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CREATING AN ISOLATED EXECUTION
ENVIRONMENT IN A CO-DESIGNED
PROCESSOR

BACKGROUND

Modern microprocessors are at the heart of most computer
systems. In general, these processors operate by receiving
mstructions and performing operations responsive to the
istructions. For application programs and operating system
(OS) activities, mstructions may be recetved 1n a processor
which then decodes these instructions into one or more
smaller operations, often termed micro-instructions (uops),
that are suitable for execution on the processor hardware.
Some processors lack hardware features to directly perform
certain instruction set architecture (ISA) instructions. It 1s for
this reason that instructions are decoded into uops, which can
be directly executed on the hardware. Decoding to uops
allows the processor to schedule and execute in parallel and
out of order, helping improve the performance. Yet this
mechanism may be 1nsuflficient 1n many cases.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a portion of a system in
accordance with an embodiment of the present invention.

FIG. 2 1s a block diagram of a co-designed processor in
accordance with another embodiment of the present mven-
tion.

FI1G. 3 1s a tlow diagram of a method for performing binary
translations in accordance with an embodiment of the present
invention.

FI1G. 4 1s a flow diagram of a method for performing a low
overhead transier to translated code 1n accordance with an
embodiment of the present invention.

FIG. 5 1s a block diagram of a co-design environment
including a processor and a memory 1n accordance with one
embodiment of the present invention.

FIG. 6 1s a block diagram of a system 1n accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments, a co-designed processor architec-
tural framework 1s provided to maintain binary translation
software hidden from a soiftware stack above the firmware
layer. This software stack includes a virtual machine monitor
(VMM), operating system (OS) and applications that execute
on one or more cores of the processor. In this way, embodi-
ments may avoid modification to any layer of the software
stack above the firmware. As such, this stack may benefit
from dynamic binary optimization and nstruction set archi-
tecture (ISA) emulation systems. Even though this architec-
tural framework 1s provided to execute BT software transpar-
ently from VMM, OS and applications, 1t also can be used to
run a different type of software component of a co-designed
processor and enable a different type of usage. For example
this framework may be used to execute any software (for
example virus scanning software) that 1s to run 1n a hidden
environment (e.g., hidden from VMM/OS layers). This hid-
den environment 1s an 1solated, independent and protected
execution environment with respect to VMM, OS and appli-
cations.

A hardware/software co-designed processor through
binary translation enables dynamic binary optimizations and
translations through hidden binary translation (BT) software.
It can deliver increased performance 1 a power eificient
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fashion and also enable new ISA extensions through binary
translation. In a co-designed processor a standard ISA
referred to as a source ISA, for example, the x86 ISA 1s
present. Conventional software, including both the OS and
application programs, 1s compiled to the source ISA. In turn,
the hardware of a co-designed processor implements a target
ISA designed specifically for a given hardware implementa-
tion with special performance and/or energy efficiency fea-
tures. The target ISA 1s at the same level as vops and may be
identical to the set of uops.

The emulation software belonging to the co-designed pro-
cessor directs the execution of application/OS source ISA
soltware either by interpreting it or by directly translating it
into optimized sequences of target instructions. Such trans-
lation promises performance gains and/or improved energy
eificiency.

The emulation process typically proceeds as follows. Inter-
pretation 1s used for code (source ISA 1nstructions) when 1t 1s
first encountered. Then, as frequently executed code regions
(hotspots) are discovered through dynamic profiling or some
other means, they are translated to the target ISA. Optimiza-
tion 1s often done as part of the translation process; code that
1s very heavily used may later be optimized even further. The
translated regions of code are held 1n a translation cache so
they can be re-used. The translation cache 1s managed by
emulation software and 1s held 1n a section of memory that 1s
concealed from all application/OS software. The application/
OS software 1s held 1n conventional (visible) memory.

Previous processor implementations employing co-de-
signed VMs employ full emulation, in which the emulation
soltware emulates all application/OS software. One disad-
vantage of full emulation 1s that all code must first be inter-
preted and/or translated before it can be executed, and this
may lead to low performance when a region of software 1s first
encountered.

Embodiments may use both hardware and processor firm-
ware-based mechanisms to create an 1solated and hidden
virtual machine execution environment, referred to herein as
a binary translation (BT) container. This container may be
used to execute BT software to implement a partial translation
or full ISA emulation model. In an embodiment, the BT
container 1s essentially a special (and 1n some embodiments a
simplified) version of a virtual machine environment directly
controlled by processor firmware. In various embodiments,
the container 1s designed to be hidden and transparent from
the software stack including VMM, operating system and
applications.

During operation, the BT container interacts with a variety
of components and mechamsms. First, a processor includes a
host entity to manage the BT container. In different embodi-
ments, this entity may be implemented by a combination of
processor hardware extensions and firmware (e.g., a micro-
code layer or a processor abstraction layer). As will be
described herein, the host entity controls entry into and exit
out of the BT container and ISA exposed to the software
running inside the BT container.

The BT container environment includes the processor state
for BT software and private memory space that holds code
and data for BT software. The BT software executes within
this BT container and implements one or more binary trans-
lation algorithms for performing optimizations and ISA com-
patibility operations.

Various embodiments may provide hardware-based pro-
tection mechanisms that are used to protect the BT container
memory from software (VMM, OS and applications) and
hardware attackers. In one embodiment this protection
mechanism can be implemented with memory range register-
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based protection, memory encryption hardware, and so forth.
In different implementations, the level of the protection pro-
vided may be based on the features used and security objec-
tives desired.

