

### US009417046B2

# (12) United States Patent

# Steele et al.

### (54) TAPE MEASURE

(71) Applicant: Milwaukee Electric Tool Corporation,

Brookfield, WI (US)

(72) Inventors: Michael S. Steele, Waukesha, WI (US);

Steven W. Hyma, Milwaukee, WI (US); Wade F. Burch, Wauwatosa, WI (US); Cheng Zhang Li, Sussex, WI (US); Scott R. Fischer, Menomonee Falls, WI (US); Abhijeet A. Khangar, Waukesha,

WI (US)

(73) Assignee: MILWAUKEE ELECTRIC TOOL

CORPORATION, Brookfield, WI (US)

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 59 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/463,177

(22) Filed: Aug. 19, 2014

## (65) Prior Publication Data

US 2014/0352165 A1 Dec. 4, 2014

# Related U.S. Application Data

- (63) Continuation of application No. 13/561,773, filed on Jul. 30, 2012, now Pat. No. 8,806,770.
- (60) Provisional application No. 61/513,283, filed on Jul. 29, 2011, provisional application No. 61/607,060, filed on Mar. 6, 2012, provisional application No. 61/656,297, filed on Jun. 6, 2012.
- (51) Int. Cl. G01B 3/10 (2006.01)

(52) **U.S. Cl.** 

CPC ...... *G01B 3/1041* (2013.01); *G01B 3/1005* (2013.01); *G01B 3/1056* (2013.01); *G01B 3/1084* (2013.01); *G01B 2003/102* (2013.01)

(10) Patent No.: US 9,417,046 B2

(45) Date of Patent: \*Aug. 16, 2016

### (58) Field of Classification Search

CPC ..... G01B 3/10; G01B 3/1056; G01B 3/1071; G01B 3/1084
USPC ...... 33/759, 760, 761, 768, 769, 770
See application file for complete search history.

# (56) References Cited

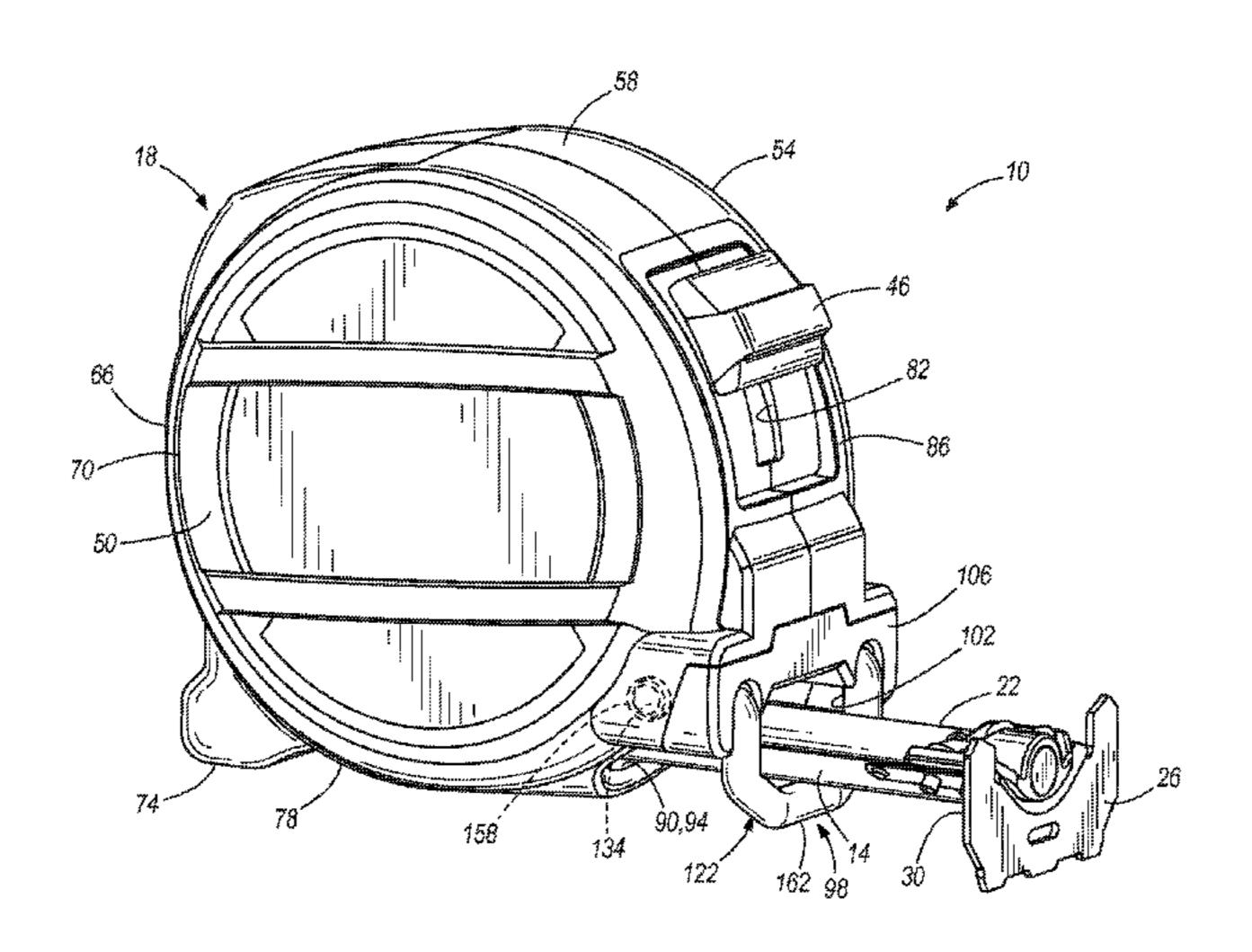
### U.S. PATENT DOCUMENTS

14,947 A 5/1856 Buck et al. 1,303,756 A 5/1919 Ballou (Continued)

### FOREIGN PATENT DOCUMENTS

CN 2174684 8/1994 DE 102006058396 A1 7/2008 (Continued)

#### OTHER PUBLICATIONS


Hyun-Kyu Ko, "A Study on Design of Measure Tape for Home Use (for DYI)" (1996) Master's Thesis-Kyung Sung University, Graduate School ofIndustry, Department ofIndustrial Design, 658.04 4 (81 pages with English translation).

Primary Examiner — G. Bradley Bennett (74) Attorney, Agent, or Firm — Michael Best & Friedrich LLP

