

Creating a Column Constraint

Users may also create column value constraints to speed
up access performance. More eflicient indexes may be built
on columns with constraints. A user who knows the range of
values that may be stored 1n a column may specily that range
in association with the column. If there 1s an attempt to place
a value 1n a column where the value does not conform to the
constraint, an error will be generated. As when creating an

10

15

20

25

30

35

40

45

50

55

60

65

4

index, creating a column constraint on XML data requires
referencing the name of the database table and column to
which the constraint applies.

Functional Index

A Tunctional index 1s an index that 1s created on the results
of a function on a column value. If a common query requires
performing a function on database values, the function
values may be pre-computed and placed 1n an index. As a
function, by definition, may only return a single value, each

column value may only have a single functional index entry
that indexes the column value.

A Bitmap Index

A bitmap 1ndex 1s an index that includes a set of bitmaps
that can be used to efliciently process queries on a body of
data associated with the bitmap index. A bitmap index can
be much faster than a b-tree index when the data can have
one of a relatively small number of potential values. In the
context of bitmap indexes, a bitmap 1s a series of bits that
indicate which of the records stored in the body of data
satisly a particular criterion. Each record in the body of data
has a corresponding bit 1n the bitmap. Each bit 1n the bitmap
serves as a flag to indicate whether the record that corre-
sponds to the bit satisfies the criterion associated with the
bitmap.

When a bit 1n a bitmap of a key value 1s referred to as
being set, the bit 1s set to a value that specifies that the
corresponding row satisfies one or more criteria (e.g. has the
key value). When the bit 1s referred as being unset, the bit
1s set to a value that specifies that the corresponding row
does not contain the key value. For purposes of exposition,
a bit 1s set to 1 and unset to 0. However, the present invention
1s not so limited.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceirved or pursued. Therelore,
unless otherwise indicated, 1t should not be assumed that any
of the approaches described in this section qualify as prior
art merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s 1illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and 1n which:

FIG. 1 1s a diagram showing an example XML document.

FIG. 2 1s a diagram showing an example XML document
to be stored 1n a database.

FIG. 3 1s a diagram showing the database tables storing
the example XML document from FIG. 2 according to an
embodiment of the invention.

FIG. 4 1s a diagram showing database tables storing the
example XML document shown in FIG. 1.

FIG. 5 1s a diagram of a computer system on which an
embodiment of the invention may be implemented.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other

US 9,424,365 B2

S

istances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present invention.

General Overview

Techniques are provided for creating indexes and column
constraints on structured XML data that 1s stored in a
relational database. Before XML data 1s stored 1n a relational
database, an XML schema 1s registered with the database
system. Tables are automatically created for the XML data
and named using 1dentifiers useful for within the system, but
the names are not user-iriendly. The database system creates
a mapping irom the elements in the XML schema to the
automatically generated database tables and columns that
store those elements. When users submit a query to the
database system for XML data expressed in XPath/XQuery
syntax, the mapping 1s consulted to translate the path expres-

sion mto the underlying table and column database struc-
tures where the required data 1s stored.

Although the tables can be automatically-generated and
named based on a registered XML Schema, eflective
indexes and constraints for improving access performance
rely on an understanding of the access patterns. Information
about access patterns 1s not available from the schema. For
that reason, indexes and constraints are not created auto-
matically when the tables are created. Thus, a user who 1s
knowledgeable about the common access patterns may
create an imdex on the appropriate tables to speed up
accessing the tables. A user who 1s knowledgeable about the
range of values that will be stored 1n a column may create
a constraint on that column. After the tables have been
created, users use DDL commands to create indexes and
constraints. However, to create an index or a constraint on
relational data, the DDL commands require specitying the
table and column names to be indexed. Since the table name
1s automatically generated, the user probably does not know
the table name, and even 1if the user could find out, creating,
an mdex or constraint would be tedious and error-prone
because the table and column names are not mnemonic.
Furthermore, table names can vary from system to system as
cach system generates a different name when the XML
schema 1s registered. In addition, path-based syntax 1s a
more natural way of identitying a set of XML nodes to index
or constrain. Using path-based syntax relieves the user from
having to know what the underlying database constructs are
that have been generated internal to the database system for
storing the XML data.

To address the needs expressed above, the DDL command
syntax 1s changed to allow users to specily indexes and
constraints using XML syntax rather than identifying the
machine-generated names for the underlying database tables
and columns. The same XML-to-relational mapping that 1s
created when the schema 1s registered may be used to
translate XPath expressions specified in a DDL CREATE
INDEX or CREATE CONSTRAINT command.

