12 United States Patent

Derbeko et al.

US009405684B1

US 9.405.,684 B1
Aug. 2, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

SYSTEM AND METHOD FOR CACHE

MANAGEMENT

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Philip Derbeko, Modiin (IL); Assaf
Natanzon, Tel Aviv (IL); Anat Eyal, Tel
Aviv (IL)

Assignee: EMC Corporation, Hopkinton, MA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 174 days.

Appl. No.: 13/630,678

Filed: Sep. 28, 2012

Int. CL.

GO6F 12/08 (2016.01)
GO6F 3/06 (2006.01)
GO6F 17/30 (2006.01)
U.S. CL

CPC GO6F 12/08 (2013.01); GO6F 3/06 (2013.01);
GO6F 17/30 (2013.01)

Field of Classification Search
P o e e, GO6F 12/08

USPC e, 711/1-200
See application file for complete search history.

10

200

(56) References Cited

U.S. PATENT DOCUMENTS

6,704,730 B2 3/2004 Moulton et al.
6,810,398 B2 * 10/2004 Moulton
7,788,220 Bl 82010 Auchmoody et al.

2009/0063795 Al 3/2009 Yueh

2010/0094817 Al* 4/2010 Ben-Shaul etal. 707/697
2012/0166448 Al* 6/2012 Lietal.oocooeeeiie, 707/747
2014/0013057 Al* 1/2014 Agrawal etal. 711/126

* cited by examiner

Primary Examiner — David X Y1

Assistant Examiner — Zubair Ahmed

(74) Attorney, Agent, or Firm — Bnan J. Colandreo, Esq.;
Mark H. Whittenberger, Esq.; Holland & Knight LLP

(57) ABSTRACT

A method, computer program product, and computing system
for processing, on a host, a read request for a portion of a data
file stored on a backend storage system. The portion of the
data file 1s obtained from the backend storage system. The
portion of the data file 1s divided 1nto a plurality of file chunk
based, at least 1n part, upon a file type. Each of the plurality of
file chunks 1s compared to other file chunks stored within a
frontend cache system associated with the host to 1dentily
unmique file chunks within the plurality of file chunks. The
unmque file chunks are stored within the frontend cache sys-
tem.

24 Claims, 3 Drawing Sheets

portior

storage system

] processing, on a host, a read request for a
of a data file stored on a backend

202 *

o obtaiming the portior

of the data file tfrom
the backend storage system

204 &

plurality of file chunks

| "dividing the portion of the data file into a

2006 *

*
]

frontend cache system

- comparing cach of the plurality of file
chunks to other file chunks stored withina | -

; — , — 210
identifying non-unique file w,

chunks within the plurality
of file chunks

208 *

L LA T L L L™

¥
.

frontend cache system

. storing the umique file chunks within the

¢ 212

not storing the non-unique)
file chunks within the

frontend cache system

A,

US 9,405,684 B1

WYY XNy YN Y Y NY Y YN YN YN YN Y N Ny

A

L EEEEEEEEEEEEEREEEEERERERETF

>

s

x ok
.y
r
i
Fr
X
r
IS
r
i
Fr
X
r
IS
r
i
Fr
X
r
o
i
Fr
X
r
IS
r
i
Fr
X
r
IS
r
i
Fr
X
r
IS
ol
i

F
F'l

Lo P P P W T Lo P P P P
e e e e p e e e e e e H
™

X
i

._.
.._........._........._..._........H..
L e N N N N N

X ¥

™
U
i

EE
™

x>y
e e e T T
)
x>y
i

)

F

L e
E e e
A kel
T e e e e e e e e e e e e e e
E e e
A kel
L e
F
F

i
i

e ar o e e i e ek a a
kH#H#H&H#H#H&H#Hﬂ* N
e e e e e e e e e e e e e e e
H.:.H.:.H.:.H.:.H.:.H.:.H.:.H.:.H.:.H#H*H#H#H*H#H#H*H#H#H*H._
L ok kA
by T o e e e e e
L N e
L e
e T T T T
sl iy gyl iyl i —siy—aly—yip—siy iy
A e e e e e e e e e e U e U e
k k k k k &k k k k k k k k k k k &k k k k &k &k k

X
X

™

X X

Pl e e e
CN NN N NN NN NN)

9z _ —
9¢ uonesidde

i
i
P,

de e e e e e e e e e e

F

i

i

Sheet 1 of 3

Aug. 2, 2016

U.S. Patent

(81) iomiau

uoneoidde
U0

$S930.40

sutehbeusw

ayoes

(Z1) wolsh
abeioi1s

'---.I-'

r
L

"swuesseea

]
%

gt

/«\.