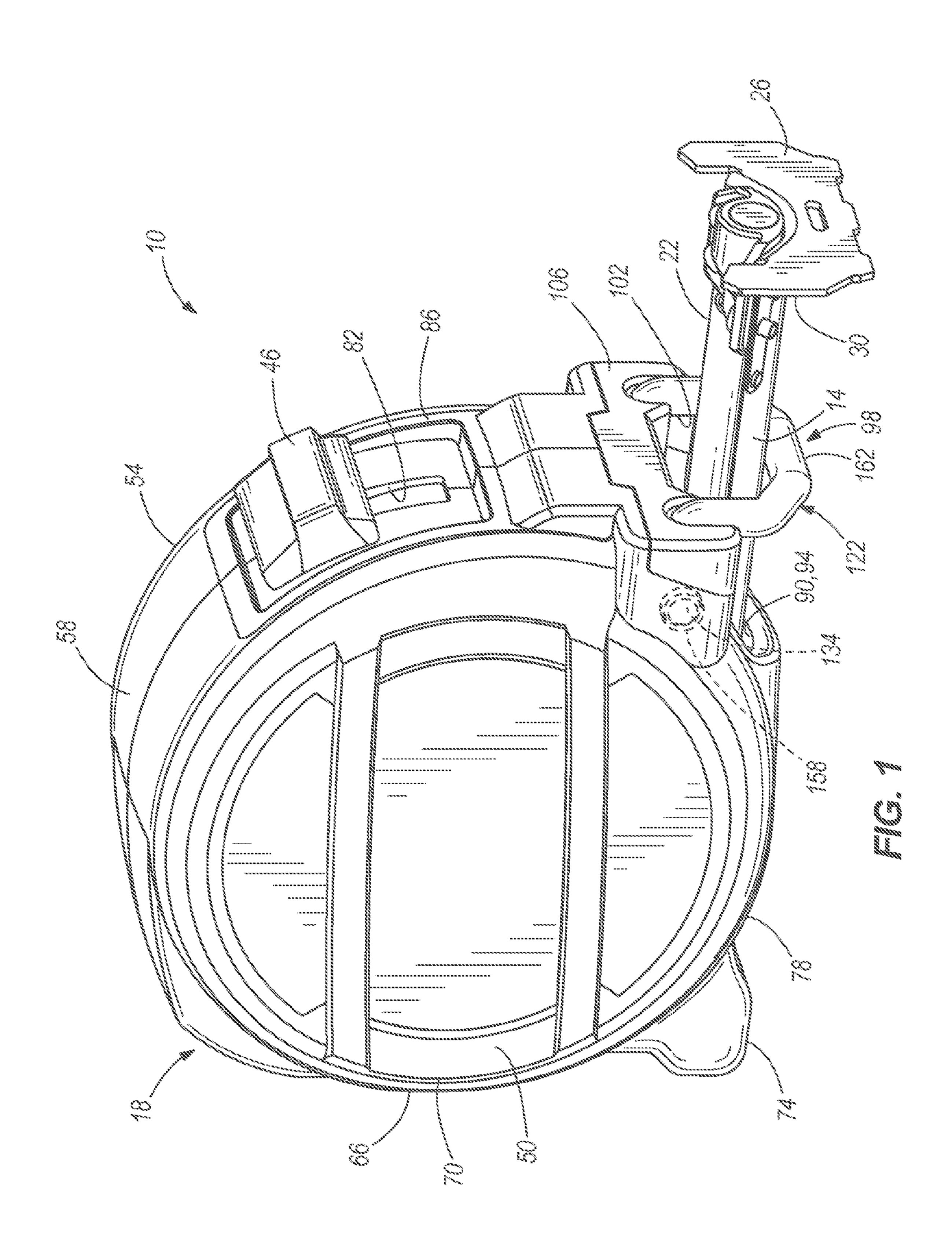
# (57) ABSTRACT

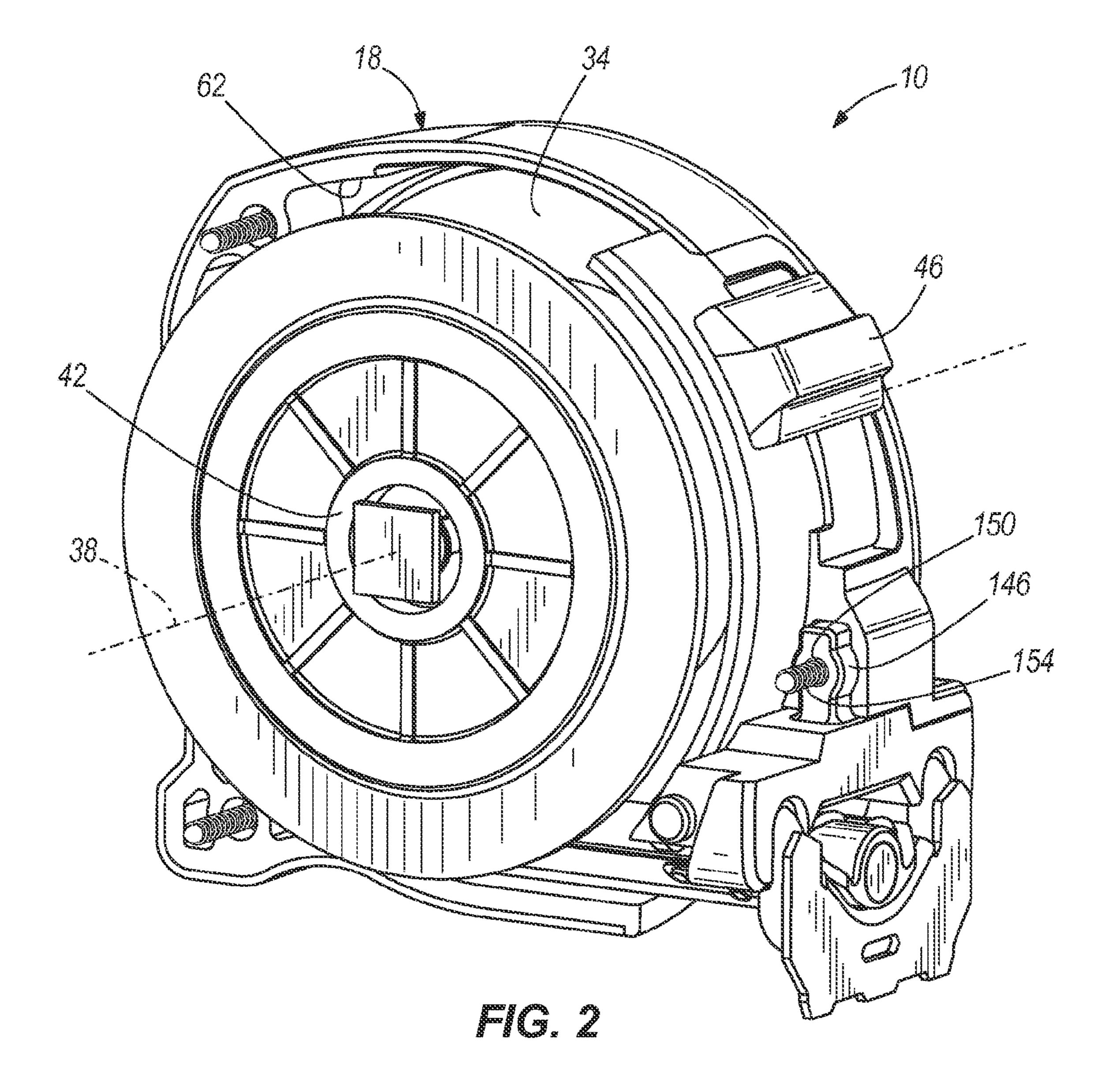
A tape measure includes a housing arranged to substantially enclose an internal cavity, the housing defining a tape port, and a tape positioned partially within the housing, the tape including an end portion that extends through the tape port and out of the housing. A hook is coupled to the end portion and a finger guard assembly is coupled to the housing and spaced apart from the tape port. The end portion extends through an aperture in the finger guard assembly and is movable between a retracted position in which the hook abuts the finger guard assembly and an extended position in which the hook is spaced apart from the finger guard assembly.