The mapping from XML schema to database construct
also provides information for optimizing the performance of
an 1mdex created based on data types of the XML elements.
The mapping also may be used to identily when a request for
indexing based on a path requires multiple indexes to be
created because a single path-based expression can 1dentily
a plurality of nodes in an XML document.

Example XML Stored 1in Database Tables

FIG. 2 shows an example XML document to be stored in
a database. The document i1s a purchase order. The first

10

15

20

25

30

35

40

45

50

55

60

65

6

clement 1n the purchase order 1s a shipping address. Each
purchase order has a single shipping address and one or

more line items that represent what was purchased. When
the schema for the example XML document 1s registered, a
separate PURCHASEORDER table and LINEITEM table
are automatically generated. FIG. 3 shows the example
XML document from FIG. 2 loaded into the database tables.
Although not shown 1n the example, there would also be a
column 1n each of these tables that would associate rows of
the LINEITEM table with a corresponding row of the
Purchase Order table.

The elements stored directly in the Purchase Order table
are stored 1n scalar columns. That 1s, for each row 1n the
Purchase Order table, there i1s only one value for each
column of the row. For example, there 1s only one date, city,
and z1p code value for each purchase order. In contrast, there
may be multiple rows 1n the LINEITEM table for each
purchase order, so an XPath that identifies the LINEITEM
table will identily a collection column (more than one value
for the XPath expression).

XPath Expression Identifies a Single Data Item

Different aspects of the technique are demonstrated based
on the nature of the XPath expression used to specily the
data to index or constrain. In one embodiment, an XPath
expression 1dentifies a single data item. For example, refer-
ring to FIG. 3, 1f the user wants to perform a query on this
data to find all purchase orders placed 1n the months of June
and July 2009, the user might use an XPath such as:

/PurchaseOrder [@poDate>=*2009-06-01"
(@poDate<*2009-08-01"]

Using the table names shown 1n FIG. 3, this XPath expres-
sion would be translated into SQL as:

and

select from PURCHASEORDER
where poDate > *2009-06-01" and poDate < *2009-08-01"

Creating an index on the poDate column may make the

above query more eflicient.
Create Index indexname on PURCHASEORDER(/Pur-

chaseOrder/(@poDate’)

This example demonstrates the simplest case of an XPath
identifying data stored in a scalar column. There 1s only one
purchase order date 1n each purchase order. The index can be
created directly on the Purchase Order table.

Create Index 1s the usual DDL command for creating an
index, but the syntax shown here 1s enhanced to accept an
XPath expression instead of a database column name. The
system uses the mapping of the XML Schema to database
table name that 1s created when the schema i1s registered to
determine that the PurchaseOrder element specified by the
path /PurchaseOrder 1s represented by the PURCHASEOR -
DER table, and the attribute poDate corresponds to the
poDate column within the PURCHASEORDER table. Thus,
alter automatic translation from XPath to database construct

names, the system rewrites the DDL command as:
Create index indexname on PURCHASEORDER (po-

Date)

Previous approaches to path-based indexing of XML data
have created indexes on functions of the paths themselves.
When creating such a path-based index, the function name
and the path are stored as the keys to the index. In order for
a Tunctional index to be able to compute a query that
includes a path expression, the path expression 1 a query
must match exactly a path stored as a key to the index. Thus,

US 9,424,365 B2

7

it 1s not suflicient for a query path expression to be seman-
tically equivalent (that 1s, evaluate to the same data item). A
path-based functional index requires the expressions to be
syntactically identical. As a result, there 1s a benefit to
rewriting DDL commands 1n terms of relational tables rather
than indexing directly on the path-based expressions. When
a relational 1ndex 1s created based on the specification of a
path-based expression, the expression 1s evaluated, and its
underlying equivalent relational structure i1s used to define
and construct the index. Since multiple semantically equiva-
lent XPath expressions will evaluate to the same underlying
relational structures, there 1s no need for a syntactic match
between the XPath specified in the query and the path
specified at mndex creation time.