A BT hardware umt 1s provided to implement hardware
support for the co-designed processor. In an embodiment, this
unit includes hardware support to detect events to invoke the
BT container, including hot spot detection, self-modifying
code detection, among other events, such as inter-processor
interrupt (IPI) events, power management events, reliability
availability serviceability (RAS) events, among others. More
generally, these events may recerve immediate attention from
BT software. For example, one event may be a private IPI
mechanism defined to synchronize among BT soiftware run-
ning on multiple processors.

To enable control transfers into/from the BT container and
various operations within the container, BT ISA extensions
may be provided. In an embodiment, these ISA extensions
may be available exclusively to BT software running inside
the BT container. For purposes of example, these ISA exten-
sions allow BT software to access and program the BT hard-
ware unit, communicate with the host entity for configuring,
the container policies and accessing the original code
memory space for binary translation.

In an embodiment, a translation cache memory may be
provided to store translated code. The transition to the trans-
lated code execution 1s governed by the translation entry
mechanism provided by the BT hardware unit, 1n an embodi-
ment. The BT container environment, including its private
processor state and private memory space, may be isolated
and hidden from other software (VMM, operating system and
applications).

The BT container resources may be allocated and created
by the host entity during system boot. It 1s at this point that the
hardware protection mechanisms can be programmed and
managed by the host entity.

In order to be transparent from OS and VMM, invocation
and exit of the BT software in BT container are directly
controlled by the host entity. In one embodiment, the 1nvoca-
tion and exit operations are implemented with a combination
of hardware and microcode. In another embodiment, proces-
sor firmware may be used to perform these operations.

As one control transfer operation, when the BT hardware
unit detects a BT invocation event such as a hot spot, the
processor stops execution of the guest software stack and
notifies the host entity of the event. Then the host entity saves
the current state of the processor context 1n a temporary state
storage area, switches to the BT container context (which
may be stored 1n a BT state storage within the BT container)
and starts execution of the BT software from a defined entry
instruction pointer (IP). Once the BT software obtains con-
trol, 1t executes until a voluntary exit occurs with a special exit
instruction (which may be a BT ISA extension exposed to the
BT container), or an involuntary exit 1s enforced by the host
entity upon certain hardware events such as external inter-
rupts, internal timer interrupts and so forth. Such internal
timer interrupts are essentially time out events, which are
hidden from VMM and OS, to allow the BT software to
time-slice the long latency operation.

Transparency can also be achieved by well controlling and
managing the BT software latency exposed to the software
stack to meet forward progress requirement by this stack. For
example, when BT software takes up to 1 millisecond (ms) to
complete a translation task for the identified hotspot, the host
entity may provide mechanisms for BT soitware to mitigate
and control the latency exposed to the software. In an embodi-
ment, these mechanisms include: 1) preemption of BT soft-
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4

ware (1nvoluntary exits ) upon external interrupts for minimiz-
ing the latency exposed to the OS interrupt handler; 2) the use
of one or more mternal timers to enable time quantum man-
agement (time slice scheduling) for BT software to meet
minimum forward progress requirements of the underlying
program execution; and 3) scheduling a long duration BT task
to one or more 1dle cores to hide the BT software latency.
These mechanisms are either pre-configured by the host
entity or dynamically configured through BT ISA extensions
exposed to the BT software.

Having an 1solated container to run BT software also
allows the host entity to control ISA features exposed to the
BT container as well as privileges such as memory and pro-
cessor resource access permissions given to BT software
running inside the BT container. For example, the host entity
can limit and control the ISA features exposed to the BT
soltware 11 a subset of ISA features (e.g., no floating point ISA
instructions) 1s suificient to perform a given binary translation
task. Such control may contribute to the simplification of the
container environment and reduction of the context switch
time between native and BT container execution.

Unlike a supervisor mode provided for running a hypervi-
sor or VMM, the BT container 1s given minimal privileges
and priority appropriate to operate, therefore significantly
reducing the security risk and system 1mpact such as latency
exposures to the operating system, even 1f part of the ISA
features are implemented through the BT software. In an
embodiment, the host entity can limit and control BT soft-
ware’s ISA features and privileges such as system ISA fea-
tures and time spent on BT execution, restricting the BT
container to access only the information, resources, mstruc-
tions and time quantum that are needed to operate for its
legitimate purposes.

For example, the BT software can be exposed with only
user level (e.g., ring 3) ISA access 11 this exposure 1s sulficient
to perform the binary translation task. Such access exposure
may be appropriate when the emulation to be performed 1n a
partial translation model 1s for purposes of user-level appli-
cations. Furthermore, memory references to outside of the BT
container memory can be restricted to only instruction pages
of application software. Also, only read permission is given to
the BT software if this permission 1s suificient for the BT
soltware to perform a binary translation task. Guest processor
state access by the BT software can be limited to a subset of
the guest processor states that are suificient for the binary
translation task. Stated another way, only the guest state that
1s required for translation 1s available for the BT software
such that there 1s no access to processor resources unused by
the BT software. In an embodiment, the host entity can also
prevent BT software from accessing the guest kernel (e.g.,
ring 0) memory 1f binary translation 1s performed for appli-
cation (namely user) software code only. This control enables
the BT software to run with the least possible privileges and
features sulficient to operate, which may contribute to
increasing robustness and reducing the security risk of a
HW/SW co-designed processor with simpler scope of system
impact, changes and testing requirements, and enabling better
system security.