(1) Momjau

LI
bt __.l_l.
“L .rl-.._....rl.r. -.-..-
b . Ty " -
1 = L .r._- L} -
-_ n LY n .-..-.
[] [] 1Y L
“n ___._-_ _._.._ L] ¥ L]
bt " - N L] L} L1
-llllllll v "] ¥ N - w Y
Log wc " ' P I ._ | |
-y ’ 1 1 . L] v
L o]]] 1
LI 1 F 2 [*
- " ’ oo ¢
FrgwrT -_.1 - r M _.--..1
mT - L »
.\—.m : mu Teaaaaamt LT A
ramp s _rt.q |\n 1- o
-~ an L r .-_‘
[a
.‘-‘
I..__._..-..-_ll.l.l.-_-.l.l. " “
i I
| _.-_
.___- "
™ L |
n 1
-

9 A

85
dVAA .& '

8¢

-
- -
s %

o om e m o m

uosiesldde
USHO

4

- - oF
W E s B BN W O aE m
bl I8 -‘
.‘-'l -.'..I.I *
- - -
.4..:_._. .__.I-. ~
4 - b
- " h - NN N N N N N N N N N N N N NN N N NN N NN
ay -
., - ...___r e Y o e a a a
- = = L8
- [- 4, - .
Y] . L] AamEFEFFg g
| - L] L | -
G T " “ 3 ¥ % .r__. .-I.._..r prmmELe.
] n - -
- =- . » " N N l... l.l.l aw=r= =
- ” r ¥ 3 - -
-t [* L]
" d] : * 1 -,
. ™ & L] - "
"] r - o - L 0. 2. T T . I I
L .7 .- ... ‘ 6 ’ P - T m— —......_..._..._......_......._..._..._......_.........q.q....q.q....q.q....q.q....q.q....q.q....q.......q...m._
[a » » r F -] Foar o o o & & dr & b d dr dd ok kA
- r *
=" . 4 . i -.‘ ._1 ' T ..Hh H....H....H....H....H...H...H...H...H...H...H...H...H...H...H...H...H by’
L ey T i ™ L] ‘ 1] ._... RN —t N N NN S N NN N q“._._
» -] *
- 0 » - Ul SRt el el el ey .
L T B al + ¥ . L e R NN N N S NN N N
- 1 % ¥ [e ey
- L] * P e
R T ra_ _.... * . __rr . ‘e T P e T T q“._._
J.
. " 1 ~ n L F 4 & & b ke kk kKN
- - - - e e e e o e e T
n L | r
n k LI ar o e e e e e e e e i
[LY]
" - . L S el o e ol
~ 2 - .-y o R M N M N N NN N NN NN
- - - . F 4 & & b ke kk kKN
- - = I ar o e e e e a a i
- - ™ ..h..q.._._
- . e e e e e e
. B § L N e ok Nk
- .. E e e
-
-, o o e o e e o e T e N
L e o e e e e T
f e e e e e
N N
mj_“ —...h.............q............#..................q“._..
drodr Jdp o dr dr dp dp dp o dr d b dp o dp g b X
—....«.............;.................................U
b o o e e e e

U

¥ i
L F
- v

-
_l._l_.l.l.l_.l...l_l.l_.l_ P R W W W N

0%
oy

T
a

o
pm B E g g
-t
I.l._-_ L
a
a™ .-..-l.llll_l
|] .
' -...__. A
[
Il r " -
M n - -
a
L | " “ E -
|]
__r L] L] ._.._ 1
P W T ., =
* “u ™ t "
» _f_-_ f._l . v
- » “u
L » L
-..r . -
~ .
L ", -
- L
LI -

uoneondde
JUSIP

QP

12

U.S. Patent Aug. 2, 2016 Sheet 2 of 3 US 9,405,684 B1
12
server computer /
- controller (100)
134
116 input - output logic A
wr ¢ B N
190 124
1t processing logic '
11e 2 (CCCCCCCC(
(L c 126 136 138 140 142 144 146 148 150 152 154
N first cache system | ---==-cmmnans .
N :
/ b I :
f \)
I \)
{ \ I S Merrmvenns
r!, . X,-"‘ *“‘\
N e S~ cache 10
' \\\ o network) management |/
| . . Infrastructure OrOcess
| \ R S A
f “\ \ _.-"f h‘r
’ ht N _,.,", '
f K‘\ N :
! \
; N
r hR data array (130)
-
118 \ 10

g

second cache
system(128)

106 108
. - -
T2 T3 o 0 0 T
__________ ~ o o

U.S. Patent Aug. 2, 2016 Sheet 3 of 3 US 9,405,684 B1

200

] processing, on a host, a read request for a
portion of a data file stored on a backend
storage syslem

202 ¢
obtaining the portion of the data file from
the backend storage system

204

[dividin o the portion of the data file mto a
plurality of file chunks

206 VL .-
210

N comparing each of the plurality of file identifying non-unique file)
chunks to other file chunks stored withina | -« | chunks within the plurality

g Yo gipgnaw

frontend cache system : of file chunks
! l
(_ . . — _ , 212
storing the unique file chunks within the not storing the non-unique)
frontend cache system file chunks within the
frontend cache system

FIG. 3

US 9,405,634 Bl

1

SYSTEM AND METHOD FOR CACHE
MANAGEMENT

TECHNICAL FIELD

This disclosure relates to cache systems and, more particu-
larly, to systems and methods for cache deduplication.

BACKGROUND

Storing and safeguarding electronic content 1s of para-
mount importance in modern business. Accordingly, various
systems may be employed to protect such electronic content.

The use of solid-state storage devices 1s increasing in popu-
larity. A solid state storage device 1s a content storage device
that uses solid-state memory to store persistent content. A
solid-state storage device may emulate (and therefore
replace) a conventional hard disk drive. Additionally/alterna-
tively, a solid state storage device may be used within a cache
memory system. With no moving parts, a solid-state storage
device largely eliminates (or greatly reduces) seek time,
latency and other electromechanical delays and failures asso-
ciated with a conventional hard disk drive.