# 18 Claims, 3 Drawing Sheets

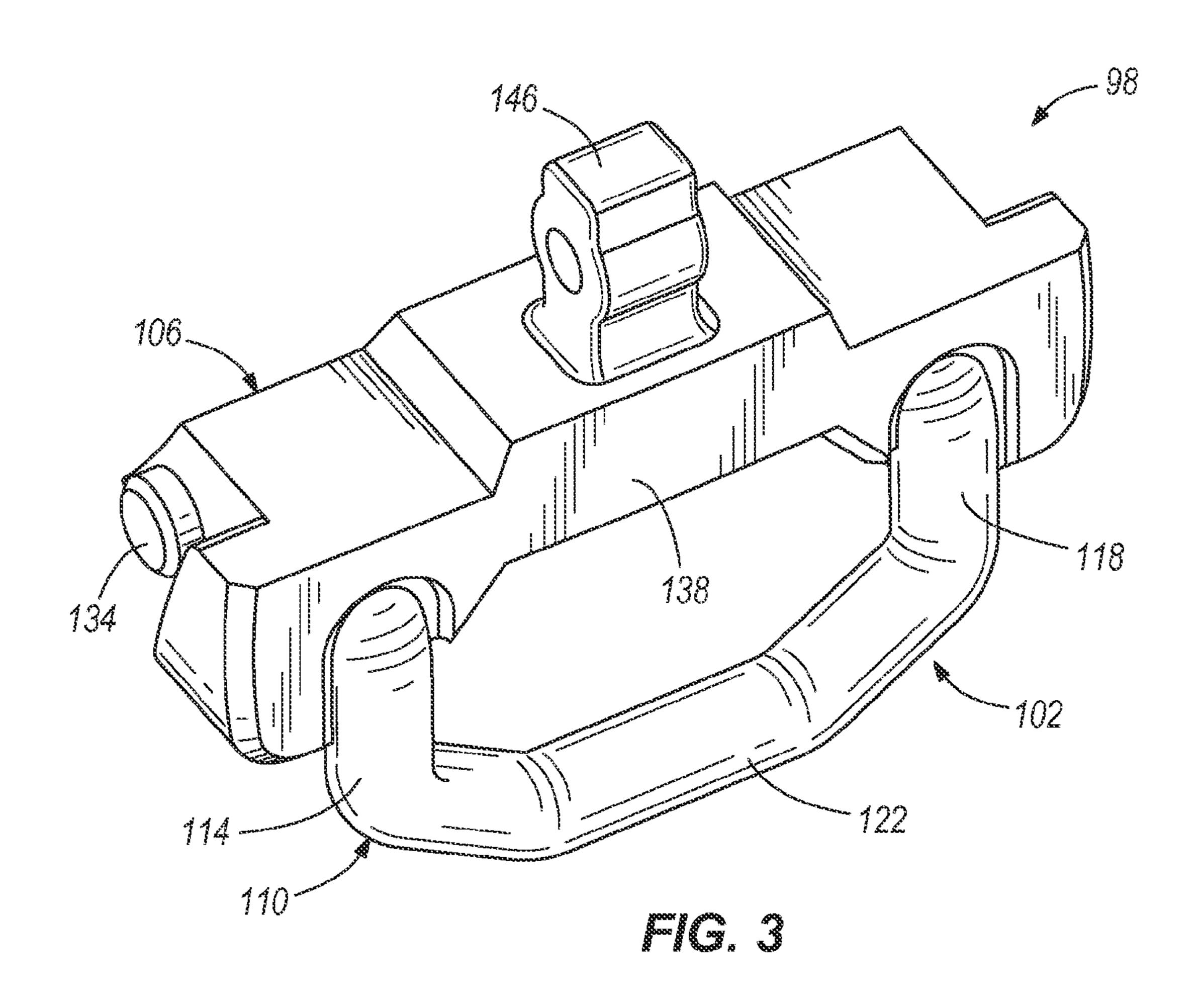


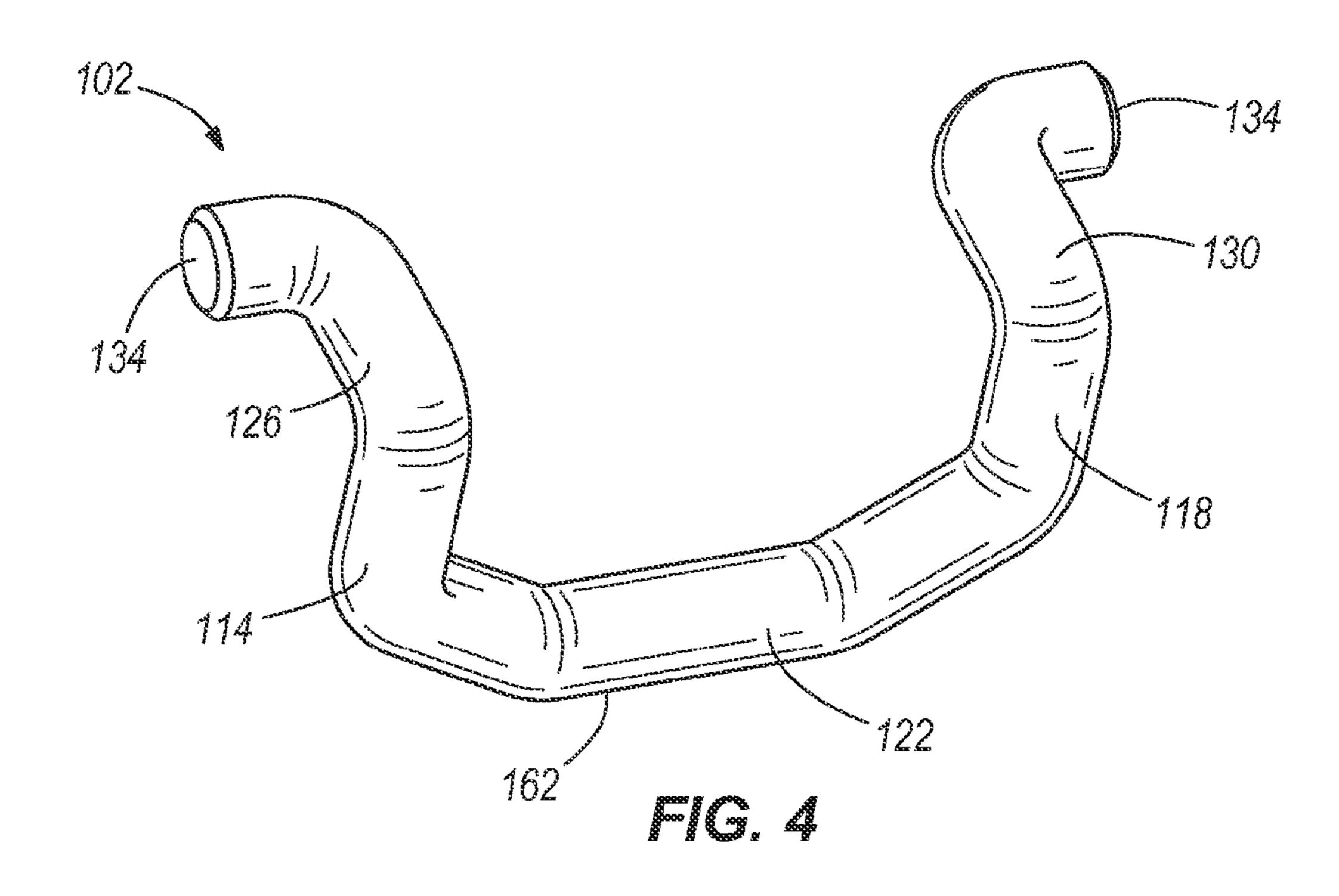
# US 9,417,046 B2 Page 2


| (56)                                  |                        | Referen           | ces Cited                    |             |   | 5,600,894 <i>A</i>                       |    | 2/1997<br>8/1997   | Blackman et al.            |
|---------------------------------------|------------------------|-------------------|------------------------------|-------------|---|------------------------------------------|----|--------------------|----------------------------|
|                                       | U.S. I                 | PATENT            | DOCUMENTS                    |             | 5 | 5,699,623 A                              | A  | 12/1997            | Lee                        |
| 1                                     | 612 676 A              | 1/1027            | Danhaal                      |             |   | 5,746,004 <i>E</i><br>D396,816 S         |    | 3/1998<br>8/1998   | Wertheim<br>Kang           |
| ,                                     | 613,676 A<br>052,259 A |                   | Raphael<br>Stowell           |             |   | 0397,304                                 |    | 8/1998             | e e                        |
| 2,                                    | 156,905 A              | 5/1939            | Stowell et al.               |             |   | 5,791,581 <i>A</i>                       |    |                    | Loeffler et al.            |
| /                                     | 574,272 A<br>614,769 A |                   | McCully<br>Nicholson         |             |   | 5,794,357 <i>E</i><br>D397,626 S         |    | 8/1998<br>9/1998   | Gilliam et al.<br>Davis    |
|                                       | 676,374 A *            |                   | Ballard                      | G01B 3/1071 |   | D397,950 S                               |    |                    | Blackman et al.            |
| ,                                     |                        |                   |                              | 24/265 H    |   | 5,806,202 A                              |    |                    | Blackman et al.            |
| ,                                     | 683,933 A<br>809,142 A |                   | McFarland<br>Sellen et al.   |             |   | 5,809,662 <i>F</i><br>5,815,940 <i>F</i> |    |                    | Skinner<br>Valentine, Sr.  |
|                                       | ·                      | 10/1957           |                              |             |   | 5,820,057 A                              | 4  | 10/1998            | Decarolis et al.           |
| 2,                                    | 994,958 A              | 8/1961            | Beeber                       |             |   | 5,829,152                                |    |                    | Potter et al.              |
|                                       | 100,937 A<br>164,907 A | 8/1963            | Burch<br>Quenot              |             |   | 5,842,284 A                              |    |                    | Gilliam et al.<br>Goldman  |
| /                                     | 205,584 A *            |                   | Overaa                       | G01B 3/1061 | 5 | 5,845,412 A                              | 4  | 12/1998            | Arcand                     |
| _                                     |                        | (                 |                              | 33/760      |   | 5,875,557 <i>E</i><br>5,884,408 <i>E</i> |    | 3/1999             | Ueki<br>Simmons            |
| /                                     | 214,836 A<br>499,225 A | 11/1965<br>3/1970 |                              |             |   | 5,894,677 <i>E</i>                       |    |                    | Hoffman                    |
| /                                     | 519,219 A              |                   | Zelnick                      |             | 5 | 5,895,539 A                              | 4  | 4/1999             | Hsu                        |
| /                                     | 519,220 A              |                   | Zelnick                      |             |   | D409,104 S<br>5,913,586 A                |    | 5/1999             | Yang<br>Marshall           |
| ,                                     | 521,831 A<br>577,641 A | 7/1970<br>5/1971  | Schmidt<br>Smith             |             |   | 5,922,999 A                              |    | 7/1999             |                            |
| ,                                     | 578,259 A              |                   | Zelnick                      |             | I | D412,858 S                               | 3  | 8/1999             | Staton                     |
| ,                                     | 601,896 A              |                   | Ledene                       |             |   | 5,990,435 <i>E</i><br>5,011,472 <i>E</i> |    | 1/2000             | Chao<br>Pendergraph et al. |
| /                                     | 672,597 A<br>713,603 A | 6/1972            | Williamson<br>Shore          |             |   | D420,606 S                               |    | 2/2000             | <del>-</del> -             |
|                                       | 838,520 A              | 10/1974           |                              |             |   | D421,230 S                               |    |                    | Gilliam et al.             |
| /                                     | 874,608 A              |                   | Quenot                       |             |   | 5,026,585 <i>E</i><br>5,032,379 <i>E</i> |    | 2/2000<br>3/2000   |                            |
|                                       | 103,426 A<br>121,785 A | 8/1978<br>10/1978 |                              |             |   | D423,382 S                               |    |                    | Piotrkowski                |
| /                                     | 131,244 A              | 12/1978           | •                            |             |   | 5,052,914 <i>A</i>                       |    | 4/2000             |                            |
| /                                     | 149,320 A<br>164,816 A |                   | Troyer et al.                |             |   | D424,454 S<br>5,082,017 A                |    | 5/2000<br>7/2000   |                            |
|                                       | 186,490 A              |                   | Bergkvist<br>Quenot          |             |   | 5,085,433 A                              |    | 7/2000             | Li                         |
| 4,                                    | 288,923 A              | 9/1981            | Duda                         |             |   | 5,098,303 A                              |    | 8/2000             | Vogel<br>Fraser et al.     |
