12 United States Patent

Johnson et al.

(10) Patent No.:
45) Date of Patent:

US009418107B2

US 9,418,107 B2
Aug. 16, 2016

(54) METHOD AND APPARATUS FOR 6,263,345 B1* 7/2001 Farraretal. 707/688
PERFORMING QUERY AWARE 6,345,267 B1* 2/2002 Lohman et al.
6,618,719 B1* 9/2003 Andrei
PARTITIONING 6,763,359 B2* 7/2004 Lohmanetal. T707/718
6,801,905 B2* 10/2004 Andrei
(75) Inventors: Theodore Johnson, New York, NY 6,947.934 B1* 9/2005 Chen et al.
(US); Vladislav Shkapenyuk, Jersey 7,080,062 B1* 7/2006 Leung et al.
City, NJ (US); Oliver Spatscheck, ; gg%gg Egj ggggg Iﬂolﬁman et a{
.) Onman <t al.
Randolph, NJ (US) 7.084.043 B1* 7/2011 Waas oo 707/718
_ 2003/0055813 Al1* 3/2003 Chaudhurietal. 707/3
(73) Assignee: AT&T Intellectual Property I, L.P., 2003/0135485 ALl* 7/2003 LeSLie oo 707/3
Atlanta, GA (IJS) 2003/0158842 Al* 8/2003 Levyetal.ccooooeiiiiinnnil. 707/3
2003/0212668 Al1* 11/2003 Hinshawetal. 707/3
(*) Notice: Subject to any disclaimer, the term of this 388‘&5‘? 8 (1) gggg i : g/{ 3882 g}llﬂf‘*lﬁ’" et 5;1* e ;82? %
: . 1 AUuanuri ¢t al.
patent 18 eXtended Or adJUSted under 35 2006/0080285 A He 4/2006 ChOWd.hllI‘l ““““““““““““ 707/3
U.S.C. 154(b) by 1701 days. 2006/0129542 Al* 6/2006 Hinshaw et al.co...... 707/3
2006/0136368 Al* 6/2006 Young-Laietal. ... 707/2
(21) Appl. No.: 12/182,860 2006/0167865 Al* 7/2006 ANdIEi ...ovooveeeveeereerenean. 707/4
2006/0218123 Al1* 9/2006 Chowdhurietal. 707/2
(22) Filed: Jul. 30. 2008 2007/0038658 Al1* 2/2007 Ghosh .ooovvvvieiiiiiiiinn, 707/101
i 2007/0162425 Al1* 7/2007 Betawadkar-Norwood
. . . etal. o, 707/2
(63) Prior Publication Data 2008/0147627 Al* 6/2008 Natkovich etal.o.ocov..... 707/4
S 2010/0030741 A1 Feh 4 2010 2008/0177722 Al1* 7/2008 Lohmanetal. 707/4
j 2010/0030896 Al1* 2/2010 Chandramouli et al. 700/224
(51) Int. Cl 2013/0346390 Al1* 12/2013 Jerzaketal.ocoovviia... 707/719
Gool’ 17/30 (2006.01) * cited by examiner
(52) U.S. CL | |
CPC GO6l’ 17/30457 (2013.01); GO6F 17/3046 Primary I'xaminer — Vincent Boccio
(2013.01); GO6F 17/30463 (2013.01)
(58) Field of Classification Search (57) ABSTRACT

CPC e, GO6F 17/30445; GO6F 17/30463; A method and system for providing query aware partitioning
GOO6F 17/30545; GOOF 17/3046 are disclosed. For example, the method receives a query plan
USPC i, 707/713, 718, 999.002, 719

comprising a plurality of queries, and classifies each one of
the plurality of queries. The method computes an optimal
partition set for each one of the plurality of queries, and

See application file for complete search history.

(56) References Cited reconciles the optimal partition set of each one of the plurality

U S PATENT DOCUMENTS of queries with at least one subset of queries of the plurality of

queries. The method selects at least one reconciled optimal

5,301,317 A : 4/1994 Lohman et al. partition set to be used by each query of the plurality of

(53’ (5) g é’géz i 5 ggggg 81311:(:3)]1*16:;151. queries, and stores the selected at least one reconciled optimal
6.081.801 A * 6/2000 Cochrane et al. partition set in a computer readable medium.

6,092,062 A * 7/2000 Lohman et al.

6,112,198 A * 8/2000 Lohman et al. 9 Claims, 4 Drawing Sheets

200

202

RECEINVING A QUERY PLAN COMPRISING - 204
A PLURALITY OF QUERIES
CLASSIFYING EACH ONE OF THE - 208
PLURALITY OF QUERIES
COMPUTING AN OPTIMAL PARTITION 508
SET FOR EACH ONE OF THE s
PLURALITY OF QUERIES
RECONCILING THE OPTIMAL PARTITION
SET OF EACH ONE OF THE PLURALITY ., 210
OF QUERIES WITH AT LEAST ONE SUBSET
OF QUERIES OF THE PLURALITY OF QUERIES
SELECTING A RECONCILED OPTIMAL PARTITION 219
SET 7O BE USED BY EACH QUERY OF THE s
PLURALITY OF QUERIES
STORING THE SELECTED AT LEAST ONE 914
RECONCILED AT LEAST ONE PARTITION %
SET IN A COMPUTER READABLE MEDIUM