SUMMARY OF DISCLOSUR.

L1

In a first implementation, a computer-implemented
method 1ncludes processing, on a host, a read request for a
portion of a data file stored on a backend storage system. The
portion of the data file 1s obtained from the backend storage
system. The portion of the data file 1s divided 1nto a plurality
of file chunks based, at least 1n part, upon a file type. Each of
the plurality of file chunks 1s compared to other file chunks
stored within a frontend cache system associated with the
host to 1dentity unique file chunks within the plurality of file
chunks. The unique file chunks are stored within the frontend
cache system.

One or more of the following features may be included.
Comparing each of the plurality of file chunks to other file
chunks stored within the frontend cache system may include
identifying non-unique file chunks within the plurality of file
chunks. The non-unique file chunks may not be stored within
the frontend cache system. The portion of the data file may be
a complete data file. The plurality of file chunks may have a
common length and may be aligned. The plurality of file
chunks may have differing lengths. The backend storage sys-
tem may 1nclude a data array.

Dividing the portion of the data file into a plurality of file
chunks may include dividing the portion of the data file into a
plurality of file chunks based, at least 1n part, upon a sticky bit
algorithm. Dividing the portion of the data file into a plurality
of file chunks may include dividing the portion of the data file

into a plurality of file chunks based, at least 1n part, upon a file
structure.

In another implementation, a computer program product
resides on a computer readable medium that has a plurality of
istructions stored on 1t. When executed by a processor, the
instructions cause the processor to perform operations includ-
Ing processing, on a host, a read request for a portion of a data
file stored on a backend storage system. The portion of the
data file 1s obtained from the backend storage system. The
portion of the data file 1s divided 1nto a plurality of file chunks
based, at least 1n part, upon a file type. Each of the plurality of
file chunks 1s compared to other file chunks stored within a
frontend cache system associated with the host to 1dentily

10

15

20

25

30

35

40

45

50

55

60

65

2

unmque file chunks within the plurality of file chunks. The
unmique file chunks are stored within the frontend cache sys-
tem.

One or more of the following features may be included.
Comparing each of the plurality of file chunks to other file
chunks stored within the frontend cache system may include
identifying non-unique file chunks within the plurality of file
chunks. The non-unique file chunks may not be stored within
the frontend cache system. The portion of the data file may be
a complete data file. The plurality of file chunks may have a
common length and may be aligned. The plurality of file
chunks may have differing lengths. The backend storage sys-
tem may 1nclude a data array.

Dividing the portion of the data file into a plurality of file
chunks may include dividing the portion of the data file into a
plurality of file chunks based, at least in part, upon a sticky bit
algorithm. Dividing the portion of the data file into a plurality
of file chunks may include dividing the portion of the data file
into a plurality of file chunks based, at least 1n part, upon afile
structure.

In another implementation, a computing system includes at
least one processor and at least one memory architecture
coupled with the at least one processor, wherein the comput-
ing system 1s configured to perform operations including
processing, on a host, a read request for a portion of a data file
stored on a backend storage system. The portion of the data
file 1s obtained from the backend storage system. The portion
of the data file 1s divided 1nto a plurality of file chunks based,
at least 1n part, upon a file type. Each of the plurality of file
chunks 1s compared to other file chunks stored within a fron-
tend cache system associated with the host to 1identily unique
file chunks within the plurality of file chunks. The unique file
chunks are stored within the frontend cache system.

One or more of the following features may be included.
Comparing each of the plurality of file chunks to other file
chunks stored within the frontend cache system may include
identifving non-unique file chunks within the plurality of file
chunks. The non-unique file chunks may not be stored within
the frontend cache system. The portion of the data file may be
a complete data file. The plurality of file chunks may have a
common length and may be aligned. The plurality of file
chunks may have differing lengths. The backend storage sys-
tem may 1nclude a data array.

Dividing the portion of the data file into a plurality of file
chunks may include dividing the portion of the data file into a
plurality of file chunks based, at least in part, upon a sticky bit
algorithm. Dividing the portion of the data file into a plurality
of file chunks may include dividing the portion of the data file
into a plurality of file chunks based, at least 1n part, upon afile
structure.

The details of one or more implementations are set forth 1n
the accompanying drawings and the description below. Other
features and advantages will become apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagrammatic view of a storage system and a
cache management process coupled to a distributed comput-
ing network;

FIG. 2 1s a diagrammatic view of the storage system of FIG.
1;and

FIG. 3 1s a flow chart of one implementation of the cache
management process of FIG. 1.

Like reference symbols 1n the various drawings indicate
like elements.

US 9,405,634 Bl

3

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

System Overview:

Referring to FIG. 1, there 1s shown cache management
process 10 that may reside on and may be executed by storage
system 12, which may be connected to network 14 (e.g., the
Internet or a local area network). Examples of storage system
12 may include, but are not limited to: a Network Attached
Storage (NAS) system, a Storage Area Network (SAN), a
personal computer with a memory system, a server computer
with a memory system, and a cloud-based device with a
memory system.