Using an embodiment of the present invention, a partial
translation model may be realized on one or more cores of a
processor. In this way, an ISA can be virtualized to enable a
number of BT usages and deliver higher performance per
watt. One such example 1s using the BT mechanism for per-
forming vector wide operations 1n a vector core having code
written for non-vector width or lesser vector width hardware.
In this way, a BT mechanism can translate software to use
wider vector registers even though the original software 1s
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written for use on narrower previous generation vector regis-
ters or non-vector registers. In a particular example, software
using streaming SIMD extensions (SSE) instructions of an
Intel® ISA 1s translated to use Intel® ISA advanced vector
extension (AVX) mstructions instead. Still further, ISA com-
patibility can be realized with a smaller core si1ze by providing
ISA {feature extensions through the BT mechanisms
described herein, rather than including additional dedicated
hardware for performing the feature. For example, a smaller
core may not have AVX support and can have only SSE
support. BT can translate soitware that uses AVX instructions
to use SSE instructions instead. This provides ISA compat-
ibility and fills the ISA gap of the smaller core.

Although this HW and SW co-designed framework may be
used for BT as described herein, 1t can be used for enabling
other usage models to 1ncrease processor features and values
such as performance, power management and ISA exten-
sions/emulations, without changes to an existing OS/VMM.

Note that in some embodiments, platform firmware com-
ponents such as system management mode (SMM) may be
located 1nside the trusted boundary of the BT container and
BT software to co-exist with server reliability/availability/
serviceability (RAS) features. However, 1n other embodi-
ments such components may be located outside the trusted
boundary with the certain HW extensions such as HW based
memory encryption and integrity check to improve the resil-
ience to SMM code and HW attacks against the software
components of the HW and SW co-designed processor.

Referring now to FIG. 1, shown 1s a block diagram of a
portion of a system 1n accordance with an embodiment of the
present invention. As shown in FIG. 1, the portion of system
100 includes a co-designed processor 110 and its interaction
with a software stack 190. While many different types of
processor designs may be used as the baseline for the co-
designed processor, in an embodiment processor 110 may be
a multicore processor including a plurality of processor cores
which may be a set ol homogeneous cores or a collection of
heterogeneous cores, such as one or more low power cores
and one or more higher power cores. In addition, 1t 1s to be
understood that additional processing units such as graphics
processors and other specialized processing units may be
present. In an embodiment, processor 110 may be configured
for a particular type of ISA such as an Intel® 64 ISA. Of
course other processor ISAs such as another Intel ISA, e.g., an
Intel® 32 ISA or another type of ISA such as an ARM-based
ISA may instead be present. Or a processor may be config-
ured with multiple ISAs.

In the embodiment shown 1n FI1G. 1, the various cores and
other execution logic may generally be present 1n processor
hardware 120. For purposes of performing binary translations
in accordance with an embodiment of the present invention,
hardware 120 includes a host entity logic 122, a protection
logic 124, and a BT hardware unit 126. In various embodi-
ments, these different logic umits may be formed as collec-
tions of hardware and/or processor firmware extensions such
as processor microcode configured to execute on programs-
mable logic.

In general, host entity logic 122 may include control logic
to manage the BT container 1n a manner transparent to soft-
ware stack 190. Protection logic 124 1n turn may include a
register-based protection mechanism such as a range register
that stores a range value, e.g., a first value and a second value,
to 1ndicate a range of memory that 1s dedicated to the BT
container and the software therein, which thus 1s controlled to
remain hidden from the software stack. In other embodi-
ments, multiple registers may be present within this protec-
tion logic, including a base register to store a base value

10

15

20

25

30

35

40

45

50

55

60

65

6

corresponding to a beginning of the protected region for the
BT container and an end value to indicate the end of the
protected region. In an embodiment, BT hardware unit 126
may 1nclude steering logic to enable control transters
between native code execution and binary translation execu-
tion within a BT container 130. In one such embodiment the
steering logic may include or may be associated with one or
more mapping tables that include a plurality of entries each to
associate a native code segment and a corresponding binary
translation. For example, each entry may include an entry
point for a native code segment and a corresponding entry
point for a binary translation, e.g., stored within a translation
cache 140.

As seen further 1in FIG. 1, processor hardware 120 inter-
faces with a BT container 130. This container 1s an 1solated
and hidden virtual machine execution environment that 1s
thus transparent to software stack 190. This hidden environ-
ment may be controlled by hardware 120 using processor
firmware and/or microcode 1n a manner transparent to soit-
ware stack 190. In the embodiment shown, container 130
includes a state storage 132 and a private memory 134. In
general, state storage 132 may store processor state for use
during BT operations. More specifically, this state storage
may store a copy of all processor state information including
status and configuration registers, general purpose registers
and so forth. In some embodiments, this state storage may be
multi-threaded. In addition, BT container 130 includes a pri-
vate memory 134 within which the BT software may be
stored. In some embodiments, this private memory may be of
a multiple level hierarchy including temporary storage in one
or more levels of a cache memory of the processor, and
storage 1n a system memory.

In general, the BT software may include various compo-
nents, several of which are shown 1n FIG. 1. Specifically, the
BT software may include a translator 135 that 1s used to
perform binary translations to enable optimizations and/or
emulation of various ISA extensions. In addition, a runtime
layer 136 1s used during runtime to execute translated code.
Still further, a system layer 138 may be configured to actas an
interface between BT container 130 and the underlying pro-
cessor hardware 120.

Binary translations generated by the BT software are
stored 1n a translation cache 140. In various embodiments, BT
hardware unit 126 and/or BT software may be configured to
identify the presence of a corresponding binary translation for
native code that 1s to be executed and thus cause approprate
configuring of the processor for execution of the binary trans-
lation using processor state obtained from state storage 132
within BT container 130.