-

US 9,418,107 B2

Sheet 1 of 4

Aug. 16, 2016

U.S. Patent

¢kl

JAON

"801

S0ON

2]

00}

JAON

h801

¢0i

A

L 9ld

701

S

b

~

Yol

3 INAON

~1 NOILVZINILdO AL3NO
¥ ONINOILILHVd

¢o |CoL|

R

hoLL

01l

m

N NV1d AH3INO (N
:

2 NV1d AH3ND (2

L NV1d AY3ND (1

3 1NAON
ONIHOLINOW

U.S. Patent Aug. 16, 2016 Sheet 2 of 4 US 9,418,107 B2

200

@:@m 22

RECEIVING A QUERY PLAN COMPRISING
A PLURALITY OF QUERIES

|

I CLASSIFYING EACH ONE OF THE

204

—

PLURALITY OF QUERIES

|

COMPUTING AN OPTIMAL PARTITION
SET FOR EACH ONE OF THE
PLURALITY OF QUERIES

¢

RECONCILING THE OPTIMAL PARTITION
SET OF EACH ONE OF THE PLURALITY 210

OF QUERIES WITH AT LEAST ONE SUBSET
OF QUERIES OF THE PLURALITY OF QUERIES

¢

l SELECTING A RECONCILED OPTIMAL PARTITION l/\/ 919
SET TO BE USED BY EACH QUERY OF THE
PLURALITY OF QUERIES

+

STORING THE SELECTED AT LEAST ONE LV 914
I RECONCILED AT LEAST ONE PARTITION

208

e

2

SET IN A COMPUTER READABLE MEDIUM

J
(END)’\/ 210

FIG. 2

U.S. Patent Aug. 16, 2016 Sheet 3 of 4 US 9,418,107 B2

300

GTART 502

!

APPLYING SELECTED RECONCILED
OPTIMAL PARTITION SET TO THE QUERY 304
PLAN TO TRANSFORM THE QUERY PLAN

INTO AN OPTIMIZED QUERY PLAN

!

l
ANALYZING THE AT LEAST ONE DATA 306
STREAM IN ACCORDANCE WITH ~
THE OPTIMIZED QUERY PLAN
Y
OUTPUTTING ARESULTOF THE | 308
ANALYSIS TO A USER

!
(END)/v >19

FIG. 3

US 9,418,107 B2

U.S. Patent Aug. 16, 2016 Sheet 4 of 4
400

PROCESSOR MEMORY l I
| 402 404 |

[i I
| | |

MODULE /O DEVICES

405 I 406 l |
F

FIG. 4

US 9,418,107 B2

1

METHOD AND APPARATUS FOR
PERFORMING QUERY AWARE
PARTITIONING

The present invention relates generally to partitioning
high-rate data streams and, more particularly, to a method and

apparatus for query aware partitioning ol high-rate data
streams.

BACKGROUND OF THE INVENTION

Data Stream Management Systems (DSMS) are gaining,
acceptance for applications that need to process very large
volumes of data 1n real time. Applications such as network
monitoring, financial monitoring, sensor networks and the
processing of large scale scientific data feeds produce data in
the form of high-speed streams. Data streams are character-
1zed as an miinite sequence of tuples that must be processed
and analyzed in an on-line fashion to enable real-time
responses. The increasing use of DSMSs has led to their use
for ever more complex query sets.

The load generated by such applications frequently
exceeds by far the computation capabilities of a single cen-
tralized server. In particular, a single-server instance of a
DSMS, e.g., Gigascope, cannot keep up with the processing
demands of new networks, which can generate more than 100
million packets per second.

SUMMARY OF THE INVENTION

In one embodiment, the present mmvention provides a
method and system for providing query aware partitioning.
For example, the method receives a query plan comprising a
plurality of queries, and classifies each one of the plurality of
queries. The method computes an optimal partition set for
cach one of the plurality of queries, and reconciles the optimal
partition set of each one of the plurality of queries with at least
one subset of queries of the plurality of queries. The method
selects at least one reconciled optimal partition set to be used
by each query of the plurality of quenes, and stores the
selected at least one reconciled optimal partition set 1n a
computer readable medium.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which:

FIG. 1 depicts a high-level block diagram of an exemplary
architecture for query aware partitioning according to one
embodiment of the present invention;

FI1G. 2 depicts a tlow diagram of a method for query aware
partitioning according to one embodiment of the present
imnvention;

FIG. 3 depicts an additional tlow diagram of a method for
query aware partitioning; and

FIG. 4 illustrates a high level block diagram of a general
purpose computer suitable for use in performing the functions
described herein.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

It 1s to be noted, however, that the appended drawings
illustrate only exemplary embodiments of this invention and
are therefore not to be considered limiting of 1ts scope, for the
invention may admait to other equally effective embodiments.

5

10

15

20

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

FIG. 1 depicts a high-level block diagram of an exemplary
architecture 100 for query aware partitioning according to
one embodiment of the present invention. In one embodi-
ment, the architecture comprises a network 102, a partition-
ing and query optimization module 104, a monitoring module
106, one or more nodes 108, to 108, , a terminal node 112 and
one or more data streams 110, to 110, . The network 102 may
be any type of a network, such as for example, a local area
network (LAN), a wide area network (WAN), an intranet, an
internet and the like.