As 1s known 1n the art, a SAN may include one or more of
a personal computer, a server computer, a series ol server
computers, a mini computer, a mainiframe computer, a RAID
device and a NAS system. The various components of storage
system 12 may execute one or more operating systems,
examples ol which may include but are not limited to:
Microsoft Windows XP Server™; Novell Netware™; Redhat
Linux™, Unix, or a custom operating system, for example.

The 1nstruction sets and subroutines of cache management
process 10, which may be stored on storage device 16
included within storage system 12, may be executed by one or
more processors (not shown) and one or more memory archi-
tectures (not shown) included within storage system 12. Stor-
age device 16 may include but 1s not limited to: a hard disk
drive; a tape drive; an optical drive; a RAID device; a random
access memory (RAM); a read-only memory (ROM); and all
forms of flash memory storage devices.

Network 14 may be connected to one or more secondary
networks (e.g., network 18), examples of which may include
but are not limited to: a local area network; a wide area
network; or an intranet, for example.

Various 10 requests (e.g. 10 request 20) may be sent from
client applications 22, 24, 26, 28 to storage system 12.
Examples of 10 request 20 may include but are not limited to
data write requests (1.e. a request that content be written to
storage system 12) and data read requests (1.e. a request that
content be read from storage system 12).

The 1nstruction sets and subroutines of client applications
22,24, 26, 28, which may be stored on storage devices 30, 32,
34, 36 (respectively) coupled to client electronic devices 38,
40, 42, 44 (respectively), may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) incorporated into client electronic devices
38, 40, 42, 44 (respectively). Storage devices 30, 32, 34, 36
may 1nclude but are not limited to: hard disk drives; tape
drives; optical drives; RAID devices; random access memo-
ries (RAM); read-only memories (ROM), and all forms of
flash memory storage devices. Examples of client electronic
devices 38, 40, 42, 44 may include, but are not limited to,
personal computer 38, laptop computer 40, personal digital
assistant 42, notebook computer 44, a server (not shown), a
data-enabled, cellular telephone (not shown), and a dedicated
network device (not shown).

Users 46, 48, 50, 52 may access storage system 12 directly
through network 14 or through secondary network 18. Fur-
ther, storage system 12 may be connected to network 14
through secondary network 18, as illustrated with link line 54.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 18). For
example, personal computer 38 1s shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 44 1s shown directly coupled to network
18 via a hardwired network connection. Laptop computer 40
1s shown wirelessly coupled to network 14 via wireless com-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

munication channel 56 established between laptop computer
40 and wireless access point (1.e., WAP) 58, which 1s shown
directly coupled to network 14. WAP 58 may be, for example,

an IEEE 802.11a, 802.11b, 802.11¢g, 802.11n, W1-F1, and/or
Bluetooth device that 1s Capable of establishing wireless com-
munication channel 56 between laptop computer 40 and WAP
58. Personal digital assistant 42 1s shown wirelessly coupled
to network 14 via wireless communication channel 60 estab-
lished between personal digital assistant 42 and cellular net-
work/bridge 62, which 1s shown directly coupled to network
14.

Client electronic devices 38, 40, 42, 44 may each execute
an operating system, examples of which may include but are
not limited to Microsolft Windows™, Microsoft Windows
CE™, Redhat Linux™, or a custom operating system.

For illustrative purposes, storage system 12 will be
described as being a network-based storage system that
includes a plurality of electro-mechanical backend storage
devices. However, this 1s for i1llustrative purposes only and 1s
not intended to be a limitation of this disclosure, as other
configurations are possible and are considered to be within
the scope of this disclosure. For example and as discussed
above, storage system 12 may be a personal computer that
includes a single electro-mechanical storage device.

Referring also to FIG. 2, storage system 12 may include a
server computer/controller (e.g. server computer/controller
100) and a plurality of storage targets T, _, (e.g. storage targets
102, 104, 106, 108). Storage targets 102, 104, 106, 108 may
be configured to provide various levels of performance and/or
high availability. For example, one or more of storage targets
102, 104, 106, 108 may be configured as a RAID 0 array, 1n
which data 1s striped across storage targets. By striping data
across a plurality of storage targets, improved performance
may be realized. However, RAID 0 arrays do not provide a
level of high availability. Accordingly, one or more of storage
targets 102, 104, 106, 108 may be configured as a RAID 1
array, 1n which data 1s mirrored between storage targets. By
minoring data between storage targets, a level of high avail-
ability 1s achieved as multiple copies of the data are stored
within storage system 12.

While storage targets 102, 104, 106, 108 are discussed
above as being configured 1n a RAID 0 or RAID 1 array, this
1s for illustrative purposes only and 1s not intended to be a
limitation of this disclosure, as other configurations are pos-
sible. For example, storage targets 102, 104, 106, 108 may be
configured as a RAID 3, RAID 4, RAID 5 or RAID 6 array.

While in this particular example, storage system 12 1s
shown to 1include four storage targets (e.g. storage targets 102,
104, 106, 108), this 1s for illustrative purposes only and 1s not
intended to be a limitation of this disclosure. Specifically, the
actual number of storage targets may be increased or
decreased depending upon e.g. the level of redundancy/per-
formance/capacity required.

Storage system 12 may also include one or more coded
targets 110. As 1s known in the art, a coded target may be used
to store coded data that may allow for the regeneration of data
lost/corrupted on one or more of storage targets 102, 104, 106,
108. An example of such a coded target may include but 1s not
limited to a hard disk drive that 1s used to store parity data
within a RAID array.