XPath Expression Identifies Multiple Data Items

Building a functional index on a path-based column may
be problematic. As shown above, there may be several
different ways of identifying the same XML node using
XPath syntax. If the query i1dentifies a node using a diflerent
path-based syntax than the path used to create the functional
index entry (e.g. the query 1s expressed using descendent
notation and the index 1s created with absolute paths), then
the path 1s not found 1n the index, and the index cannot be
used to evaluate the query. A functional index cannot be
created on paths that return multiple values for the same
XML document, as a function returns only a single value.
For example, extractValue(‘/PurchaseOrder/lineitem/price’)
causes an error to be generated because there are two values
($1300 and $350) that are identified by the path (‘/Purchase-
Order/lineitem/price’) for the same XML document. Thus,
only scalar columns may be indexed as a functional 1ndex
using paths. But as seen above, an XPath expression may
evaluate to multiple values. For these reasons, a different
approach 1s needed to creating indexes that can handle
path-based arguments.

In another embodiment, an XPath expression may 1den-
tify multiple data items. In the example, an XPath that
identifies a line 1tem or a part of a line 1tem requires indexing
a collection table. For example, a query:

/purchaseOrder/lineltem [price>100]
can be translated 1into SQL as:

select from LINEITEM
where price > 100 and LINEITEM.foreignKey =
PURCHASEORDER. PrimaryKey

To speed up the query, the user might want to index the
lineitem price.
Create Index indexname on PURCHASEORDER(*/pur-

chaseOrder/lineltem/price’)
This may be automatically rewritten as:

Create Index indexname on LINEITEM (price)
Just as the query re-writing process depends on knowing that
/purchaseOrder/lineltem should translate to querying the
lineltem table, Create Index must also know this correspon-
dence to determine which table to index. It 1s important for
the system to be able to recognize that the index i1s being
created on a collection column because the index must be
created on the collection table, not on the primary table.
Analysis of the XPath includes finding the leat level col-
lection table and creating the index on that collection table.

Arbitrary number of levels 1n the hierarchy can be analyzed.

Deriving the Index Type from the XML Schema

In another embodiment, information found in the XML
schema may be used to optimize the performance of an

10

15

20

25

30

35

40

45

50

55

60

65

8

index by choosing the most eflicient kind of index for the
data type of the element to be indexed. For example, a
bitmap index may be automatically generated for those
XML data items that are defined in the XML schema as an
enumeration type. Data having an enumeration type may
only be assigned one of a fixed set of values. Each of the
possible alternative values may be represented as a bitmap.
Using a bitmap index may be faster for retrieving data with
enumerated types than using a more general b-tree index.

Creating Composite (Btree) Indexes

Here’s an example query that requires values from more
than one column to be accessed:

/PO/lineltem[price>100 and quantity>3]
translated imto SQL as

select from LINEITEM
where price > 100 and quantity > 3
and LINEITEM.f = PURCHASEORDER.pkey

If queries requiring values from both the price and quan-
tity columns are often performed, then a composite index on
the price and quantity columns could speed up execution of
these frequent queries. Another embodiment allows for the
creation of composite indexes. Creating composite mdexes
requires 1dentifying a plurality of columns on which to form
a single index. Thus, a plurality of XPath expressions 1s used
to specily the columns. For example,

Create Index (/purchaseOrder/lineltem/price,
fpurchaseOrder/lineltem/quantity)
indexname

may be automatically rewritten into SQL as:

Create Index indexname on purchaseOrder
(“/puchaseOrder/lineltem/price’,
‘/purchaseOrder/lineltem/quantity’)

Creating Multiple Indexes with One DDL
Statement

If the schema for the XML document shown in FIG. 1
were registered with the database server, the XML data
might be loaded into generated tables as shown 1n FIG. 4.
FI1G. 4 shows five tables. For each XML document, there 1s
exactly one row i the AUCTIONSITEREGIONS table.

This table comprises foreign key pointers to the other tables.

The sales information cannot be stored within the AUC-
TIONSITEREGIONS table because there can be multiple

sales items within each region, and multiple instances of the

same region within the document. If an index were to be
created for this set of documents, the command:

CREATE INDEX indexname on purchaseOrder(‘/auc-
tion/site/regions/ */items/sales’)

would result in indexes being created for each of the region
tables: AFRICAITEM table, EUROPEITEM table,

SOUTHAMERICAITEM table, and NORTIE{AMERICA
table. Thus, one create index command would create four

indexes because the path would evaluate to items in four
different tables.

US 9,424,365 B2

9

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 5 1s a block diagram that 1llustrates a
computer system 500 upon which an embodiment of the
invention may be implemented. Computer system 500
includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor 504
coupled with bus 502 for processing information. Hardware
processor 304 may be, for example, a general purpose
mICroprocessor.