|                                       | 363,171 A<br>433,486 A |                   | Scandella<br>Muehlenbein     |             |   | 5,108,926 <i>A</i><br>5,115,933 <i>A</i> |    | 9/2000             |                            |
| /                                     | 462,160 A              | 7/1984            |                              |             |   | RE36,887 H                               |    |                    | Goldman                    |
|                                       | 476,635 A              | 10/1984           |                              |             |   | 5,148,534 <i>E</i><br>5,161,299 <i>E</i> |    | 11/2000<br>12/2000 |                            |
| ,                                     | 479,617 A<br>489,494 A | 10/1984           | Edwards<br>Duda              |             |   | 5,167,635 H                              |    | 1/2001             |                            |
| 4,                                    | 516,325 A              |                   | Cohen et al.                 |             |   | 5,178,655 E                              |    |                    | Potter et al.              |
| /                                     | 527,334 A<br>547,969 A | 7/1985<br>10/1985 | Jones et al.                 |             |   | D438,478 S<br>D439,531 S                 |    | 3/2001<br>3/2001   | Davis et al.               |
| /                                     | 603,481 A              |                   | Cohen et al.                 |             | 6 | 5,209,219 H                              | 31 | 4/2001             | Wakefield et al.           |
| ,                                     | 748,746 A              | 6/1988            |                              |             |   | D441,308 S<br>D442,076 S                 |    | 5/2001             | Davis<br>Swanson           |
| ,                                     | 811,489 A<br>860,901 A |                   | Walker<br>Hochreuther et al. |             |   | 5,237,243 H                              |    | 5/2001             |                            |
| /                                     | 930,227 A              |                   | Ketchpel                     |             |   | RE37,212 F                               |    |                    | Marshall                   |
| ,                                     | 965,941 A              |                   | Agostinacci                  |             |   | 5,243,964 H<br>5,249,986 H               |    |                    | Murray<br>Murray           |
|                                       | 998,356 A<br>999,924 A | 3/1991<br>3/1991  | Shields                      |             |   | D447,069 S                               |    |                    | Budrow                     |
| 5,                                    | 010,657 A              | 4/1991            | Knapp                        |             |   | 5,272,764 H<br>5,276,071 H               |    | 8/2001             | Lin<br>Khachatoorian       |
|                                       | 038,985 A<br>046,339 A | 8/1991<br>9/1991  | Chapin<br>Krell              |             |   | 0.270,071 1 $0.447,712$ S                |    | 9/2001             |                            |
| ,                                     | 062,215 A              | 11/1991           |                              |             |   | 5,282,808 H                              |    |                    | Murray                     |
| /                                     | 134,784 A              |                   | Atienza                      |             |   | 5,308,432 E<br>D451,041 S                |    | 10/2001<br>11/2001 | Gilliam et al.             |
|                                       | 333,628 S<br>189,801 A |                   | Piotrkowski<br>Nicely        |             |   | 5,324,769 H                              |    | 12/2001            |                            |
| ,                                     | 208,767 A              |                   | George-Kelso et al.          |             |   | 5,338,204 H                              |    | 1/2002             |                            |
| ,                                     | 210,956 A              | 5/1993<br>7/1993  | Knispel et al.               |             |   | D453,303 S<br>5,349,482 H                |    | 2/2002<br>2/2002   | Lin<br>Gilliam             |
| · · · · · · · · · · · · · · · · · · · | 230,158 A<br>342,210 S |                   | Grossman                     |             | 6 | 5,367,161 H                              | 31 | 4/2002             | Murray et al.              |
|                                       | ,                      | 12/1993           |                              |             |   | D458,163 S<br>D458,550 S                 |    | 6/2002<br>6/2002   | •                          |
|                                       | 342,687 S<br>335,421 A | 12/1993<br>8/1994 | Kang<br>Jones, Jr.           |             |   | 5,431,486 H                              |    | 8/2002             |                            |
|                                       | 350,703 S              | 9/1994            |                              |             | Ι | D463,300 S                               | 3  | 9/2002             | Li                         |
| /                                     | 367,785 A              |                   | Benarroch                    |             |   | 5,442,863 H<br>5,449,866 H               |    |                    | Poineau et al.<br>Murray   |
| ,                                     | 448,837 A<br>365,769 S | 9/1995<br>1/1996  | Han-Teng<br>Kang             |             |   | ),449,800 E                              |    |                    | Tarver, III                |
|                                       | 481,813 A              | 1/1996            | Templeton                    |             | I | D464,579 S                               | 3  | 10/2002            | Martone                    |
|                                       | 506,378 A              |                   | Goldenberg                   |             |   | 5,470,582 E                              |    | 10/2002            |                            |
|                                       | 531,395 A<br>542,184 A | 7/1996<br>8/1996  |                              |             |   | 5,470,590 H<br>5,490,809 H               |    | 10/2002<br>12/2002 |                            |
| •                                     | ,                      |                   | Wertheim et al.              |             |   | 5,497,050 H                              |    |                    |                            |
| 5,                                    | 575,077 A              | 11/1996           | Jung Tae                     |             | 6 | 5,499,226 H                              | 31 | 12/2002            | Reda et al.                |