While in this particular example, storage system 12 1s
shown to include one coded target (e.g., coded target 110),
this 1s for illustrative purposes only and 1s not intended to be
a limitation of this disclosure. Specifically, the actual number
of coded targets may be increased or decreased depending
upon e.g. the level of redundancy/performance/capacity
required.

US 9,405,634 Bl

S

Examples of storage targets 102, 104, 106, 108 and coded
target 110 may include one or more electro-mechanical hard
disk drives, wherein a combination of storage targets 102,
104, 106, 108 and coded target 110 may form non-volatile,
clectro-mechanical memory system 112.

The manner in which storage system 12 1s implemented
may vary depending upon e.g. the level of redundancy/per-
formance/capacity required. For example, storage system 12
may be a RAID device 1n which server computer/controller
100 1s a RAID controller card and storage targets 102, 104,
106, 108 and/or coded target 110 are individual “hot-swap-

pable” hard disk drives. An example of such a RAID device

may include but 1s not limited to an NAS device. Alterna-
tively, storage system 12 may be configured as a SAN, in
which server computer/controller 100 may be e.g., a server
computer and each of storage targets 102, 104, 106, 108
and/or coded target 110 may be a RAID device and/or com-
puter-based hard disk drive. Further still, one or more of
storage targets 102, 104, 106, 108 and/or coded target 110
may be a SAN.

In the event that storage system 12 1s configured as a SAN,
the various components of storage system 12 (e.g. server
computer/controller 100, storage targets 102, 104, 106, 108,
and coded target 110) may be coupled using network 1nfra-
structure 114, examples of which may include but are not
limited to an Ethernet (e.g., Layer 2 or Layer 3) network, a
fiber channel network, an InfiniBand network, or any other
circuit switched/packet switched network.

Storage system 12 may execute all or a portion of cache
management process 10. The instruction sets and subroutines
of cache management process 10, which may be stored on a
storage device (e.g., storage device 16) coupled to server
computer/controller 100, may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) included within server computer/controller
100. Storage device 16 may include but 1s not limited to: a
hard disk drive; a tape drive; an optical drive; a RAID device;
a random access memory (RAM); a read-only memory
(ROM); and all forms of flash memory storage devices.

As discussed above, various 10 requests (e.g. 10 request
20) may be generated. For example, these 10 requests may be
sent from client applications 22, 24, 26, 28 to storage system
12. Additionally/alternatively and when server computer/
controller 100 1s configured as an application server, these 10
requests may be internally generated within server computer/
controller 100. Examples of 10 request 20 may include but are
not limited to data write request 116 (i.¢. a request that content
118 be written to storage system 12) and data read request 120
(1.e. a request that content 118 be read from storage system
12).

Server computer/controller 100 may include iput-output
logic 122 (e.g., a network interface card or a Host Bus Adap-
tor (HBA)), processing logic 124, and first cache system 126.
Examples of first cache system 126 may include but are not
limited to a volatile, solid-state, cache memory system (e.g.,
a dynamic RAM cache memory system) and/or a non-vola-
tile, solid-state, cache memory system (e.g., a tlash-based,
cache memory system).

During operation of server computer/controller 100, con-
tent 118 to be written to storage system 12 may berecerved by
input-output logic 122 (e.g. from network 14 and/or network
18) and processed by processing logic 124. Additionally/
alternatively and when server computer/controller 100 1s con-
figured as an application server, content 118 to be written to
storage system 12 may be internally generated by server
computer/controller 100. As will be discussed below 1n

10

15

20

25

30

35

40

45

50

55

60

65

6

greater detail, processing logic 124 may imitially store content
118 within first cache system 126.

Depending on the manner 1n which first cache system 126
1s configured, processing logic 124 may immediately write
content 118 to second cache system 128/non-volatile, electro-
mechanical memory system 112 (if first cache system 126 1s
configured as a write-through cache) or may subsequently
write content 118 to second cache system 128/non-volatile,
clectro-mechanical memory system 112 (if first cache system
126 1s configured as a write-back cache). Additionally and 1n
certain configurations, processing logic 124 may calculate
and store coded data on coded target 110 (included within
non-volatile, electromechanical memory system 112) that
may allow for the regeneration of data lost/corrupted on one
or more of storage targets 102, 104, 106, 108. For example, 1f
processing logic 124 was included within a RAID controller
card or an NAS/SAN controller, processing logic 124 may
calculate and store coded data on coded target 110. However,
il processing logic 124 was included within e.g., an applica-
tions server, data array 130 may calculate and store coded
data on coded target 110.

Examples of second cache system 128 may include but are
not limited to a volatile, solid-state, cache memory system
(e.g., a dynamic RAM cache memory system) and/or a non-
volatile, solid-state, cache memory system (e.g., a tlash-
based, cache memory system).

The combination of second cache system 128 and non-
volatile, electromechanical memory system 112 may form
data array 130, wherein first cache system 126 may be sized
so that the number of times that data array 130 1s accessed
may be reduced. Accordingly, by sizing first cache system
126 so that first cache system 126 retains a quantity of data
suificient to satisiy a significant quantity of 10 requests (e.g.,
10 request 20), the overall performance of storage system 12
may be enhanced.