Computer system 500 also includes a main memory 506,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing imnformation
and 1instructions to be executed by processor 504. Main
memory 306 also may be used for storing temporary vari-
ables or other intermediate mformation during execution of
instructions to be executed by processor 504. Such nstruc-
tions, when stored 1n storage media accessible to processor
504, render computer system 300 mto a special-purpose
machine that 1s customized to perform the operations speci-
fied 1n the instructions.

Computer system 500 further includes a read only
memory (ROM) 508 or other static storage device coupled
to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk
or optical disk, 1s provided and coupled to bus 502 for
storing 1nformation and 1nstructions.

Computer system 300 may be coupled via bus 502 to a
display 512, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 514, includ-
ing alphanumeric and other keys, 1s coupled to bus 302 for
communicating information and command selections to
processor 504. Another type of user input device 1s cursor
control 516, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 504 and for controlling cursor
movement on display 512. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specily
positions 1n a plane.

Computer system 500 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 300 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 500 in response to
processor 504 executing one or more sequences of one or
more structions contained i main memory 506. Such

10

15

20

25

30

35

40

45

50

55

60

65

10

instructions may be read mmto main memory 506 from
another storage medium, such as storage device 510. Execu-
tion of the sequences of instructions contained 1n main
memory 506 causes processor 504 to perform the process
steps described heremn. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “‘storage media” as used herein refers to any
media that store data and/or instructions that cause a
machine to operation 1 a specific fashion. Such storage
media may comprise non-volatile media and/or volatile
media. Non-volatile media includes, for example, optical or
magnetic disks, such as storage device 510. Volatile media
includes dynamic memory, such as main memory 506.
Common forms of storage media include, for example, a
floppy disk, a tlexible disk, hard disk, solid state drive,
magnetic tape, or any other magnetic data storage medium,
a CD-ROM, any other optical data storage medium, any
physical medium with patterns of holes, a RAM, a PROM,
and FPROM, a FLASH-EPROM, NVRAM, any other
memory chip or cartridge.

Storage media 1s distinct from but may be used 1n con-
junction with transmission media. Transmission media par-
ticipates 1n transferring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and 1nfra-red data communications.

Various forms of media may be mnvolved in carrying one
or more sequences of one or more instructions to processor
504 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid state drive of a
remote computer. The remote computer can load the mnstruc-
tions into 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 500 can receive the data on the telephone line and
use an 1infra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 502. Bus 302 carries the data to main memory
506, from which processor 504 retrieves and executes the
instructions. The instructions recerved by main memory 506
may optionally be stored on storage device 510 either before
or after execution by processor 504.

Computer system 500 also includes a communication
interface 518 coupled to bus 502. Communication 1nterface
518 provides a two-way data communication coupling to a
network link 520 that 1s connected to a local network 522.
For example, communication interface 318 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
518 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 518 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 520 typically provides data communication
through one or more networks to other data devices. For
example, network link 3520 may provide a connection
through local network 522 to a host computer 524 or to data
equipment operated by an Internet Service Provider (ISP)
526. ISP 526 1n turn provides data communication services
through the world wide packet data communication network

US 9,424,365 B2

11

now commonly referred to as the “Internet” 528. Local
network 522 and Internet 528 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 520 and through communication interface 518,
which carry the digital data to and from computer system
500, are example forms of transmission media.

Computer system 300 can send messages and receive
data, including program code, through the network(s), net-
work link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested
code for an application program through Internet 528, ISP
526, local network 522 and communication interface 518.

The recerved code may be executed by processor 504 as
it 1s received, and/or stored in storage device 510, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. Thus, the sole and exclusive indicator of what 1s
the mvention, and 1s intended by the applicants to be the
invention, 1s the set of claims that 1ssue from this applica-
tion, 1 the specific form 1 which such claims 1ssue,
including any subsequent correction. Any definitions
expressly set forth herein for terms contained 1n such claims
shall govern the meaning of such terms as used 1n the claims.
Hence, no limitation, element, property, feature, advantage
or attribute that 1s not expressly recited 1n a claim should
limit the scope of such claim in any way. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative rather than a restrictive sense.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving a data definition language (DDL) command to

create a relational index or constraint on one or more
base columns of a base table 1n an object-relational
database, wherein the DDL command specifies a path
expression and does not specily a column name,
wherein the constraint prevents storage of a value mnto
one of the one or more base columns;

based on (a) the path expression specified in the DDL

command to create the relational index or constraint
and (b) object-relational database mapping information
that indicates a mapping of elements in XML data to
corresponding base columns in the object-relational
database, determining that the one or more base col-
umns correspond to one or more particular elements
identified by the path expression;

based on determiming that the one or more base columns

correspond to the one or more particular elements
identified by the path expression, a database server
automatically creating the relational index or constraint
on the one or more base columns.