# US 9,417,046 B2 Page 3

| (56)  |                        | Referen          | ces Cited                        |    | D557,155               |            | 12/2007          |                                     |             |
|-------|------------------------|------------------|----------------------------------|----|------------------------|------------|------------------|-------------------------------------|-------------|
|       | TIC                    | DATENIT          | DOCLIMENTS                       |    | D558,620<br>D560,522   |            |                  | Critelli et al.<br>Farnworth et al. |             |
|       | U.S.                   | PAIENI           | DOCUMENTS                        |    | 7,334,344              |            |                  | Scarborough                         |             |
| D46   | 69,704 S               | 2/2003           | Williams et al.                  |    | 7,343,694              |            |                  | Erdfarb                             |             |
|       | 38,032 E               |                  | Butwin                           |    | D565,441               |            | 4/2008           |                                     |             |
| D4    | 71,473 S               | 3/2003           | Blackman et al.                  |    | D565,442               |            | 4/2008           |                                     |             |
|       | 71,827 S               |                  | Ranieri et al.                   |    | 7,363,723<br>7,377,050 |            |                  | Peterson<br>Shute et al.            |             |
| ,     | 30,159 B2              |                  | Tarver, III                      |    | 7,377,030              |            | 7/2008           |                                     |             |
| ,     | 43,144 B1<br>46,644 B2 | 4/2003<br>4/2003 | Poineau et al.                   |    | 7,406,778              |            |                  | Lee et al.                          |             |
| ,     | 74,412 S               |                  | Ichinose et al.                  |    | , ,                    |            |                  | Campbell et al.                     |             |
| 6,5   | 68,099 B2              |                  | Bergeron                         |    | 7,415,778              |            |                  | McEwan et al.                       |             |
|       | 76,913 S               |                  | Blackman et al.                  |    | 7,434,330              |            |                  | Critelli et al.<br>McEwan et al.    |             |
| ,     | 95,451 B1              |                  | Kang et al.<br>Odachowski        |    | 7,454,845              |            | 11/2008          |                                     |             |
| •     | •                      |                  | Pederson                         |    | D582,810               |            |                  |                                     |             |
| ,     | ·                      | 10/2003          |                                  |    | 7,458,537              |            |                  | Critelli et al.                     |             |
| ,     | ,                      | 11/2003          | •                                |    | ,                      |            |                  | Campbell                            |             |
|       | 85,770 S               |                  |                                  |    | 7,487,600<br>7,490,414 |            | 2/2009<br>2/2009 | Critelli et al.                     |             |
|       | 86,086 S<br>84,522 B2  |                  | Jueneman<br>Chilton              |    | 7,490,415              |            |                  | Cubbedge                            |             |
| ,     | 88,010 B1              |                  | Schwaerzler                      |    | D590,283               |            |                  | Critelli et al.                     |             |
| ,     | /                      |                  | Lee et al.                       |    | D590,284               |            |                  | Critelli et al.                     |             |
| ,     | ,                      | 2/2004           |                                  |    | 7,555,845              |            |                  | Critelli et al.                     |             |
| ,     | 98,679 B1              |                  | Critelli et al.                  |    | 7,559,154<br>7,565,751 |            | 7/2009           | Levine et al.<br>Murray             |             |
| ,     | 18,649 B1<br>60,979 B1 | 4/2004<br>7/2004 | Critelli et al.                  |    | 7,594,341              |            | 9/2009           | <b>.</b>                            |             |
| ,     | 96,052 B1              | 9/2004           |                                  |    | D603,248               |            |                  |                                     |             |
| ,     | ,                      | 10/2004          |                                  |    | 7,617,616              |            | 11/2009          |                                     |             |
| ,     | •                      |                  | Blackman et al.                  |    | 7,627,958              |            |                  | Tallon et al.                       |             |
| ,     | 36,975 B2              | 1/2005           |                                  |    | 7,631,437<br>D611,849  |            |                  | Sanderson<br>Cook et al.            |             |
| _ ′ _ | 39,981 B2<br>54,197 B2 | 1/2005<br>2/2005 |                                  |    | 7,669,347              |            | 3/2010           |                                     |             |
| ,     | 03,351 S               | 3/2005           | . •                              |    | D613,629               |            | 4/2010           | ~                                   |             |
|       | 03,637 S               | 4/2005           |                                  |    | D614,516               |            | 4/2010           | -                                   |             |
|       | 03,897 S               | 4/2005           |                                  |    | 7,703,216              |            | 4/2010<br>6/2010 | •                                   |             |
| ,     | 74,245 B2              | 4/2005           |                                  |    | 7,805,855              |            |                  | Delneo et al.<br>Seo                |             |
|       | 04,628 S<br>04,835 S   | 5/2005           | Weeks et al.                     |    | 7,845,093              |            |                  |                                     |             |
|       | 04,836 S               | 5/2005           |                                  |    | , ,                    |            |                  | Pastorek et al.                     |             |
|       | 92,468 B2              |                  | Murray                           |    | 7,854,074              |            | 12/2010          |                                     |             |
| ,     | 04,697 B2              | 6/2005           |                                  |    | 7,913,406<br>7,918,037 |            |                  | Norelli<br>Polkhovskiy              |             |
|       | 07,195 S               |                  | Kondo et al.                     |    | 7,918,037              |            | 8/2011           | •                                   |             |
| ,     | 18,191 B2<br>20,700 B2 |                  | Stauffer et al.<br>Ekdahl et al. |    | 8,015,723              |            |                  | Solomon                             |             |
| ,     | 31,734 B2              |                  | Elder et al.                     |    | 8,056,849              |            | 11/2011          | •                                   |             |
| 6,9   | 31,753 B2              |                  | Ryals et al.                     |    | 8,081,815              |            | 12/2011          |                                     |             |
| ,     | 35,045 B2              |                  | Cubbedge                         |    | D653,974<br>8,117,762  |            |                  | Capra<br>Delneo et al.              |             |
| ,     | 38,354 B2<br>44,961 B2 |                  | Worthington                      |    | 8,117,763              |            |                  | Delneo et al.                       |             |
| ,     | 59,499 B2              | 11/2005          |                                  |    | D660,735               |            |                  | Petrillo                            |             |
| ,     | •                      |                  | Panosian                         |    | 8,215,027              |            | 7/2012           |                                     |             |
|       | /                      |                  | Armendariz                       |    | 8,375,595              |            |                  | Murray et al.                       |             |
| ,     | ,                      | 2/2006           |                                  |    | 8,381,411<br>8,407,909 |            |                  | Delarosa et al.<br>Lindsay          |             |
| ,     | 24,791 B2<br>22,890 S  | 4/2006<br>6/2006 | Marshall et al.<br>Huang         |    | 8,468,710              |            |                  | Mos                                 | G01B 3/1084 |
|       | 55,260 B1              |                  | Hoffman                          |    |                        |            |                  |                                     | 33/668      |
| 7,0   | 57,484 B2              | 6/2006           | Gilmore                          | 24 | 8,898,922              |            |                  | Bridges et al.                      |             |
| ,     | 59,061 B2              | 6/2006           |                                  |    | 001/0003872            |            | 11/2001          | Pederson                            |             |
| ,     | •                      |                  | Scarborough<br>Blackman et al.   |    | 002/0011008            |            |                  | Nelson et al.                       |             |
| ,     | ,                      | 11/2006          |                                  |    | 002/0066193            |            | 6/2002           |                                     |             |
| ,     | 35,900 S               |                  | •                                |    | 002/0066774            |            |                  | Prochac                             |             |
| ,     | 59,331 B2              |                  | Critelli et al.                  |    | 002/0073570            |            |                  | Conder                              |             |
|       |                        |                  | Kilpatrick et al.                |    | 003/0009899            |            | 1/2003<br>1/2003 |                                     |             |
| ,     | •                      | 2/2007<br>2/2007 | Gibbons et al.                   |    | 003/0019110            |            | 1/2003           |                                     |             |
| ,     | ·                      |                  | Kang et al.                      |    | 003/0070315            |            |                  | Bergeron                            |             |
| ,     | 85,446 B1              | 3/2007           | •                                |    | 003/0213141            |            | 11/2003          |                                     |             |
|       | 40,207 S               |                  | Ikeda et al.                     |    | 003/0233762            |            |                  | Blackman et al.                     |             |
| /     | 34,246 B1              | 6/2007           |                                  |    | 004/0044438            |            |                  | Lorraine et al.                     |             |
|       | 39,719 E<br>45,701 S   | 7/2007           | •                                |    | 004/0055174            |            |                  | Hirsch, Jr.<br>Gilliam et al.       |             |
|       | 45,701 S<br>47,681 S   |                  | Nelson et al.                    |    | 004/0071809            |            |                  | Lee et al.                          |             |
|       | 40,439 B2              |                  | Critelli et al.                  |    | 004/0163267            |            | 8/2004           |                                     |             |
| 7,2   | 66,905 B1              | 9/2007           | Lee                              |    | 004/0163271            | <b>A</b> 1 | 8/2004           | Zars                                |             |
|       |                        |                  | Campbell et al.                  |    | 004/0163272            |            | 8/2004           | _                                   |             |
| 7,25  | 99,565 B2              | 11/2007          | Marshall et al.                  | 20 | 005/0005470            | Al         | 1/2005           | Snider                              |             |
|       |                        |                  |                                  |    |                        |            |                  |                                     |             |