Still referring to FIG. 1, software stack 190 1s present and
executes on processor 110. In general, software stack 190
includes a VMM layer 192, an OS layer 194 and an applica-
tion layer 195. In the example shown 1n FIG. 1 a plurality of
applications 196a-196» may be present within application
layer 195. In general, these applications may be user-level
applications that are used to perform tasks requested by a
user.

In general, the various software of software stack 190 may
execute natively on processor 120. However at least certain
portions of the code such as hot code or other code such as
code including 1nstructions unsupported by the native ISA of
processor 110 may benefit from binary translation. Such code
may be detected, e.g., via host entity logic 122, which 1n turn
may trigger BT container 130 to perform a binary translation
and 1nstall the same within translation cache 140. As such,
when an entry point to a native code portion that has been
translated 1s encountered, at least a portion of processor hard-
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ware 120 (e.g., a single core, execution of a core or so forth)
may be configured using processor state present in state stor-
age 132 to enable execution of the translated code within
translation cache 140. Although shown at this high level in the
embodiment of FIG. 1, understand the scope of the present
invention 1s not limited 1n this regard.

Referring now to FIG. 2, shown 1s a block diagram of a
co-designed processor 1 accordance with another embodi-
ment of the present invention. As shown 1n FIG. 2, processor
200 1s amulticore processor. More particularly, processor 200
may be an asymmetric multiprocessor including different
types of processing units. In the embodiment shown 1n FIG. 2,
processor 200 includes a first plurality of cores 210,-210,
(generically cores 210) which may be configured as large
cores. By “large cores,” 1t 1s meant that these cores may be
configured to fully support a given ISA. For example, these
cores may support a given Intel® ISA including vector sup-
port such as for advanced vector extensions (AVX) mnstruc-
tions. Thus the data path of one or more of the execution units
within the large cores may be of a given vector width, e.g., 128
bits, 256 bits, 512 bits or another vector width. Given the
relatively wide vector data path, 1t 1s possible that the large
cores may consume a relatively high amount of power during
execution, at least during execution of vector instructions.

Although many applications take advantage of such vector
instructions, other types of applications may not leverage
these instructions, and thus may not benefit from the greater
power consumption of large cores 210. 'To this end, processor
200 further includes a plurality of small cores 212,-212,
(generically cores 212). The term “small cores” means that
these cores, which may be of a heterogeneous design from the
large cores, may have lower power consumption. For
example, these small cores may support a different ISA or
only a subset of the ISA of the large cores. For example, small
cores 212 may not provide support for vector instructions
such as AVX instructions. In this way, the data path of one or
more execution units of the small cores may be of a smaller
width than the data path of execution units of the large cores
210.

In addition to the various types of cores, additional pro-
cessing units may be present within processor 200. In the
embodiment shown 1n FIG. 2, a plurality of graphics engines
214.,-214, may be provided. These graphics engines may be
graphics processing units (GPUs) that may be used to per-
form graphics processing. However understand that addi-
tional/different processing may also be performed on these
graphics engines. For example, general purpose istructions
can be performed 1n a general purpose graphics processing
unit (GPGPU) model. Still further processing units may be
present within processor 200 (not shown for ease of illustra-
tion in FIG. 2).

Still referring to F1G. 2, various cores and other processing
units are coupled to a shared cache memory 215, which 1n an
embodiment may be a last level cache (LLC). In some
embodiments, this cache memory may be a distributed cache
memory with one or more banks associated with each of the
cores/graphics engines.

To effect dynamic binary operations, processor 200 further
includes various hardware for controlling and performing
binary translations. In the embodiment shown in FIG. 2,
processor 200 includes a binary translation control logic 220
coupled to a binary translation container 225. In turn, binary
translation container 2235 1s coupled to a translation cache
228.

In general, BT control logic 220 may be configured to
directly control mvocation mnto and exit from BT software
that executes within BT container 225. For example, BT
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control logic 220 may be configured to 1dentily code seg-
ments for which binary translation 1s appropnate, €.g., to avail
of optimizations or other emulation features. Thus BT control
logic 220 may 1nstruct BT software within BT container 225
to generate a binary translation for a given code segment and
to cause the BT software to store the resulting binary trans-
lation within translation cache 228. In addition, BT control
logic 220 may program a steering logic (or other processor
logic) to enable a control transfer to a binary translation when
an entry point to a code segment for which a binary translation
1s available 1s encountered. In an embodiment, this program-
ming may include writing an entry into a mapping table that
associates native code segments and instrumented code seg-
ments.

Dynamic binary translations may be performed for various
situations such as for code optimizations and ISA emulation.
One particular situation 1s for purposes of executing code
having one or more instructions that a core does not support.
For example, as discussed above 1n one embodiment, small
cores 212 may not provide support for vector instructions.
However, it may be desirable when a limited number of vector
instructions appear in a code segment to have this code seg-
ment execute on a small core, given the power consumption
advantages of the small core as compared to the large core.
Thus BT control logic 220 may cause the BT software to
generate a binary translation of a code segment having, e.g., a
small number of vector instructions to enable emulation of
these vector instructions for execution on a given small core
212.

Still referring to FIG. 2, processor 200 further includes
additional circuitry including a system agent circuit 230
which may provide overall supervisory functions such as
power control for the processor via a power control umit
(PCU) 232. In addition, an integrated memory controller 234
provides an interface to a system memory such as a dynamic
random access memory (DRAM). System agent 230 also may
include one or more interfaces 236 to enable interface to other
agents ol a system such as other processors of a multiproces-
sor system, a peripheral controller and other system compo-
nents. Although shown at this high level in the embodiment of
FIG. 2, understand the scope of the present invention 1s not
limited 1n this regard.