2. The method of claim 1, wherein determining that the
one or more base columns correspond to one or more
particular elements 1dentified by the path expression 1s based
on mnformation in an XML schema to which the XML data
conforms; and

wherein the object-relational database mapping informa-

tion associates particular XML schema elements of the
XML schema to corresponding base columns in the
object-relational database.

3. The method of claim 1, wherein the path expression
uses wildcard or descendent syntax.

4. The method of claim 1, wherein the path expression
evaluates to more than one XML, element.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The method of claim 4, wherein the more than one
XML element reside in a same collection column, and
further comprising creating an index on a collection table
holding said same collection column.

6. The method of claim 4, wherein the more than one
XML element reside 1in different tables, and further com-
prising creating an index on each of the different tables
containing an XML element of the more than one XML
clements.

7. The method of claim 1, wherein the relational index 1s
a composite mdex, wherein the composite index 1s a single
index that identifies a row of a database table, wherein the
composite mdex 1s created based on values stored 1n more
than one column of the row of the database table.

8. The method of claim 1 wherein create a relational index
comprises creating a bitmap index that reserves a separate
bit for each of separate instances of an XML element.

9. The method of claim 8, wherein the relational index
indexes an XML element that has an enumerated type.

10. A non-transitory computer-readable medium storing
instructions which, when executed by one or more proces-
SOrs, cause:

recerving a data definition language (DDL) command to

create a relational index or constraint on one or more
base columns of a base table 1n an object-relational
database, wherein the DDL command specifies a path
expression and does not specily a column name,
wherein the constraint prevents storage of a value nto
one of the one or more base columns;

based on (a) the path expression specified in the DDL

command to create the relational index or constraint
and (b) object-relational database mapping information
that indicates a mapping of elements in XML data to
corresponding base columns in the object-relational
database, determining that the one or more base col-
umns correspond to one or more particular elements
identified by the path expression;

based on determining that the one or more base columns

correspond to the one or more particular elements
identified by the path expression, a database server
automatically creating the relational index or constraint
on the one or more base columns.

11. The non-transitory computer-readable medium of
claim 10, wherein determining that the one or more base
columns correspond to one or more particular elements
identified by the path expression 1s based on information 1n
an XML, schema to which the XML data conforms; and

wherein the object-relational database mapping informa-

tion associates particular XML schema elements of the
XML schema to corresponding base columns in the
object-relational database.

12. The non-transitory computer-readable medium of
claam 10, wherein the path expression uses wildcard or
descendent syntax.

13. The non-transitory computer-readable medium of
claim 10, wherein the path expression evaluates to more than
one XML element.

14. The non-transitory computer-readable medium of
claim 13, wherein the more than one XML element reside in
a same collection column, and wherein the instructions
which, when executed by one or more processors, further
cause creating an idex on a collection table holding said
same collection column.

15. The non-transitory computer-readable medium of
claim 13, wherein the more than one XML element reside 1n
different tables, and wherein the instructions which, when
executed by one or more processors, further cause creating

US 9,424,365 B2

13

an index on each of the different tables containing an XML
clement of the more than one XML eclements.

16. The non-transitory computer-readable medium of
claim 10, wherein the relational 1ndex 1s a composite index,
wherein the composite index 1s a single index that identifies 3

a row ol a database table, wherein the composite index is
created based on values stored in more than one column of
the row of the database table.

17. The non-transitory computer-readable medium of
claim 10, wherein the relational index indexes an XML 10
clement that has an enumerated type, and create a relational
index comprises creating a bitmap index that reserves a
separate bit for each of separate instances of the XML,
clement.

15

14

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 9,424,365 B2 Page 1 of 1
APPLICATION NO. . 12/610164

DATED . August 23, 2016

INVENTOR(S) . Hammerschmidt et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
In Column 11, Line 67, in Claim 4, delete “XML,” and 1nsert -- XML --, therefor.
In Column 12, Line 47, 1n Claim 11, delete “an XML,” and insert -- an XML --, therefor.

In Column 13, Line 13, in Claim 17, delete “XML,” and insert -- XML --, therefor.

Signed and Sealed this
Thirtieth Day of May, 2017

Michelle K. Lee
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