In an illustrative embodiment, the monitoring module 106
includes one or more query plans 1 to N. The query plans
include instructions on how the data streams 110, to 110,
should be processed by nodes 108, to 108, For example, the
query plans may include a combination of queries 1n a query
language (e.g., standard query language (SQL)) to execute
the processing of data. The query plans may including
instructions on how to assign an operator to each node of the
plurality of nodes 108, to 108 , parameters of each of the
assigned operators for each of the plurality of nodes 108, to
108 . instructions as to how data from the data streams 110,
to 110, should be distributed among nodes 108, to 108, and
informing each node of the plurality of nodes 108, to 108 a
source and a destination of a data stream 110, to 110, that a
node of the plurality of nodes 108, to 108, will process.

Those skilled 1n the art will recognize that operators are
programming elements of a query. For example, an operator
may be join, select, merge, aggregate and the like. The types
ol operators compatible with the present invention are not
limited by the examples provided above or discussed herein.
Any type of operator may be used.

The parameters for the operators may include the predi-
cates within a particular query. For example, the parameters
for a selection operator 1n a selection query may be a predicate
of LENGTH=5 and a selection list (1.e. the desired data or
output) such as a source IP address. Further examples of
parameters are provided with respect to the exemplary aggre-
gation and join queries discussed below.

The monitoring module 106 may be in communication
with the partitioning and query optimization module 104. The
partitioning and query optimization module recerves the data
streams 110, to 110 . The partitioning and query optimiza-
tion module 1s also 1n communication with the one or more
nodes 108, to 108 . The partitioning and query optimization
module may be implemented within a server or computer
having a processor, mput output devices and memory (not
shown). In one embodiment, the monitoring module 106 and
the partitioning and query optimization module 104 may be
located within the same device, for example a server of a
computer, or be located on separate devices, for example
separate servers or separate computers.

The nodes 108, to 108 are used to execute an optimized
query plan, as discussed below. Although only one level of
nodes 108, to 108 _ is illustrated in FIG. 1, it should be noted
that there may be additional levels of nodes to execute various
levels of the optimized query plan. Moreover, one or more of
the nodes 108, to 108, may reside on a single host (not
shown). In other words, there may be one or more hosts 1n
network 102 and each host may have one or more of the nodes
108, to 108, .

Ultimately, the data may be forwarded to a terminal node
112 for final processing. The terminal node 112 may output or
display the final results of the optimized query plan to a user,
another node or the monitoring module 106. Alternatively, the

US 9,418,107 B2

3

terminal node 112 may store the output of the final processing,
of data 1in a computer readable medium for later retrieval or
use.

When a user desires to monitor or gather a particular data
set (also referred to herein as tuples) within one or more of the
data streams 110, to 110, , the partitioning and query optimi-
zation module 104 may obtain an appropriate query plan from
the monitoring module 106.

Currently, the query plan may be applied to the data
streams 110, to 110_ by brute force. As a result, the process-
ing capabilities of current network architectures are unable to
apply the queries and process the data to execute the query
plan i an efficient manner.

The present invention provides a novel query aware parti-
tioming method provided by the partitioning and query opti-
mization module 104. Given the approprate query plan from
monitoring module 106, the partitioning and query optimiza-
tion module 104 may calculate an optimal partitioning set to
transiorm the query plan provided by monitoring module 106
into an optimized query plan. As a result, the one or more
nodes 108, to 108, coupled to the partitioning and query
optimization module 104 may execute the optimized query
plan. An exemplary method for calculating the optimized
query plan 1s discussed below with reference to FIG. 2.

FIG. 2 depicts a tlow diagram of a method 200 for query
aware partitioning according to one embodiment of the
present invention. In one embodiment, method 200 may be
executed by the partitioning and query optimization module
104.

The method 200 begins at step 202 and proceeds to step
204. In step 204, the method 200 receives a query plan com-
prising a plurality of quernies. As discussed above, the query
plan may be recerved by the partitioning and query optimiza-
tion module 104 from the monitoring module 106. In addi-
tion, the query plan may comprise a plurality of queries. A
group of different queries with different operators may be
used to construct a query plan, which will obtain a desired set
of data from the data streams 110, to 110, .

Those skilled 1n the art will recognize how to construct
various queries of different operators such as aggregate que-
ries, join queries, select queries and the like. For illustration,
a few formats of various queries are provided herein. For
example, an aggregation query may have the format:
SELECT tb, srclIP, destIP, sum(len)

FROM PKT

GROUP BY time/60 as tb, srcIP, destIP
The SELECT predicate indicates selecting to report the fields
tb, srcIP, destIP and sum(len) where tb represents time
bucket, srclIP represents a source IP address, destIP represents
a destination IP address and sum(len) represents the sum of all
values 1n the length field for unique values of th, srcIP and
destIP of a data stream. The FROM predicate identifies a
source of the data stream, 1n this case data stream PKT. The
GROUP BY time bucket indicates that the data will be
grouped by tb of time/60, srcIP and destIP.