Further, second cache system 128 within data array 130
may be sized so that the number of times that non-volatile,
clectromechanical memory system 112 1s accessed may be
reduced. Accordingly, by sizing second cache system 128 so
that second cache system 128 retains a quantity of data sui-
ficient to satisiy a significant quantity of 1O requests (e.g., 10
request 20), the overall performance of storage system 12
may be enhanced.

As discussed above, the instruction sets and subroutines of
cache management process 10, which may be stored on stor-
age device 16 included within storage system 12, may be
executed by one or more processors (not shown) and one or
more memory architectures (not shown) included within stor-
age system 12. Accordingly, in addition to being executed on
server computer/controller 100, some or all of the instruction
sets and subroutines of cache management process 10 may be
executed by one or more processors (not shown) and one or
more memory architectures (not shown) included within data
array 130.

The Cache Management Process:

As discussed above, various 10 requests may be processed
by server computer/controller 100, examples of which may
include but are not limited to data write request 116 (1.e. a
request that content 118 be written to storage system 12) and
data read request 120 (1.¢. a request that content 118 be read
from storage system 12). Assume for illustrative proposes
that content 118 1s a considerably large file that resides within
data array 130. Examples of such a large file may include but
are not limited to a shared database file. Accordingly, when a
read request 1s recerved concerming content 118 (which, as
discussed, 1s resident on data array 130), only a small portion
of content 118 may be retrieved and cached 1n response to

US 9,405,634 Bl

7

such a read request (as 1t would be impractical/undesirable/
unneeded to retrieve and cache content 118 1n 1ts entirety.

Assume for illustrative purposes that server computer/con-
troller 100 receives such a read request 120 concerning only
a portion of content 118 (e.g., portion 132 of content 118)
currently stored on a backend storage system (e.g., data array
130). Cache management process 10 may process 200 (on the
host e.g., server computer/controller 100) read request 120.

While content 118 1s described above as a larger file and,
therefore, read request 120 concerns only a portion of content
118, this 1s for 1llustrative purposes only and 1s not intended to
be a limitation of this disclosure, as other configurations are
possible and are considered to be within the scope of this
disclosure and the claims. For example, 1in the event that
content 118 1s a smaller file, the portion requested 1n read
request 120 may be the entire file (e.g., all of content 118), as
opposed to a smaller amount).

Upon processing read request 120, cache management pro-
cess 10 may obtain 202 portion 132 of the data file (e.g.,
content 118) from the backend storage system (e.g., data
array 130) and may divide 204 portion 132 of content 118 into
plurality of file chunks 134. For example, 11 portion 132 was
a 128 kb portion of content 118, portion 132 may be divided
204 into thirty-two 4 kb chunks.

When dividing 204 portion 132 of content 118 1nto plural-
ity of chunks 134, logic may be applied to increase the prob-
ability of commonality amongst chunks. Theretfore, portion
132 may be divided 204 1n accordance with the format/type of
content 118. For example, text files may be divided 204 1n
accordance with a sticky bit algorithm.

A sticky bit algorithm 1s an algorithm that calculates a hash
value for short sequences of data. For instance, 11 there 1s a
data chunk of 100 KB, the sticky bit algorithm may calculate
the hash value for every ten consecutive bytes of the data
chunk and may identify a cut point (i the hash value modulo
some constant 1s zero). For mstance, 11 the hash value modulo
4,096 1s 0, this assures that the file will be cut to portions that
are roughly 4,096 bytes in length. If there 1s a large chunk with
no cut point (e.g., a 40 KB chunk with no cut point), a cut
point may be added artificially. This may happen e.g., it all the
data 1s constant. The sticky bit algorithm may assure that 1f
only a few bytes of data are added in the middle of a file, most
chunks of the file will remain the same.

Additionally, video files may be divided 204 into video
frames. Further, document files may be divided 204 based
upon components (e.g., still images and text-based compo-
nents). Accordingly, plurality of file chunks 134 may all have
a common length or may have differing lengths (depending
upon the manner 1n which they are divided).

Cache management process 10 may compare 206 each of
plurality of file chunks 132 to other file chunks stored within
a frontend cache system (e.g., first cache system 126) asso-
ciated with the host (e.g., server computer/controller 100) to
identify the unique file chunks within plurality of file chunks
132. A unique file chunk may be classified as a file chunk that
1s 1ncluded within plurality of file chunks 132 that 1s not
identical to any other file chunk already stored within first
cache system 126. Once comparison 206 1s performed and
one or more unique file chunks are 1dentified, cache manage-
ment process 10 may store 208 the umique file chunks within
first cache system 126.

When comparing 206 each of plurality of file chunks 132 to
other file chunks already stored within first cache system 126,
cache management process 10 may identify 210 non-unique
file chunks within plurality of file chunks 132. A non-unique
file chunk may be classified as a file chunk that 1s included
within plurality of file chunks 132 that 1s identical to another

10

15

20

25

30

35

40

45

50

55

60

65

8

file chunk already stored within first cache system 126. Once
the non-umque file chunks are 1dentified 210, cache manage-
ment process 10 may not store 212 the non-umque file chunks
within first cache system 126 (and/or delete the non-unique
file chunks from their temporary storage location).