# US 9,417,046 B2 Page 4


| (56)                         |               | Referen | ces Cited                | 2011/01                     | 179664  | <b>A</b> 1         | 7/2011  | Delneo et al.   |             |
|------------------------------|---------------|---------|--------------------------|-----------------------------|---------|--------------------|---------|-----------------|-------------|
|                              |               |         |                          | 2012/00                     | )36727  | <b>A</b> 1         | 2/2012  | McCarthy        |             |
| U.S. PATENT DOCUMENTS        |               |         |                          |                             | 055038  | <b>A</b> 1         | 3/2012  | Lindsay         |             |
|                              |               |         |                          | 2012/00                     | 073156  | <b>A</b> 1         | 3/2012  | DeLaRosa et al. |             |
| 2005/0028396                 | <b>A</b> 1    | 2/2005  | Stauffer et al.          | 2012/01                     | 159799  | <b>A</b> 1         | 6/2012  | Murray et al.   |             |
| 2005/0155244                 | <b>A</b> 1    |         | Ryals et al.             |                             | 167403  |                    |         | Roeske          |             |
| 2005/0155245                 | <b>A</b> 1    |         | Panosian                 | 2012/02                     | 240419  | A1*                |         | Wagner          | B43L 7/12   |
| 2005/0252020                 | $\mathbf{A}1$ | 11/2005 | Critelli et al.          |                             |         |                    |         |                 | 33/275 R    |
| 2005/0252021                 | <b>A</b> 1    | 11/2005 | Kang                     | 2013/00                     | 025147  | <b>A</b> 1         | 1/2013  | Steele et al.   |             |
| 2006/0005417                 | <b>A</b> 1    | 1/2006  | Rhead                    |                             | )47455  |                    |         | Steele et al.   |             |
| 2006/0010705                 | <b>A</b> 1    | 1/2006  | Dettellis                |                             | 185949  |                    |         | Burch et al.    |             |
| 2006/0096112                 | $\mathbf{A}1$ | 5/2006  | Berring                  |                             |         |                    |         | Huang           | G01B 3/1056 |
| 2006/0096113                 | $\mathbf{A}1$ | 5/2006  | Kang et al.              | 2013/02                     | 270417  | 711 .              | 11/2013 | mang            | 33/758      |
| 2006/0107546                 | $\mathbf{A}1$ | 5/2006  | Pritchard                | 2015/00                     | 047216  | A 1 *              | 2/2015  | Burch           |             |
| 2006/0112582                 | $\mathbf{A}1$ | 6/2006  | Scarborough              | 2015/00                     | 74/210  | AI                 | 2/2013  | Durch           | 33/770      |
| 2006/0130352                 | <b>A</b> 1    | 6/2006  | Huang                    | 2015/03                     | 269024  | A 1 *              | 0/2015  | Draggard        |             |
| 2006/0185185                 | $\mathbf{A}1$ |         | Scarborough              | 2013/02                     | 268024  | AI '               | 9/2013  | Brossard        |             |
| 2006/0230627                 | <b>A</b> 1    |         | Blackman et al.          |                             |         |                    |         |                 | 33/760      |
| 2006/0248742                 | <b>A</b> 1    | 11/2006 | Marshall et al.          |                             |         |                    |         |                 |             |
| 2006/0283036                 | <b>A</b> 1    | 12/2006 |                          |                             | FO.     | REIGN              | N PATE  | NT DOCUMENTS    | S           |
| 2007/0017111                 |               |         | Hoback et al.            |                             |         |                    |         |                 |             |
| 2007/0056182                 |               |         | Di Bitonto et al.        | DE                          | 1020    | 060583             | 896 B4  | 6/2011          |             |
| 2007/0079520                 |               |         | Levine et al.            | $\mathbf{EP}$               |         | 663                | 322     | 10/1986         |             |
| 2007/0152091                 |               |         | Campbell                 | $\mathbf{EP}$               |         | 5315               | 570     | 3/1993          |             |
| 2007/0171630                 |               |         | Gibbons et al.           | $\mathbf{EP}$               |         | 4279               |         | 2/1996          |             |
| 2007/0227028                 |               |         | Campbell et al.          | $\mathbf{EP}$               |         | 07241              |         | 7/1996          |             |
| 2008/0028628                 |               |         | Campbell et al.          | $\stackrel{\mathbf{EP}}{=}$ |         |                    | 200 A2  | 2/1999          |             |
| 2008/0086902                 |               |         | Murray                   | EP                          |         |                    | 200 A3  | 12/1999         |             |
| 2008/0086903                 |               |         | Peterson                 | EP                          |         | 11758              |         | 1/2002          |             |
| 2008/0086904                 |               |         | Murray                   | EP                          |         | 14113              |         | 4/2004          |             |
| 2008/0098610                 | Al*           | 5/2008  | Lipps G01B 3/1084        | EP                          |         | 11449              |         | 9/2004          |             |
| 2000/01/0/74                 | A 1 &         | 7/2000  | 33/770<br>N: 1           | EP                          |         | 12374              |         | 10/2006         |             |
| 2008/0168674                 | A1*           | 7/2008  | Nielson G01B 3/10        | EP                          |         | 24692              |         | 6/2012          |             |
| 2000/0205054                 | A 1           | 11/2000 | 33/765                   | GB                          | 1.0     | 6904               |         | 4/1953          |             |
| 2008/0285854                 |               |         | Kotake et al.            | JP                          |         | 0610023            |         | 2/1961          |             |
| 2009/0064517                 |               |         | Sanderson                | JP                          | 19      | 831347             |         | 9/1983          |             |
| 2009/0064525                 |               | 3/2009  |                          | JP                          | 100     | 103323             |         | 12/1998         |             |
| 2009/0064526                 |               |         | Farnworth et al.         | KR                          |         | 3400019            |         | 9/1984          |             |
| 2009/0249636                 |               |         | Reda et al.              | KR                          |         | 100047             |         | 11/1991         |             |
| 2010/0139110                 |               |         | Germain                  | WO                          |         | ) 94027<br>) 97146 |         | 2/1994          |             |
| 2010/0314277                 |               | 12/2010 |                          | WO                          |         | 0 97145            |         | 4/1997          |             |
| 2010/0325910                 |               | 1/2010  |                          | WO                          |         | 0 98114            |         | 3/1998          |             |
| 2011/0005094<br>2011/0138642 |               |         | Solomon<br>Norelli       | WO                          |         | 00603<br>020573    |         | 10/2000         |             |
| 2011/0138042                 |               |         | Norelli<br>Delneo et al. | WO                          | WO      | 020577             | 10      | 7/2002          |             |
|                              |               |         |                          | * cited b                   | N AVOD  | niner              |         |                 |             |
| 2011/0179663                 | A1            | 7/2011  | Kang                     | Cheu l                      | ry exam |                    |         |                 |             |