In another example, a join query may have the format:
SELECT time, PKT1.srclP,

PKT1.destIP, PKT1.len+PKT2.len

FROM PK'T1 JOIN PKT2

WHERE PKT1.time=PK'T2.time and

PKT1.srcIP=PKT2.srcIP and

PKT1.destIP=PK'T2.destIP
The SELECT predicate indicates selecting time, PK'T1.srclIP,
PKT1.destlP, PK'T1.len +PKT2.len, where PK'T1.srcIP rep-
resents the source IP address from data stream PKTI1,
PKT1.destIP represents the destination IP address from data
stream PK'T1, PKT1.len+PKT2.len represents the sum of the

10

15

20

25

30

35

40

45

50

55

60

65

4

length of data selected from data streams PK'T1 and PKT 2.
The FROM predicate represents the sources of the data
streams that will be joined, for example PKT1 and PKT2. The
WHERE predicate represents where time of data stream
PK'T1 1s equal to time of data stream PK'T2 and similarly for
source [P address and destination IP address for data streams
PKT1 and PK'T2. Although only two types of queries are
detailed above, those skilled 1n the art will recognize that the
syntax for additional queries may be derived from the
examples provided above.

At step 206, method 200 classifies each one of the plurality
ol queries found 1n the query plan. For example, the query
plan may comprise a combination of select queries, aggrega-
tion queries, join queries and the like.

At step 208, method 200 computes an optimal partition set
for each one of the plurality of queries. The computation of an
optimal partition set determines a distribution plan for incom-
ing data from data streams 110, to 110 that maximizes the
amount ol data reduction that can be preformed locally before
transporting the mtermediate results to a node that produces
final results, e.g., terminal node 112.

For example, in one embodiment the optimal partitioning,
set for aggregation queries may be defined as follows:
SELECT expr,, expr,, . .., expr,

FROM STREAM_NAME

WHERE tup_predicate

GROUP BY temp_var, gb_var,, .. .,

gb_var,

HAVING group_predicate
In an optimal partitioning set for an aggregation query, only a
subset of the group by vaniables (gb_var,, ..., gb_var,) that
can be expressed as a scalar expression (expr,, €xXpr-,
expr,) mvolving an attribute of one of the source input
streams (STREAM_NAME) are considered. As a result,
Lemma 1 may be defined as follows:

Lemma 1. Let G be a set of group-by attributes referenced
by the query Q and let P be portioning set, P=(sc_expr
(attr,), sc_exp(attr,), sc_exp(attr,)). Query
Q 1s compatible with partitioning set P if and only
if for any pair of tuples tupl and tup2 G(tupl)=
G(tup2)= P(tupl)=P(tup2).

Following Lemma 1, any compatible partitioning set
for aggregation query Q will have the form {sc_exp
(gb_var,), . . ., sc_exp(gb_var,)}, where sc_exp(X) is any
scalar expression involving x. Given that there are an 1nfinite
number of possible scalar expressions, every aggregation
query has an infinite number of compatible partitioning sets.
Furthermore, any subset of a compatible partitioning set 1s
also compatible.

In another example, the optimal partitioning set for join
queries may be defined as follows:

SELECT expr,, expr,, . .., expr,

FROM STREAM1 AS S

{LEFTIRIGHTIFULL} [OUTER] JOIN

STREAM2 AS R

WHERE STREAM1.ts=STREAM2.ts

and STREAM1.var, =STREAM2.var,,

and ... STREAMI1.var,,=

STREAM2 . var2, and other_predicates;

For ease of analysis, only join queries whose WHERE clause
1s 1n Conjunctive Normal Form (CNF) 1n which at least one of
the CNF terms 1s an equality predicate between the scalar
expressions mvolving attributes of the source streams are
considered. In an optimal partitioning set for a join query, let
] be a set of all such equality predicates {sc_exp(R.rattr,)=
sc_exp(S.sattr)), .. ., sc_exp(R.rattr,)=sc_exp(S.sattr,)}. As
with aggregation queries, only scalar expressions mvolving

US 9,418,107 B2

S

attributes of the source input streams are considered. Join
queries that do not satisty these requirements are considered
as incompatible with any partitioning set. As a result, Lemma
2 may be defined as follows:

Lemma 2. Let J be a set of equality join predicates of the
query Q and let P be portioning set, P=(sc_expr(attr,),
sc_exp(attr,), . . . sc_exp(attr,)). Query Q 1s compatible
with partitioning set P 11 and only 11 there exists a non-
empty subset I' of I s. t. for any pair of tuples tupl from
R and tup2 from S s. t. I' 1s satistied = P(tup1)=P(tup2).

Following Lemma 2, the partitioning sets for two streams S
and R using Partn_R={sc_exp(R.attr,), ..., sc_exp(R.attr,)}
and Partn_S={sc_exp(S.attr,), . . ., sc_exp(S.attr,)}, respec-
tively, can be computed. It also follows that the join query 1s
compatible with any non-empty subset of 1ts partitioning set.
Since it 1s not feasible to partition the mnput stream simulta-
neously 1n multiple ways, Partn_R and Partn_S will need to
be reconciled to compute a single partitioning scheme, which
will be discussed below. Those skilled 1n the art will recog-
nize that optimal partitioning sets for other queries, such as
for example, union queries, select queries and the like, may be
derived from the optimal partitioning set examples for aggre-
gation and join queries provided above.

At step 210, the method 200 reconciles the optimal parti-
tion set of each one of the plurality of queries with at least one
subset of queries of the plurality of queries. Once an optimal
partition set for each one of the plurality of queries 1s com-
puted, the optimal partition sets much be tested against all
other queries and subset of queries within the query plan to
ensure compatibility. This process 1s referred to herein as
reconciling the optimal partition sets.