Accordingly, through the use of cache management pro-
cess 10, only a single copy of a file chunk will be stored within
first cache system 126. Accordingly, assume for illustrative
purposes that four different files (or file portions) are cur-
rently stored within first cache system 126 due to the process-
ing of four different read requests. Further, assume that read
request 120 1s received by e.g., server computer/controller
100 requesting portion 132 of content 118. Accordingly,
cache management process 10 may process 200 read request
120; may obtain 202 portion 132 of content 118 from data
array 130; and may divide 204 portion 132 of content 118 into
plurality of file chunks 134, where the division algorithm 1s
dependent on the file type.

As discussed above, cache management process 10 may
compare 206 cach of plurality of file chunks 132 to other file
chunks already stored within first cache system 126 (namely
the file chunks of the above-described four different files/file
portions) to 1dentity the unique file chunks included within
plurality of file chunks 132. Assume for 1llustrative purposes

that cache management process 10 divides 204 portion 132
into ten file chunks, namely file chunks 136, 138, 140, 142,

144, 146, 148, 150, 152, 154. Further assume for i1llustrative
purposes that when comparing 206 each of plurality of file
chunks 132 to other file chunks already stored within first
cache system 126, cache management process 10 determines
that only six file chunks (namely file chunks 136, 138, 140,
146, 150, 152) are unique (and may be stored 208 within first
cache system 126) and that four file chunks (namely file
chunks 142, 144, 148, 154) are not unique (and may not be
stored 212 within first cache system 126). For the file chunks
that are not unique (namely file chunks 142, 144, 148, 154)
and, therefore, are not stored 212 within first cache system
126, the cache directory (not shown) associated with first
cache system 126 may simply map the cache directory entry
that 1s associated with each of the four non-stored file chunks
to the file chunk included within first cache system 126 that 1s
identical to each of the four non-stored file chunks.

General:

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a method, a system, or a
computer program product. Accordingly, the present disclo-
sure may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi-
dent software, micro-code, etc.) or an embodiment combin-
ing software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, the present disclosure may take the form of a com-
puter program product on a computer-usable storage medium
having computer-usable program code embodied in the
medium.

Any suitable computer usable or computer readable
medium may be utilized. The computer-usable or computer-
readable medium may be, for example but not limited to, an
clectronic, magnetic, optical, electromagnetic, inirared, or
semiconductor system, apparatus, device, or propagation
medium. More specific examples (a non-exhaustive list) of
the computer-readable medium may include the following: an
clectrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-

US 9,405,634 Bl

9

ROM), an optical storage device, a transmission media such
as those supporting the Internet or an 1ntranet, or a magnetic
storage device. The computer-usable or computer-readable
medium may also be paper or another suitable medium upon
which the program 1s printed, as the program can be electroni-
cally captured, via, for instance, optical scanning of the paper
or other medium, then compiled, interpreted, or otherwise
processed 1n a suitable manner, 11 necessary, and then stored
in a computer memory. In the context of this document, a
computer-usable or computer-readable medium may be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. The com-
puter-usable medium may include a propagated data signal
with the computer-usable program code embodied therewith,
either 1n baseband or as part of a carrier wave. The computer
usable program code may be transmitted using any appropri-
ate medium, including but not limited to the Internet, wire-
line, optical fiber cable, RF, eftc.

Computer program code for carrying out operations of the
present disclosure may be written 1n an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera-
tions of the present disclosure may also be written 1n conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through a local area network/a wide area
network/the Internet (e.g., network 14).

The present disclosure 1s described with reference to flow-
chart 1llustrations and/or block diagrams of methods, appa-
ratus (systems) and computer program products according to
embodiments of the disclosure. It will be understood that each
block of the flowchart illustrations and/or block diagrams,
and combinations of blocks 1n the flowchart 1llustrations and/
or block diagrams, may be implemented by computer pro-
gram instructions. These computer program instructions may
be provided to a processor of a general purpose computer/
special purpose computer/other programmable data process-
ing apparatus, such that the instructions, which execute via
the processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified 1in the tlowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that may direct a computer or
other programmable data processing apparatus to function 1n
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

The flowcharts and block diagrams in the figures may
illustrate the architecture, functionality, and operation of pos-

10

15

20

25

30

35

40

45

50

55

60

65

10

sible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for 1mplementing the specified logical
function(s). It should also be noted that, 1n some alternative
implementations, the functions noted 1n the block may occur
out of the order noted 1n the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustrations, and combinations of blocks 1n
the block diagrams and/or flowchart illustrations, may be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises™ and/or “com-
prising,” when used 1n this specification, specity the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described 1n order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

A number of implementations have been described. Hav-
ing thus described the disclosure of the present application 1n
detail and by reference to embodiments thereof, 1t will be
apparent that modifications and variations are possible with-
out departing from the scope of the disclosure defined 1n the
appended claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

processing, on a host, a read request received from a client

application separate from the host for a portion of a data
file stored on a backend storage system, wherein the host
1S a server computer;

obtaining the portion of the data file from the backend

storage system;

dividing the portion of the data file into a plurality of file

chunks based, at least 1n part, upon a file type, wherein
dividing the portion of the data file into a plurality of file
chunks includes dividing the portion of the data file into
a plurality of file chunks based, at least in part, upon a
sticky bit algorithm, wherein the sticky bit algorithm 1s
configured to calculate a hash value for a set amount of
consecutive bytes of each data chunk, the sticky bit

US 9,405,634 Bl

11

algorithm being turther configured to identity a cut point
associated with each data chunk, wherein the cut pointis
artificially created if the hash value modulo a constant 1s
not zero for each data chunk;

comparing each of the plurality of file chunks to other file

chunks stored within a first cache system located within
the host to 1identily umique file chunks within the plural-
ity of file chunks; and

storing the unique file chunks within the first cache system.