Retferring now to FIG. 3, shown 1s a flow diagram of a
method 1n accordance with an embodiment of the present
invention. In general method 300 of FIG. 3 may be performed
by a combination of various logic of a processor to generate
translated code and configure the processor to enable a con-
trol transfer to this translated code when a call 1s made during
execution to corresponding native code for which the binary
translated code has been generated.

In FIG. 3, method 300 begins by profiling code execution
to 1dentity one or more critical code segments (block 310). In
the examples described herein, this profiling of code may be
performed to identity hot spot code, self-modifying code,
code to be emulated (e.g., for ISA mstructions unsupported
by a given core on which 1t may be executed), and so forth.

Still referring to FIG. 3, after execution proceeds and the
profiling 1s performed, information regarding an identified
code segment (e.g., a hot spot code, seli-modifying code, or
codes to be emulated) can be provided to a binary translation
agent (block 320). As an example, this binary translation
agent may be a binary translation engine as described herein.
Control next passes to block 330, where an instrumented code
segment can be generated from the code segment and stored
in an instrumentation cache. As an example, this generation of
instrumented code may include one or more emulation rou-
tines to emulate one or more instructions that are unsupported
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by a given core or other processing unit of the processor. In
this way, the instrumented code provides an emulation func-
tion to enable emulated code to be executed atlower cost (e.g.,
on a lower power consuming core). In an embodiment, a time

check may be made to ensure forward progress expectation of

the OS and application code during the translation generation.
I1 such an event occurs, control goes back to the native code
execution. The next hotspot event brings the processor back to
the translation generation task.

With continuing reference to FI1G. 3, control next passes to
block 340 where steering logic of the processor can be pro-
grammed to point to this instrumented code segment. That 1s,
a steering logic such as of a BT hardware unit may include one
or more mapping tables to be updated with an entry to identily
a correspondence between the native code segment (namely
the 1dentified critical code segment) and the nstrumented
code segment that 1s to be executed 1n favor of the native code
segment. This programming may thus enable the logic to
perform a transier or steering of execution from native code to
instrumented code when an entry point to the now-translated
native code 1s encountered. Although shown at this high level
in the embodiment of FIG. 3, understand the scope of the
present invention 1s not limited in this regard.

Referring now to FIG. 4, shown 1s a flow diagram of a
method for performing a low overhead transter to translated
code i accordance with an embodiment of the present imnven-
tion. Method 400 of FIG. 4 may be executed by various logic
of a processor including a BT control logic and other proces-
sor logic. As seen, method 400 may begin at diamond 410 by
determining whether an entry point to a first code segment has
been encountered. In an embodiment this entry point may be
a call to a first instruction of a code segment for which a binary
translation has been effected. If no such call 1s received,
typical code execution may continue at block 420. Otherwise
when a call to such code 1s recerved, control passes to block
430 where steering logic 1s enabled to transfer control to an
instrumented code segment. In one embodiment, this
enabling of control transier may be effected by access to a
mapping table that associates a native code segment entry
point with a translated code segment entry point.

To enable execution of the binary translation, control
passes to block 440 where a swap occurs between a native
context stored in the processor and a binary translation con-
text. In an embodiment, the swap may include saving a state
of the processor to a processor state storage and loading a BT
processor state from a BT state storage within the BT con-
tainer nto various registers of the processor including con-
figuration and status register, general purpose registers and so
forth. Control next passes to block 450 where the instru-
mented code segment can be executed to emulate an unsup-
ported feature.

It 1s possible that an exception or external iterrupt may
occur during execution, as determined at diamond 460. If no
such event occurs, the instrumented code segment may com-
plete execution (at block 480). And accordingly, at block 420
continued execution of native code may occur.

Otherwise 1f such event occurs control passes to block 470.
At block 470 another context switch can occur to enable the
native state to be reloaded into the processor. Then control
passes to block 480 where native code may execute to handle
the 1nterrupt or exception. Then 11 additional work 1s to be
done for the binary translation, control passes back to block
430 discussed above for continuing execution of the binary
translation. Although shown at this high level 1n the embodi-
ment of FIG. 4, understand the scope of the present invention
1s not limited in this regard.
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To 1llustrate components of a processor implemented as a
co-designed virtual machine in accordance with an embodi-
ment of the present invention reference 1s made to FIG. 5. As
shown 1 FIG. S5, a co-design environment 600 includes a
processor 605 and a memory 620 which 1n one embodiment
may be a system memory such as a dynamic random access
memory (DRAM). As seen, processor 603 may have a given
micro-architecture and may be coupled to memory 620 by
way of, e.g., a poit-to-point mterconnect, bus or other such
manner. In a visible portion of memory 620, namely a first
portion 630, one or more operating systems 635 and applica-
tion programs 638 may be stored. This portion 1s termed

“visible” as it can be visible to user-level code (1.e., the
application program 638) and visible to the OS (both OS 635
and program 638). Depending on the type of instructions to be
executed 1n these programs, communication may be directly
with processor 605, e.g., by way of using instruction decoders
present 1n the processor to handle such 1nstructions.