Reconciling the optimal partition sets may generate a new
grouping set compatible with another query or subset of que-
ries. This new grouping set may be referred to as Recon-
cile_Partn_Sets(), defined as follows:

Def. Given two partitioning set definitions PS1 for query
Q1 and PS2 for query Q2, Reconcile_Partn_Sets() 1s
defined to return the largest partitioning set Recon-
ciled_PS such that both Q1 and Q2 are compatible with
partitioning using a Reconciled_PS. The empty set 1s
returned 1f no such Reconciled PS exists.

Considering a simple case of partitioning sets consisting of
just data stream attributes (1.e. no scalar expressions
involved), Reconcile Partn_Sets () returns the intersection of
the two partition sets. For example, Reconcile Partn_Sets
({srcIP, destIP}, {srcIP, destIP, srcPort, destPort}) is the set
{srcIP, destIP}. For a more general case of partitioning sets
involving arbitrary scalar expressions, Reconcile_Partn_Sets
uses scalar expression analysis to find a “least common
denominator”. For example, Reconcile_Partn_Sets ({sc_exp
(time/60), sc_exp(srcIP), sc_exp(destIP)}, {sc_exp(time/
90}, sc_exp(srcIP & OxFFFO0)}) is equal to a set {sc_exp
(time/180, sc_exp(srcIP & OxFFFO0)}. The
Reconcile_Partn_Sets function can make use of either simple
or complex analysis based on the implementation time that 1s
available.

At step 212, the method 200 selects a reconciled optimal
partition set to be used by each query of the plurality of
queries 1n the query plan. For example, the selected recon-
ciled optimal partition set may be selected based on a com-
patibility and lowest cost computation.

In one embodiment, computing a compatible partitioning,
set for an arbitrary query plan essentially requires reconciling
all the requirements that all nodes 1n the query graph place on
compatible partitioning sets. A simplified implementation of
the procedure of computing compatible sets PS for a Directed

Acyclic Graph (DAG) with n nodes would be as follows:

5

10

15

20

25

30

35

40

45

50

55

60

65

6

1. For every query node Q, in a query DAG, compute the

compatible partitioning set PS(O,).
2. Set PS=PS(Q,).
3. For every 1€[1 to n], set PS=Reconcile_Partn_Sets(PS,
PS(Q)).
Although many realistic query sets result 1n the partitioning
set PS to be empty due to conflicting requirements of different
queries, a reasonable approach 1s to try to satisty a subset of
nodes 1n a query DAG 1n order to minimize the total cost of the
query plan. There are a variety of different cost models that
can be used to drive the optimization.
In one exemplary cost model, the cost model defines a cost
of the query plan to be the maximum amount of data a single
node 118, to 118, in the query plan 1s expected to receive over
the network 102 during one time epoch. This model tries to
avold query plans that overload a single node 118, to 118,
with excessive amounts of data.
Let R be the rate of an input stream 110, to 110, on which
the query set 1s operating, and PS be a partitioning set. For
cach query node Q1 1n a potential query execution plan we
define the following variables:
selectivity_factor ((Q1). The selectivity factor estimates the
expected ratio of the number of output tuples to the
number of mput tuples Q1 receives during one epoch.

out_tuple_size ((Q1). Expected size of the output tuple pro-
duced by Q1.

recursively define input_rate (Q1) tobe R 11 Qi11s aleatnode

and to be the sum of all output_rate ((Q7) s.t. Qy1s a chald
of Q1.

output_rate (Q1)=(input_rate (Q1)/in_tuple_size (Q1))*se-

lectivity_factor (Q1)*out_tuple_size ((Q1).
The cost((Q1) 1s defined 1n the following way:

0 11 1t processes only local data.

input_rate (1) 11 Q1 1s incompatible with PS.

output_rate ((Q1) 1if Q1 1s compatible with PS.

The intuition behind this cost formula 1s that an operator
partitioned using a compatible partitioning set only needs to
compute the union of the results produced by remote nodes,
and therefore the rate of the remote data it 1s expected to
receive 1s equal to 1ts output rate.

Finally, we define the cost of the query plan (Qplan given
partitioning PS cost(Qplan, PS) to be the max cost(()1) for all
1. The goal of this formula 1s to prevent overloading a single
node rather than minimizing average load.

With the above cost model, an optimal reconciled portion-
ing set may be selected at step 212 based upon compatibility
and lowest cost. A method for computing a lowest cost takes
a query DAG as an mput and produces a partitioning set that
minimizes the cost of the query plan. The method enumerates
all possible compatible partitioning sets using dynamic pro-
gramming to reduce the search space. An outline of the
method 1s as follows:

1) For every query node Q, 1n a query DAG, compute its

compatible partitioning set PS(1) and cost(Qplan, PS(1)).
Add non-empty PS(1) to a set of partitioning candidates.
2) Set PS to be PS(1) with minimum cost(Qplan, PS(1)).
3) For every candidate pair of partitioning sets PS(1) and
PS(j) compute compatible partitioning set PS(1, 1)=Rec-
oncile Partn_Sets(PS(1), PS(7)) and cost(Qplan, PS(11)).
Add non-empty PS(1, 1) to a set of candidate pairs.
4) Set PS to be PS (1, 1) with minimum cost(Qplan, PS(, 1)).
5) Similarly to previous step, expand candidate pairs of
partitioning sets to candidate triples and compute corre-
sponding reconciled partitioning sets and minimum
COST.