2. The computer-implemented method of claim 1 wherein
comparing each of the plurality of file chunks to other file
chunks stored within the first cache system includes:

identifying non-unique file chunks within the plurality of

file chunks.

3. The computer-implemented method of claim 2 further
comprising;

not storing the non-unique file chunks within the first cache

system.

4. The computer-implemented method of claim 1 wherein
the portion of the data file 1s a complete data file.

5. The computer-implemented method of claim 1 wherein
the plurality of file chunks have a common length and are
aligned.

6. The computer-implemented method of claim 1 wherein
the plurality of file chunks have differing lengths.

7. The computer-implemented method of claim 1 wherein
the backend storage system includes a data array.

8. A computer program product residing on a non-transi-
tory computer readable medium having a plurality of instruc-
tions stored thereon which, when executed by a processor,
cause the processor to perform operations comprising;

processing, on a host, a read request received from a client

application separate from the host for a portion of a data
file stored on a backend storage system, wherein the host
1S a server computer;

obtaining the portion of the data file from the backend

storage system;

dividing the portion of the data file into a plurality of {file

chunks based, at least 1n part, upon a file type, wherein
dividing the portion of the data file into a plurality of file
chunks includes dividing the portion of the data file into
a plurality of file chunks based, at least in part, upon a
sticky bit algorithm, wherein the sticky bit algorithm 1s

configured to calculate a hash value for a set amount of

consecutive bytes of each data chunk, the sticky bit
algorithm being turther configured to 1identity a cut point
associated with each data chunk, wherein the cut pointis
artificially created 11 the hash value modulo a constant 1s
not zero for each data chunk;
comparing each of the plurality of file chunks to other file
chunks stored within a first cache system located within
the host to identity unique file chunks within the plural-
ity of file chunks; and
storing the unique file chunks within the first cache system.
9. The computer program product of claim 8 wherein the
instructions for comparing each of the plurality of file chunks
to other file chunks stored within the first cache system
include instructions for:

identifying non-unique file chunks within the plurality of

file chunks.

10. The computer program product of claim 9 further com-
prising instructions for:
not storing the non-unique file chunks within the first cache
system.

10

15

20

25

30

35

40

45

50

55

60

12

11. The computer program product of claim 8 wherein the
portion of the data file 1s a complete data {ile.

12. The computer program product of claim 8 wherein the
plurality of file chunks have a common length and are aligned.

13. The computer program product of claim 8 wherein the
plurality of file chunks have differing lengths.

14. The computer program product of claim 8 wherein the
backend storage system 1ncludes a data array.

15. A computing system comprising:

at least one processor device; and

at least one memory architecture coupled with the at least

one processor device;

wherein the at least one processor device 1s further config-

ured to perform operations comprising;

processing, on a host, a read request received from a client

application separate from the host for a portion of a data
file stored on a backend storage system, wherein the host
1S a server computer;

obtaining the portion of the data file from the backend

storage system;

dividing the portion of the data file into a plurality of file

chunks based, at least 1n part, upon a file type, wherein
dividing the portion of the data file into a plurality of file
chunks includes dividing the portion of the data file into
a plurality of file chunks based, at least in part, upon a
sticky bit algorithm, wherein the sticky bit algorithm 1s
configured to calculate a hash value for a set amount of
consecutive bytes of each data chunk, the sticky bit
algorithm being turther configured to identily a cut point
associated with each data chunk, wherein the cut point is
artificially created if the hash value modulo a constant 1s
not zero for each data chunk;

comparing each of the plurality of file chunks to other file

chunks stored within a first cache system located within-
the host to 1dentily umique file chunks within the plural-
ity of file chunks; and

storing the unique file chunks within the first cache system.

16. The computing system of claim 15 wherein comparing
cach of the plurality of file chunks to other file chunks stored
within the first cache system includes:

identifying non-unique file chunks within the plurality of

file chunks.

17. The computing system of claim 16 further configured
to perform operations comprising:

not storing the non-unique file chunks within the first cache

system.

18. The computing system of claim 15 wherein the portion
of the data file 1s a complete data file.

19. The computing system of claim 15 wherein the plural-
ity of file chunks have a common length and are aligned.

20. The computing system of claim 15 wherein the plural-
ity of file chunks have differing lengths.

21. The computing system of claim 15 wherein the back-
end storage system includes a data array.

22. The computer-implemented method of claim 1 wherein
the cut point 1s artificially created based, at least 1n part, upon
an addition of one or more bytes 1n each data chunk.

23. The computer program product of claim 8 wherein the
cut point 1s artificially created based, at least in part, upon an
addition of one or more bytes 1n each data chunk.

24. The computing system of claim 15 wherein the cut
point 1s artificially created based, at least in part, upon an
addition of one or more bytes 1n each data chunk.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