Alternately, for various code sequences that can be opti-
mized using translated code or for such sequences 1n which
micro-architecture support 1s not provided, embodiments
may use a concealed portion of the memory, namely a second
portion 640, 1n order to provide translated code to processor
605. Specifically, as seen, both OS 635 and application pro-
gram 638 may communicate with a BT engine 645, which
may include a runtime execution unit including interpreta-
tion, translation and optimization mechanisms. Note that con-
cealed memory 640 1s not visible or accessible to the OS or
application programs. BT engine 645 may thus provide code
and address information to a translation cache 648, which
may include translated code that can be provided to processor
605 for execution. In one embodiment, code stored 1n trans-
lation cache 648 may be encrypted. This translated code may
be written and optimized for the underlying micro-architec-
ture of the processor, e.g., target ISA code.

As seen, processor 605 which may be a co-design proces-
sor, includes front end units such as an instruction fetcher 606
that can receive instructions directly from the OS or applica-
tion programs. These mstructions, which may be macro-in-
structions, €.g., corresponding to user-level instructions of an
application program can be decoded using a decoder 607,
which may operate to decode the instruction and access cor-
responding uops, €.g., present 1n a microcode storage of pro-
cessor 603. In turn, decoder 607 may provide the uops to one
or more execution units 608, which may include various
arithmetic logic units (ALUs), specialized hardware and
other types of computation units. Results from these mstruc-
tions may be provided to a retirement unit 609, which oper-
ates to retire the instructions to thus store the results to an
architectural state of the processor 1 program order, if no
fault or exceptions occurred. While described as an in-order
machine, embodiments can equally be implemented using an
out-of-order machine.

Embodiments may be implemented in many different sys-
tem types. Referring now to FI1G. 6, shown 1s a block diagram
of a system 1n accordance with an embodiment of the present
invention. As shown 1n FIG. 6, multiprocessor system 700 1s
a point-to-point interconnect system, and includes a first pro-
cessor 770 and a second processor 780 coupled via a point-
to-point iterconnect 750. As shown in FIG. 6, each of pro-
cessors 770 and 780 may be multicore processors, including
first and second processor cores (1.€., processor cores 774a
and 774b and processor cores 784a and 784b), although
potentially many more cores may be present in the proces-
sors. Hach of the processors can include logic to create and
manage a BT container, as described herein.
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Still referring to FI1G. 6, first processor 770 further includes
a memory controller hub (MCH) 772 and point-to-point (P-P)
interfaces 776 and 778. Similarly, second processor 780
includes a MCH 782 and P-P interfaces 786 and 788. As
shown 1n FIG. 6, MCH’s 772 and 782 couple the processors

to respective memories, namely a memory 732 and a memory
734, which may be portions of system memory (e.g., DRAM)
locally attached to the respective processors. First processor
770 and second processor 780 may be coupled to a chupset
790 via P-P interconnects 752 and 754, respectively. As
shown 1n FIG. 6, chipset 790 includes P-P interfaces 794 and
798.

Furthermore, chipset 790 includes an interface 792 to
couple chipset 790 with a high performance graphics engine
738, by a P-P interconnect 739. In turn, chipset 790 may be
coupled to a first bus 716 via an interface 796. As shown 1n
FIG. 6, various mput/output (I/O) devices 714 may be
coupled to first bus 716, along with a bus bridge 718 which
couples first bus 716 to a second bus 720. Various devices may
be coupled to second bus 720 including, for example, a key-
board/mouse 722, communication devices 726 and a data
storage unit 728 such as a disk drive or other mass storage
device which may include code 730, 1n one embodiment.
Further, an audio I/O 724 may be coupled to second bus 720.
Embodiments can be incorporated 1nto other types of systems
including mobile devices such as a smart cellular telephone,
tablet computer, netbook, or so forth.

The following examples pertain to further embodiments.

In one example, a processor comprises a first core to
execute 1nstructions of a first instruction set architecture
(ISA), a second core to execute 1nstructions of a second ISA,
the second core asymmetric to the first core, and a binary
translation container to be controlled transparently to a soft-
ware stack by the processor, the binary translation container
including a binary translation engine to recerve a code seg-
ment, to generate a binary translation of the code segment,
and to store the binary translation 1n a translation cache, the
binary translation including at least one emulation routine to
emulate an instruction of the first ISA that1s unavailable in the
second ISA, wherein the second core 1s to execute the binary
translation.

In an example, the at least one emulation routine 1s to
enable the second core to execute an instruction to perform an
operation on a first vector operand, wherein a width of a
datapath of the second core is less than a width of the first
vector operand.

In an example, the processor 1s to profile an application
including the code segment and to cause the binary translation
engine to generate the binary translation responsive to the
profiling.

In an example, the processor includes a mapping table
including a plurality of entries each to associate a native code
segment with a binary translation code segment.

In an example, the processor 1s to access the mapping table
and to execute the binary translation instead of the code
segment when an entry point to the code segment 1s encoun-
tered, when the mapping table includes an entry that associ-
ates the code segment with the binary translation.

In an example, the binary translation engine includes a
steering logic to cause the binary translation to be executed
instead of the code segment.

In an example, the second core has a lower power con-
sumption level than the first core.

Note that the above processor can be implemented using
various means.
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In an example, the processor comprises a system on a chip
(SoC) mcorporated mm a user equipment touch-enabled
device.

In another example, a system comprises a display and a
memory, and includes the processor of one or more of the
above examples.

In another example, a machine-readable medium having
stored thereon instructions, which if performed by a machine
cause the machine to perform a method comprises receiving
an 1nstruction to perform a binary translation for a first code
segment 1n a binary translation agent of a processor, generat-
ing an instrumented code segment for the first code segment
including a first routine to emulate a first instruction of a first
instruction set architecture (ISA) when executed on a core of
the processor that does not support the first instruction, stor-
ing the instrumented code segment 1 an instrumentation
cache memory, and programming the processor to enable the
core to execute the mstrumented code segment instead of the
first code segment when an entry point to the first code seg-
ment 1s encountered.