US 9,418,107 B2

7

6) Continue the iterative process until we exhaust the
search space or end up with an empty list of candidates
for the next iteration.

Since 1t 1s impossible for a partitioning set to be compatible
with a node and not to be compatible with one of the node
predecessors, the following heuristics can be used to further
reduce the search space:

Only consider leal nodes for a set of imitial candidates.

When expanding candidate sets only consider adding a
node that 1s e1ther an immediate parent of a node already
in the set or 1s a leal node.

At step 214, the method 200 stores the selected at least one
reconciled at least one partition set in a computer readable
medium. For example, the computer readable medium may
be a hard drive disk, a read only memory (ROM), a random

access memory (RAM), floppy disk drive, or any other data
storage device. The selected at least one reconciled at least
one partition set may then be retrieved and applied to the
query plan as described below with reference to FIG. 3.

FIG. 3 depicts an additional flow diagram of a method 300
for query aware partitioning according to one embodiment of
the present invention. In one embodiment, method 300 may
also be executed by the partitioning and query optimization
module 104.

The method 300 begins at step 302 and proceeds to step
304. At step 304, the method 300 applies the selected recon-
ciled optimal partition set, from method 200, to the query plan
to transform the query plan into an optimized query plan. In
one embodiment, the optimized query plan has a plurality of
optimized queries that are executed in accordance with the
selected reconciled optimal partition set. The optimized
query plan distributes data received from at least one data
stream 110, to 110 to a plurality of nodes 108, to 108, 1n
accordance with the selected reconciled optimal partition set.

In one embodiment, transforming the query plan into an
optimized query plan comprises two phases. The first phase 1s
to build a partition-agnostic query plan. Let S be a partitioned
source mput data stream consumed by a query set, S=UPartn..
A partition-agnostic query plan 1s created by creating an
additional merge query node that computes a stream union of
all the partitions and making all query nodes 108, to 108 that
consume S read from the merge node. Since each host might
have multiple CPUs/Cores, multiple partitions may be allo-
cated to each participating host depending on the host capa-
bilities.

The second phase 1s to perform query plan transformation
in a bottom-up fashion. All transformation rules that are used
for partition-related query optimization consist of two proce-
dures: Opt_Eligible() and Transform(). Opt_Eligible() 1s a
Boolean test that takes a query node and returns true 11 1t 1s
cligible for partition-related optimization. Transform()
replaces the node that passed Opt_Eligible() test by equiva-
lent optimized plan. The pseudo code for query optimizer 1s
given below:

1) Compute a topologically sorted list of nodes in the query

DAG Q,, Q,, ..., Q, starting with the leaf nodes.

2) For every 1€ [1 to n]

If Opt_Eligible(Q,)
Transtorm(Q),, Partitiong_Info)

Performing the transformation in a bottom-up fashion
allows transformation compatible leal nodes to be easily
propagated through the chain of compatible parent nodes. A
detailed description of the implementation of Opt_Eligible()
and Transform() for aggregations queries and join queries are
discussed below. The present transformation methods devel-
oped for aggregation queries and join queries can be applied

10

15

20

25

30

35

40

45

50

55

60

65

8

to simpler queries such as selection queries, merge queries,
projection queries and the like.

For transformation of aggregation queries, the Opt_FEl-
1g1ble() procedure for an aggregation query Q and partition-
ing set PS returns true 11 the following conditions are met:

Query Q has a single child node M of type merge (stream

union).

Each child node of M 1s operating on single partition con-

sistent with PS.

Q 1s compatible with PS.

Q 1s the only parent of M.

The last requirement 1s 1mportant to prevent the optimizer
from removing the merge nodes that are used by multiple
consumers.

In a transformation for compatible aggregation query
nodes, the main 1dea behind the Transform() procedure for
cligible aggregation query Q 1s to push the aggregation opera-
tor below a merge M and allow 1t to execute independently on
cach of the partitions. For each of the inputs of M a copy of
can be created and pushed below the merge operator. In this
embodiment, data 1s fully aggregated before being sent to a
terminal node 112 that does not require any additional pro-
cessing.

In a transformation for incompatible aggregation queries
(1.e. aggregation queries that fail the Opt_Eligible() test),
options are still available that perform better than the default
partition-agnostic query execution plan. The idea behind the
proposed optimization 1s the concept of partial aggregates.
This 1dea may be 1llustrated on a query that computes a count
of number of packets sent between pairs of hosts:

Query tcp_count:

SELECT time, srclP, destlP, srcPort, COUNT(*)
FROM TCP
GROUP BY time, srcIP, destIP, srcPort

The tcp_count can be split into two queries called sub- and
super-aggregate:

Query super_tcp_count:

SELECT time, srclP, destIP, srcPort, SUM(cnt)
FROM sub_tcp_count

GROUP BY time, srclIP, destIP, srcPort

Query sub_tcp_count:

SELECT time, srcIP, destIP, srcPort, COUNT(*) as cnt
FROM TCP

GROUP BY time, srclIP, destIP, srcPort

All the SQL’s built-1n aggregates can be trivially splitin a
similar fashion. Many commonly used User Defined Aggre-
gate Functions (UDAFs) can also be easily split into two
components. Note that all the predicates in the query’s
WHERE clause can be pushed to sub-aggregates, but all
predicates in the HAVING clause need complete aggregate
values and, therefore, must be evaluated in super-aggregate.