Aug. 16, 2016





15

# 1

# TAPE MEASURE

# CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. application Ser. No. 13/561,773 filed Jul. 30, 2012, now U.S. Pat. No. 8,806, 770, which claims priority to U.S. Provisional Patent Application No. 61/513,283, filed on Jul. 29, 2011, U.S. Provisional Patent Application No. 61/607,060, filed on Mar. 6, 2012, and U.S. Provisional Patent Application No. 61/656, 297, filed on Jun. 6, 2012, the entire contents of which are incorporated by reference herein.

### **BACKGROUND**

The present invention relates to measurement devices, and in particular, the invention relates to a tape measure, and more specifically, a tape measure with a guard member.

#### **SUMMARY**

In one embodiment, the invention provides a tape measure. The tape measure includes a housing assembly defining a 25 cavity and a tape port from which to extend and retract a measuring tape. The measuring tape forms a spool rotatably coupled about an axis. A hook member is fixedly coupled to an end portion of the measuring tape. A U-shaped guard member extends from the housing assembly adjacent the tape 30 port. The guard member is configured to engage the hook member when the measuring tape is retracted into the housing assembly.

In another embodiment, the invention provides a tape measure. The tape measure includes a housing assembly defining a cavity and a tape port from which to extend and retract a measuring tape. The measuring tape forms a spool rotatably coupled about an axis. A hook member is fixedly coupled to an end portion of the measuring tape. A finger guard assembly extends from the housing assembly adjacent the tape port. The finger guard assembly includes a U-shaped guard member and a guard support member and is configured to engage the hook member when the measuring tape is retracted into the housing assembly.

In another construction, the invention provides a tape measure that includes a housing arranged to substantially enclose an internal cavity, the housing defining a tape port, and a tape positioned partially within the housing, the tape including an end portion that extends through the tape port and out of the housing. A hook is coupled to the end portion and a finger 50 guard assembly is coupled to the housing and spaced apart from the tape port. The end portion extends through an aperture in the finger guard assembly and is movable between a refracted position in which the hook abuts the finger guard assembly and an extended position in which the hook is 55 spaced apart from the finger guard assembly.

In another construction, the invention provides a tape measure that includes a housing arranged to substantially enclose an internal cavity, the housing defining a tape port and a finger guard assembly coupled to the housing and cooperating with the housing to define a finger gap. A tape is positioned partially within the housing and includes an end portion. The tape extends through the tape port, through the finger gap, and through an aperture in the finger guard assembly. A hook is coupled to the end portion and is operable to contact the finger guard assembly to inhibit retraction of the end portion past the finger guard assembly and into the finger gap.

### 2

In another construction, the invention provides a tape measure that includes a housing arranged to substantially enclose an internal cavity, the housing defining a tape port, and a finger guard assembly coupled to the housing and defining an opening. A tape is at least partially disposed within the housing. The tape is movable from a retracted position to an extended position by passing substantially linearly through the tape port and the opening. A finger gap is defined between the tape port and the finger guard, wherein a portion of tape within the finger gap is disposed outside of the housing.

Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a tape measure according to one construction of the invention.

FIG. 2 is a perspective view of the tape measure of FIG. 1 with a first side wall removed.

FIG. 3 is a perspective view of a finger guard assembly of the tape measure of FIG. 1.

FIG. 4 is a perspective view of a finger guard of the finger guard assembly of FIG. 3.

### DETAILED DESCRIPTION

Before any constructions of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other constructions and of being practiced or of being carried out in various ways.

FIGS. 1 and 2 illustrate a length measurement device, more specifically, a tape measure 10. The tape measure 10 includes a coilable measuring tape 14 and a housing assembly 18.

As illustrated in FIG. 1, a variable-length extended segment 22 of the measuring tape 14 is retractable and extendable from the housing assembly 18. A hook member 26 is fixedly coupled to an end portion 30 of the measuring tape 14. The remainder of the measuring tape 14 forms a spool 34 rotatably disposed about an axis 38 of the tape measure 10 (FIG. 2). As shown in FIG. 2, a refraction mechanism 42 is coupled to the spool 34 to provide for powered refraction of the measuring tape 14. The retraction mechanism 42 may include an elongated coiled spring for motive force. A tape lock 46 is provided to selectively engage measuring tape 14, such that the extended segment 22 of the measuring tape 14 remains at a desired length.