In an example, the binary translation agent 1s transparent to
a soltware stack that executes on the processor.

In an example, instructions to store an entry 1n a mapping,
table are to associate the entry point to a location of the
instrumented code segment in the instrumentation cache
memory.

In an example, instructions to store an entry 1n a mapping,
table are to cause the core to execute a second nstrumented
code segment 1nstead of a second code segment, wherein the
second code segment includes a hot spot.

In an example, the machine-readable medium further com-
prises instructions to store an entry 1 a mapping table to
cause the core to execute a third mstrumented code segment
instead of a third code segment, wherein the third code seg-
ment 1ncludes selt-moditying code.

In another example, a processor comprises a binary trans-
lation (BT) container including code to generate a binary
translation of a first code segment and to store the binary
translation in a translation cache, a host entity logic to manage
the BT container and to identify the first code segment, and
protection logic to 1solate the BT container from a software
stack, the software stack including a virtual machine monitor
(VMM) layer, an operating system (OS) layer, and an appli-
cation layer, wherein the BT container 1s transparent to the
software stack.

In an example, the protection logic includes at least one
register to store a range value to 1dentily a location of the BT
container.

In an example, the host entity logic 1s to cause a state of the
processor to be stored 1n a first state storage, and to load a BT
state stored 1n a BT state storage of the BT container into the
processor on an entry to a BT invocation.

In an example, the host entity logic 1s to cause the BT state
to be stored in the BT state storage of the BT container and to
load the processor state from the first state storage after
execution of the binary translation for a first time quantum, to
enable execution of an application of the software stack.

In an example, the host entity logic 1s to cause the BT state
to be loaded 1nto a state storage of an1dle core o the processor
to enable execution of the binary translation on the 1dle core,
where an application of the software stack executes on a
second core of the processor.

In an example, the host entity logic i1s to prevent the BT
container from access to the OS layer and the VMM layer of
the software stack.
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In an example, the host enfity logic i1s to prevent the BT
container from write access to the application layer of the
software stack.

In an example, the host entity logic 1s to enable the BT
container to access a first subset of a state of the processor, and
to prevent the BT container from access to a second subset of
the processor state.

In another example, a method comprises recerving an
istruction to perform a binary translation for a first code
segment 1n a binary translation agent of a processor, generat-
ing an mstrumented code segment for the first code segment
including a first routine to emulate a first instruction of a first
instruction set architecture (ISA) when executed on a core of
the processor that does not support the first instruction, stor-
ing the mstrumented code segment in an instrumentation
cache memory, and programming the processor to enable the
core to execute the mstrumented code segment instead of the
first code segment when an entry point to the first code seg-
ment 1s encountered.

In an example, the binary translation agent 1s transparent to
a soltware stack that executes on the processor.

In an example, the method includes storing an entry 1n a
mapping table 1s to associate the entry point to a location of
the mstrumented code segment 1n the istrumentation cache
memory.

In an example, the method further comprises storing an
entry 1n a mapping table to cause the core to execute a second
instrumented code segment mstead of a second code segment,
wherein the second code segment includes a hot spot.

In an example, the method includes storing an entry 1n a
mapping table 1s to cause the core to execute a third instru-
mented code segment instead of a third code segment,
wherein the third code segment includes self-moditying code.

In another example, a processor comprises a binary trans-
lation (BT) container means including code for generating a
binary translation of a first code segment and for storing the
binary translation 1n a translation cache, a host entity means
for managing the B'T container means and for identifying the
first code segment, and protection means for 1solating the BT
container means from a software stack, the software stack
including a virtual machine monitor (VMM) layer, an oper-
ating system (OS) layer, and an application layer, wherein the
BT container means 1s transparent to the software stack.

In an example, the protection means includes at least one
register to store a range value to identily a location of the BT
container means.

In an example, the host entity means 1s to cause a state of
the processor to be stored 1n a first state storage, and to load a
BT state stored in a BT state storage of the BT container
means 1nto the processor on an entry to a BT invocation.

In an example, the host entity means 1s to cause the BT state
to be stored 1n the BT state storage of the B'T container means
and to load the processor state from the first state storage after
execution of the binary translation for a first time quantum, to
enable execution of an application of the software stack.

In an example, the host entity means 1s to cause the BT state
to be loaded 1nto a state storage of an 1dle core of the processor
to enable execution of the binary translation on the 1dle core,
wherein an application of the software stack executes on a
second core of the processor.

In an example, the host entity means 1s to prevent the BT
container from access to the OS layer and the VMM layer of
the software stack.

In an example, the host entity means 1s to prevent the BT
container from write access to the application layer of the
software stack.
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In an example, the host entity means 1s to enable the BT
container to access a first subset of a state of the processor, and
to prevent the BT container from access to a second subset of
the processor state.

In another example, a computer readable medium 1nclud-
ing 1structions 1s to perform the method of any of the above
examples.

In another example, an apparatus comprises means for
performing the method of any one of the above examples.

In an example, a communication device 1s arranged to
perform the method of any one of the above examples.

In an example, at least one machine readable medium
comprising a plurality of instructions that in response to being
executed on a computing device, cause the computing device
to carry out a method according to any one of the above
examples.

Understand that various combinations
examples are possible.