For transformation of join queries and other multi-way jo1n
queries, the Opt_Eligible() procedure for a join query QQ and
partitioning set PS returns true 11 the following conditions are
met:

Query Q has a two children nodes M1 and M2 of type

merge (stream union).

Each child node of M1 and M2 1s operating on single

partition consistent with PS.

Q 1s compatible with PS.

Q 1s the only parent of M1 and M2.

The idea behind the Transform() procedure for an eligible
jo1n query () 1s to perform pair-wise joins for each of partition
of mput stream. This 1s accomplished by creating a copy of
jo1n operator and pushing 1t below the child merges. The left
side partitions that do not have matching right side partitions
and similarly unmatched right side partitions are 1gnored for

US 9,418,107 B2

9

inner join computations. For outer join computations,
unmatched partitions are passed through special projection
operator that adds appropriate NULL values needed by outer
jo1n. The output tuples produced by the projection operator
are then merged with the rest of the final results.

At step 306, the method 300 analyzes the at least one data
stream 110, to 110, 1n accordance with the optimized query
plan. For example, using the optimized query plan, a desired
set of data from one or more of the data streams 110, to 110,
on may be obtained 1n a more efficient way.

At step 308, the method 300 outputs a result of the analysis
to a user. For example, as discussed above, the data may be
transmitted to a terminal node 1 12 for final processing. The
terminal node 112 may output the data to a user by displaying,
the data on a display device. Alternatively, the data may be
stored at the terminal node 112 for further analysis or may be
forwarded to another node 118, to 118, , the monitoring mod-
ule 106 or the partitioning and query optimization module
104. The method 300 concludes at step 310.

It should be noted that although not specifically specified,
one or more steps ol method 200 and 300 may include a
storing, displaying and/or outputting step as required for a
particular application. In other words, any data, records,
fields, and/or intermediate results discussed 1n the method can
be stored, displayed and/or outputted to another device as
required for a particular application. Furthermore, steps or
blocks 1n FIGS. 2 and 3 that recite a determining operation or
involve a decision do not necessarily require that both
branches of the determining operation be practiced. In other
words, one of the branches of the determining operation can
be deemed as an optional step.

FIG. 4 depicts a high level block diagram of a general
purpose computer suitable for use in performing the functions
described herein. As depicted 1in FIG. 4, the system 400 com-
prises a processor element 402 (e.g., a CPU), a memory 404,
¢.g., random access memory (RAM) and/or read only
memory (ROM), a module 405 for query aware partitioning,
and various input/output devices 406 (e.g., storage devices,
including but not limited to, a tape drive, a floppy drive, a hard
disk drive or a compact disk drive, a receiver, a transmitter, a
speaker, a display, a speech synthesizer, an output port, and a
user input device (such as a keyboard, a keypad, a mouse, and
the like)).

It should be noted that the present invention can be 1imple-
mented 1n software and/or 1n a combination of software and
hardware, e.g., using application specific integrated circuits
(ASIC), a general purpose computer or any other hardware
equivalents. In one embodiment, the present module or pro-
cess 405 for query aware partitioning can be loaded into
memory 404 and executed by processor 402 to implement the
functions as discussed above. As such, the processes provided
by the module 405 for query aware partitioning (including,
associated data structures) of the present mvention can be
stored on a computer readable medium or carrier, e.g., RAM
memory, magnetic or optical drive or diskette and the like.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only 1n accordance with the following claims and
their equivalents.

What is claimed 1s:

1. A method for processing a query, comprising:

receiving, via a processor, a query plan comprising a plu-
rality of queries;

10

15

20

25

30

35

40

45

50

55

60

65

10

classifying, via the processor, each one of the plurality of

queries;

computing, via the processor, an optimal partition set for

cach one of the plurality of queries, wherein the optimal
partition set maximizes an amount of data reduction that
1s performed locally by a node of the processor before
transporting an mtermediate result to a terminal node
that produces a final result, wherein only leaf nodes are
considered for a set of 1nitial candidates:

reconciling, via the processor, the optimal partition set of

cach one of the plurality of queries with a subset of

queries of the plurality of queries, wherein the reconcil-

ing 1s performed after the computing, wherein reconcil-

1Ng COMprises;

testing the optimal partition set of each one of the plu-
rality of queries against all other queries to ensure
compatibility;

selecting an optimal partition set that 1s compatible with
at least two queries of the plurality of queries and has
a lowest cost based upon a lowest cost computation,
wherein the lowest cost computation comprises a rec-
onciled optimal partition set that provides a least
amount of data transfer between a plurality of nodes,
wherein a cost1s defined as O when a query node of the
query plan processes only local data, as an input rate
of the query node when the query node 1s incompat-
1ble with the optimal partition set and as an output rate
of the query node when the query node 1s compatible
with the optimal partition set; and

using the optimal partition set for the at least two queries
of the plurality of queries;

selecting, via the processor, the reconciled optimal parti-

tion set to be used by each query of the plurality of
queries;

storing, via the processor, the reconciled optimal partition

set 1n a computer readable medium;

applying, via the processor, the reconciled optimal parti-

tion set to the query plan to transform the query plan ito

an optimized query plan, wherein the applying the opti-

mized query plan comprises:

assigning an operator to each node of a plurality ofnodes
that each node will execute, wherein at least two of the
plurality of nodes perform different operators;

providing a parameter for each operator at each of the
plurality of nodes; and

informing each node of the plurality of nodes a source
and a destination of a data stream;

applying, via the processor, the optimized query plan to the

data stream; and

outputting, via the processor, a result of the applying to a

user.