Referring to FIG. 1, the housing assembly 18 includes a first side wall 50, a second side wall 54, and a peripheral wall 58 connecting the first side wall 50 and the second side wall 54. The first side wall 50, second side wall 54, and peripheral wall 58 define an internal cavity 62 (FIG. 2) in which the spool 34 and retraction mechanism 42 are housed. Referring to FIG. 1, each of the first side wall 50 and the second side wall 54 has a substantially circular profile 66. In other embodiments, the side walls may be rectangular, polygonal, or any other desired shape. Portions of the housing assembly 18 may be co-molded or separately formed of a resilient material, such as a natural or synthetic rubber. In the illustrated construction, the housing assembly 18 is formed with housing bumpers 70 and a support leg 74 which extends from a lower portion 78 of the peripheral wall 58.

3

A slot **82** is defined along a forward portion **86** of the peripheral wall **58**. The slot **82** is provided to allow for sliding movement of the tape lock **46** relative to housing assembly **18**.

Below the slot **82**, a tape port **90** is provided in the peripheral wall **58**. The tape port **90** has an arcuate shape **94**, corresponding to an arcuate cross-sectional profile of the measuring tape **14**. The tape port **90** allows for the retraction and extension of the measuring tape **14** to and from the internal cavity **62** (FIG. **2**).

As shown in FIGS. 1 and 2, the tape measure includes a finger guard assembly 98. Referring to FIG. 3, the finger guard assembly 98 includes a guard member 102 and a guard support member 106. Exposed portions 110 of the guard member 102 are substantially U-shaped, with a first leg 114 and a second leg 118 extending from the guard support member 106, and a connecting leg 122 extending between the first leg 114 and the second leg 118.

Referring to FIG. 4, a first mounting extension 126 is 20 coupled to the first leg 114, and a second mounting extension 130 is coupled to the second leg 118. Each of the first mounting extension 126 and the second mounting extension 130 includes a mounting boss 134. The guard member 102 may be formed of substantially rigid material such as a metal and is 25 preferably coated or covered with a resilient material such as rubber or plastic. In other constructions, a resilient polymer or other material is used to form the guard member 102.

Referring to FIG. 3, the guard support member 106 is molded over the first mounting extension 126 and the second 30 mounting extension 130 of the guard member 102, such that the exposed portions 110 of the guard member 102 extend from a forward surface 138 of the guard support member 106. The mounting bosses 134 extend outwardly from lateral edges 142 of the guard support member 106. In other constructions, other methods are used to connect the guard support member 106 and the guard member 102 (e.g., thermal bonding, adhesives, fasteners, etc.).

The guard support member 106 further includes a fastener boss 146. Referring to FIG. 2, the fastener boss 146 defines an 40 aperture 150 for receiving a fastener 154 for coupling the guard support member 106 to the housing assembly 18. The boss 134 of each mounting extension 126 and 130 of the guard member 102 are received by corresponding recesses **158** (FIG. 1) formed in the housing assembly **18**. The guard 45 support member 106 may be formed of a resilient polymer or rubber material, such that the guard support member 106 provides a degree of impact resistance between the guard member 102 and the housing assembly 18 when the guard member 102 is struck by the hook member 26 or the tape 50 measure 10 is dropped upon the guard member 102. Additionally, the guard support member 106 can rotate relative to the housing assembly 18 about the fastener 154 (FIG. 2) when an impact is received by the guard member 102.

Referring to FIG. 4, the guard member 102, and more 55 specifically the connecting leg 122, is configured to engage the hook member 26 when the measuring tape 14 is fully retracted into the internal cavity 62 (FIG. 1). The guard member 102 also shields the housing assembly 18 from being struck by the hook member 26. In addition, a lower surface 60 162 of the guard member 102 is substantially aligned with the support leg 74, thereby allowing the tape measure 10 to stand upright on a surface to be measured as shown in FIG. 1.

Thus, the invention provides, among other things, a tape measure and more specifically a tape measure with a guard 65 member. Although the invention has been described in detail with reference to certain preferred embodiments, variations

4

and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.

The invention claimed is:

- 1. A tape measure comprising:
- a housing arranged to substantially enclose an internal cavity, the housing defining a tape port;
- a tape positioned partially within the housing, the tape including an end portion that extends through the tape port and out of the housing;
- a hook coupled to the end portion; and
- a finger guard assembly coupled to the housing and spaced apart from the tape port, the end portion extending through an aperture in the finger guard assembly and movable between a retracted position in which the hook abuts the finger guard assembly and an extended position in which the hook is spaced apart from the finger guard assembly.
- 2. The tape measure of claim 1, further comprising a spool disposed within the housing and operable to support the tape within the housing when the tape is in the retracted position.
- 3. The tape measure of claim 1, wherein the housing defines a front surface and a bottom portion, and wherein the tape port is formed in the bottom portion and is spaced apart from the front surface.
- 4. The tape measure of claim 3, wherein the finger guard assembly includes a portion that is substantially flush with the front face.
- 5. The tape measure of claim 3, wherein the front face and the bottom portion cooperate to define a recessed corner portion between the tape port and the finger guard assembly.
- **6**. The tape measure of claim **1**, wherein the tape is outside of the housing when disposed between the tape port and the finger guard assembly.
  - 7. A tape measure comprising:
  - a housing arranged to substantially enclose an internal cavity, the housing defining a tape port;
  - a finger guard assembly coupled to the housing and cooperating with the housing to define a finger gap;
  - a tape positioned partially within the housing, the tape including an end portion, the tape extending through the tape port, through the finger gap, and through an aperture in the finger guard assembly; and
  - a hook coupled to the end portion and operable to contact the finger guard assembly to inhibit retraction of the end portion past the finger guard assembly and into the finger gap.
- 8. The tape measure of claim 7, further comprising a spool disposed within the housing and operable to support the tape within the housing when the tape is in the retracted position.
- 9. The tape measure of claim 7, wherein the housing defines a front surface and a bottom portion, and wherein the tape port is formed in the bottom portion and is spaced apart from the front surface.
- 10. The tape measure of claim 9, wherein the finger guard assembly includes a portion that is substantially flush with the front face.
- 11. The tape measure of claim 9, wherein the front face and the bottom portion cooperate to define the finger gap between the tape port and the finger guard assembly.
- 12. The tape measure of claim 7, wherein the tape is outside of the housing when disposed between the tape port and the finger guard assembly.
  - 13. A tape measure comprising:
  - a housing arranged to substantially enclose an internal cavity, the housing defining a tape port;
  - a finger guard assembly coupled to the housing and defining an opening;

6

- a tape at least partially disposed within the housing, the tape movable from a retracted position to an extended position by passing substantially linearly through the tape port and the opening; and
- a finger gap defined between the tape port and the finger 5 guard, wherein a portion of tape within the finger gap is disposed outside of the housing.
- 14. The tape measure of claim 13, further comprising a spool disposed within the housing and operable to support the tape within the housing when the tape is in the retracted 10 position.
- 15. The tape measure of claim 13, wherein the housing defines a front surface and a bottom portion, and wherein the tape port is formed in the bottom portion and is spaced apart from the front surface.
- 16. The tape measure of claim 15, wherein the finger guard assembly includes a portion that is substantially flush with the front face.
- 17. The tape measure of claim 15, wherein the front face and the bottom portion cooperate to define the finger gap 20 between the tape port and the finger guard assembly.
- 18. The tape measure of claim 13, further comprising a hook coupled to the end portion and operable to contact the finger guard assembly to inhibit retraction of the end portion past the finger guard assembly and into the finger gap.

\* \* \* \*