Embodiments may be used in many different types of
systems. For example, 1n one embodiment a communication
device can be arranged to perform the various methods and
techniques described herein. Of course, the scope of the
present ivention 1s not limited to a communication device,
and 1nstead other embodiments can be directed to other types
of apparatus for processing instructions, or one or more
machine readable media including instructions that in
response to being executed on a computing device, cause the
device to carry out one or more of the methods and techniques
described herein.

Embodiments may be implemented in code and may be
stored on a storage medium having stored thereon instruc-
tions which can be used to program a system to perform the
istructions. The storage medium may include, but i1s not
limited to, any type of disk including tloppy disks, optical
disks, optical disks, solid state drives (SSDs), compact disk
read-only memories (CD-ROMs), compact disk rewritables
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random access
memories (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMSs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

While the present mnvention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It 1s intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

What 1s claimed 1s:

1. A processor comprising:

a first core to execute instructions of a first mnstruction set

architecture (ISA);

a second core to execute 1nstructions of a second ISA, the

second core asymmetric to the first core; and

a binary translation container to be controlled 1n a manner

transparent to a soltware stack by the processor, the

binary translation container including a binary transla-

tion engine to recerve a code segment, to generate a
binary translation of the code segment, and to store the
binary translation 1n a translation cache, the binary trans-
lation including at least one emulation routine to emu-
late an instruction of the first ISA that 1s unavailable 1n
the second ISA, wherein the second core 1s to execute the
binary translation.

of the above
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2. The processor of claim 1, wherein the at least one emu-
lation routine 1s to enable the second core to execute an
instruction to perform an operation on a {irst vector operand,
wherein a width of a datapath of the second core 1s less than
a width of the first vector operand.
3. The processor of claim 1, wherein the processor includes
a mapping table including a plurality of entries each to asso-
ciate a native code segment with a binary translation code
segment.
4. The processor of claim 3, wherein the processor 1s to
access the mapping table and to execute the binary translation
instead of the code segment when an entry point to the code
segment 1s encountered, when the mapping table includes an
entry that associates the code segment with the binary trans-
lation.
5. The processor of claim 1, wherein the binary translation
engine includes a steering logic to cause the binary translation
to be executed instead of the code segment.
6. The processor of claim 1, wherein the second core has a
lower power consumption level than the first core.
7. A non-transitory machine-readable medium having
stored thereon 1nstructions, which 1f performed by a machine
cause the machine to perform a method comprising:
receiving an istruction to perform a binary translation for
a first code segment 1n a binary translation agent of a
processor, wherein the binary translation agent 1s man-
aged by a control logic of the processor to be transparent
to a software stack that executes on the processor;

generating an mstrumented code segment for the first code
segment including a first routine to emulate a first
istruction of a first mstruction set architecture (ISA)
when executed on a core of the processor that does not
support the first instruction;

storing the mstrumented code segment 1n an 1nstrumenta-

tion cache memory; and

programming the processor to enable the core to execute

the instrumented code segment instead of the first code
segment when an entry point to the first code segment 1s
encountered.

8. The non-transitory machine-readable medium of claim
7, further comprising instructions to store an entry 1n a map-
ping table to associate the entry point to a location of the
instrumented code segment in the instrumentation cache
memory.

9. The non-transitory machine-readable medium of claim
7, further comprising mstructions to store an entry 1 a map-
ping table to cause the core to execute a second nstrumented
code segment 1nstead of a second code segment, wherein the
second code segment 1ncludes a hot spot.

10. The non-transitory machine-readable medium of claim
7, further comprising mstructions to store an entry 1n a map-
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ping table to cause the core to execute a third mstrumented
code segment instead of a third code segment, wherein the
third code segment includes seli-modilying code.

11. A processor comprising:

a binary translation (BT) container including code to gen-
crate a binary translation of a first code segment and to
store the binary translation in a translation cache;

a host entity logic to manage the BT container and to
identify the first code segment; and

protection logic to 1solate the BT container from a software
stack, the software stack including a virtual machine
monitor (VMM) layer, an operating system (OS) laver,
and an application layer, wherein the host entity logic 1s
to manage the BT container to be transparent to the
soltware stack.

12. The processor of claim 11, wherein the protection logic
includes at least one register to store a range value to 1dentily
a location of the BT container.

13. The processor of claim 11, wherein the host entity logic
1s to cause a state of the processor to be stored 1n a first state
storage, and to load a BT state stored 1n a BT state storage of
the BT container into the processor on an entry to a BT
invocation.

14. The processor of claim 13, wherein the host entity logic
1s to cause the BT state to be stored in the BT state storage of
the BT container and to load the processor state from the first
state storage after execution of the binary translation for a first
time quantum, to enable execution of an application of the
software stack.

15. The processor of claim 13, wherein the host entity logic
1s to cause the BT state to be loaded 1nto a state storage of an
idle core of the processor to enable execution of the binary
translation on the idle core, wherein an application of the
soltware stack executes on a second core of the processor.

16. The processor of claim 11, wherein the host entity logic
1s to prevent the B'T container from access to the OS layer and
the VMM layer of the software stack.

17. The processor of claim 11, wherein the host entity logic
1s to prevent the BT container from write access to the appli-
cation layer of the software stack.

18. The processor of claim 11, wherein the host entity logic
1s to enable the BT container to access a first subset of a state
of the processor, and to prevent the BT container from access
to a second subset of the processor state.

19. The processor of claim 2, wherein the binary translation
engine 1s to generate the binary translation including the at
least one emulation routine when the code segment 1includes
less than a threshold number of vector instructions.
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