2. The method of claim 1, wherein the optimized query
plan has a plurality of optimized queries and wherein the
optimized query plan distributes data received from the data
stream to a plurality of nodes 1n accordance with the recon-
ciled optimal partition set.

3. The method of claim 1, wherein the reconciling 1s
repeated until all possible combination of subsets of the plu-
rality of queries have been exhausted.

4. The method of claim 1, wherein the query plan 1s used for
extracting data from a high-rate data stream.

5. A non-transitory computer-readable medium storing a
plurality of instructions, which when executed by a processor,
cause the processor to perform operations for processing a
query, the operations comprising:

receving a query plan comprising a plurality of queries;

classitying each one of the plurality of queries;

US 9,418,107 B2

11

computing an optimal partition set for each one of the
plurality of queries, wherein the optimal partition set
maximizes an amount of data reduction that i1s per-

formed locally by a node of the processor before trans-
porting an intermediate result to a terminal node that
produces a final result, wherein only leal nodes are con-
sidered for a set of 1nitial candidates;
reconciling the optimal partition set of each one of the
plurality of queries with a subset of queries of the plu-
rality of queries, wherein the reconciling 1s performed
aiter the computing, wherein reconciling comprises;
testing the optimal partition set of each one of the plu-
rality of queries against all other queries to ensure
compatibility;
selecting an optimal partition set that 1s compatible with
at least two queries of the plurality of queries and has
a lowest cost based upon a lowest cost computation,
wherein the lowest cost computation comprises a rec-
onciled optimal partition set that provides a least
amount of data transier between a plurality of nodes,
wherein a cost 1s defined as O when a query node of the
query plan processes only local data, as an 1input rate
of the query node when the query node 1s incompat-
ible with the optimal partition set and as an outputrate
of the query node when the query node 1s compatible
with the optimal partition set; and
using the optimal partition set for the at least two queries
of the plurality of queries;
selecting the reconciled optimal partition set to be used by
cach query of the plurality of queries;
storing the reconciled optimal partition set in a computer
readable medium,
applying the reconciled optimal partition set to the query
plan to transform the query plan into an optimized query
plan, wherein the applying the optimized query plan
CoOmprises:
assigning an operator to each node of a plurality of nodes
that each node will execute, wherein at least two of the
plurality of nodes perform different operators;
providing a parameter for each operator at each of the
plurality of nodes; and
informing each node of the plurality of nodes a source
and a destination of a data stream:;
applying the optimized query plan to the data stream; and
outputting a result of the applying to a user.
6. The non-transitory computer-readable medium of claim
5, wherein the optimized query plan has a plurality of opti-
mized queries and wherein the optimized query plan distrib-
utes data recerved from the data stream to a plurality of nodes
in accordance with the reconciled optimal partition set.
7. The non-transitory computer-readable medium of claim
5, wherein the reconciling 1s repeated until all possible com-
bination of subsets of the plurality of queries have been
exhausted.
8. The non-transitory computer-readable medium of claim
5, wherein the query plan 1s used for extracting data from a
high-rate data stream.

10

15

20

25

30

35

40

45

50

55

12

9. An apparatus for processing a query, comprising:
a hardware processor; and
a computer-readable medium storing a plurality of instruc-

tions, which when executed by the hardware processor,
cause the processor to perform operations, the opera-
tions comprising:
receiving a query plan comprising a plurality of queries;
classitying each one of the plurality of queries;
computing an optimal partition set for each one of the
plurality of queries, wherein the optimal partition set
maximizes an amount of data reduction that i1s per-
formed locally by a node of the hardware processor
before transporting an intermediate result to a termi-
nal node that produces a final result, wherein only leaf
nodes are considered for a set of 1nitial candidates:
reconciling the optimal partition set of each one of the
plurality of queries with a subset of queries of the
plurality of queries, wherein the reconciling 1s per-
formed after the computing, wherein reconciling
COMprises;
testing the optimal partition set of each one of the
plurality of queries against all other queries to
ensure compatibility;
selecting an optimal partition set that 1s compatible
with at least two queries of the plurality of queries
and has a lowest cost based upon a lowest cost
computation, wherein the lowest cost computation
comprises a reconciled optimal partition set that
provides a least amount of data transier between a
plurality of nodes, wherein a cost 1s defined as 0
when a query node of the query plan processes only
local data, as an 1nput rate of the query node when
the query node 1s incompatible with the optimal
partition set and as an output rate of the query node
when the query node 1s compatible with the optimal
partition set; and
using the optimal partition set for the at least two
queries of the plurality of queries;
selecting the reconciled optimal partition set to be used
by each query of the plurality of queries;
storing the reconciled optimal partition set 1n a computer
readable medium;
applying the reconciled optimal partition set to the query
plan to transform the query plan into an optimized
query plan, wherein the applying the optimized query
plan comprises:
assigning an operator to each node of a plurality of
nodes that each node will execute, wherein at least
two of the plurality of nodes perform different
operators;
providing a parameter for each operator at each of the
plurality of nodes; and
informing each node of the plurality of nodes a source
and a destination of a data stream;
applying the optimized query plan to the data stream;
and
outputting a result of the applying to a user.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

